
Renormalizations and wandering
Jordan curves of rational maps ∗

Guizhen Cui†, Wenjuan Peng‡ and Lei Tan§

January 21, 2015

Abstract

We realize a dynamical decomposition for a post-critically finite rational map
admitting a combinatorial decomposition. We split the Riemann sphere into two
completely invariant subsets. One is a subset of the Julia set consisting of uncount-
ably many Jordan curve components with most of them being wandering. The other
consists of components that are pullbacks of finitely many renormalizations, togeth-
er with possibly uncountably many points. The quotient action on the decomposed
pieces is encoded by a dendrite dynamical system. Independently, we introduce
a surgery procedure to produce postcritically finite rational maps with wandering
Jordan curves and prescribed renormalizations.

Nous réalisons une décomposition dynamique d’une fraction rationnelle postcri-
tiquement fini admettant une dcomposition combinatoire. La sphére de Riemann
sera divisée en deux sous ensembles totalement invariants. L’un est un sous en-
semble de Julia avec un nombre non-dénombrable de composantes connexes, toutes
courbes de Jordan, majoritairement errantes; l’autre posséde comme composantes
connexes les preimages d’un nombre fini de renormalizations, avec éventuellement un
nombre non-dénombrable de points. La dynamique induite sur l’espace quotient de
ces composantes sera encodée par une dendrite dynamique. Indépendamment, nous
introduisons une chirurgie de combinaison afin d’obtenir des fractions rationnelles
ayant des courbes de Jordan errantes ainsi que des renormalizations prescrites.

1 Introduction

A rational map of one complex variable acts on the Riemann sphere and generates a
dynamical system by iteration. One general principal in analyzing the iterated dynamical
system is to decompose it into invariant sub-systems such that some of them have simpler
dynamics. The Riemann sphere is canonically decomposed into the disjoint union of the
Fatou set and the Julia set, defined by whether the iterated sequence forms a normal
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family in a neighborhood of the point. While the dynamics on the Fatou set is relatively
tame, the dynamics on the Julia set is wild and chaotic.

It may happen that on a periodic subset of the Julia set the first return map behaves
like another rational map on its own Julia set. The dynamics on the periodic subset is
usually called a renormalization.

A continuum is a compact connected subset of the sphere with uncountably many
points. It may also happen that a continuum in the Julia set wanders around and form
an orbit of pairwise disjoint continua. The continuum is usually called a wandering
continuum.

Our main contribution in this work is to show that the dynamics of a post-critically
finite rational map can be decomposed into two completely invariant parts, under a purely
combinatorial condition, namely the existence of a Cantor multicurve. In this case, the
decomposed pieces have a fairly simple dynamical description: on one side, we get mostly
wandering continua, and on the other side, we get mainly renormalizations. Furthermore,
the induced action on the quotient space can be effectively encoded by an expanding map
on a metric dendrite.

A Cantor multicurve is a natural refinement of a stable multicurves introduced by
Thurston. Many existing decomposition results can be described as cutting along stable
multicurves. Let us give an account of some of them.

For polynomials with a disconnected Julia set such that only finitely many filled Julia
components contain post-critical points, one can extract a stable multicurve from a finite
pullback of an equipotential curve in the basin of infinity. This stable multicurve forms
a puzzle under pullback. The pioneering work of Branner-Hubbard on cubic polynomials
uses a tableau to analyze the puzzle, and subsequently shows that the filled Julia set
consists of components that are either pullbacks of a renormalization or points [4]. Later
on DeMarco and Pilgrim use tableau and an infinite tree to encode the combination of
these points and renormalization copies [13].

For polynomials with connected Julia sets there are similar decomposition results.
Often there are more than one periodic external rays landing at a common periodic point.
These periodic external rays cut the Julia set into pieces. Together with equipotential
curves, these rays play the role of a stable multicurve and form again puzzles (called Yoccoz
puzzles). As before the return dynamics on a periodic puzzle piece is a renormalization.
And in various expanding cases, the remaining part of the Julia set, after extracting the
renormalized copies and their pullbacks, consists of uncountable many point components.
See for example [10, 20, 37], among others.

Let us turn now to non-polynomial rational maps. If a sub-hyperbolic rational map
has a disconnected Julia set, one can also extract a stable multicurve in the multiply-
connected Fatou domains and obtain a canonical decomposition of the Julia set, just as
what one did in the basin of infinity of a polynomial with disconnected Julia set. Detailed
analysis can be found in [8, 26].

The situation of a rational map with a connected Julia set is actually much harder:
there is no multicurves in the Fatou set that separate the Julia set, and there is no
completely invariant Fatou domains whose rays cut apart the Julia set. In some particular
cases such as the Newton’s method for cubic polynomials, or quadratic rational maps with
a 2-periodic critical point, rays from distinct Fatou basins may joint together and form a
cutting (see e.g. [19, 29, 33]). But this is by far the general case. For instance many Julia
sets are homeomorphic to a Sierpinski carpet, where any two distinct Fatou components
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have disjoint closures.

A rational map is said to be post-critically finite if its critical orbits contain only finitely
many points. For such a map, the Julia set is automatically connected. Conversely, any
sub-hyperbolic rational map with a connected Julia set is quasi-conformally conjugate to
a post-critically finite in a neighborhood of the Julia set. Our setting in the present work
is precisely about post-critically finite rational maps. And we aim to develop a general
decomposition procedure without invoking any particular topology of the Julia sets.

There is already a well-known combinatorial decomposition for these maps, in case
that the map has a fully invariant Jordan curve up to homotopy. Cutting along this curve
will decompose the rational map (or its second iteration if necessary) into two polynomials.
The rational map is called the mating of the two polynomials. See for example [31, 32].
However, the decomposed polynomials can not be considered as renormalizations in the
usual sense, as in general none of the small Julia sets is embedded in the original big Julia
set. Many tips of a small Julia set are glued together under mating [30].

In this work we will establish a new type of decomposition procedure for post-critically
finite rational maps. The first challenge is to find a natural class of multicurves to cut
along. Our key concept, Cantor multicurves, is introduced precisely for this purpose.
Contrary to the equator of a mating, a Cantor multicurve is a multicurve whose consecu-
tive pullbacks will generate a strictly increasing number of curves in each homotopy class.
See §2 for the definition.

The stability of multicurves is only measured up to homotopy. It is thus impossible to
literally cut along a stable multicurve to obtain exact invariant pieces. The crucial step
in our study is to promote a Cantor multicurve to a multi-annulus such that it is exactly
invariant in certain sense. We will call such a dynamical system an exact annular system
(see §3 for the definition)1. It will play the role of multiply-connected Fatou components
in the disconnected case, and will allow us to decompose the Julia set into pairwise disjoint
pieces.

Cantor multicurves and exact annular systems appear naturally in the study of rational
maps with disconnected Julia sets, starting from McMullen’s example of Cantor set of
circles (see e.g. [14, 22, 26], among others). In the connected Julia set case, these concepts
appear also in the flexible Lattès examples, and in Haissinsky-Pilgrim’s example with 4
postcritical points [15]. However they have never been applied to general post-critically
finite rational maps.

Actually our construction of the exact annular system from a Cantor multicurve is
somewhat indirect, after several failed attempts with more direct approaches. We were
led to modify the rational map to a branched covering in the Thurston equivalence class
such that it has a topological exact annular system. Then applying a theorem of Rees and
Shishikura, we obtain a semi-conjugacy from the branched covering to the rational map.
Finally a careful analysis of the semi-conjugacy shows that the exact annular system for
the branched covering descends to one for the rational map.

Once an exact annular system is found, we are naturally led to analyze the induced
decomposition. The first step is to study the Julia set of the exact annular system. This
is actually quite simple since it is expanding, as a sub-system of a post-critically finite
rational map. As in the case of rational maps with disconnected Julia sets we will prove

1This is to be compared to the monograph [25], where stable multicurves are promoted to invariant
Jordan curves in the setting of branched coverings.
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that each component of its Julia set is a Jordan curve, there are uncountably many of
them and all but countably many of them are wandering.

The next step is to analyze the complement of the grand orbit of the Julia set of the
exact annular system. It has zero or uncountably many point components, and countably
many continuum components which are pullbacks of finitely many renormalizations.

Finally, one should encode the relation between these decomposed components, namely
study the induced action on the quotient space. We will show that this action is an
expanding dynamical system on a dendrite. This completes the decomposition study
along a Cantor multicurve of post-critically finite rational maps.

We will present further a result about wandering continua. For a post-critically finite
rational map, the existence of a non-simply connected wandering continuum is equivalent
to the existence of a Cantor multicurve. Moreover, the wandering continuum must be a
Jordan curve.

It is known that for a polynomial with connected Julia set and without irrational indif-
ferent cycles, it has no wandering continua if and only if its Julia set is locally connected.
See [3, 16, 17, 18, 36]. For rational maps, besides known examples with disconnected Julia
sets, Lattés example and Haissinky-Pilgrim’s example with 4 post-critical points [15], we
are not aware of a sufficient and necessary condition for the existence of a non-simply
connected wandering continuum as we have developed here.

Our final, and yet somewhat independent task is to construct post-critically finite
rational maps with Cantor multicurves and prescribed renormalizations. For this purpose
we will introduce a new surgery procedure which we call foldings, to construct a branched
covering from polynomials. The resulting map has a Cantor multicurve consisting of a
single curve. We will show that under certain conditions the branched covering is Thurston
equivalent to a rational map. Consequently, this rational map has a Cantor multicurve
and hence wandering Jordan curves, and with a renormalization which is the polynomials
we started with.

Perspectives. Here are some remarks and several problems related to this work.
(1) If a renormalization piece in our decomposition admits again a Cantor multicurve,

one can make a further decomposition. Or one can join it to the original one and then
make only decompositions for Cantor multicurves that are maximal under inclusions. In
this way we can declare that the renormalizations are post-critically finite rational maps
without Cantor multicurves. Maximal Cantor multicurves might not be unique. Therefore
our decomposition needs not to be canonical. This phenomenon occurs also in realizing
rational maps as matings of polynomials.

(2) The existence of simply-connected wandering continua is a very interesting problem
and remains largely open, except for flexible Lattès maps, see for example [7]. We suspect
that these are the only exceptions. One possible strategy to address the problem is to
prove first that, in the presence of a Cantor multicurve, a wandering continuum must lie
in a renormalization, and then rule out the latter possibility.

(3) The examples we constructed have a quotient dendrite that is the simplest case,
namely a segment. We wish to construct examples with branching points in the future.
The combinatorial construction is quite easy. The hard part is to show its rational re-
alization. There are some techniques around that might be to apply. For example the
iterated monodromy groups developed by Bartholdi-Nekrashevych [5] and the direct cri-
terion developed by Dylan Thurston [35].
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(4) Our final example provides a rational map with a Sierpinski carpet Julia set and

a Cantor multicurve. One may use our examples to test McMullen’s conjecture: the
hyperbolic component of rational maps whose Julia sets are Sierpinski carpets has compact
closure in the parameter space.

(5) Expanding Thurston type branched coverings have attracted many attentions in
the recent years. We hope that some of the techniques developed in this work can be
adapted to these expanding maps as well.

Definitions and statements. The following notations and definitions will be used
throughout this paper.

• Let U, V ⊂ Ĉ be open sets in the Riemann sphere. We denote by U b V if U ⊂ V .
• Let A ⊂ Ĉ be an annulus and E ⊂ A be a connected open or closed set. We say

that E is contained in A essentially if E separates the boundary ∂A.
• A continuum E ⊂ Ĉ is called n-connected with n ∈ N ∪ {∞} if Ĉ\E has exactly

n components.
• Let f be a rational map. Denote by Jf the Julia set of f and Ff the Fatou set of

f . Refer to [2, 6, 23, 24] for the definitions and basic properties. The post-critical set
of f is denoted by Pf , refer to §2.1 for its definition.

• By a multi-annulus we mean a finite disjoint union of open annuli in Ĉ with finite
modulus.

Definition 1. Let A1,A ⊂ Ĉ be two multi-annuli such that each component of A1 is
contained in a component of A essentially. A map g : A1 → A is called an annular
system if

(1) for each component A1 of A1, its image g(A1) is a component of A and the map
g : A1 → g(A1) is a holomorphic covering;

(2) there is an integer n ≥ 1 such that for each component A of A, the set g−n(A)∩A
is non-empty and disconnected.

The Julia set of g is defined by Jg :=
∩
n≥0 g

−n(A). An annular system g : A1 → A
is called proper if A1 b A; or exact if for every component A of A, each of the two
components of ∂A is also a component of ∂(A ∩ A1).

Convention. Let f be a post-critically finite rational map. We say that an annulus
A ⊂ Ĉ\Pf is homotopic rel Pf to a Jordan curve γ (or an annulus A′) in Ĉ\Pf if essential
Jordan curves in A are homotopic to γ (or essential curves in A′) rel Pf ; and a multi-
annulusA is homotopic rel Pf to a multicurve Γ (or a multi-annulusA′) if each component
of A is homotopic to a curve in Γ (or a component of A′)) rel Pf and each curve in Γ (or
each component of A′) is homotopic to a component of A.

Here are the main statements that we shall prove:

Theorem 1.1. (from a Cantor multicurve to an annular system) Let f be a
post-critically finite rational map with a Cantor multicurve Γ. There exists a unique
multi-annulus A ⊂ Ĉ\Pf homotopic rel Pf to Γ such that g = f |A1 : A1 → A is an exact
annular system, where A1 is the union of components of f−1(A) that are homotopic rel
Pf to curves in Γ. Moreover, Jg ⊂ Jf , there are uncountably many components in Jg,
each is a Jordan curve. All but countably many of these components are wandering.

Theorem 1.2. (from a wandering continuum to a Cantor multicurve) Let f be a
post-critically finite rational map. If K is a non-simply connected wandering continuum
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in Jf , then K and all its forward iterates are Jordan curves and their homotopy classes
rel. Pf form a Cantor multicurve.

A connected subset E ⊂ Ĉ is called of simple type (w.r.t. Pf ) if there exists either

a simply-connected domain U ⊂ Ĉ such that E ⊂ U and U contains at most one point
in Pf , or an annulus A ⊂ Ĉ\Pf such that E ⊂ A; and of complex type (w.r.t. Pf )
otherwise.

Theorem 1.3. (renormalization) Let f be a post-critically rational map with a stable
Cantor multicurve Γ. Denote by J (Γ) the union of the grand orbit of the Julia set of

the annular sub-system derived from Theorem 1.1. Set K(Γ) = Ĉ\J (Γ). Then every
component of K(Γ) is either a single point or a continuum that is eventually periodic.
There are only finitely many periodic continuum components and each of them is either
the closure of a quasi-disk or a complex type continuum. The former is the closure of a
periodic Fatou domain, while the latter is the filled Julia set of a renormalization. There
are at most #Γ + 1 renormalizations.

Theorem 1.4. (coding) Let f be a post-critically rational map with a stable Cantor
multicurve Γ. There exist an expanding finite dendrite map τ : T → T and a continuous
semi-conjugacy Θ from f to τ such that for each point t ∈ T , the fiber Θ−1(t) is a
component of either J (Γ) or K(Γ).

Refer to §5 and §6 for the definitions of renormalization and finite dendrite maps.

Outline of the paper. This paper is organized as follows. In §2, we recall Thurston’s
theory and give the definition of a Cantor multicurve. Some equivalent conditions in
the irreducible case are given here. In §3, we introduce the notion of exact annular
systems and show that every component of their Julia set is a Jordan curve if they are
expanding. Theorem 1.1 is proved in §4. In §5, we will study the decomposition pieces
and prove Theorem 1.3. In §6, we introduce the definition of finite dendrite maps and
prove Theorem 1.4. Theorem 1.2 is proved in §7. Our construction of rational maps with
Cantor multicurves and prescribed renormalizations is contained in the final section §8.
Precise statements will be given there.

2 Multicurves and Cantor multicurves

In this section, we will recall Thurston’s characterization theorem, introduce the notion
of Cantor multicurves, and establish some equivalent conditions.

Let F be a branched covering of the Riemann sphere Ĉ. We always assume degF ≥ 2
in this paper. Denote by ΩF the set of critical points of F . The post-critical set of F
is defined by

PF =
∪
n≥1

F n(ΩF ).

The map F is called post-critically finite if PF is finite.
A Jordan curve γ in Ĉ\PF is null-homotopic (resp. peripheral) if one of its com-

plementary components contains zero (resp. one) point of PF ; or is essential otherwise,
i.e. if each of its two complementary components contains at least two points of PF .
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A multicurve Γ is a non-empty and finite collection of disjoint Jordan curves in

Ĉ\PF , each essential and no two homotopic rel PF . We will say that Γ is stable if each
essential curve in F−1(β) for β ∈ Γ is homotopic rel PF to a curve in Γ; and pre-stable
if each curve γ ∈ Γ is homotopic rel PF to a curve in F−1(β) for some curve β ∈ Γ. A
pre-stable multicurve Γ is called irreducible if for each pair (γ, β) ∈ Γ× Γ, there exists
a sequence {δ0 = γ, δ1, · · · , δn = β} of curves in Γ such that F−1(δk) has a component
homotopic to δk−1 rel PF for 1 ≤ k ≤ n.

Let Γ be a multicurve. Its transition matrix MΓ = (aγβ) is defined by:

aγβ =
∑
α

1

deg(f : α→ β)
,

where the summation is taken over components α of F−1(β) which are homotopic to γ rel
PF . Denote by λΓ the leading eigenvalue of its transition matrixMΓ. A stable multicurve
Γ is called a Thurston obstruction if λΓ ≥ 1.

Two post-critically finite branched coverings F and G are called Thurston equiva-
lent if there is a pair of homeomorphisms (ϕ, ψ) : Ĉ → Ĉ such that ϕ is isotopic to ψ rel
PF and ϕ ◦ F ◦ ψ−1 = G.

Theorem 2.1. (Thurston’s characterization theorem) Let F be a post-critically

finite branched covering of Ĉ with hyperbolic orbifold. Then F is Thurston equivalent to
a rational map f if and only if F has no Thurston obstruction. Moreover, the rational
map f is unique up to holomorphic conjugation.

Refer to [12] or [23] for the definition of hyperbolic orbifold.

Lemma 2.2. Let F be a branched covering of Ĉ. For any pre-stable multicurve Γ0, there
is a stable and pre-stable multicurve Γ such that Γ ⊃ Γ0 and hence λΓ0 ≤ λΓ. Conversely,
for any stable multicurve Γ with λΓ > 0, there is an irreducible multicurve Γ0 ⊂ Γ such
that λΓ0 = λΓ.

Refer to [23] for the second part of the lemma. We only prove the first part.

Proof. Let Γ̃n be the collection of essential curves in F−n(Γ0) for n ≥ 1. Let Γn be a
sub-collection of Γ̃n such that no two curves in Γn are homotopic rel PF and any curve
in Γ̃n is homotopic rel PF to a curve in Γn. Then Γn is a pre-stable multicurve and each
curve in Γn is homotopic to a curve in Γn+1 for n ≥ 1. Thus #Γn ≤ #Γn+1. Since for any
multicurve Γ, #Γ ≤ #PF − 3, there is an integer N ≥ 0 such that #ΓN = #ΓN+1. Thus
ΓN is a stable and pre-stable multicurve.

Convention. Let Γ be a collection of curves in Ĉ, we also use Γ to denote the union of
curves in Γ as a subset of Ĉ if there is no confusion.

Let Γ be a multicurve of F . For each γ ∈ Γ, denote by Γ(1, γ) the collection of curves
in F−1(Γ) homotopic rel PF to γ and Γ(1,Γ) :=

∪
γ∈Γ Γ(1, γ). Inductively, for n ≥ 1,

denote by Γ(n+ 1, γ) the collection of curves in F−1(Γ(n,Γ)) homotopic rel PF to γ and
Γ(n+1,Γ) :=

∪
γ∈Γ Γ(n+1, γ). Notice that Γ(n,Γ) is contained in, but may not be equal

to, the collection of curves in F−n(Γ) homotopic rel PF to curves in Γ. Denote by

κn(γ) = #Γ(n, γ) for each γ ∈ Γ.
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Definition 2. A multicurve Γ is called a Cantor multicurve if it is pre-stable and
κn(γ) → ∞ as n→ ∞ for all γ ∈ Γ.

A stable Cantor multicurve is in particular both stable and pre-stable. In the clas-
sical construction of mating of polynomials, there is a Jordan curve whose pre-image is
a single curve homotopic to itself rel the post-critical set. In this case the multicurve
consisting of this single curve is not a Cantor multicurve. It is quite easy to give examples
of maps without Cantor multicurves, for instance topological polynomials (branched cov-
erings with a totally invariant point). Concrete examples of rational maps with Cantor
multicurves will be constructed in §8.

Lemma 2.3. Suppose that Γ is an irreducible multicurve. The following statements are
equivalent:

(1) #Γ(1,Γ) > #Γ.
(2) κ1(γ) ≥ 2 for some γ ∈ Γ.
(3) κn(γ) → ∞ for some γ ∈ Γ.
(4) κn(γ) → ∞ for all γ ∈ Γ, i.e., Γ is a Cantor multicurve.
(5) There is a curve β ∈ Γ such that F−1(β) has at least two curves in Γ(1,Γ).

Proof. (1) ⇐⇒ (2): Since Γ is pre-stable, Γ(1, γ) is non-empty for each γ ∈ Γ. Thus
#Γ(1,Γ) > #Γ if and only if κ1(γ) ≥ 2 for some γ ∈ Γ.

(1) ⇐⇒ (3): Since Γ is irreducible, F−1(γ) has at least one curve contained in Γ(1,Γ)
for each γ ∈ Γ. Thus if #Γ(1,Γ) > #Γ, then #Γ(n + 1,Γ) > #Γ(n,Γ) for all n ≥ 1.
So #Γ(n,Γ) → ∞ as n → ∞. Therefore κn(γ) → ∞ for some γ ∈ Γ. Conversely, if
#Γ(1,Γ) = #Γ, then #Γ(n+ 1,Γ) = #Γ(n,Γ) for all n ≥ 1. Therefore κn(γ) = 1 for all
γ ∈ Γ and n ≥ 1.

(3) ⇐⇒ (4): Since Γ is irreducible, for each pair (γ, β) ∈ Γ × Γ, there is an integer
n ≥ 1 such that F−n(β) has a component δ homotopic to γ rel PF and F k(δ) is homotopic
to a curve in Γ for 1 ≤ k < n. Therefore δ ∈ Γ(n, γ) and hence κn+k(γ) ≥ κn(β). So
κn(γ) → ∞ if κn(β) → ∞.

(1) ⇐⇒ (5): Since Γ is irreducible, F−1(γ) has at least one curve contained in Γ(1,Γ)
for each γ ∈ Γ. Therefore #Γ(1,Γ) > #Γ if and only if there is a curve β ∈ Γ such that
F−1(β) has at least two distinct curves contained in Γ(1,Γ).

Let Γ = {γ1, · · · , γn} be a multicurve of F . Its reduced transition matrix Mr,Γ =
(bij) is define by bij = k if there are k components of F−1(γj) homotopic to γi rel PF .
This definition was introduced by Shishikura.

Lemma 2.4. Let Γ be a pre-stable multicurve of F . Then the leading eigenvalue of its
reduced transition matrix satisfies that λ(Mr,Γ) ≥ 1. Moreover, λ(Mr,Γ) > 1 if Γ is a
Cantor multicurve. Conversely, if Γ is irreducible and λ(Mr,Γ) > 1, then Γ is a Cantor
multicurve.

Proof. Note that Mr,Γv ≥ v for the vector v = (1, · · · , 1) since Γ is pre-stable. Thus
λ(Mr,Γ) ≥ 1 by Lemma A.1 in [8]. If Γ is a Cantor multicurve, then there exists an
integer n ≥ 1 such that Mn

r,Γv ≥ 2v. Thus λ(Mr,Γ)
n = λ(Mn

r,Γ) > 1. Conversely, if Γ
is irreducible and λ(Mr,Γ) > 1, then there exists at least one column of the matrix such
that the summation of the entries of this column is bigger than one. Thus Γ is a Cantor
multicurve by Lemma 2.3 (2).
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3 Annular systems

In this section we will show that every component of the Julia set of an expanding exact
annular system is a Jordan curve.

Let A1,A ⊂ Ĉ be two multi-annuli such that each component of A1 is contained in a
component of A essentially. Recall that a map g : A1 → A is an annular system if

(1) for each component A1 of A1, its image g(A1) is a component of A and the map
g : A1 → g(A1) is a holomorphic covering;

(2) there is an integer n ≥ 1 such that for each component A of A, the set g−n(A)∩A
is non-empty and disconnected.

The Julia set of g is defined by Jg :=
∩
n≥0 g

−n(A). An annular system g : A1 → A
is proper if A1 b A; or exact if for every component A of A, each of the two components
of ∂A is also a component of ∂(A ∩ A1).

Remark. The definition of the Julia set Jg of an annular system g is misleading.
At first, Jg need not to be compact. Secondly, g−1(Jg) = Jg and g(Jg) ⊂ Jg from the
definition but g(Jg) need not to be equal to Jg since we do not require the map g to be
onto.

3.1 Basic properties

Proposition 3.1. Let g : A1 → A be an annular system. There is an integer N ≥ 1 such
that deg(gN |A) ≥ 2 for each component A of g−N(A).

Proof. Let m ≥ 1 be the number of components of A. By contradiction we assume
that there is a component A of g−m(A) such that deg(gm|A) = 1. There exist integers
0 ≤ k < k+p ≤ m such that both gk(A) and gk+p(A) are contained in the same component
A0 of A. So gp(gk(A)) ⊂ A0. Let Ap ⊂ A0 be the component of g−p(A0) containing gk(A).
Since gp : Ap → A0 is a covering between annuli and gk(A) is contained essentially in Ap,
we have

deg
(
gp : Ap → A0

)
= deg

(
gp : gk(A) → gk+p(A)

)
≤ deg(gm|A) = 1.

Thus the moduli of the annuli Ap and A0 are equal and hence Ap = A0. It follows
that A0 = gp(A0). Therefore A0 ∩ g−np(A) = A0 for all integers n ≥ 1. Since g−n(A) ⊂
g−n+1(A) for all n ≥ 1, we conclude that A0∩g−n(A) = A0 for all n ≥ 1. This contradicts
the condition that A0 ∩ g−n(A) is disconnected for some n ≥ 1. So deg(gm|A) ≥ 2 for
each component A of g−m(A).

Proposition 3.2. Let g : A1 → A be an exact annular system. Let {An} be a nested
sequence of annuli of g−n(A), i.e. the annulus An is a component of g−n(A) and An+1 ⊂
An. Then either

∩
n≥1A

n = ∅ or for every n ≥ 1, there is an integer m > n such that
Am b An.

Proof. By exactness, either for any n ≥ 1, there is an integer m > n such that Am b An,
or there are an integer N ≥ 1 and a component L of ∂AN such that L ⊂ ∂An for n ≥ N .

We only need to show that
∩
n≥1A

n = ∅ in the latter case. Since A has only finitely
many components, there are a component B0 of A and integers i > j > k ≥ N such that
gi(Ai) = gj(Aj) = gk(Ak) = B0. As B0 has exactly two boundary components, there are a
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boundary component L′ of B0, and two of them, say i and j, such that gi(L) = gj(L) = L′

(This formula means that as z tends to L in Ai, both gi(z) and gj(z) tends to L′).
Denote by Bn = gj(An+j) for n ≥ 0, then {Bn} is a nested sequence of annuli which

have a common boundary component L′. Moreover, gp(Bp) = B0 and gp(L′) = L′ for
p = i − j. It follows that gp(Bnp) = B(n−1)p for n ≥ 1. Note that Bp ̸= B0. Otherwise
Bn = B0 for all n ≥ 1 and thus contradicts the condition that B0∩g−n(A) is disconnected
for some n ≥ 1.

Let U be the component of Ĉ\L′ containing B0 and ϕ be a conformal map from U
onto the unit disk D. Then h := ϕ ◦ gp ◦ ϕ−1 is a holomorphic covering from ϕ(Bp)
to ϕ(B0), which can be extended continuously to the unit circle. By the symmetric
extension principle, h can be extended to a holomorphic covering map from the annulus
V1 to V , where V1, V are the unions of ϕ(Bp), ϕ(B0) with its reflection and the unit
circle, respectively. Since V1 b V , h is expanding under the hyperbolic metric of V . So∩
n>0 h

−n(V ) = ∂D and hence
∩
n>0 h

−n(ϕ(B0)) = ∅. Note that ϕ(Bnp) = h−n(ϕ(B0)).
Therefore

∩
n>0B

np = ∅ and hence
∩
n>0A

n = ∅.

Let g : A1 → A be an annular system and K be a connected component of Jg. Then
for each n ≥ 0, there is a unique component of g−n(A), denoted by An(K), such that
K ⊂ An(K). Consequently, K ⊂

∩
n≥1A

n(K).

Proposition 3.3. Let g : A1 → A be an exact annular system.
(1) For any component K of Jg, K is a 2-connected continuum contained essentially

in each An(K) and K =
∩
n≥1A

n(K).
(2) For each component A of A and any point z ∈ A, there exist components K1, K2

of Jg ∩ A such that the annulus bounded by K1 and K2 contains the point z.

Proof. (1) For any n ≥ 0, there is an integer m > n such that Am(K) b An(K) by Propo-
sition 3.2. Since An+1(K) is contained essentially in An(K) for every n ≥ 0,

∩
n≥0A

n(K)
is a 2-connected continuum contained essentially in each An(K). By definition it is con-
tained in Jg and hence is equal to K.

(2) Let An1 , A
n
2 ⊂ A be the components of g−n(A) such that they share a common

boundary component with A. Then
∩
n≥0(A

n
1 ∪ An2 ) = ∅ by Proposition 3.2. Thus there

exists an integer m ≥ 1 such that z /∈ (Am1 ∪ Am2 ). Notice that there exists a component
Ki of Jg contained essentially in Ami (i = 1, 2). Thus the annulus bounded by K1 and K2

contains the point z.

By Proposition 3.3, for each component K of Jg, g(K) is a component of Jg and each
component of g−1(K) is also a component of Jg. We will say that a component K of Jg
is periodic if there is an integer p ≥ 1 such that gp(K) = K; or pre-periodic if fk(K)
is periodic for some integer k ≥ 1; or wandering otherwise.

Proposition 3.4. Let g : A1 → A be an exact annular system. Then any pre-periodic
component K of Jg is a quasicircle.

Proof. We only need to consider periodic components of Jg since each component of
their pre-images is also a quasicircle. Let K be a periodic component of Jg with period
p ≥ 1. Then gp(Ap(K)) = A0(K) and Ap(K) b A0(K) by Proposition 3.2. Now applying

quasiconformal surgery, we have a quasiconformal map ϕ of Ĉ such that ϕ ◦ gp ◦ ϕ−1 = zd

in a neighborhood of ϕ(K), where |d| = deg(gp|Ap(K)) ≥ 2. Thus K is a quasicircle.
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3.2 Semi-conjugacy to linear systems

Let g : A1 → A be an exact annular system. In this sub-section, we want to characterize
its dynamics by a linear system as the following. Denote by A1, · · · , An the components
of A and A1

1, · · · , A1
m the components of A1. Let

I = I1 ∪ · · · ∪ In and I1 = I11 ∪ · · · ∪ I1m

be disjoint unions of open intervals on R1 such that
(a) I1 ⊂ I and I1i ⊂ Ij whenever A

1
i ⊂ Aj, and

(b) for each Ii, ∂Ii ⊂ ∂(I1 ∩ Ii).
Define σ : I1 → I by σ(I1i ) = Ij if g(A

1
i ) = Aj and σ is linear on each I1i . Set

In = σ−n(I) for n > 1 and Jσ =
∩
n≥1

In.

Proposition 3.5. The linear system σ : I1 → I is expanding and the closure of Jσ in R
is a Cantor set.

Proof. To prove the expanding property, we only need to show that there is an integer
n ≥ 1 such that for any x ∈ In, |(σn)′(x)| > 1. For each k ≥ 1, let lk, Lk be the minimum
and maximum of the length of the components of Ik, respectively. Then Lk+1 ≤ Lk for
any k ≥ 1. To prove |(σn)′| > 1, it is sufficient to show that there is an integer n ≥ 1 such
that Ln < l0.

We will prove that Lk → L = 0 as k → ∞. Assume L > 0 by contradiction. Then for
each k ≥ 1, there is a component of Ik whose length is at least L. Therefore, there exists
a sequence {Ik}k≥1 with Ik a component of Ik, such that Ik ⊃ Ik+1 and |Ik| ≥ L.

Denote by I∞ =
∩
k I

k. Then |I∞| ≥ L and |Ik| → |I∞| as k → ∞. In particular,
there exists an integer k0 ≥ 0 such that as k ≥ k0,

|Ik|
|I∞|

<
L1 + l1
L1

.

Since g is an annular system, there exists an integer k1 ≥ k0 such that Ik1 contains
another component I of Ik1+1 distinct from Ik1+1. Thus

|I|
|Ik1+1|

≤ |Ik1 | − |Ik1+1|
|Ik1+1|

<
l1
L1

.

Since σk1 is linear on Ik1 , we have

|σk1(I)|
|σk1(Ik1+1)|

<
l1
L1

.

By the definition, |σk1(I)| ≥ l1 and |σk1(Ik1+1)| ≤ L1. So

|σk1(I)|
|σk1(Ik1+1)|

≥ l1
L1

.

This is a contradiction.
Now each component of Jσ is a single point since the linear system σ is expanding. It

is easy to check that the closure of Jσ in R is a perfect set and hence a Cantor set.
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For any point x ∈ Jσ and each k ≥ 1, denote by Ik(x) the component of Ik that

contains the point x, then ∩k≥1I
k(x) = {x}. For any two distinct points x, y ∈ Jσ, either

they are contained in different component of I1, or there exists an integer k0 ≥ 2 such
that Ik0(x)∩Ik0(y) = ∅ and Ik(x) = Ik(y) for 1 ≤ k < k0. In the latter case, σk0−1(Ik0(x))
and σk0−1(Ik0(y)) are different components of I1. Define the itinerary of a point x ∈ Jσ
by i(x) = (j0, j1, · · · ) if σk(x) ∈ I1jk . Then i(x) ̸= i(y) if x ̸= y.

Define the itinerary for each point z ∈ Jg by i∗(z) = (j0, j1, · · · ) if gk(z) ∈ A1
jk
.

Define a map Π : Jg → Jσ by Π(z) = x if i∗(z) = i(x). It is well-defined and surjective
by Proposition 3.2.

Proposition 3.6. The map Π : Jg → Jσ is continuous and σ ◦ Π = Π ◦ g on Jg. For
each point x ∈ Jσ, Π−1(x) is a component of Jg.

Proof. It is easy to check that σ ◦Π = Π ◦ g on Jg, and Π−1(x) is a component of Jg for
each point x ∈ Jσ. Fix any point x ∈ Jσ. The collection {Ik(x)∩Jσ}k≥1 forms a basis of
neighborhoods of the point x in Jσ. Now Π−1({Ik(x) ∩ Jσ}) = Ak(Π−1(x)) ∩ Jg is open
in Jg for every k ≥ 1. So Π is continuous.

Since the set of pre-periodic points is a countable set, we have:

Corollary 3.7. There are uncountably many wandering components in Jg.

For any point x ∈ Jσ, its ω-limit set ω(x) is defined to be the set of points y ∈ Jσ
such that σkn(x) converges to y as n→ ∞ for a subsequence kn → ∞.

Proposition 3.8. Let x ∈ Jσ be a wandering point. Then ω(x) is an infinite set.

Proof. Assume that ω(x) is finite. Define d(y1, y2) to be the Euclidean distance if y1, y2
are contained in the same component of I, or infinity otherwise. There exists a constant
δ > 0 such that d(y1, y2) > δ for any two distinct points y1, y2 ∈ ω(x) and d(y1, y2) > δ
if y1, y2 are contained in different components of I1. Take a constant M ∈ (1,∞) such
that |σ′(x)| < M for any point x ∈ I1. By the definition of ω(x), there exists a constant
N ≥ 1 such that for any n ≥ N , there exists a unique point yn ∈ ω(x) such that
d(σn(x), yn) < δ/(2M). Thus d(σn+1(x), σ(yn)) < δ/2. It follows that yn+1 = σ(yn) for
n ≥ N . This contradicts the fact that σ is expanding.

3.3 Common boundary

Recall that each component of the Julia set of an exact annular system is a 2-connected
continuum by Proposition 3.3.

Theorem 3.9. Let g : A1 → A be an exact annular system and K be a component of Jg.
Let U and V be the two components of Ĉ\K. Then ∂U = ∂V = K.

Proof. Assume that each component of A contains at least two components of A1 (other-
wise we consider gn for some n ≥ 2 by the definition). Then ∥g′∥ > 1 under the hyperbolic
metric of A.

If K is eventually periodic, then K is a quasicircle by Proposition 3.4 and hence the
theorem holds. Now we suppose that K is wandering. Let Π be a semi-conjugacy from
g : Jg → Jg to a linear system σ : I1 → I defined in Proposition 3.6. Then x = Π(K)
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is a wandering point. Thus ω(x) is an infinite set by Proposition 3.8. In particular ω(x)
contains a point y ∈ I such that y /∈ ∂I. It follows that there exists a component Im

of σ−m(I) such that y ∈ Im and Im is contained in the interior of I. Hence there exists
an increasing sequence {nk}k≥1 of positive integers such that nk → ∞ as k → ∞ and
σnk(x) ∈ Im.

Denote by Am the component of g−m(A) corresponding to the interval Im. Then
Am b A and gnk(K) ⊂ Am. For any component J of Jg, denote by An(J) the component
of g−n(A) that contains J . Then we have

gnk(Am+nk(K)) = Am(gnk(K)) = Am.

For each annulus W b A, define

width(W ) = sup
z∈W

{
dW (z, ∂+W ) + dW (z, ∂−W )

}
,

where ∂±W denotes the two boundary components of W and dW (z, ∂±W ) denotes the
infimum of the length of arcs connecting z to ∂±W in W under the hyperbolic metric of
A.

Pick an annulus W0 bounded by smooth curves such that W0 b A and Am ⊂ W0.
Then width(W0) < ∞ and there exists a constant λ > 1 such that ∥g′(z)∥ ≥ λ > 1 for
every point z ∈ g−1(W0).

Denote by Wk the component of g−nk(W0) that contains K. Then

Am+nk−nj(gnj(K)) ⊂ gnj(Wk) b Ank−nj(gnj(K))

for 0 ≤ j ≤ k (set n0 = 0). Note that Ank−nj(gnj(K)) ⊂ W0 if nk − nj ≥ m. Thus
gnj(Wk) ⊂ W0 if k− j ≥ m. Therefore ∥(gnk)′(z)∥ ≥ λk−m for any point z ∈ Wk since the
finite orbit {z, g(z), · · · , gnk−1(z)} passes at least k − m times through the set g−1(W0)
where ∥g′∥ ≥ λ and ∥g′∥ > 1 always. So

width(Wk) ≤ λm−kwidth(W0).

Hence width(Wk) → 0 as k → ∞.
Clearly ∂U ∪ ∂V ⊂ K. In order to prove that ∂U = ∂V = K we only need to show

that K ⊂ ∂U by symmetry. Otherwise, assume z ∈ K\∂U . Then the spherical distance
d(z, ∂U) > 0. Label the boundary components of Wk by ∂±Wk such that ∂+Wk ⊂ U .
Then d(z, ∂+Wk) > d(z, ∂U) > 0. Note that there exists a constant M > 0 such that
dWk

(z, ∂+Wk) ≥M · d(z, ∂+Wk) for all k ≥ 0. Therefore

width(Wk) ≥ dWk
(z, ∂+Wk) ≥M · dU(z, ∂±U) > 0.

This contradicts the fact that width(Wk) → 0 as k → ∞.

3.4 Local connectivity

In the appendix we will give an example constructed by X. Buff showing that an exact
annular system may have a non-locally connected wandering Julia component. The next
theorem gives a sufficient condition about the local connectivity of wandering components.
The idea of the proof comes from [26].
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Theorem 3.10. Let g : A1 → A be an exact annular system. Suppose that g is expanding,
i.e. there exists a smooth metric ρ on A and a constant λ > 1 such that ∥g′∥ ≥ λ. Then
every component of Jg is a Jordan curve.

Proof. Pick a pre-periodic component of Jg in each component of A and denote by Γ0

the collection of them. It is a multicurve consisting of quasicircles. Denote by Γn the
collection of curves in g−n(Γ0). Then for any curve γ ∈ Γn and any curve β ∈ Γm with
m ̸= n, either they are disjoint or one coincides with another.

For each curve β ∈ Γ1, there is a unique curve γ ∈ Γ0 such that β and γ are contained
in the same component of A. If β ̸= γ, there is a homotopy Φβ : S1 × [0, 1] → A from
γ to β such that ϕt := Φβ(·, t) is a homeomorphism for any t ∈ [0, 1], and in particular,
ϕ0(S

1) = γ, ϕ1(S
1) = β and ϕt(S

1) is a curve between β and γ. If β = γ, define
Φβ(·, t) : S1 → β to be a homeomorphism independent on t.

Define the homotopic length of a path δ : [0, 1] → A by

h-length(δ) = inf
{
length of α under metric ρ

}
,

where the infimum is taken over all the path α in A connecting δ(0) to δ(1) and homotopic
to δ. Then

h-length(δ̃) ≤ 1

λ
· h-length(δ)

for any lift δ̃ of δ under the map g since ∥g′∥ ≥ λ.
For each β ∈ Γ1 and any s ∈ S1, Φβ(s, ·) maps the interval [0, 1] to a path δβ, s in the

closed annulus Φβ(S
1× [0, 1]) which connects two points in each of its boundary. So there

is a constant C > 0 such that h-length(δβ, s) < C for each β ∈ Γ1 and any s ∈ S1.
For each wandering component K of Jg, let αn be the unique curve of Γn with αn ⊂

An(K). Then gn(αn) ∈ Γ0 and β := gn(αn+1) ∈ Γ1 are contained in the same component
of A. Now the homotopy Φβ from gn(αn) to β defined above can be lifted to an homotopy
from αn to αn+1, denote it by Ψn : S1 × [0, 1] → An(K), by the following commutative
diagram:

S1 × [0, 1]
Ψn //

Pd

��

An(K)

gn

��
S1 × [0, 1]

Φβ

// gn(An(K)),

where d = deg(g|An(K)) and Pd(s, t) = (sd, t), i.e. P (·, t) is a covering of S1 with degree
d. Set ψn,t := Ψn(·, t). It is a homeomorphism for any t ∈ [0, 1], and in particular,
ψn,0(S

1) = αn and ψn,1(S
1) = αn+1. For any s ∈ S1, Ψn(s, t)(S

1) is a path connecting a
point in αn with a point in αn+1 whose homotopic length is less than Cλ−n.

These isotopies Ψn can be pasted together to a continuous map Ψ : S1 × [0,∞) → A
as the following:

Ψ(s, t) =



Ψ0(s, t) on S1 × [0, 1]

Ψ1

(
ψ−1
1,0 ◦ ψ0,1(s), t− 1

)
on S1 × [1, 2]

...
...

Ψn

(
ψ−1
n,0 ◦ ψn−1,1 ◦ · · · ◦ ψ−1

1,0 ◦ ψ0,1(s), t− n
)

on S1 × [n, n+ 1]
...

...
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Set ht = Ψ(·, t). Then hn(S

1) = αn. For each s ∈ S1 and any integers m > n ≥ 0, the
homotopic length of the path ζs(n,m) := {Ψ(s, t) : n ≤ t ≤ m} satisfies:

h-length
(
ζs(n,m)

)
≤ Cλ−n + · · ·+ Cλ1−m ≤ C

(λ− 1)λn−1
.

Note that the two endpoints of ζs(n,m) are hn(s) ∈ αn and hm(s) ∈ αm. The above
inequality shows that {hn} is a Cauchy sequence and hence converges uniformly to a
continuous map h. Since αn ⊂ An(K), we have h(S1) ⊂

∩
n>1A

n(K) = K. Note that

h(S1) separates the two components of Ĉ\K. Thus h(S1) = K by Theorem 3.9. Therefore
K is locally connected and hence is a Jordan curve.

4 From multicurves to annular systems

We will prove Theorem 1.1 in this section. We were unable to prove this theorem directly.
Instead we will take a detour to the space of branched coverings of the sphere. We will
first modify topologically the rational map f to a branched covering F in its Thurston
equivalence class such that F has a topological exact annular system. We then apply a
theorem of Rees and Shishikura (refer to Theorem A.1 in the appendix) to obtain a semi-
conjugacy from F to f . Finally we show that the existence of an exact annular system is
preserved under the semi-conjugacy.

Proof of Theorem 1.1. Step 1. Topological modification. Let f be a post-critically
rational map with a Cantor multicurve Γ. There exists a multi-annulus C ⊂ Ĉ\Pf homo-

topic to Γ rel Pf such that its boundary ∂C is a disjoint union of Jordan curves in Ĉ\Pf .
Let C∗ be the union of all the components of f−1(C) which are homotopic to curves in Γ
rel Pf . Then for each γ ∈ Γ, there is at least one component of C∗ homotopic to γ rel Pf
since Γ is pre-stable.

For each γ ∈ Γ, denote by C∗(γ) the smallest annulus containing all the components

of C∗ which are homotopic to γ rel Pf . Then its boundary are two Jordan curves in Ĉ\Pf
homotopic to γ rel Pf . Set C∗(Γ) = ∪γ∈ΓC∗(γ). There exist a neighborhood U of Pf and

a homeomorphism θ0 of Ĉ such that θ0 is isotopic to the identity rel U and θ0(C) = C∗(Γ).
Set F := f ◦ θ0 and C1 := θ−1

0 (C∗), then PF = Pf and F is Thurston equivalent to f
via the pair (θ0, id). Moreover, the restriction F |C1 : C1 → C is a topological exact annular
system.

Step 2. Semi-conjugacy. By Theorem A.1, there exist a neighborhood V of the
critical cycles of F and a sequence {ϕn} (n ≥ 1) of homeomorphisms of Ĉ isotopic to the
identity rel PF ∪V such that f ◦ϕn = ϕn−1◦F and the sequence {ϕn} converges uniformly

to a continuous onto map h of Ĉ and f ◦ h = h ◦ F .

Step 3. Survival of the annular system. This is the main step. Define

T = {w ∈ Ĉ : h−1(w) crosses some component of C},

here we say a continuum E crosses an annulus C if E intersects the both boundary
components of C. Then T ⊂ Jf by Theorem A.1 (3). It is easy to see that T is closed.

Lemma 4.1. The set T is empty.
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This lemma is crucial. Here the property of Cantor multicurves is essential. It is

not true for the equator curve in a mating of polynomials. We prove at first a purely
topological result.

Lemma 4.2. Let Γ = γ1 ∪ · · · ∪ γn be a finite disjoint union of Jordan curves on Ĉ and
L ⊂ Ĉ be a compact subset. Then for any Jordan domain D containing L, there is an
integer N ≥ 0 such that for any two distinct points z1, z2 ∈ L, there exists a Jordan arc
δ in D connecting z1 with z2 such that #(δ ∩ Γ) ≤ N .

Proof. Set

Λ = {α : α is a component of Γ ∩D such that α ∩ L ̸= ∅}.

Then N := #Λ < ∞. In fact, let γ : S1 × {1, · · · , n} → Γ be a homeomorphism. Then
γ−1(Γ ∩ L) is a compact subset, which is covered by the open intervals {γ−1(α), α ∈ Λ}.
Therefore Λ is finite.

For any two distinct points z1, z2 ∈ L, set

Λ(z1, z2) = {α ∈ Λ : α ∪ ∂D separates z1 from z2}.

There exists a Jordan arc δ ⊂ D connecting z1 with z2 such that δ intersects each α ∈
Λ(z1, z2) on a single point and disjoint from other components of Γ ∩D. So #(δ ∩ Γ) ≤
#Λ(z1, z2) ≤ N .

Proof of Lemma 4.1. Assume T ̸= ∅ by contradiction. Then f(T ) ⊂ T . In fact, suppose
w ∈ T , i.e., h−1(w) crosses some component of C, then h−1(w) crosses some component
C1 of C1. By Theorem A.1 (4), h−1(f(w)) = F (h−1(w)). So h−1(f(w)) crosses F (C1)
which is a component of C, so f(w) ∈ T . Set T∞ =

∩
n≥0 f

n(T ). Then T∞ is a non-empty
closed set and f(T∞) = T∞.

Pick one point w0 ∈ T∞. Since f(T∞) = T∞, there exists a sequence of points {wn}n≥0

in T∞ such that f(wn+1) = wn (i.e. T∞ contains a backward orbit). Either wn is periodic
for all n ≥ 0 or there is an integer n0 ≥ 0 such that wn is not periodic for all n ≥ n0.
In the former case all the points wn are not critical points of f since wn ∈ Jf . In the
latter case, there exists an integer n1 ≥ 0 such that wn are non-critical points of f for
n ≥ n1. So in both cases, we have a sequence of points {wn}n≥0 in T∞\Ωf such that
f(wn+1) = wn.

Set Ln = h−1(wn). By Theorem A.1 (4), Ln is a component of F−1(Ln−1) and there
exists a Jordan domain D0 ⊃ L0 such that F n : Dn → D0 is a homeomorphism for n ≥ 1,
where Dn is the component of F−n(D0) containing Ln.

Pick an essential Jordan curve in every components of C. They form a Cantor multic-
urve Γ0. By Lemma 4.2, there exists an integer N ≥ 0 such that for any two distinct points
z0, z

′
0 ∈ L0, there is a Jordan arc δ ⊂ D0 connecting z0 with z

′
0, such that #(δ ∩Γ0) ≤ N .

On the other hand, since Γ0 is a Cantor multicurve, there is an integerm > 0 such that
for each component C of C, there are at least N + 1 components of F−m(C) contained
essentially in C. Since Lm crosses a component of C, there exist two distinct points
zm, z

′
m ∈ Lm such that F−m(Γ0) has at least N + 1 components separating zm from z′m.

Now Fm(zm), F
m(z′m) ∈ L0. So there exists a Jordan arc δ ⊂ D0 connecting Fm(zm)

with Fm(z′m) such that #(δ ∩ Γ0) ≤ N . Let δm be the component of F−m(δ) connecting
zm with z′m. Then

#(δm ∩ F−m(Γ0)) ≤ N
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since Fm : δm → δ is a homeomorphism. This contradicts the fact that F−m(Γ0) has at
least N + 1 components separating zm from z′m.

Corollary 4.3. For any n ≥ 0 and any distinct components E1, E2 of Ĉ\F−n(C), h(E1)
is disjoint from h(E2).

Proof. E1 and E2 are separated by a component A of F−n(C). If h(E1)∩ h(E2) ̸= ∅, pick
a point w ∈ h(E1) ∩ h(E2), then h

−1(w) crosses A. So F n(h−1(w)) = h−1(fn(w)) crosses
F n(A) by Theorem A.1 (4). This contradicts Lemma 4.1.

Construction of the multi-annulus A. Denote by Ê = h−1(h(E)) for any subset

E ⊂ Ĉ. Then Ê is also a continuum if E is a continuum by Theorem A.1 (5).

Denote by E = Ĉ\C. Then F−1(Ê) = F̂−1(E) by Theorem A.1 (7). Thus if E1 is a

component of F−1(E), then Ê1 is a component of F−1(Ê) by Corollary 4.3.

For any two disjoint continua E1, E2 ⊂ Ĉ, we denote by A(E1, E2) the unique annular

component of Ĉ\(E1∪E2). For each component C of C, there are two distinct components

E+, E− of E such that C = A(E+, E−). Define C̃ := A(Ê+, Ê−). It is an annulus contained
essentially in C by Corollary 4.3. We claim that the following statements hold:

(a) h−1(h(C̃)) = C̃.

(b) C̃ ∩ Ê = ∅ for any subset E ⊂ Ĉ with E ∩ C̃ = ∅.
(c) h(C̃) is an annulus homotopic to C rel Pf .
Proof. (a) For any point z ∈ C̃, if h−1(h(z)) is not contained in C̃, then it must

intersect E+ ∪ E−. So z ∈ Ê+ ∪ Ê−. This is a contradiction.
(b) If z ∈ C̃ ∩ Ê, then h−1(h(z)) ⊂ C̃ and hence is disjoint from E. It contradicts the

condition that z ∈ Ê.
(c) Let Q+, Q− be the two components of Ĉ\C̃. Then both Q̂+ and Q̂− are disjoint

from C̃ by (b). Moreover, they are also disjoint from each other since h−1(h(z)) does not

cross C for any point z ∈ Ĉ by Lemma 4.1. So Ĉ\h(C̃) has exactly two components,

h(Q+) and h(Q−). Therefore h(C̃) is an annulus. Since h is homotopic to the identity rel

Pf , the annulus h(C̃) is homotopic to C rel Pf .

Now let C̃ be the union of C̃ for all the components C of C. Then C̃ ⊂ C and it
is a multi-annulus homotopic to Γ rel Pf . Set A to be the union of h(C̃) for all the

components C of C. Since h(C̃1) is disjoint from h(C̃2) for distinct components C1, C2 of
C by (b), A is a multi-annulus and homotopic to Γ rel Pf by (c). Moreover, A is disjoint
from a neighborhood of critical cycles of f since h is the identity in a neighborhood of
critical cycles of f .

Construction of A1. For each component C1 of C1, there are two distinct components

E1
+, E

1
− of F−1(E) such that C1 = A(E1

+, E
1
−). Define C̃

1 := A(Ê1
+, Ê

1
−) as above. It is an

annulus essentially contained in C1. Moreover, the following statements hold:

(a1) h−1(h(C̃1)) = C̃1.

(b1) C̃1 ∩ Ê = ∅ for any subset E ⊂ Ĉ with E ∩ C̃1 = ∅.
(c1) h(C̃1) is an annulus homotopic to C1 rel Pf .
Set C̃1 to be the union of C̃1 for all the components C1 of C1. Set A1 to be the union

of h(C̃1) for all the components C1 of C1. Then it is a multi-annulus essentially contained
in A.
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Invariance of A. Note that each component of C̃ is a component of Ĉ\Ê and each

component of C̃1 is a component of Ĉ\F−1(Ê) = Ĉ\F̂−1(E). So F : C̃1 → C̃ is proper.

Since C̃ = h−1(A) and C̃1 = h−1(A1), the map f : A1 → A is also proper.
For any component E of E , there is a unique component E1 of F−1(E) such that

∂E ⊂ ∂E1. Moreover, E1 ⊂ E and E\E1 is a disjoint union of Jordan domains in E. We

claim that Ê\E = Ê1\E.
Since E ⊃ E1, we have Ê ⊃ Ê1. On the other hand, any component D of Ĉ\E is

a Jordan domain. Assume z ∈ Ê ∩ D, then h−1(h(z)) is a full continuum intersecting

∂E by Theorem A.1 (3). Thus h−1(h(z)) intersects ∂E1. Therefore z ∈ Ê1 and hence

Ê\E ⊂ Ê1\E. The claim is proved.

By the claim, C̃1 ⊂ C̃ and each component of ∂C̃ is a component of ∂C̃1. Hence A1 ⊂ A
and each component of ∂A for any component A of A is a component of ∂A1 for some
component A1 of A1 in A. So f : A1 → A is an exact annular system.

Step 4. Uniqueness of A. Suppose that f : A1
1 → A1 is another exact annular

system such that A1 is homotopic to Γ rel Pf . Pick an essential Jordan curve in every
components of A and A1, respectively. They form two multicurves Γ0 ⊂ A and Γ1 ⊂ A1.
Both of them are homotopic to Γ rel Pf . So there exist a neighborhood U of the critical

cycles of f and a homeomorphism θ0 of Ĉ such that θ0(Γ0) = Γ1 and θ0 is isotopic to the
identity rel Pf ∪ U . By Theorem A.1, there exist a neighborhood V of the critical cycles

of f and a sequence {θn} (n ≥ 1) of homeomorphisms of Ĉ isotopic to the identity rel
Pf ∪ V , such that f ◦ θn = θn−1 ◦ f . Moreover, {θn} converges uniformly to a continuous

map h of Ĉ.
It is easy to see that h is the identity in the Fatou set of f . On the other hand, h is

also the identity on the Julia set Jf since the closure of ∪n≥0f
−n(Pf ) contains Jf and θn

is the identity on f−n(Pf ). So {θn} converges uniformly to the identity.
For each component A of A, set A(n,Γ0) to be the closed annulus bounded by two

curves in A ∩ (f |A1)−n(Γ0) such that A ∩ (f |A1)−n(Γ0) ⊂ A(n,Γ0). Then θn(A(n,Γ0)) ⊂
A1 since θn(f

−n(Γ0)) = f−n(Γ1). By Proposition 3.2, for any compact set G ⊂ A,
G ⊂ A(n,Γ0) as n is large enough. So A ⊂ A1 since {θn} converges uniformly to the
identity. It follows that A ⊂ A1. By symmetry, we have A = A1.

Step 5. Properties of Jg. We want to prove that Jg ⊂ Jf . Assume by contradiction
that there is a point z ∈ Jg\Jf . Then {fn(z)}n≥0 converges to a super-attracting cycle
of f as n → ∞. But fn(z) ∈ gn(Jg) ⊂ Jg. Thus A contains a critical cycle. This is a
contradiction since A is disjoint from a neighborhood of critical cycles.

There is a singular conformal metric ρ on Ĉ where the singularities may occur at Pf
such that f is strictly expanding on (Ĉ, ρ) except in a neighborhood of super-attracting
cycles (e.g., the hyperbolic metric on the orbifold of f , refer to [10, 34, 36]). Applying
Theorem 3.10, we see that every component of Jg is a Jordan curve. In particular, there
exists a wandering Jordan curve on Jg by Corollary 3.7.

5 Decompositions and renormalizations

We will prove Theorem 1.3 in this section. At first, we want to introduce the definition
of rational-like maps and prove a straightening theorem.
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5.1 Rational-like maps

Definition 3. Let U b V be two finitely-connected domains in Ĉ. A map g : U → V is
called a rational-like map if

(1) g is holomorphic and proper with deg g ≥ 2,
(2) the orbit of every critical point of g (if any) stays in U , and

(3) each component of Ĉ\U contains at most one component of Ĉ\V .
The filled Julia set of g is defined by

Kg =
∩
n>0

g−n(V ).

We say that a rational-like map g : U → V is a renormalization of a rational map
f if g = f p|U for some integer p ≥ 1 and deg g < deg f p.

Figure 1. A rational-like map.

Remark. A rational-like map here is actually a repelling system of constant com-
plexity in [8].

Proposition 5.1. Let g : U1 → U0 be a rational-like map. Then g−n(U0) is connected for
any n ≥ 1. The filled Julia set Kg is a continuum.

Proof. Pick a domain V0 b U0 such that every component of Ĉ\V0 contains exactly

one component of Ĉ\U0, U1 b V0 and every component of ∂V0 is a Jordan curve. Set

V1 := g−1(V0). Then V1 b V0, every component of Ĉ\V1 contains at most one component

of Ĉ\V0 and each component of ∂V1 is a Jordan curve.

Since every component of Ĉ\V1 contains at most one component of Ĉ\V0, each com-
ponentW of V0\V1 is either a disk or an annulus. In the latter case, one of the component
of the boundary ∂W is a component of the boundary ∂V0 and the other is a component
of the boundary ∂V1.

Denote by Vn = g−n(V0) for n > 1. Then Vn+1 b Vn for n ≥ 1. Since all the critical
orbits of g stay in U1 and thus in Kg, each component W of V1\V2 is also either a disk or
an annulus. In the latter case, one of the component of ∂W is a component of ∂V1 and
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the other is a component of ∂V2. Therefore, V2 is also connected and every component
of Ĉ\V2 contains at most one component of Ĉ\V1. Inductively, we have that Vn+1 is

connected and every component of Ĉ\Vn+1 contains at most one component of Ĉ\Vn. It
follows that Kg is a connected compact set.

Similar to Douady-Hubbard’s polynomial-like map theory [11], we may have a straight-
ening theorem for rational-like maps with a slightly different proof.

Theorem 5.2. Let g : U → V be a rational-like map, then there is a rational map f with
deg f = deg g and a quasiconformal map ϕ of Ĉ such that:

(a) f ◦ ϕ = ϕ ◦ g in a neighborhood of Kg,
(b) the complex dilatation µϕ of ϕ satisfying µϕ(z) = 0 for a.e. z ∈ Kg,
(c) Jf = ∂ϕ(Kg), and

(d) each component of Ĉ\ϕ(Kg) contains at most one point of Pf .
Moreover, the rational map f is unique up to holomorphic conjugation.

Proof. Pick a domain V1 b V such that every component of Ĉ\V1 contains exactly one

component of Ĉ\V , U b V1 and every component of ∂V1 is a quasicircle. Then U1 :=

g−1(V1) b V1, every component of Ĉ\U1 contains at most one component of Ĉ\V1 and
each component of ∂U1 is a quasicircle.

Let E1, · · · , Em be the components of E := Ĉ\V1. Let B1, · · · , Bn be the components

of B := Ĉ\U1 such that Bi ⊃ Ei for 1 ≤ i ≤ m. Then E b B. Define a map τ on the
index set by τ(i) = j if g(∂Bi) = ∂Ej.

Let Di ⊂ C (i = 1, · · · , n) be round disks centered at ai with unit radius such that
their closures are pairwise disjoint. Denote their union by D. Define a map Q on D by

Q(z) = r(z − ai)
di + aτ(i), z ∈ Di,

where 0 < r < 1 is a constant and di = deg(g|∂Ei
). Then Q(Di) b Dτ(i). Denote by

Dτ(i)(r) := Q(Di) and D(r) = Q(D).
Let ψ : E → D(r) be a conformal map such that ψ(Ei) = Di(r). It can be extended to a

quasiconformal map in a neighborhood of E since the components of E are quasidisks with
pairwise disjoint closures. Since Q : ∂D → ∂D(r) and g : ∂B → ∂E are coverings with
same degrees on corresponding components, there is a homeomorphism ψ1 : ∂B → ∂D
such that ψ ◦ g = Q ◦ ψ1.

Since each component of ∂B is a quasicircle, the conformal map ψ : E → D(r) can be
extended to a homeomorphism ψ : B → D such that ψ|∂B = ψ1 and ψ is quasiconformal
on B. Define a map

G =

{
g on U1,
ψ−1 ◦Q ◦ ψ on B.

Then G is a quasiregular branched covering of Ĉ. Set O := ψ−1({a1, · · · , an}). Then

G(O) ⊂ O and PG\Kg ⊂ O

since no critical point of g escapes. Moreover, for each point z ∈ Ĉ\Kg, its forward orbit
{Gn(z)} converges to the invariant set O.

By Measurable Riemann Mapping Theorem, there is a quasiconformal map Φ of Ĉ such
that its complex dilatation satisfies µΦ = 0 on U1 and µΦ = µψ on B. Set F := Φ◦G◦Φ−1.
Then F is holomorphic in the interior of Φ(g−1(U1) ∪ E).
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For any orbit {F n(z)}n≥0, if z is not contained in the interior of Φ(g−1(U1)∪ E), then

z is contained in either Φ(U1)\Φ ◦ g−1(U1) or the closure of Φ(B)\Φ(E). In the latter
case, F (z) ∈ Φ(E) and thus F 2(z) is contained in the interior of Φ(E). In the former case,
F (z) ∈ Φ(B)\Φ(E) and thus F 3(z) is contained in the interior of Φ(E). Thus F n(z) is
contained in the interior of Φ(E) for n ≥ 3 in both cases. This shows that every orbit of F

passes through the closure of Ĉ\Φ(g−1(U1)∪E) at most three times. Applying Shishikura’s

Surgery Principle (see Lemma 15 in [1]), there is quasiconformal map Φ1 : Ĉ → Ĉ such
that f = Φ1 ◦ F ◦ Φ−1

1 is a rational map. Moreover, µΦ1(z) = 0 for a.e. z ∈ Φ(Kg). Set
ϕ = Φ1 ◦ Φ. Then f ◦ ϕ = ϕ ◦ g on U1 and µϕ(z) = 0 for a.e. z ∈ Kg.

For a compact set E ⊂ Ĉ\ϕ(Kg), its forward orbit {fn(E)} converges to the invariant

set ϕ(O) ⊂ Ff . Moreover, Pf\ϕ(Kg) ⊂ ϕ(O). So Ĉ\ϕ(Kg) ⊂ Ff . Since ϕ(Kg) is
completely invariant under f , we have ∂ϕ(Kg) = Jf .

If there is another rational map f1 satisfying the conditions of the theorem, then there
is a quasiconformal map θ of Ĉ such that f1 ◦ θ = θ ◦ f in a neighborhood of ϕ(Kg) and
µθ(z) = 0 for a.e. z ∈ ϕ(Kg).

Let W be a periodic Fatou domain of f in Ĉ\ϕ(Kg) with period p ≥ 1. Then W
is simply-connected and contains exactly one point z0 ∈ Pf , which is a super-attracting
periodic point. Therefore there is a conformal map η from W onto the unit disc D such
that η(z0) = 0 and η ◦ fp ◦ η−1(z) = zd with d = degz0 f

p > 1. On the other hand, let
z1 ∈ θ(W ) be the the super-attracting periodic point of f1, then there is a conformal map
η1 : θ(W ) → D such that η1(z1) = 0 and η1 ◦ f p1 ◦ η−1

1 (z) = zd. Therefore

η1 ◦ θ ◦ f p ◦ θ−1 ◦ η−1
1 (z) = zd

in a neighborhood of ∂D in D. This shows that T = η1 ◦ θ ◦ η−1 is a rotation on ∂D (see
the commutative diagram below).

D

z 7→zd

��

W
ηoo

fp

��

θ // θ(W )

fp1
��

η1 // D

z 7→zd

��
D Wη

oo
θ

// θ(W ) η1
// D

Let θW = η−1
1 ◦ T ◦ η. Then θW : W → θ(W ) is holomorphic, θW = θ on the boundary

∂W and f1 ◦ θW = θW ◦ f .
Define Θ0 : Ĉ → Ĉ by Θ0 = θW on all the super-attracting Fatou domains of f in

Ĉ\ϕ(Kg), and Θ0 = θ otherwise. Then Θ0 is a quasiconformal map and Θ0◦f = f1◦Θ0 on

the union of ϕ(Kg) and all the super-attracting Fatou domains of f in Ĉ\ϕ(Kg). Pullback

Θ0, we get a sequence of quasiconformal maps Θn : Ĉ → Ĉ such that Θ0 ◦ fn = fn1 ◦Θn,



22
in particular, the following diagram commutes.

...

f
��

...

f1
��

Ĉ Θ2 //

f
��

Ĉ
f1
��

Ĉ Θ1 //

f
��

Ĉ

f1
��

Ĉ Θ0 // Ĉ0

It is easy to check that Θn converges uniformly to a holomorphic conjugacy from f to
f1.

5.2 Renormalizations

Let f be a post-critically rational map with a stable Cantor multicurve Γ. By Theorem
1.1, there is a unique multi-annulus A ⊂ Ĉ\Pf homotopic rel Pf to Γ such that g =
f |A1 : A1 → A is an exact annular system, where A1 is the union of the components of
f−1(A) homotopic rel Pf to curves in Γ. Moreover, Jg ⊂ Jf and each component of Jg
is a Jordan curve. Denote by

J (Γ) =
∪
n≥1

f−n(Jg).

Since g−1(Jg) = Jg, we have Jg ⊂ f−1(Jg), each component of Jg is also a component of
f−1(Jg) and each component of f−1(Jg) is a Jordan curve. Consequently, f−1(J (Γ)) =
J (Γ) and each component of J (Γ) is a Jordan curve. By the definition of Jg, we have:

J (Γ) =
∪
n≥1

∩
m≥n

f−m(A).

Denote by K(Γ) = Ĉ\J (Γ). It is completely invariant and

K(Γ) =
∩
n≥1

∪
m≥n

(Ĉ\f−m(A)).

Since ∂A ⊂ ∂f−1(A), we have

∂f−n+1(A) ⊂ ∂f−n(A) ⊂ K(Γ) for n ≥ 1.

Recall that a connected subset E ⊂ Ĉ is of simple type (w.r.t. Pf ) if there exists

either a simply-connected domain U ⊂ Ĉ such that E ⊂ U and U contains at most one
point in Pf , or an annulus A ⊂ Ĉ\Pf such that E ⊂ A; and is of complex type (w.r.t. Pf )
otherwise. Since f(Pf ) ⊂ Pf , for each simple type continuum E ⊂ Ĉ, each component of
f−1(E) is also simple type.

Set B0 = Ĉ\A. It has #Γ + 1 components and each of them is of complex type. For
each component B of B0 and any component A of f−n(A) with n ≥ 1, either A ∩ B = ∅
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or A ⊂ B since ∂An ⊂ ∂An+1. In the latter case, the essential Jordan curves in A is
either null-homotopic or peripheral since Γ is stable. Thus for each n ≥ 1, B\f−n(A) has
exactly one complex type component.

Denote by Bn the union of complex type components of Ĉ\f−n(A) for n ≥ 1. Then
Bn ⊂ Bn−1 and it also has exactly #Γ+1 components since each component of A\f−n(A)
is of simple type. Obviously, each component of Bn is also a component of f−1(Bn−1).
Denote by

Kc =
∩
n≥0

Bn.

Then Kc is compact and has exactly #Γ+1 components which are of complex type. Each
of its components is also a component of f−1(Kc). It is easy to verify that Kc ⊂ K(Γ)
and each component of Kc is also a component of K(Γ).

Each component of Ĉ\Kc is either a component of A or a simply-connected domain
contains at most one point of Pf . Therefore each component of K(Γ)\Kc is of simple
type. In summary we have:

Proposition 5.3. The compact set Kc is the union of complex type components of K(Γ).
It has exactly #Γ + 1 components and each of them is also a component of f−1(Kc).

By the above result, there exist periodic components in Kc.

Theorem 5.4. Let K be a periodic component of Kc with period p ≥ 1. There exist
domains U b V in Ĉ such that K ⊂ U and g = f p|U : U → V is a renormalization of f
with filled Julia set Kg = K.

Proof. Let B0, · · · , Bp−1 be the components of Ĉ\A such that K ⊂ B0 and f i(K) ⊂ Bi

for 0 < i < p. Let A1, · · · , An be the components of A whose boundary intersects B0. Set

W ′ = B0 ∪
n∪
i=1

Ai.

It is a finitely-connected domain. Let W ′
1 be the component of f−p(W ′) containing K.

Then W ′
1 ⊂ W ′ and each component of W ′\W ′

1 is either an annulus disjoint from Pf or a
disk containing at most one point of Pf since Γ is stable.

Each Ai contains exactly one component of W ′
1\K, denoted by Api , which is a compo-

nent of f−p(A) and shares a common boundary component with Ai. By relabelling the
index of Ai, we may assume that

f p(Ap1) = A2, · · · , fp(Apq−1) = Aq and f
p(Apq) = A1, q ≥ 1.

There is at least one of them, say Ai, such that Api ( Ai. Otherwise Api = Ai for 1 ≤ i ≤ q
and hence f qp(A1) = A1. It contradicts the fact that f : A1 → A is an annular system.

Assume that Ap1 ( A1. There exists a Jordan curve γ1 essentially contained in A1 such
that it is disjoint from Ap1. Let γ

′
q be the component of f−p(γ1) in A

p
q . Then we can find a

Jordan curve γq essentially contained in Aq such that γ′q separates γq from K. Inductively,
for 2 ≤ i < q, let γ′i be the component of f−p(γi+1) in A

p
i , we can find a Jordan curve γi

essentially contained in Ai such that γ′i separates γi from K. Since γ1 is disjoint from Ap1,
the component of f−p(γ2) in A1 separates γ1 from K as well.
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Do this process for each cycle, we have a Jordan curve γi essentially contained in

each periodic annulus Ai such that if f p(Api ) = Aj, then the component of f−p(γj) in
Ai separates γi from K. If Ai is not periodic but Aj = f p(Api ) is periodic, then there is
always a Jordan curve γi essentially contained in Ai such that the component of f−p(γj)
in Ai separates γi from K.

In summary, we have a Jordan curve γi ⊂ Ai for each Ai such that if f p(Api ) = Aj,
then the component of f−p(γj) in A

p
i separates γi from K. Let W ⊂ W ′ be the domain

bounded by the curves γi defined above. Then W1 b W , where W1 is the component of
f−p(W ) containing K, and each component of W\W1 is either an annulus disjoint from
Pf or a disk containing at most one point of Pf .

Let Wn be the component of f−np(W ) containing K for n ≥ 2. Then Wn b Wn−1 and
each component of W\W1 is either an annulus disjoint from Pf , or a disk which contains
at most one point of Pf .

Since Pf is finite, there is an integer N ≥ 1 such that Wn ∩Pf =WN ∩Pf for n ≥ N .
Set U = WN+1, V = WN and g := f p|U : U → V . Then every critical points of g stay
in U . By Proposition 3.1, there is an integer n ≥ 1 such that deg(fn|A) ≥ 2 for all the
components A of An. So we have deg g ≥ 2. Therefore g : U → V is a rational-like map.

Now we want to show that deg g < deg fp. Otherwise Jf ⊂ Kg. But we know that
the Julia set of the annular system f : A1 → A is contained in Jf . This is impossible.
So deg g < deg f p. It follows that g is a renormalization of f .

From Theorem 5.2, Theorem 5.4 and Theorem 2.1 in [34], we have:

Corollary 5.5. Let K be a component of Kc. For each component W of Ĉ\K, its bound-
ary ∂W is locally connected.

5.3 Topology of K(Γ)

Recall that Kc is the union of complex type components of K(Γ). Each component of
f−n(K(Γ)) for n ≥ 1 is also a component of K(Γ). It is either a component of Kc or a
simple type continuum which could be:

(a) (disk-type) a compact set contains exactly one point of Pf ; or
(b) (annular-type) a compact set disjoint from Pf but has exactly two complementary

components contains points of Pf ; or
(c) (trivial-type) a compact set disjoint from Pf and has exactly one complementary

components contains points of Pf .
For each point x ∈ Pf\Kc (if exists), either x /∈ ∪n≥1f

−n(Kc) or there exists an integer
n0(x) ≥ 1 such that f−n0(x)(Kc) has a disk-type component containing the point x. In
both cases, there exists an integer n1(x) ≥ 1 such that f−n1(x)(Kc) has an annular-type
component separating the point x from other points in Pf . For each component A of A,
there exists an integer n2(A) ≥ 1 such that f−n2(A)(Kc) has an annular-type component
contained in A essentially. Since Pf is finite and A has only finitely many components,
there exists an integer s ≥ 1 such that

s ≥


n0(x) for x ∈ (∪n≥1f

−n(Kc))\Kc,
n1(x) for x ∈ Pf\Kc,
n2(A) for each component A of A.
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Figure 2. The components of Ke.

Denote by Ke the union of components of f−s(Kc) which are not trivial-type. Then

f(Ke) ⊂ Ke. Denote by U = Ĉ\Ke. Then f−1(U) ⊂ U . It usually has infinitely many

components except the case that Kc ∪ A = Ĉ. Each component of U is either a simply-
connected domain contains at most one point in Pf , or a component of f−s(A) and hence
is an annulus.

Denote by Un = f−n(U) for n ≥ 0. Then Un+1 ⊂ Un. Each component of Un is either a
simply-connected domain contains at most one point in Pf , or a component of f−n−s(A).

Denote by Kr = K(Γ)\∪n≥0 f
−n(Kc). For each component K of Kr, denote by Un(K)

the component of Un that contains K for each n ≥ 0.

Lemma 5.6. For each component K of Kr and each n ≥ 0, there exists an integer m > n
such that Um(K) b Un(K).

Proof. If Un(K) is an annulus, then it is a component of f−n−s(A). Pick a point z ∈
K. From Proposition 3.3 (2), there exist two components A1, A2 of f−m−s(A) for some
m > n such that both A1 and A2 are contained in Un(K) essentially and the 2-connected
continuum between A1 and A2, denoted by E, contains the point z. Note that both ∂A1

and ∂A2 are contained in f−m−s(Kc). Thus Um(K) ⊂ E and hence Um(K) b Un(K).
The same argument works when Un(K) is simply-connected.

Lemma 5.7. Let K be a component of Kr and n ≥ 0 be an integer. If Un(K) is an
annulus, then there exists an integer m > n such that Um(K) is either simply-connected
or an annulus but is not contained in Un(K) essentially.

Proof. Otherwise, {Um(K)} are all annuli and Um+1(K) is contained in Um(K) essentially
for all m ≥ n. Then ∩n≥0Un(K) is a component of J (Γ). Contradiction.

Let K be a component of Kr. By Lemma 5.7, we know that as n is large enough,
either Un(K) is simply-connected, or Un(K) is an annulus and one component En(K) of

Ĉ\Un(K) contains at most one point of Pf . Denote by Vn(K) = Un(K) ∪ En(K) in the
case or Vn(K) = Un(K) otherwise. Then Vn(K) is a simply-connected domain contains at
most one point of Pf as n is large enough and Vn+1(K) ⊂ Vn(K) for all n ≥ 0. Moreover,
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for each integer n ≥ 0, there exists an integer m > n such that Vm(K) ⊂ Un(K). Thus
∩n>0Vn(K) = ∩n>0Un(K) and it is disjoint from ∪n≥0f

−n(Kc) and J (Γ). Thus we have

K =
∩
n>0

Un(K) =
∩
n>0

Vn(K).

Corollary 5.8. Each component of K(Γ) is compact.

Proposition 5.9. Let K be a periodic component of Kr. Then K is either a single point
or the closure of a quasi-disk, which is a periodic Fatou domain of f .

Proof. LetK be a periodic component of Kr with period p ≥ 1. Then as n is large enough,
Vn(K) is simply-connected and f p : Vn+p(K) → Vn(K) is proper with at most one critical
point. Moreover Vn+p(K) b Vn(K) by Lemma 5.6. If K contains no super-attracting
periodic points of f , then

deg(f p : Vn+p(K) → Vn(K)) = 1

as n is large enough. Thus K is a single point. Otherwise f p : Vn+p(K) → Vn(K) is
a polynomial-like map and K is the closure of a quasi-disk, which is a periodic Fatou
domain of f .

The set U can be decomposed into U = D ⊔ G ⊔R by the following:
(1) D consists of simply-connected components of U which are disjoint from Pf (hence

are components of Kc).
(2) G consists of simply-connected components of U which contains exactly one point

of Pf .
(3) R consists of annular components of U (each of them is component of f−s(A)

which is either contained essentially in A or peripheral around a point x ∈ Pf\Kc, i.e. it
separates the point x from other points of Pf ).

Obviously, both G and R have only finitely many components, but D either is empty
or has infinitely many points.

Lemma 5.10. For each component G of G, f−1(G) ∩R = ∅ and G contains exactly one
component of f−1(G).

Proof. Assume that f−1(G) has a component W ⊂ R, then G = f(W ) ⊂ f−s+1(A). But
f−s+1(A) is disjoint from Pf . Contradiction.

Denote by x be the unique point of Pf∩G. Then f(x) is also contained in a component
G1 of G. Thus f−1(G1) has a component in G.

Let W1 be the component of Ĉ\Kc that contains f(x). Let W0 be the component of
f−1(W1) that contains the point x. Then G ⊂ W0. Since W0 contains a unique point in
f−1(Pf ), so does G. Therefore G contains exactly one component of f−1(G).

Split the set D into D = D′ ∪ D′′ by their components according to whether or not
they intersect f−1(Pf ∪R). Since f−1(U) ⊂ U and R has only finitely many components,
we know that D′ has only finitely many components.

Lemma 5.11. Let K be a wandering component of K(Γ). There exists an integer n > 0
such that fn(K) ⊂ D′.
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Proof. At first, we claim that there exists an integer m > 0 such that fm(K) ⊂ D.
Assume by contradiction that fn(K) ⊂ R ∪ G for all n > 0.

Suppose that there exists an integer n0 > 0 such that fn(K) ⊂ R for all n ≥ n0.
There is a component A of A such that fn0+s(K) ⊂ A since each component of R is a
component of f−s(A) which is either contained essentially in A or peripheral around a
point x ∈ Pf\Kc. On the other hand, there are at least one component of Ke contained
in A. Thus each component of A\Ke is either a component of D or is contained in
A1. Thus fn0+s(K) ⊂ A1 by the assumption. Therefore fn+s(K) ⊂ A1 for all n ≥ n0.
Consequently, K ⊂ J (Γ). Contradiction.

From the assumption, there exists an integer k > 1 such that fk(K) ⊂ G. Then
fk−1(K) ⊂ G ∪D by Lemma 5.10 and hence fk−1(K) ⊂ G by the assumption. Therefore
fn(K) ⊂ G for all n > 0. It follows that K is eventually periodic by Lemma 5.10. It is a
contradiction. Now the claim is proved.

By the claim, there exists an integer m > 0 and a component W of D such that
fm(K) ⊂ W . If W is a component of D′′, then fm+1(K) ⊂ D since W is disjoint from
f−1(Pf ) and f−1(R). Assume by contradiction that fn+m(K) ⊂ D′′ for all n ≥ 1. Let
Wn be the component of D′′ that contains fn+m(K). Since each of them is a component
of Kc, we have f(Wn) = Wn+1. Thus they are either eventually periodic or wandering.
Since ∂Wn ⊂ Jf , the former case is impossible since they are disjoint from Pf . The latter
case is also impossible by Sullivan’s no wandering Fatou domain Theorem.

Proposition 5.12. Each wandering component of K(Γ) is a single point.

Proof. For each simply-connected domain D ⊂ Ĉ\Pf , denote by

h-diameter(D) = sup
z,w∈D

ℓ[γ(z, w)],

where γ(z, w) is an arc in D connecting the points z and w, and ℓ[γ(z, w)] is the infimum

of the length of arcs in Ĉ\Pf under the orbifold metric over all the arcs in Ĉ\Pf homotopic
to γ(z, w) rel Pf ∪ {z, w}.

It is easy to verify that if D is locally connected and disjoint from super-attracting
periodic points of f , then h-diameter(D) <∞.

For each component D of D, D is locally connected by Corollary 5.5 and disjoint from
super-attracting periodic points of f . Thus h-diameter(D) < ∞. Therefore there exists
a constant M <∞ such that h-diameter(D) ≤M for each component D of D′.

Since D′ is disjoint from superattracting cycles of f , there exists a constant λ > 1 such
that ∥f ′∥ ≥ λ on f−1(D′) under the orbifold metric.

Let K be a wandering component of Kr. From Lemma 5.11, there exists an in-
finite increasing sequence {nk} of positive integers such that fnk(K) ⊂ Dk and Dk

are components of D′. Let Wk be the component of f−nk(Dk) that contains K, then
h-diameter(Wk) ≤ Mλ−k. Thus the diameter of Wk converges to zero as k → ∞. It
follows that K is a single point.

Proof of Theorem 1.3. Combining Propositions 5.3, 5.9, 5.12 and Theorem 5.4, we obtain
Theorem 1.3.
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6 Coding the component-wise dynamics

In this section we will prove Theorem 1.4, which is suggested by Pilgrim. At first we give
some definitions.

Definition 4. A dendrite is a locally connected and uniquely arc-wise connected con-
tinuum. Let T ⊂ Ĉ be a dendrite. A continuous onto map τ : T → T is called a finite
dendrite map if there exists a finite tree T0 ⊂ T such that the following statements hold.

(1) For each n ≥ 1, Tn := τ−n(T0) is also a finite tree with v(Tn) = τ−n(v(T0)), where
v(·) denotes the set of vertices of a tree.

(2) Tn ⊂ Tn+1 and v(Tn) ⊂ v(Tn+1).
(3) τ is a homeomorphism on each edge of Tn.
(4) ∪n≥0Tn is dense in T .
(5) deg τ := sup{#τ−1(x), x ∈ T } <∞.

6.1 The tower of tree maps

Definition 5. By a tower of tree maps we mean an infinite sequence of triples
{Tn, ιn, τn}n≥0, where Tn are finite trees, ιn : Tn → Tn+1 are inclusions and τn : Tn+1 → Tn
are continuous onto maps such that:
(1) ιn(Vn) ⊂ Vn+1, where Vn is the set of vertices of Tn;
(2) τ−1

n (Vn) = Vn+1; and
(3) the following diagram commutes:

· · · τn // Tn

ιn
��

τn−1 // Tn−1

ιn−1

��

τn−2 // · · · τ1 // T1

ι1
��

τ0 // T0

ι0
��

· · · τn+1 // Tn+1
τn // Tn

τn−1 // · · · τ2 // T2
τ1 // T1

τ0 // T0

The degree of the tree map τn : Tn+1 → Tn is defined by

deg τn = sup{#τ−1
n (y), y ∈ Tn}.

Note that the sequence {deg τn} is increasing. The degree of the tower is defined to be
its limit as n→ ∞.

A tower of tree maps {Tn, ιn, τn}n≥0 is called expanding if there exist a constant
λ > 1 and a linear metric on T0 such that (τ0 ◦ ι0) : T0 → T0 is C

1 under this linear metric
and the norm of its derivative is bigger than λ on T0.

Theorem 6.1. Let {Tn, ιn, τn}n≥0 be an expanding tower of tree maps. Suppose that its
degree is bounded. There exist an expanding finite dendrite map τ : T → T and inclusions
in : Tn → T for all n ≥ 0 such that in = in+1 ◦ ιn and the following diagram commutes:

· · · τn+1 // Tn+1

in+1

��

τn // Tn

in
��

τn−1 // · · · τ1 // T1

i1
��

τ0 // T0

i0
��

· · · τ // T τ // T τ // · · · τ // T τ // T

Moreover the finite dendrite map τ : T → T is unique up to topological conjugacy.
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We will call τ : T → T the limit of the tower of tree maps {Tn, ιn, τn}n≥0.

Proof. Let | · | be an expanding linear metric on T0, i.e. there exists a constant λ > 1 such
that |(τ0 ◦ ι0)′| > λ on T0. Define a metric on ι0(T0) ⊂ T1 such that ι0 is an isometry and a
metric on T1\ι0(T0) such that the norm of the derivative of τ0 is a constant λ1 > max{λ, d},
where d is the degree of the tower. Then we get a metric on T1 such that ι0 is an isometry
and λ1 ≥ |τ ′0| ≥ λ on T1.

Inductively, we can define a metric on each Tn with n ≥ 1 such that ιn−1 is an isometry
and λ1 ≥ |τ ′n−1| ≥ λ on Tn.

Denote by S̃ the space consisting of left infinite sequences (· · · , t1, t0) with tn ∈ Tn+k
for some integer k ≥ 0, such that for any n ≥ 0, if tn ∈ Tn+k, then tn+1 = ιn+k(tn). Define

an equivalent relation on S̃ by

(· · · , s1, s0, ) ∼ (· · · , t1, t0)

if there exists an integer k such that sn = tn+k whenever n, n + k ≥ 0. Let S be the
quotient space S̃/∼. For each point (· · · , t1, t0) in S̃, we denote by [· · · , t1, t0] representing
its equivalence class in S. Since ιn is an isometry, there exists a metric ρ on S such that
the inclusion in : Tn → S defined by:

in(t) = [· · · , ιn+1 ◦ ιn(t), ιn(t), t]

is an isometry. Clearly, in+1 ◦ ιn = in on Tn.
Since τn ◦ ιn = ιn−1 ◦ τn−1 on Tn, there exists a continuous onto map τ : S → S such

that τ ◦ in = in−1 ◦ τn−1 on Tn. Moreover λ1 ≥ |τ ′| ≥ λ.
Since λ1 > d, S is bounded. Let T be the completion of S. Then it is a dendrite. The

map τ can be extended to be a continuous onto map on T since τ is uniformly continuous.
The proof of the uniqueness of τ : T → T is direct.

6.2 Coding the quotient action

Let f be a post-critically finite rational map with a stable Cantor multicurve Γ. We want
to define a tower of tree maps from f and construct a semi-conjugacy from f to its limit.

Denote by Γn the collection of the curves in f−n(Γ) for n ≥ 0. Then each curve in Γn
is essential in Ĉ\f−n(Pf ) and no two of them are homotopic in Ĉ\f−n(Pf ).

For each curve γ ∈ Γn, denote by Γn+1(γ) the curves in Γn+1 homotopic to γ rel
f−n(Pf ). Since Γ is pre-stable and stable, the next lemma is easy to check:

Lemma 6.2. For each curve γ ∈ Γn, Γn+1(γ) ̸= ∅ and any curve in Γn+1\Γn+1(γ) does
not separate curves in Γn+1(γ). Moreover, for any two curves γ1 and γ2 in Γn, if there is
no curve in Γn separating γ1 from γ2, then each curve in Γn+1\(Γn+1(γ1)∪Γn+1(γ2)) does
not separate curves in Γn+1(γ1) ∪ Γn+1(γ2).

Dual trees. For any n ≥ 0, let Tn be the dual tree of Γn defined by the following:
There is a bijection between vertices of Tn and components of Ĉ\Γn. Two vertices are

connected by an edge if their corresponding components of Ĉ\Γn have a common boundary
component, which is a curve in Γn. Thus there is a bijection between edges of Tn and
curves in Γn. Denote by eγ the edge of Tn corresponding to the curve γ ∈ Γn.
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Inclusion maps. The homotopy rel f−n(Pf ) induces an inclusion ιn : Tn → Tn+1 by

the following: For each curve γ ∈ Γn, define

ιn : eγ →
∪

β∈Γn+1(γ)

eβ ∪ {common endpoints of eβ}

to be a homeomorphism such that it preserves the orientation induced by a choice of
orientations on these curves.

By the definition, ιn is continuous on each edge. The continuity of ιn at vertices
comes from Lemma 6.2. The injectivity comes from the fact that no two curves in Γn are
homotopic rel f−n(Pf ).

Induced tree maps. Given any n ≥ 0. A continuous map τ : Tn+1 → Tn is called
an induced tree map if for each edge eγ of Tn+1 corresponding to a curve γ ∈ Γn+1,
τ : eγ → ef(γ) is a homeomorphism such that it preserves the orientation induced by the
map f : γ → f(γ). It is easy to check that induced tree maps always exist.

Lemma 6.3. There exists a linear metric ρ1 on the tree T1 and an induced tree map
τ0 : T1 → T0 such that ι0 ◦ τ0 is linear on each edge of T1 and |(ι0 ◦ τ0)′| ≥ λ for some
constant λ > 1.

Proof. Let {e1, · · · , en} be the edges of T0. LetM = (bij) be the reduced transition matrix
of Γ defined in §2. Then its leading eigenvalue λ0 > 1 by Lemma 2.4 since Γ is a Cantor
multicurve. Thus there exist a constant λ ∈ (1, λ0) and a positive eigenvector v = (v(ei))
such that Mv > λv by Lemma A.1 in [8]. Define a linear metric ρ1 on T1 such that for
each edge e of T1, it has length v(τ0(e)). Then the length of ι0(ei) is:

|ι0(ei)| =
∑
j

bij v(ej) > λv(ei).

Define τ0 : T1 → T0 to be an induced tree map such that ι0 ◦ τ0 is linear on each edge of
T1. Then |(ι0 ◦ τ0)′| > λ.

There exists an induced tree map τ1 : T2 → T1 such that τ1 ◦ ι1 = ι0 ◦ τ0 on T1.
Inductively, for each n ≥ 2, there exists an induced tree map τn−1 : Tn → Tn−1 such that
τn−1 ◦ ιn−1 = ιn−2 ◦ τn−2 on Tn−1. Then {Tn, ιn, τn}n≥0 is an expanding tower of tree maps
with degree deg τn ≤ deg f . We call it the induced tower of tree maps of f with
respect to the multicurve Γ.

Denote by τf : T (Γ) → T (Γ) the limit of the induced tower of tree maps of f with
respect to the multicurve Γ. Then it is an expanding finite dendrite map by Theorem 6.1.
The next theorem is a more precise version of Theorem 1.4.

Theorem 6.4. Let f be a post-critically rational map with a stable Cantor multicurve Γ.
There exist an expanding finite dendrite map τf : T (Γ) → T (Γ) and a continuous onto

map Θ : Ĉ → T (Γ) such that τf ◦Θ = Θ◦ f . Moreover, for each point t ∈ T (Γ), the fiber
Θ−1(t) is a component of either J (Γ) or K(Γ).

Proof. Let {Tn, ιn, τn}n≥0 be the induced tower of tree maps of f with respect to Γ. We
may identify Tn with in(Tn) ⊂ T (Γ) by Theorem 6.1. Then τn = τf . Let I ⊂ T1 be the
union of open edges of T1 contained in T0. Let σ be the restriction of τf on I. Then σ
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is an expanding linear system. So Jσ is dense in I. Let g = f : A1 → A be the exact
annular system obtained in Theorem 1.1. There exists a bijection from the components
of A1 to the components of I according to the correspondence from Γ1 to the edges of T1
and the homotopy rel f−1(Pf ).

Define a map Θ0 : Jg → Jσ by the itinerary as in Proposition 3.6. It is order-
preserving. Since its image Jσ is dense in I, it can be extended to a continuous onto map
Θ0 : Ĉ → T0 such that each component of Ĉ\A maps to a vertex of T0. It is easy to check
that τf ◦Θ0 = Θ0 ◦ f on A1.

Pullback the map Θ0 by the above equation, we get a continuous onto map Θ1 : Ĉ → T1
such that each component of Ĉ\f−1(A) maps to a vertex of T1 and τf ◦ Θ1 = Θ1 ◦ f on
f−1(A).

Inductively, we get a sequence of continuous maps Θn : Ĉ → Tn such that each
component of Ĉ\f−n(A) maps to a vertex of Tn and τf ◦ Θn = Θn ◦ f on f−n(A). It is

easy to check that Θn converges uniformly to a continuous onto map Θ : Ĉ → T (Γ) as
n→ ∞ and the map Θ satisfies all the conditions.

7 Wandering continua

We will prove Theorem 1.2 here.

Definition 6. Let f be a rational map. By a wandering continuum we mean a non-
degenerate continuum K ⊂ Jf (i.e. K is a connected compact set consisting of more than
one point) such that fn(K) ∩ fm(K) = ∅ for any n > m ≥ 0.

A continuum E ⊂ Ĉ\Pf is called essential if there are exactly two components of

Ĉ\E containing points of Pf and each of them contains at least two points of Pf .

Lemma 7.1. Let f be a post-critically finite rational map. Suppose that K ⊂ Jf is a
wandering continuum. Then either fn(K) is 1-connected for all n ≥ 0; or there exists an
integer N ≥ 0 such that fn(K) is essential for n ≥ N .

Proof. Set Kn = fn(K) for n ≥ 0. Since #Pf < ∞ and K is wandering, we have
Kn ∩ Pf = ∅ for all n ≥ 0. Thus if Kn is 1-connected, then Km is also 1-connected for
m ≤ n.

Suppose that there is an integer n0 ≥ 1 such that Kn0 is not 1-connected, then Kn is

not 1-connected for all n ≥ n0. Let p(Kn) ≥ 1 be the number of components of Ĉ\Kn

containing points of Pf . Since Kn are pairwise disjoint, there are at most (#Pf − 2)
continua Kn such that p(Kn) ≥ 3. Thus there is an integer n1 ≥ n0 such that p(Kn) ≤ 2
for all n ≥ n1.

If p(Kn) ≡ 1 for all n ≥ n1, let K̂n be the union of Kn together with the components

of Ĉ\Kn disjoint from Pf , then f : K̂n → K̂n+1 is a homeomorphism for n ≥ n1. Since

Kn1 is not 1-connected, K̂n1\Kn1 is non-empty. Let U be a component of K̂n1\Kn1 . Then
U ∩Pf = ∅. If U ∩Jf ̸= ∅, then fm(U) ⊃ Jf for some m ≥ 1. But fm(U) is a component

of Ĉ\Kn1+m. It is a contradiction. So U ∩ Jf = ∅. Noticing that ∂U ⊂ Kn1 ⊂ Jf , the
simply-connected domain U is exactly a Fatou domain. But ∂U is wandering. Thus it is
a contradiction since there is no wandering Fatou domain by Sullivan’s theorem (refer to
[24]). Therefore there is an integer n2 ≥ n1 such that p(Kn2) = 2.
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We claim that p(Kn) ≡ 2 for all n ≥ n2. Otherwise, assume that there is an integer

m > n2 such that p(Km) = 1, then there is a disk D containing Km such that D∩Pf = ∅.
Let Dn be the component of fn−m(D) containing Kn for n2 ≤ n ≤ m. Then Dn is disjoint
from Pf . So p(Kn) = 1 for n2 ≤ n ≤ m. This contradicts p(Kn2) = 2.

We may assume #Pf ≥ 3 (otherwise f is conjugate to the map z → z±d and hence has
no wandering continuum), then f has at most one exceptional point. If there is an integer

m ≥ n2 such that Ĉ\Km has a component containing exactly one Pf point, then there is
a disk D ⊃ Km such that D contains exactly one Pf point. Let Dn be the component of
fn−m(D) containing Kn for n2 ≤ n ≤ m. Then Dn is simply-connected and contains at

most one point of Pf . Thus Ĉ\Kn has a component containing exactly one Pf point for
n2 ≤ n ≤ m. Therefore either there exists an integer N ≥ n2 such that for n ≥ N , fn(K)

is essential, or Ĉ\fn(K) has a component containing exactly one Pf point for all n ≥ n2.

In the latter case, denote by U the component of Ĉ\Kn2 containing exactly one Pf
point. If U ∩ Jf ̸= ∅, then there is an integer k > 0 such that Ĉ\fk(U) contains at most
one point (an exceptional point). On the other hand, there is a disk D ⊃ Kn2+k such
that D contains exactly one Pf point. Let Dn2 be the component of f−k(D) containing
Kn2 . Then Dn is simply-connected and contains at most one point of Pf . Thus U ⊂ Dn2 .

Therefore fk(U) ⊂ D and hence Ĉ\D ⊂ Ĉ\fk(U) contains at most one point. This
contradicts #Pf ≥ 3. So U is disjoint from Jf and hence is a simply-connected Fatou
domain. This again contradicts Sullivan’s no wandering Fatou domain theorem.

Lemma 7.2. Suppose that K ⊂ Jf is a wandering continuum and is not 1-connected.
There is a multicurve ΓK such that:

(1) for each curve γ in ΓK, there are infinitely many continua fn(K) homotopic to γ
rel Pf , and

(2) there is an integer N1 ≥ 0 such that for n ≥ N1, f
n(K) is essential and homotopic

rel Pf to a curve in ΓK.

Proof. By Lemma 7.1, there is an integer N ≥ 0 such that fn(K) is essential for n ≥ N .
Since the fn(K) are pairwise disjoint, for any integer m ≥ N , we may choose an essential

Jordan curve βn in Ĉ\Pf for N ≤ n ≤ m such that they are pairwise disjoint and fn(K)
is homotopic to βn rel Pf . Let Γm be the collection of these curves. Let Γ̃m ⊂ Γm be a
multicurve such that each curve in Γm is homotopic to a curve in Γ̃m. Then each curve
in Γ̃m is homotopic to a curve in Γ̃m+1. This implies that #Γ̃m is increasing and hence
there is an integer m0 ≥ N such that #Γ̃m is a constant for m ≥ m0 since any multicurve
contains at most #Pf − 3 curves. Therefore each curve in Γ̃m+1 is homotopic to a curve
in Γ̃m for m ≥ m0. This shows that the multicurves Γ̃m are homotopic to each other for
all m ≥ m0.

Let ΓK ⊂ Γ̃m0 be the sub-collection consisting of curves γ ∈ Γ̃m0 such that there
are infinitely many fn(K) homotopic to γ rel Pf . Then it is non-empty and hence is a
multicurve. Obviously, ΓK is uniquely determined by K and there is an integer N1 ≥ 0
such that for n ≥ N1, f

n(K) is essential and homotopic rel Pf to a curve in ΓK .

Lemma 7.3. ΓK is an irreducible Cantor multicurve.

Proof. By Lemma 7.2, there exists an integer N1 ≥ 0 such that fn(K) for n ≥ N1 is
homotopic to a curve in ΓK rel Pf . Thus ΓK is pre-stable. For any pair (γ, α) ∈ ΓK×ΓK ,
there are integers k2 > k1 ≥ N1 such that fk1(K) is homotopic to γ and fk2(K) is
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homotopic to α rel Pf . Thus fk1−k2(α) has a component δ homotopic to γ rel Pf . So for
1 < i < k2 − k1 the curve f i(δ) is homotopic rel Pf to fk1+i(K) and hence to a curve in
ΓK rel Pf . This shows that ΓK is irreducible.

Now we want to prove that ΓK is a Cantor multicurve. We may apply Lemma 2.3
and assume by contradiction that f−1(γ) for each γ ∈ ΓK has exactly one component
homotopic rel Pf to a curve in ΓK .

Assume N1 = 0 for simplicity. Denote by ΓK = {γ0, · · · , γp−1} such that γ0 is homo-
topic to K and γn is homotopic to a component of f−1(γn+1) for 0 ≤ n < p (set γp = γ0).
It makes sense since for each γ ∈ ΓK , f

−1(γ) has exactly one component homotopic rel
Pf to a curve in ΓK . Then f

n(K) is homotopic to γk if n ≡ k(modp).
For n ≥ 0 and k ≥ 1 denote by A(n, n + kp) the unique annular component of

Ĉ\(fn(K)∪fn+kp(K)). Then fm : A(n, n+kp) → A(n+m,n+kp+m) is proper for any
m ≥ 1. This is because that A(n+m,n+ kp+m) is disjoint from Pf and homotopic to
fn+m(K), so f−m(A(n +m,n + kp +m)) has a unique component homotopic to fn(K),
which must be A(n, n+ kp).

One may choose (n, k) such that A(n, n + kp) contains points of Jf . On the other
hand, fm is proper on A(n, n+ kp) for all m ≥ 1, whose image contains no points of Pf .
It is a contradiction.

Proof of Theorem 1.2. Suppose that K ⊂ Jf is a wandering continuum and is not 1-
connected. Then ΓK is an irreducible Cantor multicurve by Lemma 7.3. By Lemma 7.2,
there exists an integer N1 ≥ 0 such that fn(K) for n ≥ N1 is homotopic to a curve in ΓK
rel Pf . We assume N1 = 0 for simplicity.

Let E be the collection of the essential components E of f−m(fn(K)) for n,m ≥ 0
such that f i(E) is homotopic to a curve in ΓK for 0 ≤ i < m. Then f(E) ∈ E for any
element E ∈ E , and any two elements in E are either disjoint or one contains another as
subsets of Ĉ.

For each γ ∈ ΓK , let E(γ) be the sub-collection of continua in E homotopic to γ rel Pf .
We claim that for any continuum E ∈ E(γ), there are two disjoint continua E1, E2 ∈ E(γ)
such that E ⊂ A(E1, E2), where A(E1, E2) denotes the unique annular component of

Ĉ\(E1 ∪ E2).
Consider {fn(E)} for 0 ≤ n ≤ 2 ·#ΓK +1. There is a curve β ∈ ΓK such that at least

three of them are contained in E(β). Numerate them by fni(E) (i = 1, 2, 3) such that
fn3(E) ⊂ A(fn1(E), fn2(E)). Let A be the component of f−n3(A(fn1(E), fn2(E))) that
contains E. Then A = A(E1, E2) where Ei (i = 1, 2) is a component of f−n3(fni(E)).
Now the claim is proved.

Denote A(γ) = ∪A(E,E ′) for all disjoint pairs E,E ′ ∈ E(γ). Then A(γ) is an annulus

in Ĉ\Pf homotopic to γ rel Pf , and A(γ) ∩ A(β) = ∅ for distinct curves β, γ ∈ ΓK .
Denote by A = ∪γ∈ΓK

A(γ) and A1 the union of components of f−1(A) homotopic to
curves in ΓK . Then A1 ⊂ A and ∂A ⊂ ∂A1 by the claim and the definition of E . So
g = f |A1 : A1 → A is an exact annular system. In particular, fn(K) ⊂ A and hence
fn(K) ⊂ A1 for all n ≥ 0. So K ⊂ Jg. Since K is connected, it must be contained in a
component of Jg which is a Jordan curve by Theorem 3.10. But K is essential. Therefore
K coincides with the Jordan curve.
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8 Foldings of polynomials

In this section, we introduce a topological surgery to produce branched coverings with
Cantor multicurves from polynomials. We give two criteria for these maps to be equivalent
to rational maps. This section is self-contained and can be read independently to the
previous sections.

8.1 Folding maps

Let F be a post-critically finite branched covering of Ĉ and β be an essential Jordan curve
in Ĉ\PF . The pair (F, β) is called a folding map if F−1(β) contains at least two curves
and each of them is homotopic to β rel PF . The curve β is called the folding curve and

m(F, β) := #{components of F−1(β)}

is called the folding times.
Two folding maps (F, β) and (G,α) are called Thurston equivalent if F is Thurston

equivalent to G through a pair of homeomorphisms (ϕ, ψ) such that ϕ(β) is homotopic to
α rel PG.

Let (F, β) be a folding map. Denote by U, V the two components of Ĉ\β. Denote by

U1, V1 the two disc components of Ĉ\F−1(β) such that U1 is homotopic to U (i.e. there

is an isotopy θ of Ĉ rel PF such that U1 = θ(U)). Then V1 is homotopic to V . There are
three possibilities:

Type A: F (U1) = U and F (V1) = U .
Type B: F (U1) = U and F (V1) = V .
Type C: F (U1) = V and F (V1) = U .
All our examples in §8.5 are of Type A. Following the recipe of Example 3 one can

easily construct folding maps of the other two types.
Define

d(F, β) =


deg(F |U1), in type A,

min{deg(F |U1), deg(F |V1)}, in type B,√
deg(F |U1) deg(F |V1), in type C.

The following facts are easy to check:
• (F, β) is of type A if and only if m(F, β) is even.
• (F n, β) is also a folding map with m(F n, β) = m(F, β)n and d(F n, β) = d(F, β)n for

n ≥ 1.
• If (F, β) is of type A (resp. type B), then (F n, β) is also of type A (resp. type B)

for n ≥ 1; If (F, β) is of type C, then (F 2k−1, β) is of type C and (F 2k, β) is of type B for
k ≥ 1.

We will prove the following theorems in this section.

Theorem 8.1. Let (F, β) be a folding map. Suppose that
(a) the multicurve {β} is not a Thurston obstruction;
(b) any stable multicurve disjoint from β is not a Thurston obstruction; and
(c) d(F, β) < m(F, β).
Then F has no Thurston obstructions.
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Theorem 8.2. Let (F, β) be a folding map. Suppose that

(a) the multicurve {β} is not a Thurston obstruction;
(b) any stable multicurve disjoint from β is not a Thurston obstruction; and

(c’) there exist an integer p ≥ 1 and a finite tree T ⊂ Ĉ\β whose vertices are contained
in PF such that F p(T ) is contained in T homotopically (i.e., there exists a homeomorphism

θ of Ĉ isotopic to the identity rel PF such that F p(T ) ⊂ θ(T )), F p is injective on T and
F−p(T ) has a component homotopic to β rel PF .

Then F has no Thurston obstructions.

Remark. (1) Obviously the conditions (a) and (b) in the theorems are necessary. We
will give examples in §8.5 to show that these two conditions are not sufficient, and the
conditions (c) and (c’) are not necessary. In fact, The map F2 in Example 2 satisfies the
conditions (a) and (b) and (c’) but not (c), whereas the map F3 in Example 3 satisfies
the conditions (a) and (b) and (c) but not (c’).

(2) Denote m = m(F, β) and di (1 ≤ i ≤ m) the degree of F on the components of
F−1(β). Then the multicurve {β} is not a Thurston obstruction if and only if

λ({β}) = 1

d1
+ · · ·+ 1

dm
< 1.

8.2 Foldings of polynomials

Let (F, β) be a folding map of type A and g be a polynomial with connected Julia set. We
say (F, β) is the folding of g if it is Thurston equivalent to another folding map (G,α)
such that G−1(U) has a disc component U1 b U , where U is one of two Jordan domains
enclosed by α, and G|U1 = g.

Let (F, β) be a folding map of type B and (g1, g2) be a pair of polynomials with
connected Julia sets. We say (F, β) is the folding of (g1, g2) if it is Thurston equivalent
to another folding map (G,α) such that there are disjoint Jordan domains U and V in

Ĉ with both ∂U and ∂V homotopic to α rel PG, both G−1(U) and G−1(V ) have a disc
component U1 b U and V1 b V , G|U1 = g1 and G|V1 = g2.

The following result relates a folding map to a folding of polynomials, without taking
into account whether the latter map is Thurston equivalent to a rational map or not.

Theorem 8.3. Let (F, β) be a folding map of type A (or type B). Suppose that {β} is
not a Thurston obstruction. Then (F, β) is the folding of a polynomial g (or a pair of
polynomials (g1, g2)) if and only if any stable multicurve disjoint from β is not a Thurston
obstruction. Moreover, the polynomial g (or the pair of polynomials (g1, g2)) is unique up
to holomorphic conjugation.

Proof. Suppose that (F, β) is the folding of a polynomial g whose Julia set is connected.
By the definition, there is a folding map (G,α) which is Thurston equivalent to (F, β),
such that G−1(U) has a disc component U1 b U , where U is one of two Jordan domains
enclosed by α, and G|U1 = g.

Let Γ be an irreducible multicurve of G which is disjoint from α. If there is one curve
γ ∈ Γ homotopic to α rel PG, then Γ = {γ} and hence λ(Γ) < 1. Now we assume that for
any γ ∈ Γ, γ is not homotopic to α rel PG. Then γ is homotopic rel PG to a curve in U .
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Set P = (PG ∩ U) ∪ {∞}. Then Pg ⊂ P , g(P) ⊂ P and Γ is a multicurve of the

marked polynomial (g,P). By Theorem 3.3 in [8], λ(Γ) < 1. Applying Lemma 2.2, we
see that λ(Γ) < 1 for any stable multicurve Γ.

Conversely, suppose that any stable multicurve of F disjoint from β is not a Thurston
obstruction. Let W be the component of Ĉ\β such that F (W1) = W , where W1 is the

component of Ĉ\F−1(β) homotopic to W . There is an isotopy θ of Ĉ rel PF such that
θ(W1) b W . Set G1 = F ◦ θ−1. Then (G1, β) is Thurston equivalent to (F, β).

Denote P = PF ∩W . Then G1(P) ⊂ P and G1 : (θ(W1),P) → (W,P) is a marked
repelling system (ref to [8]). Applying Lemma 2.1 and Theorem 3.5 in [8], there exist
a polynomial-like map g1 : V1 → V with both V and V1 Jordan domains and a pair of
homeomorphisms (ϕ, ψ) fromW to V such that ψ is isotopic to ϕ rel P∪∂W , ψ(θ(W1)) =

V1 and ϕ ◦ G1 ◦ ψ−1 = g1 on V1. Extend (ϕ, ψ) to homeomorphisms of Ĉ such that they
coincide with each other outside of W . Let G2 = ϕ ◦ G1 ◦ ψ−1. Then (G2, ϕ(β)) is
Thurston equivalent to (F, β) and G2|V1 = g1 is a polynomial-like map. By Straightening

Theorem (refer to [11] Theorem 1), there is a quasiconformal map h of Ĉ such that
for G := h ◦ G2 ◦ h−1, G|h(V1) is a polynomial g. Therefore (F, β) is the folding of the
polynomial g. The uniqueness of g comes from Thurston Theorem.

This argument also works for type B. We omit its proof.

Combining Theorems 8.1, 8.2 and 8.3, we obtain

Corollary 8.4. Let (F, β) be a folding of a polynomial g (or a pair of polynomials (g1, g2)).
Suppose that {β} is not a Thurston obstruction.

(a) If d(F, β) < m(F, β), then F has no Thurston obstruction.

(b) Suppose that there exist an integer p ≥ 1 and a finite tree T ⊂ Ĉ\β whose vertices
are contained in PF such that F p(T ) is contained in T homotopically, F p is injective
on T and F−p(T ) has a component homotopic to β rel PF . Then F has no Thurston
obstruction.

8.3 Proof of Theorems 8.1 and 8.2

Let (F, β) be a folding map. For any two essential Jordan curves γ and α in Ĉ\PF , set
k(γ, α) to be their geometric intersection number. It is defined by

k(γ, α) = min{#(δ ∩ α)},

where the minimum is taken over all the choices of δ in the homotopy class of γ. By
definition k(γ, α) = 0 if γ is homotopic to α rel PF .

Lemma 8.5. Let Γ be an irreducible multicurve of F . Then either k(γ, β) ̸= 0 for all
γ ∈ Γ or k(γ, β) = 0 for all γ ∈ Γ.

Proof. Suppose that k(γ, β) = 0 for some γ ∈ Γ. For any curve α ∈ Γ, since Γ is
irreducible, α is homotopic to a component of F−n(γ) rel PF for some n ≥ 0. Let δ

be a Jordan curve in Ĉ\PF homotopic to γ rel PF such that it is disjoint from β, then
α is homotopic to a component of F−n(δ) rel PF , which is disjoint from F−n(β). Thus
k(α, β) = 0 since F−n(β) contains a curve homotopic to β rel PF .
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Lemma 8.6. Let γ and α be essential Jordan curves in Ĉ\PF such that k(γ, β) ̸= 0.
Suppose that F−1(γ) has a component δ homotopic to α rel PF . Then

deg(F : δ → γ) ≥ m · k(α, β)
k(γ, β)

,

where m = m(F, β).

Proof. Denote by d(δ) = deg(F : δ → γ). We may assume that #(γ ∩ β) = k(γ, β).
Denote by α1, · · · , αm the components of F−1(β). Then

#
(
δ ∩

m∪
p=1

αp

)
= d(δ) ·#(γ ∩ β) = d(δ) · k(γ, β) .

On the other hand,

#
(
δ ∩

m∪
p=1

αp

)
=

m∑
p=1

#(δ ∩ αp) ≥
m∑
p=1

k(α, β) = m · k(α, β) .

Combining the above two inequalities we get the lemma.

Lemma 8.7. Suppose that Γ = {γ1, · · · , γn} is an irreducible multicurve of F such that
ki = k(γi, β) ̸= 0. Let MΓ = (aij) be the transition matrix of Γ. Then

aij ≤
d0k

2
j

mk2i
,

where d0 = d(F, β) and m = m(F, β).

Proof. We may assume that #(γi ∩ β) = k(γi, β) = ki for any γi ∈ Γ. Fix a pair (i, j). If
F−1(γj) has no component homotopic to γi, then aij = 0. Now suppose that F−1(γj) has
n > 0 components homotopic to γi. Denote them by {δs, s = 1, · · · , n}. We claim that
n ≤ d0kj/ki.

Denote by U, V the two components of Ĉ\β. Denote by U1, V1 the two disc components

of Ĉ\F−1(β) such that U1, V1 are homotopic to U and V , respectively. Denote d1 =
deg(F |U1) and d2 = deg(F |V1). Then both U∩γj and V ∩γj have exactly kj/2 components
(notice that kj = #(γj ∩ β) is an even number). It follows that U1 ∩ F−1(γj) has exactly
d1kj/2 components and V1 ∩ F−1(γj) has exactly d2kj/2 components.

On the other hand, since both ∂U1 and ∂V1 are homotopic to β rel PF , both U1 ∩ δs
and V1 ∩ δs have at least ki/2 components for s = 1, · · · , n. It follows that

nki
2

≤ #
{
components of U1 ∩ (∪δs)

}
≤ #

{
components of U1 ∩ F−1(γj)

}
=
d1kj
2

.

So n ≤ d1kj/ki. We also have n ≤ d2kj/ki if we replace U1 by V1 in the above inequality.
Hence n ≤ min{d1, d2}kj/ki ≤ d0kj/ki.

Now applying Lemma 8.6, we have

aij =
n∑
s=1

1

deg(F : δs → γj)
≤

n∑
s=1

kj
mki

= n
kj
mki

≤ d0
kj
ki

kj
mki

=
d0k

2
j

mk2i
.

This proves the lemma.
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Proof of Theorem 8.1. Denote m = m(F, β), d0 = d(F, β) and p = #PF . By the condition
d0 < m, there is an integer N ≥ 1 such that (p− 3)dN0 < mN .

Now we consider the folding map (FN , β). Note that #PFN = p, m(FN , β) = mN and
d(FN , β) = dN0 . Let Γ = {γ1, · · · , γn} be an irreducible multicurve of FN . If k(γi, β) = 0
for some γi ∈ Γ, then k(γj, β) = 0 for all γj ∈ Γ by Lemma 8.5. So Γ is homotopic rel PF
to a multicurve disjoint from β. Thus it is not a Thurston obstruction by the conditions
(a) and (b).

Now we assume that ki = k(γi, β) ̸= 0 for all γi ∈ Γ. Set the vector v = (vi) with
vi = 1/k2i , then by Lemma 8.7

(MΓv)i =
n∑
j=1

aijvj ≤
n∑
j=1

dN0 k
2
j

mNk2i
· 1

k2j
=

n dN0
mNk2i

.

Notice that n = |Γ| ≤ #PFN − 3 = p− 3. Therefore

(MΓv)i ≤
(p− 3)dN0
mNk2i

<
1

k2i
= vi .

It follows thatMΓv < v and hence λ(Γ) < 1 (refer to Lemma A.1 in [8]). Thus FN has no
Thurston obstruction by Lemma 2.2. This implies that F has no Thurston obstruction.

Proof of Theorem 8.2. Denote m = m(F, β). Let Γ = {γ1, · · · , γn} be an irreducible
multicurve of F . If k(γi, β) = 0 for some γi ∈ Γ, then k(γj, β) = 0 for all γj ∈ Γ by
Lemma 8.5. So Γ is homotopic rel PF to a multicurve disjoint from β. Thus it is not a
Thurston obstruction by the conditions (a) and (b).

Now we assume that k(γi, β) ̸= 0 for all γi ∈ Γ. Denote by k(γi, T ) the geometric
intersection number.

Case 1. k(γi, T ) = 0 for some curve γi ∈ Γ. Assume that γi is disjoint from T . By
condition (c’), F−p(T ) has a component homotopic to β rel PF . Thus k(δ, β) = 0 for all
the components δ of F−p(γi). But Γ is irreducible, so k(γj, β) = 0 for some γj ∈ Γ. It is
a contradiction.

Case 2. k(γi, T ) ̸= 0 for all curves γi ∈ Γ. We may assume that p = 1 and F (T ) ⊂ T .
We also assume that #(γi ∩ T ) = k(γi, T ) for γi ∈ Γ. Let δs (s = 1, · · · , n) be all the
components of F−1(γj) homotopic to a curve in Γ, then F : (∪δs)∩T → γj∩T is injective
since F (T ) ⊂ T and F |T is injective. So

n∑
s=1

#(δs ∩ T ) ≤ #(γj ∩ T ) = k(γj, T ).

Therefore if γi is homotopic to a curve in F−1(γj), then k(γi, T ) ≤ k(γj, T ). Since Γ is
irreducible, we have k(γi, T ) is a constant for all γi ∈ Γ and F−1(γj) has exactly one
component homotopic to a curve in Γ. Relabel the index such that F−1(γj+1) has a curve
δj homotopic to γj for j = 1, · · · , n (set γn+1 = γ1). Let MΓ = (aij) be the transition
matrix of Γ. Then

aj,j+1 =
1

deg(F : δj → γj+1)
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for j = 1, · · · , n (set an,n+1 = an,1), and aij = 0 otherwise. By Lemma 8.6, we have

deg(F : δj → γj+1) ≥
mkj
kj+1

.

So aj,j+1 ≤ kj+1/(mkj). Set the vector v = (1/ki), then MΓ v ≤ (1/m)v and hence
λ(Γ) ≤ 1/m < 1 (refer to Lemma A.1 in [8]). Applying Lemma 2.2 again we conclude
that F has no Thurston obstructions.

8.4 Sierpinski maps

A connected compact subset E ⊂ Ĉ is called a Sierpinski carpet if it is locally connected,
nowhere dense and its complementary components are Jordan domains with pairwise
disjoint closures.

A rational map is called a Sierpinski map if its Julia set is a Sierpinski carpet. A
polynomial is called of Sierpinski type if its Julia set is connected and locally connected,
it has at least two bounded Fatou domains, and the bounded Fatou domains have pairwise
disjoint closures.

Theorem 8.8. Let f be a post-critically finite rational map. Suppose that (f, β) is a
folding of a Sierpinski type polynomial g. Then f is a Sierpinski map.

Proof. Note that {β} is a Cantor multicurve of f . Applying Theorem 1.1, there exists an

annulus A ⊂ Ĉ\Pf homotopic to β rel Pf , such that f : f−1(A) → A is an exact annular
system.

Denote by B1, B2 the two components of Ĉ\A, then they are components of f−1(B1 ∪
B2). Rearranging the indices if necessary, we may assume that f(B1) = f(B2) = B1.
There exists a Jordan curve β0 essentially contained in A such that U1 b U0, where U0 is
the domain enclosed by β0 and containingB1 and U1 is the pre-image of f−1(U0) containing
B1. Since β0 is homotopic to β rel Pf , the polynomial-like map g1 = f |U1 : U1 → U0 is
quasiconformally conjugate to a restriction of the polynomial g.

Each periodic Fatou domain of f is contained in B1. Thus it is a periodic Fatou domain
of the polynomial-like map g1. Since the polynomial g is of Sierpinski type, every periodic
Fatou domain of f is a Jordan domain. Since f is hyperbolic, every Fatou domain of f is
a Jordan domain.

Any two Fatou domains of f are either contained in the same component of f−n(B1)
for some integer n ≥ 0, or separated by a component of f−m(A) for some integer m ≥ 0
and hence have disjoint closures. In the former case they have disjoint closures since g is
of Sierpinski type. So f is a Sierpinski map.

8.5 Examples

All our examples will be deformations of the airplane quadratic polynomial Qc(z) = z2+c,
i.e. the parameter c is chosen to be the unique real solution of the equation (c2+c)2+c = 0.
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The critical point z = 0 forms a super attracting cycle with period 3. Denote by:

U = {z : |z| < 1
}
and β = ∂U,

V = {z : |z| > 2} ∪ {∞} and β∗ = ∂V,
A = {z : 1 < |z| < 2},
ρ : U → C, reiθ 7→ reiθ

1−r , an angle-preserving homeomorphism,

σ : V → U, σ(z) = 2/z, a homeomorphism.

Example 1. Set g(z) = Q◦2
c (z). We want to construct a branched covering F which

is the folding of the polynomial g. We will define F piecewisely as following:

F1 =


G1 : U → U
G2 : V → U
G3 : A→ A ∪ V

• G1 : U → U , z 7→ ρ−1 ◦ g ◦ ρ(z). Then G1 can be extended continuously to the
boundary with G1(z) = z4 on β = ∂U .

• G2 : V → U by G2(z) = G1 ◦ σ(z). Then G2|β∗(z) = (2/z)4.
• G3 : A→ A ∪ V is a branched covering such that its boundary value coincides with

G1 on β, and G2 on β∗, and its critical values are contained in V . The precise definition
of G3 requires some care in order to control the obstructions of F1.

Let x0 < 0 be the unique fixed point of Qc on the negative real axis (it is called the
α-fixed point). Then g−1(x0) = Q−2

c (x0) has four points x−1, x0, x1, x2, displaced in R
relative to the super-attracting cycle as follows:

c < x−1 < x0 < 0 < x1 < c2 + c < x2.

Denote by R(θ) the external ray of Qc of angle 2πθ. It is also a ray of g. Both R(1/3)
and R(2/3) land on the α-fixed point x0. Denote by L0 = R(1/3)∪ {x0} ∪R(2/3). Then
Qc(L0) = L0 and Qc switches the two rays. And g(L0) = L0 by fixing each ray. Now
g−1(L0) has 4 arcs L−1, L0, L1, L2 with xi ∈ Li.

Pullback these four arcs by ρ we get Sk := ρ−1(Lk) (k = −1, 0, 1, 2) in U . The two ends
of Sk are (e2πiθk , e2πiφk), with θ−1 = 5/12, θ0 = 1/3, θ1 = 1/6, θ2 = 1/12, and φk = −θk.
As G1 = ρ−1 ◦ g ◦ ρ, we have G−1

1 (S0) = ∪2
k=−1Sk.

Pullback then by σ, we get Ek := σ−1(Sk) in V . As G2 = G1 ◦ σ, we have G−1
2 (S0) =

∪2
k=−1Ek. As σ(re2πiη) = ρ(2/(re2πiη)) and φk = −θk we know that the two ends of the

arc Ek are (2e2πiθk , 2e2πiφk).
Set Ik to be the union of two radial arcs in A for k = −1, 0, 1, 2 by

Ik :=
{
re2πiθk , r ∈ [1, 2]

}
∪
{
re2πiφk , r ∈ [1, 2]

}
.

Then γk := Sk ∪ Ek ∪ Ik is a Jordan curve.
• Define G3 on each of the 8 radial arcs in A such that it maps the arc homeomorphi-

cally onto I0 ∪ E0, and maps (e2πit, 2e2πit) to (e2πi(4t), e−2πi(4t)).
Extend G3 continuously in each of the 8 quadrilaterals of A\(∪kIk) as a orientation

preserving branched covering of degree two. The image must be one of the two components
of (A ∪ V )\(I0 ∪ E0). We also assure that the unique critical point in each quadrilateral
is mapped to either yc = σ−1(ρ−1(c)) or y0 = σ−1(0).
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Figure 3. The four arcs of rays L−1, L0, L1, L2 (from left to right)

This ends the definition of F1. It is a branched covering of Ĉ with post-critical set
PF1 = ρ−1(Pg) ∪ {y0, yc}.

Example 2. This example will be a little modification of the map F1 above. Let D be
the Fatou domain of Qc containing the point c. Let xr ∈ (c, x−1) be the right intersection
point of ∂D with real axis, which is also called the root of D. Set yr = σ−1(ρ−1(xr)).

Choose a homeomorphism h : Ĉ → Ĉ such that h is the identity in A∪U , h(yc) = yc and
h(y0) = yr. Set F2 := h ◦ F1. Notice that PF2 = ρ−1(Pg) ∪ {yr, yc}.

Proposition 8.9. The map F1 has a Thurston obstruction, whereas the map F2 has none.

Proof. The curve F−1
1 (γ0) has 4 components γk ∋ xk (k = −1, 0, 1, 2) with deg(F1 : γk →

γ0) = 2 for every k. The curve γ2 is null-homotopic and γ1 is peripheral. Both γ0 and
γ−1 are essential and homotopic to each other rel PF1 . Set Γ = {γ0}. Then Γ is a stable
multicurve with λ(Γ) = 1/2 + 1/2 = 1. So Γ is a Thurston obstruction.

Let T0 = [yc, yr]. Then F2(ΩF2 ∩ A) = {yc, yr} ⊂ T0. The annulus V \T0 contains no
critical values of F2. It follows that F

−1
2 (T0) has a component K essentially contained in

A. Thus K is homotopic to β rel PF2 . Set T1 := F2(T0) = ρ−1 ◦ g([c, xr]). Then the line
segment T1 is a 3-periodic interval and F 3

2 is injective on T1. This allows us to apply our
criterion Theorem 8.2 to conclude that the map F2 has no Thurston obstructions.

Example 3. Let βi (i = 1, · · · , 6) be disjoint Jordan curves essentially contained in
A labelled by the order from U to V . Denote by Ai the annulus bounded by βi−1 and βi
(set β0 = β and β7 = β∗) for i = 1, · · · , 7.

Denote by O the grand orbit of the super-attracting cycle of Qc. Define a branched
covering F3 of Ĉ piecewisely as follows:

• F3 : U → U , z 7→ ρ−1 ◦Qc ◦ ρ(z).
• F3 : V → U , z 7→ (2/z)4, or any degree 4 branched covering with critical
values in ρ−1(O).
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Figure 4. Construction of F3

• F3 : A1, A3, A5, A7 → A are coverings with degree 2,8,16,4 respectively such
that they can be continuously extended to covering maps on the closures with
β3, β4 being mapped to β and with the actions on β∪β∗ coincide with previous
defined boundary maps.
• F3 : A4 → U is a branched covering2 such that its boundary map coincides
with the previous defined boundary maps on A3 ∪ A5, and its critical values
are located in the set ρ−1(O). Its degree is the sum of the degrees on A3, A5,
i.e. 24.
• Similarly F3 : A2, A6 → V are branched coverings such that their boundary
maps coincide with the previous defined boundary maps and their critical val-
ues are located in (F3|V )−1◦ρ−1(O). Their degrees are 10 and 20, respectively.

Every critical point of F3 is eventually super-attracting. Note that F−1
3 (β) has 4

connected components with the sum of the inverse of the degrees satisfying

1

2
+

1

8
+

1

16
+

1

4
=

15

16
< 1.

Each of the 4 pulled back curves is homotopic to β. Furthermore 2 = deg(F3|U) < 4.
These properties allow us to apply our criterion Theorem 8.1 to F3 to conclude that it
has no Thurston obstructions. Thus F3 is Thurston equivalent to a post-critically finite
hyperbolic rational map f (note that #PF3 ≥ 5 and hence its orbifold is hyperbolic) by
Thurston Theorem.

The bounded Fatou components of Qc have pairwise disjoint closures. Applying The-
orem 8.8, we may furthermore conclude that the Julia set of f is a Sierpinski carpet.

One may wonder if there is a finite tree T ⊂ U whose vertices are contained in PF3 such
that F p

3 (T ) is contained in T homotopically for some integer p ≥ 1 and F p
3 is injective on

T . The existence of such a tree would allow us to apply Theorem 8.2 instead of Theorem
8.1 to discard any eventual obstructions.

2The existence of such a branched covering is known since Hurwitz. For a concrete construction see
e.g. [27].
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We shall see that such a tree T can not exist. Note that each point in PF3 ∩ U

eventually maps to the unique critical cycle. Since F3|U is topologically conjugated to the

polynomial Qc, we only need to prove that there is no finite tree T ⊂ Ĉ whose vertices
are contained in the grand orbit of the super-attracting cycle of Qc, such that Qp

c(T ) is
contained in T homotopically and Qp

c is injective on T for some p ≥ 1.
But this is true for any post-critically finite polynomial g whose bounded Fatou com-

ponents have pairwise disjoint closures (which is the case of Qc). Take the centers z1, z2
of any pair of distinct Fatou domains of g. There can not exist an arc δ connecting z1, z2
such that gp is injective on δ for some integer p ≥ 1 and gp(δ) is homotopic to δ rel
Pg ∪{z1, z2}. Otherwise, by taking pre-images consecutively and apply Shrinking Lemma
in [21], we can show that the Fatou domains of z1, z2 have common boundary points.

A Rees-Shishikura’s semi-conjugacy

Let F be a formal mating of two post-critically finite polynomials. Suppose that F is
Thurston equivalent to a rational map f . There is a semi-conjugacy from F to f . This
result was obtained by M. Rees if both polynomials are hyperbolic [28], and proved by
Shishikura in general [30]. The same result is still true for general post-critically finite
branched coverings. Here we provide a statement with a general form.

Theorem A.1. Let F : Ĉ → Ĉ be a post-critically finite branched covering which is
Thurston equivalent to a rational map f through a pair of homeomorphisms (ψ0, ψ1) of

Ĉ. Suppose that F is holomorphic in a neighborhood of the critical cycles of F . There
exist a neighborhood U of the critical cycles of F and a sequence of homeomorphisms
{ϕn} (n ≥ 0) of Ĉ homotopic to ψ0 rel PF , such that ϕn|U is holomorphic, ϕn|U = ϕ0|U
and f ◦ ϕn+1 = ϕn ◦ F . The sequence {ϕn} converges uniformly to a continuous map

h : Ĉ → Ĉ. Moreover, the following statements hold:
(1) h ◦ F = f ◦ h.
(2) h is surjective.
(3) h−1(w) is a single point for w ∈ Ff and h−1(w) is either a single point or a full

continuum for w ∈ Jf .
(4) For points x, y ∈ Ĉ with f(x) = y, h−1(x) is a component of F−1(h−1(y)). More-

over, degF |h−1(x) = degx f .

(5) h−1(E) is a continuum if E ⊂ Ĉ is a continuum.

(6) h(F−1(E)) = f−1(h(E)) for any E ⊂ Ĉ.
(7) F−1(Ê) = F̂−1(E) for any E ⊂ Ĉ, where Ê = h−1(h(E)).

One may also refer to [9] for a detailed account in a generalized form. The crucial part
of theorem is the construction of the homotopy (ϕ0, ϕ1) rel a neighborhood U of critical
cycles and the convergence of the sequence {ϕn}. The other statements are directly
deduced. The statements (5)-(7) is used in this paper, so we add them in the theorem
and provide a proof here.

Proof of (5)-(7).

(5) Suppose that E ⊂ Ĉ is a connected closed subset. The closeness of h−1(E) is easy

to see. Now suppose that h−1(E) is not connected, i.e., there are open sets U1, U2 in Ĉ
such that h−1(E) ⊂ U1 ∪ U2, U1 ∩ U2 = ∅ and both U1 and U2 intersect h−1(E). Then
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K := h(Ĉ\(U1 ∪ U2)) is a compact set disjoint from E. Since E is connected, there is a
connected neighborhood V of E such that V ∩K = ∅. Since {ϕn} converges uniformly to
h, there exists an integer n > 0 such that

d(h, ϕn) = sup

z∈Ĉ
d
(
h(z), ϕn(z)

)
< min

{
d(E, ∂V ), d(V ,K)

}
,

where d(·, ·) denotes the spherical distance. Then it follows that ϕn(Ĉ\(U1∪U2))∩V = ∅,
hence ϕ−1

n (V ) ⊂ U1 ∪ U2. On the other hand, since V ⊃ E, both U1 and U2 intersect
ϕ−1
n (V ). This contradicts the fact that ϕ−1

n (V ) is connected.
(6) From f ◦ h(F−1(E)) = h ◦ F (F−1(E)) = h(E), we have h(F−1(E)) ⊂ f−1(h(E)).

Conversely, for any point w ∈ f−1(h(E)), f(w) ∈ h(E). So there is a point z0 ∈ E such
that f(w) = h(z0). By (5), the map

F : h−1(w) → h−1
(
f(w)

)
is surjective. Noticing that z0 ∈ h−1(f(w)), there is a point z1 ∈ h−1(w) such that F (z1) =
z0. So w = h(z1) ∈ h(F−1(z0)) ⊂ h(F−1(E)). Therefore, f−1(h(E)) ⊂ h(F−1(E)).

(7) F−1(Ê) = F−1
(
h−1

(
h(E)

))
= h−1

(
f−1

(
h(E)

))
. From (6), we obtain

F−1(Ê) = h−1
(
h
(
F−1(E)

))
= F̂−1(E).

B Buff’s example

Example. Denote by U = {z : 1 < |z| < r0} with r0 > 2. Define a spiral in U by:

δ =
{
ρeiθ :

r0
2

≤ ρ < r0, θ =
1

r0 − ρ

}
.

Set A1 = U\δ. Then A1 is an annulus with modulus mod(A1) < log r0/(2π). Pick an
integer d > 2 such that dmod(A1) > log r0/π. Set r1 > 1 be the constant such that
log r1/(2π) = dmod(A1). Then r1 > r20. Set A = {z : 1 < |z| < r1} and A2 = h(A1)
with h(z) = r1/z. Then A2 is disjoint from A1 and there is a holomorphic covering g
of degree d from Ai (i = 1, 2) to A such that g fixes the two components of ∂A. Then
g : A1 ∪ A2 → A is an exact annular system .

Theorem B.1. Let J be the collection of the components of the Julia set of the exact
annular system g : A1 ∪ A2 → A. With the topology induced by the corresponding linear
system, J has a dense subset whose elements are not locally connected.

Set B = {ζ, 0 < Im ζ < log r1}. Then π(ζ) = exp(ζ) : B → A is a universal covering.
Denote by E0 = A\(A1 ∪A2). For each component En of g−n(E0) (n ≥ 0) and any point
z ∈ A\En, denote by

h-dist(z, ∂A;En) = inf
{
diam(π−1(γ))

}
,
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A

E

A1 A2E
′

Figure 5. An annular system with spirals

where the infimum is taken over all the open arc in A\En connecting z with ∂A, and
diam(π−1(γ)) is the Euclidean diameter of a component of π−1(γ).

Denote by E ′
0 = A\(U ∪ h(U)) = E0\(δ ∪ h(δ)). It is easy to check that for any

constant M < ∞, there exists a constant ε > 0 such that for any point z ∈ A\E0, if the
Euclidean distance dist(z, E ′

0) < ε, then h-dist(z, ∂A;E0) > M .
For each component En of g−n(E0) and any k > n ≥ 0, denote by Vk(En) the union

of the two components of g−k(A) whose closures meet En. Then Ṽk(En) := Vk(En) ∪ En
is an annulus with Ṽk+1(En) ⊂ Ṽk(En) and ∩k≥nṼk(En) = En.

By the above argument, we see that for any constant M < ∞, there is an integer
k(M) ≥ 1 such that for any component K of Jg ∩ Vk(M)(E0), there exists a point z ∈ K
such that h-dist(z, ∂A;E0) > M . By Koëbe distortion theorem, we may prove the next
lemma.

Lemma B.2. For any component En of g−n(E0) (n ≥ 0) and any constant M < ∞,
there is an integer k(M,En) > n such that for any component K of Jg ∩ Vk(M,En)(En),
there exists a point z ∈ K such that h-dist(z, ∂A;En) > M .

Proof of Theorem B.1. For each integer m > 0 and any component En of g−n(E0)
(n ≥ 1), define N (m,En) to be the sub-collection of J such that K ∈ N (m,En) if
K ⊂ Vk(m,En)(En). Then N (m,En) is an open set in J . Set N (m) to be the union of
N (m,En) for all n ≥ 1 and all the components En of g−n(E0). Then it is an open dense
subset of J . Thus N =

∩
m≥1 N (m) is a dense subset of J in Baire’s category.

For each K ∈ N , we want to show that K is not locally connected. Otherwise K is
a Jordan curve and hence there is an constant M < ∞ such that for any point z ∈ K,
there are open arcs δ+(z) and δ−(z) in A\K connecting z with the two components of
∂A, respectively, such that diam(π−1(δ±(z))) < M .

Fix an integer m > M . Since K ∈ N (m), there exist an integer n ≥ 0 and a
component En of g−n(E0) such that K ∈ N (m,En). Thus there is a point z ∈ K such
that h-diam(z, ∂A;En) > m > M , contradicting the fact that diam(π−1(δ±(z))) < M .
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