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Convergence

{
c∗ = arg minc{1

2‖AW
Tc− g‖22 + β

2 ‖(I −WW
T )c‖22 + ‖diag(λ)c‖1},

f∗ =WTc.

Sparsity: β = 0

Synthesis-based approach
Sparsity + Regularity: 0 < β < +∞

Balanced approach
Regularity: β = +∞

Analysis-based approach

`0 minimization model: applying hard-threshold instead
Bao, Dong, Hou, Shen and Zhang, Extrapolated Proximal Iterative Hard Thresholding
Methods For Wavelet Frame Based Image Restoration
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This works for the low rank matrix completion
Problem: For given PΩX as known entries of a low rank
matrix X, how to recover the rest missing entires of X.

Most of such matrices can be recovered by solving:

min
M
{‖M‖∗ : PΩM = PΩX}.

Candes and Recht, Exact matrix completion via convex optimization, Found.

Comput. Math., 9 (2009), 717-772 .

Low rank

=⇒ sparsity in singular value domain =⇒
thresholding in singular value domain =⇒

Singular Value Thresholding Algorithm:{
Xk = Dλ(Y k);

Y k = Y k−1 + δ(PΩX −Xk).

It converges.
Cai, Candès and Shen, A singular value thresholding algorithm for matrix completion,
SIAM Journal on Optimization, 20(4), (2010), 1956-1982.
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Application: video denoising and inpainting

Gaussian noise: σ = 30; Poisson noise: κ = 15; SP impulse noise: 20%.

Ji, Liu, Shen and Xu, Robust video denoising using low rank matrix completion, CVPR,
2010.

Ji, Huang, Shen and Xu, Robust video restoration by joint sparse and low rank matrix
approximation, SIAM Journal on Imaging Sciences, 4(4), (2011), 1122-1142.
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Image restoration: Data-driven tight frame model
Data-driven balanced approach

min
c,W
‖AWT c− g‖22 +

β

2
‖(I −WWT )c‖22 + ‖diag(λ)c‖1

whereW is the tight frame generated by a set of filters that is
adapted to the input data.

For denoising, we can have the following `0 model

min
c,W
‖WT c− g‖22 + ‖(I −WWT )c‖22 + λ2‖c‖0

subject toWTW = I.

This problem can be solved by alternating direction method.
Both minimizations have analytical solutions. The algorithm
converges.

Cai, Ji, Shen and Ye, Data-driven tight frame construction and image denoising, Applied
and Computational Harmonic Analysis, 37(1), (2014), 89-105.
Bao, Ji, Quan and Shen, L0 norm based dictionary learning by proximal methods with
global convergence, CVPR, 2014.
Bao, Ji and Shen, Convergence analysis for iterative data-driven tight frame construction
scheme, Applied and Computational Harmonic Analysis, 2014.
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Data-driven non-local frame model: Global information
helps local feature recovery

The analysis-based approach

min
f

1

2
‖Af − g‖22 + ‖diag(λ)Wf‖1,

The analysis-based approach with the non-local analysis
operator

min
f

1

2
‖Af − g‖22 + ‖diag(λ)D(f)f‖1

where

D(f) =
1√
2

(
I
J (f)

)
W

with J (f) being the nonlocal operator derived from the
input data.

Quan, Ji and Shen, Data-driven multi-scale non-local wavelet frame construction and
image recovery, Journal of Scientific Computing, 2014
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The piecewise smooth function model
Γ: the domain of singularities.
Γc: the domain of smooth parts of the image.
Aim: keep the edges sharp and the smooth parts smooth.
Key: to locate Γ from data iteratively.

Figure: The first row: the clear image, the supports of its wavelet coefficients with
large magnitude in two high-pass channels. The second row: the image recovered by
pesudo-inverse filter, the supports of its wavelet coefficients with large magnitude in the
same high-pass channels.



The piecewise smooth function model
Γ: the domain of singularities.
Γc: the domain of smooth parts of the image.
Aim: keep the edges sharp and the smooth parts smooth.
Key: to locate Γ from data iteratively.

Figure: The first row: the clear image, the supports of its wavelet coefficients with
large magnitude in two high-pass channels. The second row: the image recovered by
pesudo-inverse filter, the supports of its wavelet coefficients with large magnitude in the
same high-pass channels.



Data Driven model for piecewise smooth image

Recall the analysis-based approach

min
f

1

2
‖Af − g‖22 + ‖diag(λ)WHf‖1,

where

W =

(
WH

WL

)
.

Data-driven models to identify the position set Γ of the features.

min
f ,Γ

1

2
‖Af − g‖22 + ‖γ · WΓf‖1 + ‖λ · WΓcf‖22

Cai, Dong and Shen, Image restorations: a wavelet frame based model for piecewise
smooth functions and beyond, 2014.
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Data driven moedel for piecewise smooth image
Input blurred images

PSNR = 22.5976 PSNR = 24.1189 PSNR = 26.1993 PSNR = 25.9306

Restored images

PSNR = 27.5443 PSNR = 27.8618 PSNR = 30.0355 PSNR = 29.6716

The computed jump set Γ



min
f ,Γ

1

2
‖Af − g‖22 + λ2‖WΓcf‖22 : |Γ| ≤ T.

Ji, Luo and Shen, Image recovery via geometrically structured approximation, 2015.

Image Kernel TV Framelet Co-sparsity Our method

peppers256

disk 24.866 26.3226 25.252 28.342
motion 24.922 26.5812 25.788 27.243

Gaussian 25.078 25.9699 25.081 27.16
average 23.923 26.1198 24.684 27.17

goldhill256

disk 25.867 26.4577 26.22 26.598
motion 25.5 26.2752 25.62 26.265

Gaussian 26.056 26.4133 26.303 26.801
average 24.926 25.6087 25.199 25.718

boat256

disk 24.638 25.4061 24.846 25.524
motion 24.173 25.0211 24.2 25.309

Gaussian 24.958 25.5148 24.942 25.589
average 23.638 24.4339 23.776 24.441

camera256

disk 24.43 25.6798 24.525 25.879
motion 23.653 25.3515 24.737 25.917

Gaussian 24.787 25.5479 24.754 25.756
average 23.17 24.5088 23.678 24.989

Barbara512

disk 24.208 24.153 24.2866 24.34
motion 23.571 23.8753 23.573 23.91

Gaussian 24.089 24.2618 24.107 24.29
average 23.45 23.6921 23.486 23.71

Lena512

disk 29.939 30.165 31.1621 31.184
motion 27.688 29.3335 28.324 29.543

Gaussian 30.453 31.5336 30.702 31.7
average 28.066 29.17 28.44 29.21

Table: Comparison of the PSNR values (dB) of the results by four methods,
with respect to the noise level σ = 5.



Wavelet frame approach and PDE approach

Cai, Dong, Osher and Shen, Image restoration: total variation, wavelet
frames, and beyond, Journal of the American Mathematical Society,
25(4), (2012), 1033-1089.

In particularly, establish the connection between TV model and tight
wavelet frame analysis model.

Dong, Jiang and Shen, Image restoration: wavelet frame shrinkage,
nonlinear evolution PDEs, and beyond, 2013.

Understand the nonlinear solution PDEs in term of wavelet tight frame
approach.

Cai, Dong and Shen, Image restorations: a wavelet frame based model
for piecewise smooth functions and beyond, 2014.

In particular, connect the Mumford-Shah model to the wavelet tight
frame approach.
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Wavelet frame approach and PDE approach

Understand each of three major PDE based models as a
wavelet based analysis approach with proper choices of
shrinkage and parameters.

Give space/time-frequency analysis to PDE approaches
and give geometric understanding for frame based
approaches.
Provide a method to solve PDE based models with
asymptotic convergence analysis as a side product.
Make wavelet based approaches go beyond image
processing, restoration and reconstruction, e.g. surface
processing and reconstruction .
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Surface reconstruction

Dong and Shen, Wavelet frame based surface reconstruction from unorganized points,
Journal of Computational Physics, 230(22), (2011), 8247-8255.

Dong and Shen, MRA-based wavelet frames and applications: image segmentation
and surface reconstruction, SPIE 2012 Defense, Security and Sensing, 8401 Article
number: 840102 DOI 10.1117/12.923203, (2012).



Surface denoising: wavelet tight frame on triangle
mesh

The botijo4 model Corrupted by Gaussian noise Denoised

Dong, Jiang, Liu and Shen, Multiscale representation of surfaces by tight wavelet
frames with applications to denoising, 2014.



Wavelet frame approach and PDE approach

Frame based models provide much wider choices. For
examples,

Built-in multi-level structure;

Balanced and synthesis based approaches;
A wide range of choices of frames, e.g., data-driven frames
or Gabor directional frames
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Gabor frame as directional frame
A complex-valued tensor product Gabor filter bank:

Real Part Imaginary Part

Ji, Shen and Zhao, Directional frames for image recovery: multi-scale finite discrete
Gabor frames, 2014

Ron and Shen, Frames and stable bases for subspaces of L2(Rd): the duality principle
of Weyl-Heisenberg sets, Proceedings of the Lanczos Centenary Conference Raleigh,
NC, M. Chu, R. Plemmons, D. Brown, and D. Ellison eds., SIAM Pub. (1993), 422-425.

Ron and Shen, Weyl-Heisenberg frames and Riesz bases in L2(Rd), Duke
Mathematical Journal, 89, (1997), 237-282.



Simulation results for Gabor frame

PSNR value of denoised images:



Some ideas of proof
E(f) = 1

2

∫
Ω(Af − g)2 + ν‖Df‖1.PDE approach

Let f∗n be an approximate optimal solution to En. Then

lim sup
n→∞

En(f∗n) ≤ inf
f
E(f),

and any cluster point of {f∗n} is an approximate optimal solution
to E.

To make this work, use the spline wavelet frame from UEP.

Cai, Dong, Osher and Shen, Image restoration: total variation, wavelet frames, and
beyond, Journal of the American Mathematical Society, 25(4), (2012), 1033-1089.
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to E.

To make this work, use the spline wavelet frame from UEP.
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Thank you!

http://www.math.nus.edu.sg/∼matzuows/
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