Multicurves and Shishikura trees associated with disconnected Julia sets

Guizhen Cui and Wenjuan Peng

Academy of Mathematics and Systems Science, CAS

June 21, 2012

Hunan University

Theorem(C. McMullen (1988))

Let f be a rational map with disconnected Julia set J_f . Let K be a non-trivial periodic component of J_f with period $p \ge 1$. Then there exists a rational map g with connected Julia set J_g such that (f^p, K) is quasi-conformally conjugated to (g, J_g) .

Example.

$$f(z) = \frac{z^5 + \lambda}{z^3}, \quad \lambda \text{ is small.}$$

Then J_f is homeomorphic to the product of the Cantor set with a Jordan curve.

Theorem(K. Pilgrim and TAN Lei (2000))

Let f be a geometrically finite rational map with disconnected Julia set. (a) There are uncountably many wandering components of J_f , and each of them is either a single point or a Jordan curve.

(b) There are at most countably many periodic components of J_f which are either points or Jordan curves.

(c) There are at most finitely many periodic components of J_f which are neither points nor Jordan curves.

For a polynomial f, it is known that:

• Every wandering Julia component is a single point.

Branner and Hubbard (1992) for deg $f \le 3$, Kozlovski and van Strein (2009) for deg f > 3, Qiu and Yin (2009) for deg f > 3.

• It is easy to see that:

 $\#\{\text{cycles of non-trivial Julia components}\} \le \deg f - 2.$

Problems:

1. Are there "complex type" wandering Julia components?

2. #{cycles of complex type Julia components} $\leq C(d)$?, where $d \geq 3$ is the degree of the rational map.

Theorem(counterexamples)

Given $d \ge 3$ and $n \ge 1$. There exists a sub-hyperbolic rational map f with deg f = d such that

#{cycles of complex type Julia components} $\ge n$.

$\S2.$ Canonical multicurves

Let f be a sub-hyperbolic rational map with disconnected Julia set J_f . Denote by P_f the post-critical set of f.

We assume that for each periodic Fatou domain U, if each component of $f^{-n}(U)$ is simply-connected for all $n \ge 0$, then $\#(U \cap P_f) = 1$.

Since P_f has only finitely many accumulation points, we have

 $p(f) = \#\{\text{Fatou and Julia components that contains } P_f \text{ points } \} < \infty.$

Definition. Let $E \subset \mathbb{C}$ be a connected subset. We call E is simple type: if there is a disk $D \supset E$ such that $\#(D \cap P_f) \leq 1$; annular type: if there is an annulus $A \supset E$ such that $A \cap P_f = \emptyset$; complex type: otherwise.

Since $f(P_f) \subset P_f$, we have

- E is complex type $\implies f(E)$ is complex type.
- E is annular type $\implies f(E)$ is not simple type.

Lemma

 $\#\{\text{complex type Fatou and Julia components}\} \le 2p(f) - 2.$

Lemma(Pilgrim and Tan)

Let K be a Julia component.

(a) If $f^n(K)$ are simple type for all $n \ge 0$, then K is a single point.

(b) If there is an integer N > 0 such that $f^n(K)$ are annular type for n > N, then K is a Jordan curve.

・ロト ・ 日 ・ ・ 目 ・ ・ 目 ・ り へ へ
ア / 22

$\S2.$ Canonical multicurves

For each complex type Fatou component U and each complex type component C of $\mathbb{C} \setminus U$, take a Jordan curve $\gamma \subset U$ such that

 $(D_{\gamma} \smallsetminus C) \cap P_f = \emptyset,$

where D_{γ} is the component of $\mathbb{C} \smallsetminus \gamma$ such that $D_{\gamma} \supset C$.

For each annular type Fatou component U, take an essential Jordan curve γ in U.

Denote by Γ_f the multicurve representive all these curves.

Lemma

(a) $\#\Gamma_f = \#\{\text{complex type Fatou and Julia components}\} - 1 \leq 2p(f) - 3.$ (b) Γ_f is stable. Moreover, for each $\gamma \in \Gamma_f$, there is a curve $\beta \in \Gamma_f$ such that γ is homotopic to a component of $f^{-1}(\beta)$ rel P_f .

Definition. We call Γ_f the *canonical multicurve* of the rational map f.

§3.1. Set (T_f, V_f) the dual tree of the canonical multicurve Γ_f (V_f denotes the set of vertices of T_f).

vertices of $T_f \longleftrightarrow$ components of $\mathbb{C} \smallsetminus \Gamma_f$.

edges of $T_f \longleftrightarrow$ curves in Γ_f .

Let Γ_* to be the collection of non-peripheral curves in $f^{-1}(\Gamma_f)$. Then each component of $\mathbb{C} \setminus \Gamma_*$ is either an annulus disjoint from P_f , or homotopic to exactly a component of $\mathbb{C} \setminus \Gamma_f$. Therefore T_f is also the dual tree of Γ_* but with (possibly) more vertices (since there may be two curves in Γ_* which are homotopic rel P_f). Denote by V_* the set of its vertices. The rational map f induces a continuous map

$$\tau_f: (T_f, V_*) \to (T_f, V_f)$$

such that:

(1) $V_* = \tau_f^{-1}(V_f) \supset V_f.$

(2) By adopting a linear metric on T_f , we may define τ_f to be linear on every edges of (T_f, V_*) .

We call (T_f, V_f) the Shishikura tree of f and $\tau_f : (T_f, V_*) \to (T_f, V_f)$ the Shishikura tree map.

M. Shishikura, Ergodic Th. & Dynam. Sys. (1989).

M. Shishikura, Proceeding of RIMS (2002).

§3.2. Weight on edges of (T_f, V_*) . For each edge a of (T_f, V_*) , define

$$w(a) = \deg f|_{\gamma},$$

where $\gamma \in \Gamma_*$ is the curve corresponding to the edge *a*.

Marking on vertices V_f . Marking each vertex $v \in V_f$ by "+" or "-" according to its corresponding pieces of $\mathbb{C} \setminus \Gamma_f$ is contained in a Fatou domain or not. Set $V_f = V_f^+ \cup V_f^-$ according to the marking. Then

$$au_f(V_f^+) \subset V_f^+$$
, and $au_f(V_f^-) \subset V_f^-$.

Further properties of the tree map τ_f :

(3) For each (closed) edge e of (T_f, V_f) , \exists an integer $n \ge 0$ such that

$$\tau^{-n}(V_f^+) \cap e \neq \emptyset.$$

(4) (Γ_f is not a Thurston obstruction) There exists a linear metric ρ on T_f such that τ_f is expanding with respect to the weight:

$$L_{\rho}(e) > \sum_{i} \frac{L_{\rho}(\tau_f(a_i))}{w(a_i)}$$

for each edge e of (T_f, V_f) , where a_i are all the edges of (T_f, V_*) in e.

(5) (*characterization of cycles in* V_f^+) Each cycle in V_f^+ can be realized as a cycle of multiply-connected Fatou domains.

§3.3. The degree of the tree map τ_f :

For each vertex $v \in V_f$ (or V_*), denote by E(v) (or $E_*(v)$) the collection of edges of (T_f, V_f) (or (T_f, V_*)) such that the vertex v is an endpoint of each of them.

The mapping degree of τ_f at $v \in V_*$ is defined as:

$$Deg(\tau_f, v) = \max_{e \in E(\tau_f(v))} \{ \sum w(a_i), a_i \in E_*(v) \text{ and } \tau_f(a) = e \}.$$

The critical degree of τ_f at $v \in V_*$ is defined as:

$$\deg(\tau_f, v) = 2\text{Deg}(\tau_f, v) - 2 - \sum_{a \in E_*(v)} [w(a) - 1] + 1.$$

§3. Shishikura trees

The degree of τ_f is defined by:

$$2\deg \tau_f - 2 = \sum_{v \in V_*} [\deg(\tau_f, v) - 1].$$

It turns out that $\deg \tau_f \leq \deg f$.

§3.4. Reduced tree map. Note that the Shishikura tree map $\tau_f : (T_f, V_*) \to (T_f, V_f)$ need not to be surjective. However, there exists an integer $n \ge 0$ such that $\tau_f^n(T_f) = \tau_f^{n+1}(T_f)$. Set $T = \tau_f^n(T_f)$, $V_0 = V_f \cap T$ and $V_1 = V_* \cap T$, then $\tau_f(T) = T$ and $\tau_f^{-1}(V_0) \cap T = V_1$. Moreover, the tree map $\tau_f : (T, V_1) \to (T, V_0)$ still satisfies the conditions (1)-(5), and

 $\deg(\tau_f|_T) \le \deg \tau_f.$

We call the tree map $\tau_f : (T, V_1) \to (T, V_0)$ the reduced Shishikura tree map of the rational map f.

Theorem (realization of the tree maps)

Any surjective tree map $\tau : (T, V_1) \to (T, V_0)$ which satisfies the conditions (1)-(5) can be realized as the Shishikura tree map of a sub-hyperbolic rational map g such that deg $g = \text{deg } \tau$.

Idea of the proof. For each cycle in V_0^- , we may choose a special construction to be realized as a cycle of Julia components (e.g. with star Hubbard tree, refer to Godillon's thesis), no Thurston obstruction there. Then apply a theorem of Cui and Tan to show that such a branched covering is Thurston equivalent to a sub-hyperbolic rational map.

Let Γ be a stable multicurve of the sub-hyperbolic rational map f. For each $\gamma \in \Gamma$ and any integer $m \geq 1$, define $k_{m,\Gamma}(\gamma) = k_m(\gamma)$ to be the number of components of $f^{-m}(\bigcup_{\beta \in \Gamma} \beta)$ homotopic to γ rel P_f .

 Γ is called a *Cantor multicurve* if $k_m(\gamma) \to \infty$ as $m \to \infty$ for each $\gamma \in \Gamma$.

Theorem (Cantor multicurve)

The following conditions are equivalent;

- (a) Γ_f contains a Cantor multicurve;
- (b) The map f has infinitely many periodic Jordan curves;
- (c) The map f has wandering Jordan curves;
- (d) The tree map τ_f has infinitely many repelling cycles;
- (e) The tree map τ_f has wandering points.

Theorem (Producing cycles of branched vertices)

Let $\tau : (T, V_1) \to (T, V_0)$ be a Shishikura tree map of a sub-hyperbolic rational map. Let $X = \{x_0, x_1, \dots, x_{p-1}\}$ be a repelling τ -cycle disjoint from V_0 . Then there is a new tree map $\tau' : (T', V'_1) \to (T', V'_0)$ such that: (a) $(T, V_0) \subset (T', V'_0)$;

(b) $T' \\ T$ has exactly p components and each of them connects to T at some point x_i ;

- (c) the tree map τ' satisfies the conditions (1)-(5);
- (d) $\deg \tau' = \deg \tau;$
- (e) for each point $y \in T$, either $\tau'(y) = \tau(y)$ or $\tau'(y) = \tau^{p+1}(y)$;
- (f) $\#\{\text{cycles in } V_0'\} = \#\{\text{cycles in } V_0\} + 1.$

Proof. $T \setminus X$ has p + 1 components, the closure of one of them contains exactly one point in X. Denote it by B and assume that $x_0 \in \overline{B}$ by relabeling the index. Set T' to be the disjoint union of T with p copies B_i of B such that B_i connects to T at the point x_i .

Define $\tau'': T' \to T'$ by $\tau'' = \tau$ on T and τ'' maps B_i to B_{i+1} by the identification. Define $R: T' \to T'$ to be a reflection such that $R(B_0) = B$, $R(B) = B_0$ and R is the identity otherwise. Let $\tau' = R \circ \tau''$. Then it satisfies all the conditions.

§6. A degree 3 rational map with Cantor multicurves

Example.

§7 First return map of τ_f

Denote by $T_c \subset T_f$ the smallest tree that contains all the critical values. Then T_c contains at most 2d - 2 end points and

 $\sum (B(v) - 2) =$ the number end points,

where the summation is taken over all the branched points and B(v) is the branched number.

It turns out that every orbits in T_f must pass through T_c . Define $R: T_c \to T_c$ to be the first return map. As an application, we have:

Theorem (Exposed complex type Julia cycles)

There are at most 6d - 10 exposed complex type Julia cycles for degree d sub-hyperbolic rational maps.

A Julia component K is called *exposed* if it intersects with the boundary of ONE Fatou domain.

From §4, we know that τ_f has infinitely many repelling cycles iff the f has a Cantor multicurve. From that we can produce rational maps of degree d such that they have arbitrary many complex type Julia cycles.

However, this condition is not necessary. There are rational maps of degree d such that f has no Cantor multicurve (thus τ_f has only finitely many repelling cycles), but τ_f has arbitrary many repelling cycles. Such a tree map can be construct by the Hubbard tree of a quadratic polynomial.

Consider the Mandelbrot set M. Let H_0 be the central hyperbolic component (i.e. the hyperbolic component containing zero). Let $H_1, H_2, \dots, H_n, \dots$ be the hyperbolic components symmetric with respect to the real axis such that H_{k+1} touch H_k on the left. Denote by c_k the center of H_k and T_k be the Hubbard tree of the polynomial $P_k(z) = z^2 + c_k$. Then $P_k: T_k \to T_k$ has exact k-1 repelling cycles.

It is not hard to see that $P_k: T_k \to T_k$ can be realized as the Shishikura tree map of degree 3 rational maps.

Thank you !