Gromov-Witten invariants and Algebraic Geometry (II)

Jun Li

Shanghai Center for Mathematical Sciences and
Stanford University

GW invariants of quintic Calabi-Yau threefolds

Quintic Calabi-Yau threefolds:

$$
X=\left\{\mathbf{w}_{5}=x_{1}^{5}+\cdots+x_{5}^{5}=0\right\} \subset \mathbf{P}^{4}
$$

For $d, g \in \mathbb{Z}$, form the moduli of stable maps

$$
\bar{M}_{g}(X, d)=\{[f, C] \mid f: C \rightarrow X, \text { such that } \ldots .\}
$$

Form virtual cycle

$$
\left[\bar{M}_{g}(X, d)\right]^{v i r t} \in A_{0} \bar{M}_{g}(X, d)
$$

The GW invariant

$$
N_{g}(d)=\int_{\left[\bar{M}_{g}(X, d)\right]^{\text {virt }}} 1 \in \mathbb{Q}
$$

The generating function

$$
f_{g}(q)=\sum N_{g}(d) q^{d}
$$

- Determining it is a challenge to mathematicians

High genus invariants of quintics

Recent progress toward
an effective algorithm for all genus invariants using Mixed-Spin-P (MSP) fields.

A joint work with Huailiang Chang, Weiping Li, and Mellisa Liu.

This work is inspired by Witten's vision that
GW invariants of quintics and
Witten's spin class invariants
are equivalent via a wall crossing.

Witten's vision

- \mathbb{C}^{*} acts on $\mathbb{C}^{5} \times \mathbb{C}$ of weight $(1,1,1,1,1,-5)$;

Witten's vision

- \mathbb{C}^{*} acts on $\mathbb{C}^{5} \times \mathbb{C}$ of weight $(1,1,1,1,1,-5)$;
- $\left(x_{1}^{5}+\cdots+x_{5}^{5}\right) \cdot p: \mathbb{C}^{5} \times \mathbb{C} \rightarrow \mathbb{C}$ is \mathbb{C}^{*} equivariant;

Witten's vision

- \mathbb{C}^{*} acts on $\mathbb{C}^{5} \times \mathbb{C}$ of weight $(1,1,1,1,1,-5)$;
- $\left(x_{1}^{5}+\cdots+x_{5}^{5}\right) \cdot p: \mathbb{C}^{5} \times \mathbb{C} \rightarrow \mathbb{C}$ is \mathbb{C}^{*} equivariant;
- the quotient $\mathbb{C}^{5} \times \mathbb{C} / \mathbb{C}^{*}$ is pretty bad;

$$
\begin{aligned}
& \Rightarrow \quad \omega \in \mathbb{C}^{5} \times \mathbb{C} \\
& \text { sit stab } \mathbb{C}^{d}(\omega) \text { infinite . }
\end{aligned}
$$

Witten's vision

$\left[\mathbb{C}^{6} / \mathbb{C}^{*}\right]$ has two GIT quotients:

$$
\text { - }\left(\mathbb{C}^{5}-0\right) \times \mathbb{C} / \mathbb{C}^{*}=K_{\mathbb{P}^{4}} ;
$$

$$
\begin{array}{ll}
\left(\mathbb{C}^{5} \cdot 0\right) \times \mathbb{C} / \mathbb{C}^{*} \\
& \downarrow \text { a line bundle } \\
& \left(\mathbb{C}^{5}-0\right) / \mathbb{C}^{*}=\mathbb{P}^{4}
\end{array}
$$

Witten's vision

[$\left.\mathbb{C}^{6} / \mathbb{C}^{*}\right]$ has two GIT quotients:

- $\left(\mathbb{C}^{5}-0\right) \times \mathbb{C} / \mathbb{C}^{*}=K_{\mathbb{P}^{4}} ;$
- $\mathbb{C}^{5} \times(\mathbb{C}-0) / \mathbb{C}^{*}=\mathbb{C}^{5} / \mathbb{Z}_{5}$;
simple wall crossing.

$$
\begin{aligned}
& \mathbb{C}^{*} \mathbb{C} \cup \cup \text { has weight }-5 \\
& \text { stab }=\mathbb{U}_{5}
\end{aligned}
$$

[$\left.\mathbb{C}^{6} / \mathbb{C}^{*}\right]$ has two GIT quotients:

- $\left(\mathbb{C}^{5}-0\right) \times \mathbb{C} / \mathbb{C}^{*}=K_{\mathbb{P}^{4}}$;
- $\mathbb{C}^{5} \times(\mathbb{C}-0) / \mathbb{C}^{*}=\mathbb{C}^{5} / \mathbb{Z}_{5}$;
- we call $\left(\mathbb{C}^{5}-0\right) \times \mathbb{C} / \mathbb{C}^{*}$ and $\mathbb{C}^{5} \times(\mathbb{C}-0) / \mathbb{C}^{*}$ related by a simple wall crossing.

Well crossing \approx differ by a low dimensional dsubsets.

$$
\left(C^{5}-0\right) \times \mathbb{C} / \mathbb{C}^{*}
$$

$$
\mathbb{C}^{5} \times(\mathbb{C}, 0) / \mathbb{C}^{*}
$$

$$
\left[C^{5} \times C / C^{-x}\right]_{\text {Actin stack }}
$$

Witten's vision

Witten:

- a field theory valued in $K_{\mathbb{P}^{4}}$ is the GW of quintics;
- a field theory valued in $\mathbb{C}^{5} / \mathbb{Z}_{5}$ is the Witten's spin class (FJRW invariants);
- these two theories are equivalent via a wall crossing.
- developed a (MSP) field theory realizing this wall crossing,
- an algorithm, conjecturally determine all genus invariants.

One side of this wall crossing: LG theory of $K_{\text {p } 4}$

(with HL Chang) We constructed the GW invariants of stable maps with p-fields:

$$
\begin{aligned}
& -\bar{M}_{g}\left(\mathbf{P}^{4}, d\right)^{p}=\left\{[f, C, \rho] \mid[f, C] \in \bar{M}_{g}\left(\mathbf{P}^{4}, d\right)\right. \\
& \left.\quad \rho \in H^{0}\left(C, f^{*} \mathcal{O}(5) \otimes \omega_{C}\right)\right\}
\end{aligned}
$$

 Not $f: C \rightarrow X$ quintic.

One side of this wall crossing: LG theory of $K_{p 4}$

(with HL Chang) We constructed the GW invariants of stable maps with p-fields:

- $\bar{M}_{g}\left(\mathbf{P}^{4}, d\right)^{p}=\left\{[f, C, \rho] \mid[f, C] \in \bar{M}_{g}\left(\mathbf{P}^{4}, d\right)\right.$,

$$
\left.\rho \in H^{0}\left(C, f^{*} \mathcal{O}(5) \otimes \omega_{C}\right)\right\}
$$

- form its virtual cycle $\left[\bar{M}_{g}\left(\mathbf{P}^{4}, d\right)^{p}\right]_{\text {loc }}^{\text {virt }}$

One side of this wall crossing: LG theory of $K_{p 4}$

(with HL Chang) We constructed the GW invariants of stable maps with p-fields:

- $\bar{M}_{g}\left(\mathbf{P}^{4}, d\right)^{p}=\left\{[f, C, \rho] \mid[f, C] \in \bar{M}_{g}\left(\mathbf{P}^{4}, d\right)\right.$,

$$
\left.\rho \in H^{0}\left(C, f^{*} \mathcal{O}(5) \otimes \omega_{C}\right)\right\}
$$

- form its virtual cycle $\left[\bar{M}_{g}\left(\mathbf{P}^{4}, d\right)^{p}\right]_{\text {loc }}^{\text {virt }}$
- define $N_{g}(d)^{p}=\int_{\left[\bar{M}_{g}\left(\mathbf{P}^{4}, d\right)^{p}\right]_{l o c}^{\text {iot }}} 1 \in \mathbb{Q}$

LG theory of $K_{p^{4}}$

Theorem (Chang - L)

The two sets of invariants are equivalent

$$
N_{g}(d)=(-1)^{d+g+1} N_{g}(d)^{p} .
$$

LG theory of $K_{p^{4}}$

Theorem (Chang - L)
The two sets of invariants are equivalent

$$
N_{g}(d)=(-1)^{d+g+1} N_{g}(d)^{p} .
$$

Up shot:

- $N_{g}(d)$ are virtual counting of maps to the quintic X; - counting $\left[f: \mathcal{C} \rightarrow X \subset \mathbb{P}^{4}\right]$

LG theory of $K_{p^{4}}$

Theorem (Chang - L)
The two sets of invariants are equivalent

$$
N_{g}(d)=(-1)^{d+g+1} N_{g}(d)^{p} .
$$

Up shot:

- $N_{g}(d)$ are virtual counting of maps to the quintic X; - counting $\left[f: \mathcal{C} \rightarrow X \subset \mathbb{P}^{4}\right]$
- $N_{g}(d)^{p}$ is a virtual counting of fields on curves:

LG theory of $K_{p 4}$

- $N_{g}(d)$ are virtual counting of maps to the quintic X;
- counting $\left[f: \mathcal{C} \rightarrow X \subset \mathbb{P}^{4}\right]$
- $N_{g}(d)^{p}$ is a virtual counting of fields on curves:
(1) definition says: counting of

$$
\left(\left[f: \mathcal{C} \rightarrow \mathbb{P}^{4}\right], \rho \in H^{0}\left(\mathcal{C}, f^{*} \mathscr{O}(5) \otimes \omega_{\mathcal{C}}\right)\right) ;
$$

LG theory of $K_{p 4}$

- $N_{g}(d)$ are virtual counting of maps to the quintic X;
- counting $\left[f: \mathcal{C} \rightarrow X \subset \mathbb{P}^{4}\right]$
- $N_{g}(d)^{p}$ is a virtual counting of fields on curves:
(1) definition says: counting of

$$
\left(\left[f: \mathcal{C} \rightarrow \mathbb{P}^{4}\right], \rho \in H^{0}\left(\mathcal{C}, f^{*} \mathscr{O}(5) \otimes \omega_{\mathcal{C}}\right)\right)
$$

(2) $\left[f: \mathcal{C} \rightarrow \mathbb{P}^{4}\right]$ is $\left(\mathcal{C}, \mathcal{L}, \varphi_{1}, \cdots, \varphi_{5}\right)$,
where $\varphi_{i} \in H^{0}(\mathcal{L})$ s.t. $\left(\varphi_{1}, \cdots, \varphi_{5}\right)$ never zero;

$$
f=\left[\varphi_{1}, \cdots, \varphi_{3}\right]: C \rightarrow \mathbb{P}^{4}
$$

LG theory of $K_{p 4}$

- $N_{g}(d)$ are virtual counting of maps to the quintic X;
- counting $\left[f: \mathcal{C} \rightarrow X \subset \mathbb{P}^{4}\right]$
- $N_{g}(d)^{p}$ is a virtual counting of fields on curves:
(1) definition says: counting of

$$
\left(\left[f: \mathcal{C} \rightarrow \mathbb{P}^{4}\right], \rho \in H^{0}\left(\mathcal{C}, f^{*} \mathscr{O}(5) \otimes \omega_{\mathcal{C}}\right)\right)
$$

(2) $\left[f: \mathcal{C} \rightarrow \mathbb{P}^{4}\right]$ is $\left(\mathcal{C}, \mathcal{L}, \varphi_{1}, \cdots, \varphi_{5}\right)$,
where $\varphi_{i} \in H^{0}(\mathcal{L})$ s.t. $\left(\varphi_{1}, \cdots, \varphi_{5}\right)$ never zero;
(3) the P-field $\rho \in H^{0}\left(\mathcal{L}^{-5} \otimes \omega_{\mathcal{C}}\right)$;

$$
\left\langle S s \varphi_{1}, \cdots, \varphi_{5}, \rho \quad \sigma\right. \text { fields }
$$

LG theory of $K_{p 4}$

$N_{g}(d)^{p}$ is a virtual counting of fields because it v . counts

$$
\left(\mathcal{C}, \mathcal{L}, \varphi_{1}, \cdots, \varphi_{5}, \rho\right)
$$

LG theory of $K_{p 4}$

$N_{g}(d)^{p}$ is a virtual counting of fields because it v. counts

$$
\left(\mathcal{C}, \mathcal{L}, \varphi_{1}, \cdots, \varphi_{5}, \rho\right)
$$

they are fields taking values in $K_{\mathbb{P}^{4}}=\left(\mathbb{C}^{5}-0\right) \times \mathbb{C} / \mathbb{C}^{*}$ because

- $\varphi_{1} \in H^{0}(\mathcal{L})$ and $\rho \in H^{0}\left(\mathcal{L}^{-5} \otimes \omega_{\mathcal{C}}\right)$, (compare) \mathbb{C}^{*} acts on \mathbb{C}^{5} and \mathbb{C} of weights 1 and -5 ;

LG theory of $K_{p 4}$

$N_{g}(d)^{p}$ is a virtual counting of fields because it v . counts

$$
\left(\mathcal{C}, \mathcal{L}, \varphi_{1}, \cdots, \varphi_{5}, \rho\right)
$$

they are fields taking values in $K_{\mathbb{P}^{4}}=\left(\mathbb{C}^{5}-0\right) \times \mathbb{C} / \mathbb{C}^{*}$ because

- $\varphi_{1} \in H^{0}(\mathcal{L})$ and $\rho \in H^{0}\left(\mathcal{L}^{-5} \otimes \omega_{\mathcal{C}}\right)$, (compare) \mathbb{C}^{*} acts on \mathbb{C}^{5} and \mathbb{C} of weights 1 and -5 ;
- $\left(\varphi_{1}, \cdots, \varphi_{5}\right)$ never zero and ρ arbitrary, (compare) $\left(\mathbb{C}^{5}-0\right) \times \mathbb{C} / \mathbb{C}^{*}$;
- the line bundle \mathcal{L} is up to scaling, (compare) quotient by \mathbb{C}^{*}.
$N_{g}(d)^{p}$ is a field theory taking values in $K_{\mathbb{P}^{4}}=\left(\mathbb{C}^{5}-0\right) \times \mathbb{C} / \mathbb{C}^{*}$.

The other side wall crossing: LG theory of $\mathbb{C}^{5} / \mathbb{Z}_{5}$

- It originated by Witten's class;
- The full theory has been developed by Fan-Jarvis-Ruan, called the FJRW invariants.

The other side wall crossing: LG theory of $\mathbb{C}^{5} / \mathbb{Z}_{5}$

- It originated by Witten's class;
- The full theory has been developed by Fan-Jarvis-Ruan, called the FJRW invariants.
- (with HL Chang and WP Li) We provided a new construction of FJRW invariants (in narrow case).

LG theory of $\mathbb{C}^{5} / \mathbb{Z}_{5}$

- $\bar{M}_{g, \gamma}\left(\mathbf{w}_{5}, \mathbb{Z}_{5}\right)^{p}=\left\{\left(\left(\Sigma^{\mathcal{C}}, \mathcal{C}\right), \mathcal{L}, \varphi_{1}, \cdots, \varphi_{5}, \rho\right) \mid\right.$ such that $\left.\ldots.\right\}$
Σ^{e} are marked points,
C listed curves.

LG theory of $\mathbb{C}^{5} / \mathbb{Z}_{5}$

- $\bar{M}_{g, \gamma}\left(\mathbf{w}_{5}, \mathbb{Z}_{5}\right)^{p}=\left\{\left(\left(\Sigma^{\mathcal{C}}, \mathcal{C}\right), \mathcal{L}, \varphi_{1}, \cdots, \varphi_{5}, \rho\right) \mid\right.$ such that $\left.\ldots.\right\}$
- $\varphi_{i} \in H^{0}(\mathcal{C}, \mathcal{L}), \rho \in H^{0}\left(\mathcal{C}, \mathcal{L}^{-5} \otimes \omega_{\mathcal{C}}\left(\Sigma^{\mathcal{C}}\right)\right)$

LG theory of $\mathbb{C}^{5} / \mathbb{Z}_{5}$

- $\bar{M}_{g, \gamma}\left(\mathbf{w}_{5}, \mathbb{Z}_{5}\right)^{p}=\left\{\left(\left(\Sigma^{\mathcal{C}}, \mathcal{C}\right), \mathcal{L}, \varphi_{1}, \cdots, \varphi_{5}, \rho\right) \mid\right.$ such that $\left.\ldots.\right\}$
- $\varphi_{i} \in H^{0}(\mathcal{C}, \mathcal{L}), \rho \in H^{0}\left(\mathcal{C}, \mathcal{L}^{-5} \otimes \omega_{\mathcal{C}}\left(\Sigma^{\mathcal{C}}\right)\right)$
- φ_{i} arbitrary, ρ nowhere vanishing.
- (compare) $\mathbb{C}^{5} / \mathbb{Z}_{5}=\mathbb{C}^{5} \times(\mathbb{C}-0) / \mathbb{C}^{*}$.

LG theory of $\mathbb{C}^{5} / \mathbb{Z}_{5}$

Theorem (Chang - Li - L)

The FJRW invariants can be constructed using cosection localized virtual cycles of the moduli of spin fields:

$$
\bar{M}_{g, \gamma}\left(\mathbf{w}_{5}, \mathbb{Z}_{5}\right)^{5 p}=\left\{\left(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \varphi_{1}, \cdots, \varphi_{5}, \rho\right) \mid \ldots\right\} / \sim
$$

$S\left\langle S\right.$ fields $\varphi_{1 .}, \varphi_{5}, f .6$ fields

Cosection technique

- The construction of the two theories
(1) the GW invariants of stable maps with p-fields
(2) the FJRW invariants of $\left(\mathbf{w}_{5}, \mathbb{Z}_{5}\right)$
both rely on the construction of cosection localized virtual cyels;

Cosection technique

- The construction of the two theories
(1) the GW invariants of stable maps with p-fields
(2) the FJRW invariants of $\left(\mathbf{w}_{5}, \mathbb{Z}_{5}\right)$
both rely on the construction of cosection localized virtual cyels;

Theorem (Kiem - L)

A DM stack M with a perfect obstruction theory, and a cosection $\sigma: O b_{M} \rightarrow \mathcal{O}_{M}$ provides us a cosection localized virtual cycle (letting $D(\sigma)=\{\sigma=0\}$)

$$
[M]_{\sigma}^{v i r t} \in A_{*} D(\sigma)
$$

Cosection technique

Remark

(1) The cosection localized virtual cycles allows one to construct invariants of non-compact moduli spaces;
(3) The cosections used in the GW with p-fields and FJRW are induced by the same equivariant LG function

Cosection technique

Remark

(1) The cosection localized virtual cycles allows one to construct invariants of non-compact moduli spaces;
(2) The cosections used in the GW with p-fields and FJRW are induced by the same equivariant LG function

$$
\left(x_{1}^{5}+\cdots+x_{5}^{5}\right) \cdot p: \mathbb{C}^{5} \times \mathbb{C} \longrightarrow \mathbb{C}
$$

Cosection technique

The fields: $\xi=\left(\mathcal{C}, \mathcal{L}, \varphi_{1}, \cdots, \varphi_{5}, \rho\right) \in H^{0}(\mathcal{L})^{\oplus 5} \oplus H^{0}\left(\mathcal{L}^{\otimes-5} \otimes \omega_{\mathcal{C}}\right)$ The rel-obstruction space at ξ :

$$
\left.(\dot{\varphi}, \dot{\rho}) \in O b\right|_{\xi}=H^{1}(\mathcal{L})^{\oplus 5} \oplus H^{1}\left(\mathcal{L}^{\otimes-5} \otimes \omega_{\mathcal{C}}\right)
$$

The cosection $\left.\sigma\right|_{\xi}:\left.O b\right|_{\xi} \longrightarrow \mathbb{C}$:

$$
\left.\sigma\right|_{\xi}(\dot{\varphi}, \dot{\rho})=\dot{\rho} \sum x_{i}^{5}+\rho \sum 5 \varphi_{i}^{4} \cdot \dot{\varphi}_{i} \in H^{1}\left(\omega_{\mathcal{C}}\right) \cong \mathbb{C} .
$$

Compare with

$$
\delta\left(p \cdot\left(x_{1}^{5}+\cdots+x_{5}^{5}\right)\right)=\dot{\rho} \cdot \sum x_{i}^{5}+\rho \sum 5 x_{i}^{4} \cdot \dot{x}_{i}
$$

Mixed Spin-P fields

Next step is to geometrically realizing the wall crossing of these two field theories envisioned by Witten

We define
An MSP field $=\left(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_{1}, \cdots, \varphi_{5}, \rho, \nu_{1}, \nu_{2}\right)$

Mixed Spin-P fields

We define
An MSP field $=\left(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_{1}, \cdots, \varphi_{5}, \rho, \nu_{1}, \nu_{2}\right)$
where
(1) $\left(\Sigma^{\mathcal{C}}, \mathcal{C}\right)$ is a pointed twisted curve,

Mixed Spin-P fields

We define

$$
\text { An MSP field }=\left(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_{1}, \cdots, \varphi_{5}, \rho, \nu_{1}, \nu_{2}\right)
$$

where
(1) $\left(\Sigma^{\mathcal{C}}, \mathcal{C}\right)$ is a pointed twisted curve,
(2) \mathcal{L} and \mathcal{N} are line bundles, \mathcal{L} as before, \mathcal{N} is new;

Mixed Spin-P fields

We define

$$
\text { An MSP field }=\left(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_{1}, \cdots, \varphi_{5}, \rho, \nu_{1}, \nu_{2}\right)
$$

where
(1) $\left(\Sigma^{\mathcal{C}}, \mathcal{C}\right)$ is a pointed twisted curve,
(2) \mathcal{L} and \mathcal{N} are line bundles, \mathcal{L} as before, \mathcal{N} is new;
(3) $\varphi_{i} \in H^{0}(\mathcal{C}, \mathcal{L}), \rho \in H^{0}\left(\mathcal{C}, \mathcal{L}^{\otimes-5} \otimes \omega_{\mathcal{C}}^{\log }\right)$, as before;

Mixed Spin-P fields

We define

$$
\text { An MSP field }=\left(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_{1}, \cdots, \varphi_{5}, \rho, \nu_{1}, \nu_{2}\right)
$$

where
(1) $\left(\Sigma^{\mathcal{C}}, \mathcal{C}\right)$ is a pointed twisted curve,
(2) \mathcal{L} and \mathcal{N} are line bundles, \mathcal{L} as before, \mathcal{N} is new;
(3) $\varphi_{i} \in H^{0}(\mathcal{C}, \mathcal{L}), \rho \in H^{0}\left(\mathcal{C}, \mathcal{L}^{\otimes-5} \otimes \omega_{\mathcal{C}}^{\log }\right)$, as before;
(3) $\nu_{1} \in H^{0}(\mathcal{L} \otimes \mathcal{N}), \nu_{2} \in H^{0}(\mathcal{N})$;
quantitities interpolating two theories.

Mixed Spin-P fields

We define

$$
\text { An MSP field }=\left(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi_{1}, \cdots, \varphi_{5}, \rho, \nu_{1}, \nu_{2}\right)
$$

where
(1) $\left(\Sigma^{\mathcal{C}}, \mathcal{C}\right)$ is a pointed twisted curve,
(2) \mathcal{L} and \mathcal{N} are line bundles, \mathcal{L} as before, \mathcal{N} is new;
(3) $\varphi_{i} \in H^{0}(\mathcal{C}, \mathcal{L}), \rho \in H^{0}\left(\mathcal{C}, \mathcal{L}^{\otimes-5} \otimes \omega_{\mathcal{C}}^{\log }\right)$, as before;
(9) $\nu_{1} \in H^{0}(\mathcal{L} \otimes \mathcal{N}), \nu_{2} \in H^{0}(\mathcal{N})$;
(5) plus combined GIT like stability requirements.

Moduli of MSP fields

Theorem

The moduli $\mathcal{W}_{g, \gamma, d}$ of stable MSP-fields of
(1) genus $g=g(C)$;
(2) monodromy $\gamma=\left(\gamma_{1}, \cdots, \gamma_{\ell}\right)$ of \mathcal{L} along $\Sigma^{\mathcal{C}}$, and
(3) degrees $d=\left(d_{0}, d_{\infty}\right)$ (of \mathcal{L} and \mathcal{N})
is a separated DM stack, locally of finite type.

Moduli of MSP fields

Theorem

The moduli $\mathcal{W}_{g, \gamma, d}$ is a \mathbb{C}^{*} stack, via

$$
\left(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi, \rho, \nu\right)^{t}=\left(\Sigma^{\mathcal{C}}, \mathcal{C}, \mathcal{L}, \mathcal{N}, \varphi, \rho, \nu^{t}\right)
$$

where $\nu^{t}=\left(t \nu_{1}, \nu_{2}\right)$.

Moduli of MSP fields

Theorem

The moduli $\mathcal{W}_{g, \gamma, d}$ has a \mathbb{C}^{*} equivariant perfect obstruction theory, an equivariant cosection of its obstruction sheaf, thus an equivariant cosection localized virtual cycle

$$
\left[\mathcal{W}_{g, \gamma, d}\right]_{l o c}^{\text {virt }} \in A_{*}^{\mathbb{C}^{*}} \mathcal{W}_{g, \gamma, d}^{-}
$$

where $\mathcal{W}_{g, \gamma, d}^{-}=(\sigma=0)$.

- A technical Lemma: $(\sigma=0)$ is compact.

Polynomial relations

How to play with this cycle

$$
\left[\mathcal{W}_{g, \gamma, d}\right]_{\text {loc }}^{\text {virt }} \in A_{*}^{\mathbb{C}^{*}} \mathcal{W}_{g, \gamma, d}^{-}
$$

equivariant class

Polynomial relations

How to play with this cycle

$$
\left[\mathcal{W}_{g, \gamma, d}\right]_{l o c}^{\text {virt }} \in A_{*}^{\mathbb{C}^{*}} \mathcal{W}_{g, \gamma, d}^{-}
$$

Taking
(1) $\gamma=\emptyset$ (no marked points),
(2) $\left(d_{0}, d_{\infty}\right)=(d, 0)$,
then

$$
\left[\mathcal{W}_{g, d}\right]_{\sigma}^{\text {virt }} \in H_{2(d+1-g)}^{\mathbb{C}^{*}}\left(\mathcal{W}_{g, d}^{-}, \mathbb{Q}\right)
$$

Polynomial relations

$$
\left[\mathcal{W}_{g, d}\right]_{\sigma}^{\text {virt }} \in H_{2(d+1-g)}^{\mathbb{C}^{*}}\left(\mathcal{W}_{g, d}^{-}, \mathbb{Q}\right)
$$

when $d+1-g>0$

$$
\left(u^{d+1-g} \cdot\left[\mathcal{W}_{g, d}\right]_{\sigma}^{\text {virt }}\right)_{0}=0
$$

Polynomial relations

Let F_{Γ} be the connected components of $\left(\mathcal{W}_{g, d}^{-}\right)^{\mathbb{C}^{*}}$;

$$
\sum_{\Gamma}\left[u^{d+1-g} \cdot \frac{\left[F_{\Gamma}\right]_{\sigma_{\Gamma}}^{v i r t}}{e\left(N_{F_{\Gamma}}\right)}\right]_{0}=0
$$

- for cosection localized version, proved by Chang-Kiem-L.

Polynomial relations

$$
\sum_{\Gamma}\left[u^{d+1-g} \cdot \frac{\left[F_{\Gamma}\right]_{\sigma_{\Gamma}}^{v i r t}}{e\left(N_{F_{\Gamma}}\right)}\right]_{0}=0
$$

is a polynomial relation among (after proving a vanishing result),
(1) GW invariants of the quintic Calabi-Yau $N_{g}(d)$;
(2) FJRW invariants of $\left(\mathbf{w}_{5}, \mathbb{Z}_{5}\right)$ with insertions $-\frac{2}{5}$;
(3) Hodge integrals of $\bar{M}_{g^{\prime}, n^{\prime}}$ involving ψ classes (calculable).

Polynomial relations

Application I

Letting $d_{\infty}=0$, the relations provide an effective algorithm to evaluate the GW invariants $N_{g}(d)$ provided the following are known
(1) FJRW invariants of insertions $-\frac{2}{5}$ and genus $g^{\prime} \leq g$;
(2) $N_{g^{\prime}}\left(d^{\prime}\right)$ for $\left(g^{\prime}, d^{\prime}\right)$ such that $g^{\prime}<g$, and $d^{\prime} \leq d$;
(3) $N_{g}\left(d^{\prime}\right)$ for $d^{\prime} \leq g$.

Polynomial relations

Application II

Letting $d_{0}=0$, the relations provide an relations indexed by $d_{\infty}>g-1$ among FJRW invariants with insertions $-\frac{2}{5}$.

Forward looking

Conjecture

These relations, indexed by $\left(d_{0}, d_{\infty}\right)$ (with $\left.d_{0}+d_{\infty}+1-g>0\right)$, provide an effective algorithm to determine all genus GW invariants and FJRW invariants of insertions $-\frac{2}{5}$.

Example III: GW technique to AG

Conjecture: Any smooth projective complex K3 surface S contains infinitely many rational curves.

This is motivated by Lang's conjecture:
Lang Conjecture: Let X be a general type complex manifold. Then the union of the images of holomorphic $u: \mathbb{C} \rightarrow X$ lies in a finite union of proper subvarieties of X.

Example III: GW technique to AG

Key to the existence of rational curves:
A class $\alpha \neq 0 \in H^{2}(S, \mathbb{Z})$ is Hodge (i.e. $\in H^{1,1}(S, \mathbb{C}) \cap H^{2}(S, \mathbb{Q})$) is necessary and sufficient for the existence of a union of rational curves C_{i} so that $\sum\left[C_{i}\right]=\alpha$.

Example: Say we can have a family $S_{t}, t \in$ disk,

- $\alpha \in H^{1,1}\left(S_{0}, \mathbb{C}\right) \cap H^{2}\left(S_{0}, \mathbb{Q}\right)$ so that S_{0} has $C_{0} \cong \mathbb{C P}^{1} \subset S_{0}$ with $\left[C_{0}\right]=\alpha$;
- in case $\alpha \notin H^{1,1}\left(S_{t}, \mathbb{C}\right)$ for general t, then $\mathbb{C P}^{1} \cong C_{0} \rightarrow S_{0}$ can not be extended to holomorphic $u_{t}: \mathbb{C P}^{1} \rightarrow S_{t}$.

Example III: GW technique to AG

- We will consider polarized K 3 surfaces $(S, H), c_{1}(H)>0$;
- we can group them according to $H^{2}=2 d$:

$$
\mathcal{M}_{2 d}=\left\{(S, H) \mid H^{2}=2 d\right\}
$$

- each $\mathcal{M}_{2 d}$ is smooth, of dimension 19;
- each $\mathcal{M}_{2 d}$ is defined over \mathbb{Z}. (defined by equation with coefficients in \mathbb{Z}.)
- to show that (S, H) contains infinitely many rational curves, it suffices to show that
- for any N, there is a rational curve $R \subset S$ so that $[R] \cdot H \geq N$.
- we define $\rho(S)=\operatorname{dim} H^{1,1}(S, \mathbb{C}) \cap H^{2}(S, \mathbb{Q})$, called the rank of the Picard group of S.

Extension Problem

- a family of polarized K 3 surface $\left(S_{t}, H_{t}\right), t \in T$ (a parameter space);
- $C_{0} \subset S_{0}$ a union of rational curves;
- $\alpha=\left[C_{0}\right]=m\left[H_{t}\right] \in H^{2}(S, \mathbb{Z})$; (a multiple of polarization);

Extension Problem

- a family of polarized K 3 surface $\left(S_{t}, H_{t}\right), t \in T$ (a parameter space);
- $C_{0} \subset S_{0}$ a union of rational curves;
- $\alpha=\left[C_{0}\right]=m\left[H_{t}\right] \in H^{2}(S, \mathbb{Z})$; (a multiple of polarization);

We like to show

- exists a family of curves $C_{t} \subset S_{t}$, such that
- C_{t} are union of rational curves;
- $C_{0}=C_{0}$.

Extension Problem

Use moduli of genus 0 stable maps

- represent $C_{0} \subset S_{0}$ as the image of $\left[u_{0}\right] \in \bar{M}_{0}\left(S_{0}, \alpha\right)$.

Extension Lemma (Ran, Bogomolov-Tschinkel, -)

Suppose $\left[u_{0}\right] \in \bar{M}_{0}\left(S_{0}, \alpha\right)$ is isolated, then u_{0} extends to $u_{t} \in \bar{M}_{0}\left(S_{t}, \alpha\right)$ for general $t \in T$.

Extension Problem

Definition: We say a map $[u] \in \bar{M}_{0}(S, \alpha)$ rigid if $[u]$ is an isolated point in $\bar{M}_{0}(S, \alpha)$.

Extension principle: In case (a genus zero stable map) $u: C \rightarrow S$ is rigid, then u extends to nearby K 3 surfaces as long as the class $u_{*}[C] \in H^{2}(S, \mathbb{Z})$ remains ample.

Theorem (Bogomolov - Hassett - Tschikel, L - Liedtke)
Let (X, H) be a polarized complex K3 surface such that $\rho(X)$ is odd. Then X contains infinitely many rational curves.

Outline of proof

- We only need to prove the Theorem for (X, H) defined over a number field K;
- say $K=\mathbb{Q}$, we get a family $X_{\mathfrak{p}}$ for every prime $p \in \mathbb{Z}, X$ is the generic member of this family;
- $\forall \mathfrak{p}$, exists $D_{\mathfrak{p}} \subset X_{\mathfrak{p}}, D_{\mathfrak{p}} \notin \mathbb{Z} H$,
- we have sup $D_{\mathfrak{p}} \cdot H \rightarrow \infty$;
- pick $C_{\mathfrak{p}} \subset X_{\mathfrak{p}}$ union of rationals, $D_{\mathfrak{p}}+C_{\mathfrak{p}} \in\left|n_{\mathfrak{p}} H\right|$

Difficulty: $D_{\mathfrak{p}}+C_{\mathfrak{p}}$ may not be representable as the image of a rigid genus zero stable map.

Solution: Suppose we can find a nodal rational curves $R \subset X$, of class $k H$ for some k, then for some large m we can represent

$$
C_{\mathfrak{p}}+D_{\mathfrak{p}}+m R
$$

which is a class in $(n+m k) H$, by a rigid genus zero stable map.

End of the proof: In general, X may not contain any nodal rational curve in $|k H|$. However, we know a small deformation of X in $\mathcal{M}_{2 d}$ contains nodal rational curves in $|k H|$. Using this, plus some further algebraic geometry argument, we can complete the proof.

Thank you!

