Gromov-Witten invariants and Algebraic Geometry (II)

Jun Li

Shanghai Center for Mathematical Sciences and Stanford University

Quintic Calabi-Yau threefolds:

$$X=\{\mathbf{w}_5=x_1^5+\dots+x_5^5=0\}\subset \mathbf{P}^4$$

For $d, g \in \mathbb{Z}$, form the moduli of stable maps

 $\overline{M}_g(X,d) = \{[f,C] \mid f : C \to X, \text{such that } \dots\}$

Form virtual cycle

$$[\overline{M}_g(X,d)]^{virt} \in A_0 \overline{M}_g(X,d)$$

The GW invariant

$$N_g(d) = \int_{[\overline{M}_g(X,d)]^{
m virt}} 1 \in \mathbb{Q}.$$

æ

Im ▶ < 10</p>

The generating function

 $f_g(q) = \sum N_g(d)q^d$

• Determining it is a challenge to mathematicians

→ < ∃→

Recent progress toward

an effective algorithm for all genus invariants

using Mixed-Spin-P (MSP) fields.

A joint work with Huailiang Chang, Weiping Li, and Mellisa Liu.

This work is inspired by Witten's vision that GW invariants of quintics and Witten's spin class invariants are equivalent via a wall crossing.

- \mathbb{C}^* acts on $\mathbb{C}^5 \times \mathbb{C}$ of weight (1, 1, 1, 1, 1, -5);
- $(x_1^5 + \dots + x_5^5) \cdot p : \mathbb{C}^5 \times \mathbb{C} \to \mathbb{C}$ is \mathbb{C}^* equivariant;
- the quotient $\mathbb{C}^5 \times \mathbb{C}/\mathbb{C}^*$ is pretty bad;

♬▶ ◀ ☱ ▶ ◀

- \mathbb{C}^* acts on $\mathbb{C}^5\times\mathbb{C}$ of weight (1,1,1,1,1,-5);
- $(x_1^5 + \dots + x_5^5) \cdot p : \mathbb{C}^5 \times \mathbb{C} \to \mathbb{C}$ is \mathbb{C}^* equivariant;
- the quotient $\mathbb{C}^5 \times \mathbb{C}/\mathbb{C}^*$ is pretty bad;

∄▶ ∢ ≣▶

- \mathbb{C}^* acts on $\mathbb{C}^5\times\mathbb{C}$ of weight (1,1,1,1,1,-5);
- $(x_1^5 + \dots + x_5^5) \cdot p : \mathbb{C}^5 \times \mathbb{C} \to \mathbb{C}$ is \mathbb{C}^* equivariant;
- the quotient $\mathbb{C}^5\times\mathbb{C}/\mathbb{C}^*$ is pretty bad;

Witten's vision

 $[\mathbb{C}^6/\mathbb{C}^*]$ has two GIT quotients:

•
$$(\mathbb{C}^5 - 0) \times \mathbb{C}/\mathbb{C}^* = K_{\mathbb{P}^4};$$

• $\mathbb{C}^5 \times (\mathbb{C} - 0)/\mathbb{C}^* = \mathbb{C}^5/\mathbb{Z}_5;$

• we call $(\mathbb{C}^5 - 0) \times \mathbb{C}/\mathbb{C}^*$ and $\mathbb{C}^5 \times (\mathbb{C} - 0)/\mathbb{C}^*$ related by a simple wall crossing $(\mathbb{C}^5 \circ)/\mathbb{C}^* = \mathbb{P}^+$, $(\mathbb{C}^5 \circ) \cdot \mathbb{C}/\mathbb{C}^*$

 $(C^{5} - 0)/C^{4} = \mathbb{P}^{4}$

 $[\mathbb{C}^6/\mathbb{C}^*]$ has two GIT quotients:

•
$$(\mathbb{C}^5 - 0) \times \mathbb{C}/\mathbb{C}^* = K_{\mathbb{P}^4};$$

•
$$\mathbb{C}^5 imes (\mathbb{C}-0)/\mathbb{C}^* = \mathbb{C}^5/\mathbb{Z}_5;$$

we call (C⁵ − 0) × C/C* and C⁵ × (C − 0)/C* related by a simple wall crossing.

 $C^{*} \subseteq C \setminus U$ has weight - 5 stab = \overline{c}_{5}

伺 ト く ヨ ト く ヨ ト

 $[\mathbb{C}^6/\mathbb{C}^*]$ has two GIT quotients:

•
$$(\mathbb{C}^5 - 0) \times \mathbb{C}/\mathbb{C}^* = K_{\mathbb{P}^4};$$

•
$$\mathbb{C}^5 \times (\mathbb{C} - 0)/\mathbb{C}^* = \mathbb{C}^5/\mathbb{Z}_5;$$

• we call $(\mathbb{C}^5 - 0) \times \mathbb{C}/\mathbb{C}^*$ and $\mathbb{C}^5 \times (\mathbb{C} - 0)/\mathbb{C}^*$ related by a simple wall crossing.

Wall crossing. Well crossing \approx differ by a low dimensional $\int subsets$. $C^{5} \times C/C^{4}$ $C^{5} \times C/C^{4}$ A the sterk Witten:

- a field theory valued in $K_{\mathbb{P}^4}$ is the GW of quintics;
- a field theory valued in $\mathbb{C}^5/\mathbb{Z}_5$ is the Witten's spin class (FJRW invariants);
- these two theories are equivalent via a wall crossing.

- developed a (MSP) field theory realizing this wall crossing,
- an algorithm, conjecturally determine all genus invariants.

(with HL Chang) We constructed the GW invariants of stable maps with *p*-fields:

•
$$\overline{M}_g(\mathbf{P}^4, d)^{\rho} = \{[f, C, \rho] \mid [f, C] \in \overline{M}_g(\mathbf{P}^4, d), \\ \rho \in H^0(C, f^*\mathcal{O}(5) \otimes \omega_C)\}$$

• form its virtual cycle $[\overline{M}_g(\mathbf{P}^4, d)^p]_{loc}^{virt}$

Not f: C-> X quintic.

(with HL Chang) We constructed the GW invariants of stable maps with *p*-fields:

- $\overline{M}_{g}(\mathbf{P}^{4}, d)^{p} = \{[f, C, \rho] \mid [f, C] \in \overline{M}_{g}(\mathbf{P}^{4}, d), \\ \rho \in H^{0}(C, f^{*}\mathcal{O}(5) \otimes \omega_{C})\}$
- form its virtual cycle $[\overline{M}_g(\mathbf{P}^4, d)^p]_{loc}^{virt}$
- ullet define $N_g(d)^p = \int_{[\overline{M}_g(\mathbf{P}^4,d)^p]_{loc}^{virt}} 1 \in \mathbb{Q}$

(with HL Chang) We constructed the GW invariants of stable maps with *p*-fields:

•
$$\overline{M}_g(\mathbf{P}^4, d)^p = \{ [f, C, \rho] \mid [f, C] \in \overline{M}_g(\mathbf{P}^4, d), \\ \rho \in H^0(C, f^*\mathcal{O}(5) \otimes \omega_C) \}$$

• form its virtual cycle
$$[\overline{M}_g(\mathbf{P}^4, d)^p]_{loc}^{virt}$$

• define
$$N_g(d)^p = \int_{[\overline{M}_g(\mathbf{P}^4,d)^p]_{loc}^{virt}} 1 \in \mathbb{Q}$$

Theorem (Chang - L)

The two sets of invariants are equivalent

$$N_g(d) = (-1)^{d+g+1} N_g(d)^p.$$

Up shot:

- N_g(d) are virtual counting of maps to the quintic X;
 o counting [f : C → X ⊂ P⁴]
- $N_g(d)^p$ is a virtual counting of fields on curves:

♬▶ ◀ ☱ ▶ ◀

Theorem (Chang - L)

The two sets of invariants are equivalent

$$N_g(d) = (-1)^{d+g+1} N_g(d)^p.$$

Up shot:

- $N_g(d)$ are virtual counting of maps to the quintic X;
 - counting $[f : \mathcal{C} \to X \subset \mathbb{P}^4]$

• $N_g(d)^p$ is a virtual counting of fields on curves:

∰ ▶ ∢ ≣ ▶

Theorem (Chang - L)

The two sets of invariants are equivalent

$$N_g(d) = (-1)^{d+g+1} N_g(d)^p.$$

Up shot:

- $N_g(d)$ are virtual counting of maps to the quintic X;
 - counting $[f : \mathcal{C} \to X \subset \mathbb{P}^4]$
- $N_g(d)^p$ is a virtual counting of fields on curves:

LG theory of K_{P^4}

- N_g(d) are virtual counting of maps to the quintic X;
 ounting [f : C → X ⊂ P⁴]
- $N_g(d)^p$ is a virtual counting of fields on curves:
 - definition says: counting of

 $([f: \mathcal{C} \to \mathbb{P}^4], \rho \in H^0(\mathcal{C}, f^*\mathscr{O}(5) \otimes \omega_{\mathcal{C}}));$

- ② $[f : C \to \mathbb{P}^4]$ is $(C, \mathcal{L}, \varphi_1, \cdots, \varphi_5)$, where $\varphi_i \in H^0(\mathcal{L})$ s.t. $(\varphi_1, \cdots, \varphi_5)$ never zero;
 - The P-field $\rho \in H^0(\mathcal{L}^{-5} \otimes \omega_{\mathcal{C}});$ $P \stackrel{\text{field}}{\swarrow} \stackrel{f}{\longrightarrow} \bigcirc \stackrel{f}{\longrightarrow} \stackrel{f$

LG theory of K_{P^4}

- N_g(d) are virtual counting of maps to the quintic X;
 counting [f : C → X ⊂ P⁴]
- $N_g(d)^p$ is a virtual counting of fields on curves:

definition says: counting of

 $([f:\mathcal{C}
ightarrow\mathbb{P}^4],
ho\in H^0(\mathcal{C},f^*\mathscr{O}(5)\otimes\omega_{\mathcal{C}}));$

② [f: C → P⁴] is (C, L, φ₁, · · · , φ₅), where φ_i ∈ H⁰(L) s.t. (φ₁, · · · , φ₅) never zero;
③ the P-field $\rho \in H⁰(L⁻⁵ \otimes ω_C)$;

$$f = (\varphi_1, \dots, \varphi_s) : C \longrightarrow \mathbb{P}^4$$

10

LG theory of K_{P^4}

- N_g(d) are virtual counting of maps to the quintic X;
 counting [f : C → X ⊂ P⁴]
- $N_g(d)^p$ is a virtual counting of fields on curves:

definition says: counting of

 $([f: \mathcal{C} \to \mathbb{P}^4], \rho \in H^0(\mathcal{C}, f^*\mathscr{O}(5) \otimes \omega_{\mathcal{C}}));$

- ② $[f : C \to \mathbb{P}^4]$ is $(C, \mathcal{L}, \varphi_1, \cdots, \varphi_5)$, where $\varphi_i \in H^0(\mathcal{L})$ s.t. $(\varphi_1, \cdots, \varphi_5)$ never zero;
- the P-field $\rho \in H^0(\mathcal{L}^{-5} \otimes \omega_{\mathcal{C}});$

(S 9, ..., 45, P 6 fields

 $N_g(d)^p$ is a virtual counting of fields because it v. counts

$(\mathcal{C}, \mathcal{L}, \varphi_1, \cdots, \varphi_5, \rho);$

they are fields taking values in $K_{\mathbb{P}^4} = (\mathbb{C}^5 - 0) imes \mathbb{C}/\mathbb{C}^*$ because

- φ₁ ∈ H⁰(L) and ρ ∈ H⁰(L⁻⁵ ⊗ ω_C), (compare) C* acts on C⁵ and C of weights 1 and −5;
- $(\varphi_1, \dots, \varphi_5)$ never zero and ρ arbitrary, (compare) $(\mathbb{C}^5 - 0) \times \mathbb{C}/\mathbb{C}^*;$
- the line bundle $\mathcal L$ is up to scaling, (compare) quotient by $\mathbb C^*$.

 $N_g(d)^p$ is a field theory taking values in $K_{\mathbb{P}^4} = (\mathbb{C}^5 - 0) \times \mathbb{C}/\mathbb{C}^*$.

白マ イヨマ イヨマ

 $N_g(d)^p$ is a virtual counting of fields because it v. counts

$$(\mathcal{C}, \mathcal{L}, \varphi_1, \cdots, \varphi_5, \rho);$$

they are fields taking values in $K_{\mathbb{P}^4} = (\mathbb{C}^5 - 0) imes \mathbb{C}/\mathbb{C}^*$ because

• $\varphi_1 \in H^0(\mathcal{L})$ and $\rho \in H^0(\mathcal{L}^{-5} \otimes \omega_{\mathcal{C}})$, (compare) \mathbb{C}^* acts on \mathbb{C}^5 and \mathbb{C} of weights 1 and -5;

(φ₁, · · · , φ₅) never zero and ρ arbitrary, (compare)
 (C⁵ − 0) × C/C*;

• the line bundle $\mathcal L$ is up to scaling, (compare) quotient by $\mathbb C^*$.

 $N_g(d)^p$ is a field theory taking values in $K_{\mathbb{P}^4} = (\mathbb{C}^5 - 0) \times \mathbb{C}/\mathbb{C}^*$.

白マ イヨマ イヨマ

 $N_g(d)^p$ is a virtual counting of fields because it v. counts

$$(\mathcal{C}, \mathcal{L}, \varphi_1, \cdots, \varphi_5, \rho);$$

they are fields taking values in $K_{\mathbb{P}^4} = (\mathbb{C}^5 - 0) \times \mathbb{C}/\mathbb{C}^*$ because

- $\varphi_1 \in H^0(\mathcal{L})$ and $\rho \in H^0(\mathcal{L}^{-5} \otimes \omega_{\mathcal{C}})$, (compare) \mathbb{C}^* acts on \mathbb{C}^5 and \mathbb{C} of weights 1 and -5;
- $(\varphi_1, \cdots, \varphi_5)$ never zero and ρ arbitrary, (compare) $(\mathbb{C}^5 0) \times \mathbb{C}/\mathbb{C}^*$;
- the line bundle $\mathcal L$ is up to scaling, (compare) quotient by $\mathbb C^*$.

 $N_g(d)^p$ is a field theory taking values in $K_{\mathbb{P}^4} = (\mathbb{C}^5 - 0) \times \mathbb{C}/\mathbb{C}^*$.

- It originated by Witten's class;
- The full theory has been developed by Fan-Jarvis-Ruan, called the FJRW invariants.
- (with HL Chang and WP Li) We provided a new construction of FJRW invariants (in narrow case).

- It originated by Witten's class;
- The full theory has been developed by Fan-Jarvis-Ruan, called the FJRW invariants.
- (with HL Chang and WP Li) We provided a new construction of FJRW invariants (in narrow case).

• $\overline{M}_{g,\gamma}(\mathbf{w}_5, \mathbb{Z}_5)^p = \{((\Sigma^{\mathcal{C}}, \mathcal{C}), \mathcal{L}, \varphi_1, \cdots, \varphi_5, \rho) \mid \text{such that } \dots\}$ • $\varphi_i \in H^0(\mathcal{C}, \mathcal{L}), \ \rho \in H^0(\mathcal{C}, \mathcal{L}^{-5} \otimes \omega_{\mathcal{C}}(\Sigma^{\mathcal{C}}))$ • $\varphi_i \text{ arbitrary, } \rho \text{ nowhere vanishing.} \qquad \Sigma^{\mathfrak{C}} \quad \text{are marked points,} \\ \bullet \text{ (compare) } \mathbb{C}^5/\mathbb{Z}_5 = \mathbb{C}^5 \times (\mathbb{C} - 0)/\mathbb{C}^* \quad C \quad \text{wixted curves.}$

• $\overline{M}_{g,\gamma}(\mathbf{w}_5, \mathbb{Z}_5)^{\rho} = \{ ((\Sigma^{\mathcal{C}}, \mathcal{C}), \mathcal{L}, \varphi_1, \cdots, \varphi_5, \rho) \mid \text{such that } \dots \}$ • $\varphi_i \in H^0(\mathcal{C}, \mathcal{L}), \ \rho \in H^0(\mathcal{C}, \mathcal{L}^{-5} \otimes \omega_{\mathcal{C}}(\Sigma^{\mathcal{C}}))$

• φ_i arbitrary, ρ nowhere vanishing. • (compare) $\mathbb{C}^5/\mathbb{Z}_2 = \mathbb{C}^5 \times (\mathbb{C} = 0)^5$

同 ト イ ヨ ト イ ヨ ト

- $\overline{M}_{g,\gamma}(\mathbf{w}_5,\mathbb{Z}_5)^{\rho} = \{ ((\Sigma^{\mathcal{C}},\mathcal{C}),\mathcal{L},\varphi_1,\cdots,\varphi_5,\rho) \mid \text{such that } \dots \}$
- $\varphi_i \in H^0(\mathcal{C}, \mathcal{L}), \ \rho \in H^0(\mathcal{C}, \mathcal{L}^{-5} \otimes \omega_{\mathcal{C}}(\Sigma^{\mathcal{C}}))$
- φ_i arbitrary, ρ nowhere vanishing.
 - (compare) $\mathbb{C}^5/\mathbb{Z}_5 = \mathbb{C}^5 \times (\mathbb{C} 0)/\mathbb{C}^*$.

Theorem (Chang - Li - L)

The FJRW invariants can be constructed using cosection localized virtual cycles of the moduli of spin fields:

$$\overline{M}_{g,\gamma}(\mathbf{w}_5,\mathbb{Z}_5)^{5\rho} = \{ \left(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \varphi_1, \cdots, \varphi_5, \rho \right) | \dots \} / \sim$$

- The construction of the two theories
 - the GW invariants of stable maps with p-fields
 - **2** the FJRW invariants of $(\mathbf{w}_5, \mathbb{Z}_5)$

both rely on the construction of cosection localized virtual cyels;

Theorem (Kiem - L)

A DM stack M with a perfect obstruction theory, and a cosection $\sigma : Ob_M \to \mathcal{O}_M$ provides us a cosection localized virtual cycle (letting $D(\sigma) = \{\sigma = 0\})$

$[M]^{\mathsf{virt}}_{\sigma} \in A_*D(\sigma)$

- The construction of the two theories
 - the GW invariants of stable maps with p-fields
 - **2** the FJRW invariants of $(\mathbf{w}_5, \mathbb{Z}_5)$

both rely on the construction of cosection localized virtual cyels;

Theorem (Kiem - L)

A DM stack M with a perfect obstruction theory, and a cosection $\sigma : Ob_M \to \mathcal{O}_M$ provides us a cosection localized virtual cycle (letting $D(\sigma) = \{\sigma = 0\}$)

$$[M]^{virt}_{\sigma} \in A_*D(\sigma)$$

Remark

- The cosection localized virtual cycles allows one to construct invariants of non-compact moduli spaces;
- The cosections used in the GW with *p*-fields and FJRW are induced by the same equivariant LG function

$$(x_1^5 + \dots + x_5^5) \cdot p : \mathbb{C}^5 \times \mathbb{C} \longrightarrow \mathbb{C}.$$

Remark

- The cosection localized virtual cycles allows one to construct invariants of non-compact moduli spaces;
- The cosections used in the GW with *p*-fields and FJRW are induced by the same equivariant LG function

$$(x_1^5 + \cdots + x_5^5) \cdot p : \mathbb{C}^5 \times \mathbb{C} \longrightarrow \mathbb{C}.$$

Cosection technique

The fields: $\xi = (\mathcal{C}, \mathcal{L}, \varphi_1, \cdots, \varphi_5, \rho) \in H^0(\mathcal{L})^{\oplus 5} \oplus H^0(\mathcal{L}^{\otimes -5} \otimes \omega_{\mathcal{C}})$ The rel-obstruction space at ξ :

$$(\dot{arphi},\dot{
ho})\in Ob|_{\xi}=H^1(\mathcal{L})^{\oplus 5}\oplus H^1(\mathcal{L}^{\otimes -5}\otimes \omega_{\mathcal{C}})$$

The cosection $\sigma|_{\xi} : Ob|_{\xi} \longrightarrow \mathbb{C}$:

$$\sigma|_{\xi}(\dot{\varphi},\dot{\rho})=\dot{\rho}\sum x_{i}^{5}+\rho\sum 5\varphi_{i}^{4}\cdot\dot{\varphi}_{i}\in H^{1}(\omega_{\mathcal{C}})\cong\mathbb{C}.$$

Compare with

$$\delta(\boldsymbol{p}\cdot(\boldsymbol{x}_1^5+\cdots+\boldsymbol{x}_5^5))=\dot{\boldsymbol{p}}\cdot\sum\boldsymbol{x}_i^5+\rho\sum\boldsymbol{5}\boldsymbol{x}_i^4\cdot\dot{\boldsymbol{x}}_i$$

Next step is to geometrically realizing the wall crossing of these two field theories envisioned by Witten

We define

An MSP field =
$$(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_1, \cdots, \varphi_5, \rho, \nu_1, \nu_2)$$

An MSP field =
$$(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_1, \cdots, \varphi_5, \rho, \nu_1, \nu_2)$$

where

• $(\Sigma^{\mathcal{C}}, \mathcal{C})$ is a pointed twisted curve,

② $\, \mathcal{L} \,$ and $\, \mathcal{N} \,$ are line bundles, $\, \mathcal{L} \,$ as before, $\, \mathcal{N} \,$ is new;

- $\textcircled{O} \ arphi_i \in H^0(\mathcal{C},\mathcal{L}), \
 ho \in H^0(\mathcal{C},\mathcal{L}^{\otimes -5}\otimes \omega_\mathcal{C}^{\mathsf{log}}),$ as before;
- $\nu_1 \in H^0(\mathcal{L} \otimes \mathcal{N}), \ \nu_2 \in H^0(\mathcal{N});$

zecc

plus combined GIT like stability requirements.

An MSP field =
$$(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_1, \cdots, \varphi_5, \rho, \nu_1, \nu_2)$$

- $(\Sigma^{\mathcal{C}}, \mathcal{C})$ is a pointed twisted curve,
- **2** \mathcal{L} and \mathcal{N} are line bundles, \mathcal{L} as before, \mathcal{N} is new;
- I plus combined GIT like stability requirements.

An MSP field =
$$(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_1, \cdots, \varphi_5, \rho, \nu_1, \nu_2)$$

- $(\Sigma^{\mathcal{C}}, \mathcal{C})$ is a pointed twisted curve,
- **2** \mathcal{L} and \mathcal{N} are line bundles, \mathcal{L} as before, \mathcal{N} is new;
- $\varphi_i \in H^0(\mathcal{C}, \mathcal{L}), \ \rho \in H^0(\mathcal{C}, \mathcal{L}^{\otimes -5} \otimes \omega_{\mathcal{C}}^{\log}), \ \text{as before;}$
- In plus combined GIT like stability requirements.

An MSP field =
$$(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_1, \cdots, \varphi_5, \rho, \nu_1, \nu_2)$$

- **1** $(\Sigma^{\mathcal{C}}, \mathcal{C})$ is a pointed twisted curve,
- **2** \mathcal{L} and \mathcal{N} are line bundles, \mathcal{L} as before, \mathcal{N} is new;
- $\nu_1 \in H^0(\mathcal{L} \otimes \mathcal{N}), \ \nu_2 \in H^0(\mathcal{N});$ quantitities interpolating
- o plus combined GIT like stability requirtwentheories .

An MSP field =
$$(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_1, \cdots, \varphi_5, \rho, \nu_1, \nu_2)$$

- $(\Sigma^{\mathcal{C}}, \mathcal{C})$ is a pointed twisted curve,
- **2** \mathcal{L} and \mathcal{N} are line bundles, \mathcal{L} as before, \mathcal{N} is new;
- $\nu_1 \in H^0(\mathcal{L} \otimes \mathcal{N}), \ \nu_2 \in H^0(\mathcal{N});$
- I plus combined GIT like stability requirements.

Theorem

The moduli $\mathcal{W}_{g,\gamma,d}$ of stable MSP-fields of

• genus
$$g = g(C)$$
;

2 monodromy $\gamma = (\gamma_1, \cdots, \gamma_\ell)$ of \mathcal{L} along $\Sigma^{\mathcal{C}}$, and

$${f 3}$$
 degrees $d=(d_0,d_\infty)$ (of ${\cal L}$ and ${\cal N})$

is a separated DM stack, locally of finite type.

Theorem

The moduli $\mathcal{W}_{g,\gamma,d}$ is a \mathbb{C}^* stack, via

$$(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, arphi,
ho,
u)^t = (\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, arphi,
ho,
u^t)$$

where $\nu^{t} = (t\nu_{1}, \nu_{2}).$

/⊒ > < ∃ >

э

Theorem

The moduli $\mathcal{W}_{g,\gamma,d}$ has a \mathbb{C}^* equivariant perfect obstruction theory, an equivariant cosection of its obstruction sheaf, thus an equivariant cosection localized virtual cycle

$$[\mathcal{W}_{g,\gamma,d}]_{loc}^{\textit{virt}} \in A^{\mathbb{C}^*}_* \mathcal{W}^-_{g,\gamma,d}.$$

where $\mathcal{W}_{g,\gamma,d}^- = (\sigma = 0)$.

• A technical Lemma: $(\sigma = 0)$ is compact.

Polynomial relations

How to play with this cycle

Taking

then

$$\left[\mathcal{W}_{g,d}\right]_{\sigma}^{\operatorname{virt}} \in H_{2(d+1-g)}^{\mathbb{C}^*}(\mathcal{W}_{g,d}^-,\mathbb{Q}).$$

- **→** → **→**

How to play with this cycle

$$[\mathcal{W}_{g,\gamma,d}]_{loc}^{virt} \in A^{\mathbb{C}^*}_* \mathcal{W}^-_{g,\gamma,d}$$

Taking

then

$$\left[\mathcal{W}_{g,d}\right]_{\sigma}^{\textit{virt}} \in H_{2(d+1-g)}^{\mathbb{C}^*}(\mathcal{W}_{g,d}^-,\mathbb{Q}).$$

$$ig[\mathcal{W}_{g,d}ig]_\sigma^{virt}\in H^{\mathbb{C}^*}_{2(d+1-g)}(\mathcal{W}^-_{g,d},\mathbb{Q}).$$
 when $d+1-g>0$

$$\left(u^{d+1-g}\cdot\left[\mathcal{W}_{g,d}\right]_{\sigma}^{\operatorname{virt}}
ight)_{0}=0.$$

Let F_{Γ} be the connected components of $\left(\mathcal{W}_{g,d}^{-}\right)^{\mathbb{C}^{*}}$;

$$\sum_{\Gamma} \left[u^{d+1-g} \cdot \frac{[F_{\Gamma}]_{\sigma_{\Gamma}}^{virt}}{e(N_{F_{\Gamma}})} \right]_{0} = 0.$$

• for cosection localized version, proved by Chang-Kiem-L.

Polynomial relations

$$\sum_{\Gamma} \left[u^{d+1-g} \cdot \frac{[F_{\Gamma}]_{\sigma_{\Gamma}}^{virt}}{e(N_{F_{\Gamma}})} \right]_{0} = 0.$$

is a polynomial relation among (after proving a vanishing result),

- **O** GW invariants of the quintic Calabi-Yau $N_g(d)$;
- **2** FJRW invariants of $(\mathbf{w}_5, \mathbb{Z}_5)$ with insertions $-\frac{2}{5}$;
- Solution Hodge integrals of $\overline{M}_{g',n'}$ involving ψ classes (calculable).

Application I

Letting $d_{\infty} = 0$, the relations provide an effective algorithm to evaluate the GW invariants $N_g(d)$ provided the following are known

• FJRW invariants of insertions $-\frac{2}{5}$ and genus $g' \leq g$;

3
$$N_{g'}(d')$$
 for (g', d') such that $g' < g$, and $d' \le d$;

$$I_g(d') \text{ for } d' \leq g.$$

Application II

Letting $d_0 = 0$, the relations provide an relations indexed by $d_{\infty} > g - 1$ among FJRW invariants with insertions $-\frac{2}{5}$.

Conjecture

These relations, indexed by (d_0, d_∞) (with $d_0 + d_\infty + 1 - g > 0$), provide an effective algorithm to determine all genus GW invariants and FJRW invariants of insertions $-\frac{2}{5}$.

Conjecture: Any smooth projective complex K3 surface S contains infinitely many rational curves.

This is motivated by Lang's conjecture:

Lang Conjecture: Let X be a general type complex manifold. Then the union of the images of holomorphic $u : \mathbb{C} \to X$ lies in a finite union of proper subvarieties of X.

Key to the existence of rational curves:

A class $\alpha \neq 0 \in H^2(S, \mathbb{Z})$ is Hodge (i.e. $\in H^{1,1}(S, \mathbb{C}) \cap H^2(S, \mathbb{Q})$) is necessary and sufficient for the existence of a union of rational curves C_i so that $\sum [C_i] = \alpha$.

Example: Say we can have a family S_t , $t \in disk$,

- $\alpha \in H^{1,1}(S_0, \mathbb{C}) \cap H^2(S_0, \mathbb{Q})$ so that S_0 has $C_0 \cong \mathbb{CP}^1 \subset S_0$ with $[C_0] = \alpha$;
- in case $\alpha \notin H^{1,1}(S_t, \mathbb{C})$ for general t, then $\mathbb{CP}^1 \cong C_0 \to S_0$ can not be extended to holomorphic $u_t : \mathbb{CP}^1 \to S_t$.

Example III: GW technique to AG

- We will consider polarized K3 surfaces (S, H), $c_1(H) > 0$;
- we can group them according to $H^2 = 2d$:

$$\mathcal{M}_{2d} = \{(S, H) \mid H^2 = 2d\}.$$

- each \mathcal{M}_{2d} is smooth, of dimension 19;
- each *M*_{2d} is defined over ℤ. (defined by equation with coefficients in ℤ.)
- to show that (S, H) contains infinitely many rational curves, it suffices to show that
 - for any N, there is a rational curve $R \subset S$ so that $[R] \cdot H \geq N$.
- we define $\rho(S) = \dim H^{1,1}(S, \mathbb{C}) \cap H^2(S, \mathbb{Q})$, called the rank of the Picard group of S.

Extension Problem

- a family of polarized K3 surface (S_t, H_t), t ∈ T (a parameter space);
- $C_0 \subset S_0$ a union of rational curves;
- $\alpha = [C_0] = m[H_t] \in H^2(S, \mathbb{Z})$; (a multiple of polarization);

Extension Problem

- a family of polarized K3 surface (S_t, H_t), t ∈ T (a parameter space);
- $C_0 \subset S_0$ a union of rational curves;
- $\alpha = [C_0] = m[H_t] \in H^2(S, \mathbb{Z})$; (a multiple of polarization);

We like to show

- exists a family of curves $C_t \subset S_t$, such that
 - C_t are union of rational curves;
 - $C_0 = C_0$.

Use moduli of genus 0 stable maps

• represent $C_0 \subset S_0$ as the image of $[u_0] \in \overline{M}_0(S_0, \alpha)$.

Extension Lemma (Ran, Bogomolov-Tschinkel, –)

Suppose $[u_0] \in M_0(S_0, \alpha)$ is isolated, then u_0 extends to $u_t \in \overline{M}_0(S_t, \alpha)$ for general $t \in T$.

Definition: We say a map $[u] \in \overline{M}_0(S, \alpha)$ rigid if [u] is an isolated point in $\overline{M}_0(S, \alpha)$.

Extension principle: In case (a genus zero stable map) $u: C \to S$ is rigid, then u extends to nearby K3 surfaces as long as the class $u_*[C] \in H^2(S, \mathbb{Z})$ remains ample.

Theorem (Bogomolov - Hassett - Tschikel, L - Liedtke)

Let (X, H) be a polarized complex K3 surface such that $\rho(X)$ is odd. Then X contains infinitely many rational curves.

Outline of proof

- We only need to prove the Theorem for (X, H) defined over a number field K;
- say $K = \mathbb{Q}$, we get a family X_p for every prime $p \in \mathbb{Z}$, X is the generic member of this family;

•
$$\forall \mathfrak{p}, \text{ exists } D_{\mathfrak{p}} \subset X_{\mathfrak{p}}, \ D_{\mathfrak{p}} \notin \mathbb{Z}H,$$

• we have sup $D_{\mathfrak{p}} \cdot H \to \infty$;

• pick $C_{\mathfrak{p}} \subset X_{\mathfrak{p}}$ union of rationals, $D_{\mathfrak{p}} + C_{\mathfrak{p}} \in |n_{\mathfrak{p}}H|$ Difficulty: $D_{\mathfrak{p}} + C_{\mathfrak{p}}$ may not be representable as the image of a rigid genus zero stable map.

Cp = MuHip of Cp

Solution: Suppose we can find a nodal rational curves $R \subset X$, of class kH for some k, then for some large m we can represent

$$C_{\mathfrak{p}}+D_{\mathfrak{p}}+mR,$$

which is a class in (n + mk)H, by a rigid genus zero stable map.

End of the proof: In general, X may not contain any nodal rational curve in |kH|. However, we know a small deformation of X in \mathcal{M}_{2d} contains nodal rational curves in |kH|. Using this, plus some further algebraic geometry argument, we can complete the proof.

Thank you!

æ

- 4 聞 と 4 臣 と 4 臣 と