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Introduction

1 Gromov-Witten invariants is an integral part of Mirror
Symmetry conjecture;

2 investigated in mathematics from algebraic geometry,
symplectic geometry, representation theory, etc.;

3 still in its early development, after three decades;

4 has impacted greatly several branches in mathematics;

5 several research groups in China contributed to its
development.
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Introduction

1 Today I will approach this topic

from the angle of algebraic geometry;
based on my personal experience;

2 GW invariants of quintics by algebraic geometry;

3 three examples of GW invariants techniques impact algebraic
geometry;
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Introduction

X a smooth projective variety, d ∈ H2(X ,Z), g , n ∈ Z

Mg ,n(X , d) = {f :C → X , pi ∈ C : f∗([C ]) = d , f stable}/ ∼

moduli of genus g , n-pointed stable morphisms to X of class d .
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Introduction

f : C → X stable means that Aut(f ) is finite.

e.g. stable v. unstable maps:
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Introduction

Mg ,n(X , d): a DM stack, admits an obvious perfect obstruction
theory, has virtual fundamental cycle

[Mg ,n(X , d)]vir ∈ AvMg ,n(X , d),

(or ∈ H2ν(Mg ,n(X , d),Q) as a homology class.)

ν = vir. dim = (g − 1)(3− dim X ) + d · c1(X ) + n

When X is a Calabi-Yau threefold, i.e. c1(X ) = 0 and
dim X = 3, choose n = 0, then ν = 0.
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Introduction

Gromov-Witten invariants of a smooth projective variety:

〈α1, · · · , αn〉g ,dX =

∫
[Mg,n(X ,d)]vir

ev∗1α1 · · · ev∗nαn ∈ Q

where

α1, · · · , αn ∈ H∗(X ,Q).

Problem: The structure of the collection of invariants

{〈α1, · · · , αn〉g ,dX }.
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Introduction

Gromov-Witten invariants is a counting problem, counting
(algebraic) curves subject to constraints:

Using stable maps is to compactify the moduli space.
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First Example: explicit formula by Candelas et. al.

Calabi-Yau threefold X :

a smooth three-dimensional complex manifold,

H1(X ,Q) = 0 and c1(X ) = 0.

Example: (Fermat) quintic threefold

X = (x5
1 + · · ·+ x5

5 = 0) ⊂ CP4.
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First Example

GW-invariants of Calabi-Yau threefolds reduce to

Ng (d) = deg[Mg (X , d)]vir,

generating function

FX =
∑
g≥0

(∑
d∈H2

Ng (d) · qd
)
λ2g−2 =

∑
FX ,g · λ2g−2.
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First Example

Shocking: for quintic Calabi-Yau threefolds X , Candelas et. al.
derived the formula (1991)

C̃ttt =
∑
d≥0

N0(d)d3qd

where C̃ttt can be explicitly “calculated” (guessed more precisely)
by performing the following:
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First Example

1 calculate Czzz =
∫
X̌z

Ωz ∧ d3

dz3 Ωz ; X̌ the mirror of X .

2 normalize it to C̃zzz ;

3 make a mirror transformation

t(z) =
1

2πi
log z +

5

2πiφ0(z)

∞∑
n=1

(5n)!

(n!)5

 5n∑
j=n+1

1

j

 zn

4 C̃ttt =
(
dz
dt

)3
C̃zzz ;

5 C̃ttt =
∑

d≥0 N0(d)d3qd , where q = e2πit .
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First Example

Candelas et. al. derived a closed formula for C̃tty ;

The formula is verified by Lian-Liu-Yau, Givental.

Why this computation is true remains a mystery.

Jun Li Lectures on GW and AG



Second Example: explicit formula by Kontsevich

A classical problem in enumerative (algebraic) geometry is to
enumerate the number Nd of degree d rational curves in P2

subject to (the right number of) constraints.

Like passing through two points there is only one degree one
rational curve in P2.
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Second Example

Kontsevich used moduli of stable maps

M0,m(P2, d)

to obtain a recursion formula, thus solving the problem (1993):

Nd =
∑

d1+d2=d

Nd1Nd2

[
d2

1 d2
2

(
3d − 4
3d1 − 2

)
− d3

1 d2

(
3d − 4
3d1 − 1

)]
.
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Second Example

Idea of proof: using a recursion formula,

envisioned by Super-String theorists (the WDVV equation);

proof using an identity of cycles

[π−1(ξ1)] = [π−1(ξ2)] ∈ A∗M0,m(P2, d)

by looking at the forgetful map

M0,m(P2, d)yπ
M0,4

∼= P1
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Constructing Gromov-Witten invariants

Influenced by progress via symplectic geometry in Mirror Symmetry
Conjecture, the main challenge to algebraic geometers:

To construct the virtual cycles of the moduli of stable maps

[Mg ,n(X , d)]vir ∈ A∗Mg ,n(X , d)
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2. Construction of Gromov-Witten invariants

Theorem 1 (L-Tian (96))

Let X be a smooth projective manifold and d ∈ H2(X ,Z) be an
algebraic class. Then the moduli of stable maps Mg ,n(X , d)
admits a virtual cycle

[Mg ,n(X , d)]vir ∈ A∗Mg ,n(X , d),

constructed by using virtual normal cone based on its perfect
obstruction theory. Further, the cycle is constant in the
deformation class of X .
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Construction

GW invariants is a counting problem, ...

A counting when all parameters are ideal, (Sard’s theorem ...)

With analysis, try to perturb the almost complex structures, ...

In algebraic geometry, the parallel topological construction is
MacPherson’s deformation to normal cone construction.
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Construction

Toy model: M = (s = 0) ⊂W , E →W v.b./smooth, s ∈ Γ(E ), ...

By perturbation: use spert; counting is #(spert = 0).
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Construction

Same toy model: M = (s = 0) ⊂W , E →W , s ∈ Γ(E ), ...

The normal cone: NM/W := limt→0 Γt−1s ⊂ E |M , ...
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Construction

Same toy model: M = (s = 0) ⊂W , E →W , s ∈ Γ(E ), ...

The virtual cycle: [M]vir = 0!
E [NM/W ] ∈ A∗M. (0!

E : Gysin map.)
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Construction

For M =Mg ,n(X , d), no canonical (s,E ,W ), ....

Instead construct virtual normal cone N ⊂ E and E → M,

Use Gysin map: [Mg ,n(X , d)]vir = 0!
E [N].
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Construction

The contributions of this work:

1 use normal cone construction;

2 use virtual normal cone;

3 perfect obstruction theory =⇒ virtual normal cone.

(moduli spaces come with obstruction theories, some are perfect.)
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Construction

Current State of virtual cycle construction:

1 Use cotangent complex, cone-stack, and bundle stack
(Behrend-Fantechi);

2 Attempt to use derived algebraic geometry, for more general
obstruction theories;

3 Symmetric obstruction theories (Behrend); ...
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Genus zero invariants of quintics

Take Q5 ⊂ P4 a smooth quintic Calabi-Yau threefold, say

Q5 = (x5
1 + · · ·+ x5

5 = 0) ⊂ P4.

Kontsevich’s formula of genus zero GW invariants of quintics
(1994):

N0(d) = deg[M0(Q5, d)]vir ∈ Q.

=

∫
M0(P4,d)

ctop(π∗f
∗OP4(5)).
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Genus zero invariants

Quintics: ϕ = x5
1 + · · ·+ x5

5 , Q5 = (s = 0) ⊂ P4;

Consider M0(P4, d);

Universal family of M0(P4, d):

1 family of curves π : C →M0(P4, d);

2 universal map: f : C → P4;
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Genus zero invariants

Moduli spaces

M0(Q5, d) = (π∗f
∗ϕ = 0) ⊂M0(P4, d);

compare:

M = (s = 0) ⊂ W ,

and s = π∗f
∗ϕ ∈ Γ(E = π∗f

∗OP4(5)).

This is the “toy model”, thus

[M0(X5, d)]vir = Euler .class(π∗f
∗OP4(5))
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Genus zero invariants

1 Kontsevich’s formula can be calculated using torus
localization;

2 GW invariants of quintic explicit expressed in huge sums;

3 Prove genus zero Mirror Symmetry Conjecture possible.

Lian-Liu-Yau, and Givental, independently, last (giant) step

proved the genus zero Mirror Symmetry Conjecture
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Genus one invariants of quintics

For genus one invariants of Q5, the Kontsevich like formula fails.

[M1(Q5, d)]vir 6= e (R•π∗f
∗OP4(5))

It is due to that W =M1(P4, d) is not smooth.
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Genus one invariants

issues are

1 M1(P4, d) =M0 ∪M1 ∪M2 ∪M3 has four components
(pretty bad);

2 M1(P4, d) is regular away from the intersections (not too
bad);

3 π∗f
∗O(5) is singular (pretty bad).
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Genus one invariants

We derived a Kontsevich like formula for genus one invariants:

Definition 2 (Li-Zinger(04))

N red
1 (d) = 〈e(de-sing), [main component ofM1(P4, d)]〉.

We proved

Theorem 3 (Li-Zinger(04))

N1(d) = N red
1 (d) +

1

12
N0(d).
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Genus one Mirror Symmetry Conjecture

1 Via a desingularization constructed by Vakil-Zinger (05), one
can evaluate N red

1 (d) via torus localization, in terms of a huge
sum indexed by graphs;

2 Via a clever combinatorics manipulation, Zinger (07) proved
the genus one Mirror Symmetry Conjecture.
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Genus two or higher invariants

Continue this line of argument, ..., no progress, and discouraging.
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GW techniques to Algebraic Geometry

Theorem 4 (Graber-Harris-Starr (01))

Let K be a field of transcendence degree 1 over k, and X is a
rationally connected variety over K , then X has a K -rational point
(i.e. X (K ) 6= ∅).
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GW techniques to Algebraic Geometry

Its algebraic geometric version

Theorem 5 (Graber-Harris-Starr (01))

Let f : X → B be a non-constant map to a smooth curve B, such
that the general fiber is rationally connected. Then f has a section.

X is rationally connected if any two general points p, q on X can
be connected by a chain of rational curves.
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GW techniques to Algebraic Geometry

The proof of this theorem is influenced by the GW theory:

1 for f : X → B, using the moduli of stable maps

Mg (X , d) −→Mg (B, d ′).
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GW techniques to Algebraic Geometry

Key is to show (for B = P1), there is a component surjective

W −−−−→
⊂

Mg (X , d)

surjective

y y
the main component of −−−−→

⊂
Mg (P1, d ′)
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GW and AG, past and present II

Next lecture,

1 I will explain the recent work toward higher genus invariants
of quintics;

2 I will show another example where GW technique applied to
algebraic geometry.

Jun Li Lectures on GW and AG


