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§1. Introduction

Theorem(C. McMullen (1988))

Let f be a rational map with disconnected Julia set Jf . Let K be a non-trivial
periodic component of Jf with period p ≥ 1. Then there exists a rational map
g with connected Julia set Jg such that (fp,K) is quasi-conformally
conjugated to (g, Jg).

Example.

f(z) =
z5 + λ

z3
, λ is small.

Then Jf is homeomorphic to the product of the Cantor set with a Jordan
curve.
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§1. Introduction

Theorem(K. Pilgrim and TAN Lei (2000))

Let f be a geometrically finite rational map with disconnected Julia set.
(a) There are uncountably many wandering components of Jf , and each of
them is either a single point or a Jordan curve.
(b) There are at most countably many periodic components of Jf which are
either points or Jordan curves.
(c) There are at most finitely many periodic components of Jf which are
neither points nor Jordan curves.
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§1. Introduction

For a polynomial f , it is known that:

Every wandering Julia component is a single point.

Branner and Hubbard (1992) for deg f ≤ 3,
Kozlovski and van Strein (2009) for deg f > 3,
Qiu and Yin (2009) for deg f > 3.

It is easy to see that:

#{cycles of non-trivial Julia components} ≤ deg f − 2.
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§1. Introduction

Problems:

1. Are there ”complex type” wandering Julia components?

2. #{cycles of complex type Julia components} ≤ C(d)?, where d ≥ 3 is
the degree of the rational map.

Theorem(counterexamples)

Given d ≥ 3 and n ≥ 1. There exists a sub-hyperbolic rational map f with
deg f = d such that

#{cycles of complex type Julia components} ≥ n.
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§2. Canonical multicurves

Let f be a sub-hyperbolic rational map with disconnected Julia set Jf .
Denote by Pf the post-critical set of f .

We assume that for each periodic Fatou domain U , if each component of
f−n(U) is simply-connected for all n ≥ 0, then #(U ∩ Pf ) = 1.

Since Pf has only finitely many accumulation points, we have

p(f) = #{Fatou and Julia components that contains Pf points } <∞.

Definition. Let E ⊂ C be a connected subset. We call E is
simple type: if there is a disk D ⊃ E such that #(D ∩ Pf ) ≤ 1;
annular type: if there is an annulus A ⊃ E such that A ∩ Pf = ∅;
complex type: otherwise.

Since f(Pf ) ⊂ Pf , we have

E is complex type =⇒ f(E) is complex type.

E is annular type =⇒ f(E) is not simple type.
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§2. Canonical multicurves

Lemma

#{complex type Fatou and Julia components} ≤ 2p(f)− 2.

Lemma(Pilgrim and Tan)

Let K be a Julia component.
(a) If fn(K) are simple type for all n ≥ 0, then K is a single point.
(b) If there is an integer N > 0 such that fn(K) are annular type for n > N ,
then K is a Jordan curve.
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§2. Canonical multicurves

For each complex type Fatou component U and each complex type
component C of CrU , take a Jordan curve γ ⊂ U such that

(DγrC) ∩ Pf = ∅,

where Dγ is the component of Crγ such that Dγ ⊃ C.

For each annular type Fatou component U , take an essential Jordan curve
γ in U .

Denote by Γf the multicurve representive all these curves.

Lemma

(a) #Γf = #{complex type Fatou and Julia components} − 1 ≤ 2p(f)− 3.
(b) Γf is stable. Moreover, for each γ ∈ Γf , there is a curve β ∈ Γf such that
γ is homotopic to a component of f−1(β) rel Pf .

Definition. We call Γf the canonical multicurve of the rational map f .
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§3. Shishikura trees

§3.1. Set (Tf , Vf ) the dual tree of the canonical multicurve Γf (Vf denotes
the set of vertices of Tf ).

vertices of Tf ←→ components of CrΓf .

edges of Tf ←→ curves in Γf .

Let Γ∗ to be the collection of non-peripheral curves in f−1(Γf ). Then each
component of CrΓ∗ is either an annulus disjoint from Pf , or homotopic to
exactly a component of CrΓf . Therefore Tf is also the dual tree of Γ∗ but
with (possibly) more vertices (since there may be two curves in Γ∗ which are
homotopic rel Pf ). Denote by V∗ the set of its vertices.

9 / 22



§3. Shishikura trees

The rational map f induces a continuous map

τf : (Tf , V∗)→ (Tf , Vf )

such that:
(1) V∗ = τ−1

f (Vf ) ⊃ Vf .
(2) By adopting a linear metric on Tf , we may define τf to be linear on

every edges of (Tf , V∗).

We call (Tf , Vf ) the Shishikura tree of f and τf : (Tf , V∗)→ (Tf , Vf ) the
Shishikura tree map.

M. Shishikura, Ergodic Th. & Dynam. Sys. (1989).
M. Shishikura, Proceeding of RIMS (2002).
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§3. Shishikura trees

§3.2. Weight on edges of (Tf , V∗). For each edge a of (Tf , V∗), define

w(a) = deg f |γ ,

where γ ∈ Γ∗ is the curve corresponding to the edge a.

Marking on vertices Vf . Marking each vertex v ∈ Vf by ” + ” or ”− ”
according to its corresponding pieces of CrΓf is contained in a Fatou domain
or not. Set Vf = V +

f ∪ V
−
f according to the marking. Then

τf (V +
f ) ⊂ V +

f , and τf (V −f ) ⊂ V −f .
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§3. Shishikura trees

Further properties of the tree map τf :

(3) For each (closed) edge e of (Tf , Vf ), ∃ an integer n ≥ 0 such that

τ−n(V +
f ) ∩ e 6= ∅.

(4) (Γf is not a Thurston obstruction) There exists a linear metric ρ on Tf
such that τf is expanding with respect to the weight:

Lρ(e) >
∑
i

Lρ(τf (ai))

w(ai)

for each edge e of (Tf , Vf ), where ai are all the edges of (Tf , V∗) in e.

(5) (characterization of cycles in V +
f ) Each cycle in V +

f can be realized as
a cycle of multiply-connected Fatou domains.
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§3. Shishikura trees

§3.3. The degree of the tree map τf :

For each vertex v ∈ Vf (or V∗), denote by E(v) (or E∗(v)) the collection of
edges of (Tf , Vf ) (or (Tf , V∗)) such that the vertex v is an endpoint of each of
them.

The mapping degree of τf at v ∈ V∗ is defined as:

Deg(τf , v) = max
e∈E(τf (v))

{
∑

w(ai), ai ∈ E∗(v) and τf (a) = e}.

The critical degree of τf at v ∈ V∗ is defined as:

deg(τf , v) = 2Deg(τf , v)− 2−
∑

a∈E∗(v)

[w(a)− 1] + 1.
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§3. Shishikura trees

The degree of τf is defined by:

2 deg τf − 2 =
∑
v∈V∗

[deg(τf , v)− 1].

It turns out that deg τf ≤ deg f .

§3.4. Reduced tree map. Note that the Shishikura tree map
τf : (Tf , V∗)→ (Tf , Vf ) need not to be surjective. However, there exists an
integer n ≥ 0 such that τnf (Tf ) = τn+1

f (Tf ). Set T = τnf (Tf ), V0 = Vf ∩ T and

V1 = V∗ ∩ T , then τf (T ) = T and τ−1
f (V0) ∩ T = V1. Moreover, the tree map

τf : (T, V1)→ (T, V0) still satisfies the conditions (1)-(5), and

deg(τf |T ) ≤ deg τf .

We call the tree map τf : (T, V1)→ (T, V0) the reduced Shishikura tree map
of the rational map f .
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§3. Shishikura trees

Theorem (realization of the tree maps)

Any surjective tree map τ : (T, V1)→ (T, V0) which satisfies the conditions
(1)-(5) can be realized as the Shishikura tree map of a sub-hyperbolic rational
map g such that deg g = deg τ .

Idea of the proof. For each cycle in V −0 , we may choose a special
construction to be realized as a cycle of Julia components (e.g. with star
Hubbard tree, refer to Godillon’s thesis), no Thurston obstruction there. Then
apply a theorem of Cui and Tan to show that such a branched covering is
Thurston equivalent to a sub-hyperbolic rational map.
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§4. Cantor multicurves

Let Γ be a stable multicurve of the sub-hyperbolic rational map f . For
each γ ∈ Γ and any integer m ≥ 1, define km,Γ(γ) = km(γ) to be the number
of components of f−m(∪β∈Γβ) homotopic to γ rel Pf .

Γ is called a Cantor multicurve if km(γ)→∞ as m→∞ for each γ ∈ Γ.

Theorem (Cantor multicurve)

The following conditions are equivalent;
(a) Γf contains a Cantor multicurve;
(b) The map f has infinitely many periodic Jordan curves;
(c) The map f has wandering Jordan curves;
(d) The tree map τf has infinitely many repelling cycles;
(e) The tree map τf has wandering points.
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§5. Producing cycles of branched vertices

Theorem (Producing cycles of branched vertices)

Let τ : (T, V1)→ (T, V0) be a Shishikura tree map of a sub-hyperbolic rational
map. Let X = {x0, x1, · · · , xp−1} be a repelling τ -cycle disjoint from V0. Then
there is a new tree map τ ′ : (T ′, V ′1)→ (T ′, V ′0) such that:
(a) (T, V0) ⊂ (T ′, V ′0);
(b) T ′rT has exactly p components and each of them connects to T at some
point xi;
(c) the tree map τ ′ satisfies the conditions (1)-(5);
(d) deg τ ′ = deg τ ;
(e) for each point y ∈ T , either τ ′(y) = τ(y) or τ ′(y) = τp+1(y);
(f) #{cycles in V ′0} = #{cycles in V0}+ 1.
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§5. Producing cycles of branched vertices

Proof. TrX has p+ 1 components, the closure of one of them contains
exactly one point in X. Denote it by B and assume that x0 ∈ B by relabeling
the index. Set T ′ to be the disjoint union of T with p copies Bi of B such that
Bi connects to T at the point xi.

Define τ ′′ : T ′ → T ′ by τ ′′ = τ on T and τ ′′ maps Bi to Bi+1 by the
identification. Define R : T ′ → T ′ to be a reflection such that R(B0) = B,
R(B) = B0 and R is the identity otherwise. Let τ ′ = R ◦ τ ′′. Then it satisfies
all the conditions.
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§6. A degree 3 rational map with Cantor multicurves

Example.
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§7 First return map of τf

Denote by Tc ⊂ Tf the smallest tree that contains all the critical values.
Then Tc contains at most 2d− 2 end points and∑

(B(v)− 2) = the number end points,

where the summation is taken over all the branched points and B(v) is the
branched number.

It turns out that every orbits in Tf must pass through Tc. Define
R : Tc → Tc to be the first return map. As an application, we have:

Theorem (Exposed complex type Julia cycles)

There are at most 6d− 10 exposed complex type Julia cycles for degree d
sub-hyperbolic rational maps.

A Julia component K is called exposed if it intersects with the boundary of
ONE Fatou domain.
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§8. Periodic points of τf

From §4, we know that τf has infinitely many repelling cycles iff the f has
a Cantor multicurve. From that we can produce rational maps of degree d
such that they have arbitrary many complex type Julia cycles.

However, this condition is not necessary. There are rational maps of degree
d such that f has no Cantor multicurve (thus τf has only finitely many
repelling cycles), but τf has arbitrary many repelling cycles. Such a tree map
can be construct by the Hubbard tree of a quadratic polynomial.

Consider the Mandelbrot set M . Let H0 be the central hyperbolic
component (i.e. the hyperbolic component containing zero). Let
H1, H2, · · · , Hn, · · · be the hyperbolic components symmetric with respect to
the real axis such that Hk+1 touch Hk on the left. Denote by ck the center of
Hk and Tk be the Hubbard tree of the polynomial Pk(z) = z2 + ck. Then
Pk : Tk → Tk has exact k − 1 repelling cycles.

It is not hard to see that Pk : Tk → Tk can be realized as the Shishikura
tree map of degree 3 rational maps.
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Thank you !
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