Rational maps with constant Thurston map

Guizhen Cui

AMSS, Chinese Academy of Sciences

October 13, 2014

Guizhen Cui (CAS)

Constant Thurston map

◆ 注 → 注 → 注 → へへつ
 October 13, 2014 1 / 21

Contents

A rational map

2 The Thurston map

3 Belyi maps

4 Power factoring

5 The Arturo map

6 Mixing case

æ

(日) (同) (三) (三)

$$f(z) = -\left[rac{(z^2-1)(z^2+3)}{4z^2}
ight]^3$$

٠

The set of critical values $V_f = \{0, 1, \infty\}$.

3

<ロ> (日) (日) (日) (日) (日)

A rational map

$$f(z) = -\left[rac{(z^2-1)(z^2+3)}{4z^2}
ight]^3$$

The set of critical values $V_f = \{0, 1, \infty\}$.

Theorem 1

There exists 3 roots of the equation f(z) = b such that as b varies in $\mathbb{C} \setminus \{0, 1\}$, these roots always lie on the vertices of an equilateral triangle.

(日) (周) (三) (三)

$$f(z) = -\left[rac{(z^2-1)(z^2+3)}{4z^2}
ight]^3$$

The set of critical values $V_f = \{0, 1, \infty\}$.

Theorem 1

There exists 3 roots of the equation f(z) = b such that as b varies in $\mathbb{C} \setminus \{0, 1\}$, these roots always lie on the vertices of an equilateral triangle.

$$f(z) = P_3 \circ g \circ P_2, \quad P_d(z) = z^d,$$

 $g(z) = -\frac{(z-1)(z+3)}{4z}.$

Guizhen Cui (CAS)

(日) (周) (三) (三)

$$f: 0, \infty \mapsto \infty, \quad \deg = 6$$

$$f: \pm 1, \pm i\sqrt{3} \mapsto 0, \quad \deg = 3$$

f: 4 simple critical points and 4 regular points to 1.

Let $V \subset \mathbb{C}$ be a simply-connected domain with $0 \in V$ and $1 \notin V$. Then $f^{-1}(V)$ has 4 components:

$$U_1
i 1, \ U_{-1}
i -1, \ U_2
i \sqrt{3}$$
 and $U_{-2}
i -i \sqrt{3},$

which map to V with deg = 3. Pick a point $b \in V \setminus \{0\}$. The 3 roots is taken to be

$$E=f^{-1}(b)\cap U_2.$$

Guizhen Cui (CAS)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Topological configuration of f(z).

- 2

・ロン ・四 ・ ・ ヨン ・ ヨン

Topological configuration of f(z).

The Julia set of f(z).

イロト イヨト イヨト イヨト

3

The Thurston map

A marked rational map $f : (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ is a rational map f with deg $f \ge 2$ and two finite set $A, B \subset \widehat{\mathbb{C}}$ such that #A > 3, #B > 3 and $f(A) \cup V_f \subset B$.

Let $f : (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ be a marked rational map. For any $\phi \in \text{Hom}^+(\widehat{\mathbb{C}})$, by the uniformalization theorem, there exists a $\psi \in \text{Hom}^+(\widehat{\mathbb{C}})$ and a rational map R such that the following diagram commutes:

$$\begin{array}{ccc} \widehat{\mathbb{C}} & \stackrel{\psi}{\longrightarrow} & \widehat{\mathbb{C}} \\ f \downarrow & & \downarrow R \\ \widehat{\mathbb{C}} & \stackrel{\phi}{\longrightarrow} & \widehat{\mathbb{C}} \end{array}$$

Moreover, ψ is unique up to Mübius transformation.

The Thurston map

Let $\phi_0 \in \text{Hom}^+(\widehat{\mathbb{C}})$ such that $\phi_0 \sim_B \phi$, i.e. $\phi_0 \circ \phi^{-1}$ is isotopic to a conformal map rel $\phi(B)$. Let ψ_0 be the lift of ϕ_0 . Then $\psi_0 \sim_{f^{-1}(B)} \psi$ and hence $\psi_0 \sim_A \psi$.

$\widehat{\mathbb{C}}$	$\stackrel{\psi_{0}\sim_{A}\psi}{\longrightarrow}$	$\widehat{\mathbb{C}}$
Ļ		↓R
$\widehat{\mathbb{C}}$	$\stackrel{\phi_0 \sim_B \phi}{\longrightarrow}$	$\widehat{\mathbb{C}}$

Recall that the Teichmüller space $T(\widehat{\mathbb{C}}, B)$ is the quotient space

$$T(\widehat{\mathbb{C}},B) = \operatorname{Hom}^+(\widehat{\mathbb{C}})/\sim_B = \{[\phi]_B, \phi \in \operatorname{Hom}^+(\widehat{\mathbb{C}})\}.$$

Define a map $\sigma_{f,A,B} : T(\widehat{\mathbb{C}}, B) \to T(\widehat{\mathbb{C}}, A)$ by $\sigma_{f,A,B}([\phi]_B) = [\psi]_A$. It is called the **Thurston map** induced by f.

Constant Thurston map

Theorem [BEKP,2009]

The Thurston map $\sigma_{f,A,B}$ is a constant if and only if for any Jordan curve γ in $\widehat{\mathbb{C}} \setminus B$, each component of $f^{-1}(\gamma)$ is either trivial or peripheral in $\widehat{\mathbb{C}} \setminus A$.

A Jordan curve $\gamma \subset \widehat{\mathbb{C}} \setminus A$ is **trivial** if one component of $\widehat{\mathbb{C}} \setminus \gamma$ is disjoint from A, and **peripheral** if one component of $\widehat{\mathbb{C}} \setminus \gamma$ contains exactly one point of A.

Constant Thurston map

Theorem [BEKP,2009]

The Thurston map $\sigma_{f,A,B}$ is a constant if and only if for any Jordan curve γ in $\widehat{\mathbb{C}} \setminus B$, each component of $f^{-1}(\gamma)$ is either trivial or peripheral in $\widehat{\mathbb{C}} \setminus A$.

A Jordan curve $\gamma \subset \widehat{\mathbb{C}} \setminus A$ is **trivial** if one component of $\widehat{\mathbb{C}} \setminus \gamma$ is disjoint from A, and **peripheral** if one component of $\widehat{\mathbb{C}} \setminus \gamma$ contains exactly one point of A.

Problem: Classify the marked rational maps with constant Thurston map.

くほと くほと くほと

Belyi maps

Let $f: (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ be a marked rational map. Assume that

 $\#(f(A)\cup V_f)=3.$

Then $\sigma_{f,A,B}$ is a constant. In particular, f(z) is a **Belyi map**, i.e. $\#V_f \leq 3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Belyi maps

Let $f: (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ be a marked rational map. Assume that

 $\#(f(A)\cup V_f)=3.$

Then $\sigma_{f,A,B}$ is a constant. In particular, f(z) is a **Belyi map**, i.e. $\#V_f \leq 3$.

Example 1 (McMullen). Let s(z) be a Belyi map and $f = g \circ s$, where g is an arbitrary rational map. Let $A \subset \widehat{\mathbb{C}}$ be a finite set with #A > 3 s.t.

$$\#(s(A)\cup V_s)=3.$$

Then $\sigma_{f,A,B}$ is a constant for any possible choice of the set *B*. Note that $\#(f(A) \cup V_f) > 3$ if $\#V_g > 3$.

We will call a marked rational map with the above form having a Belyi factor, or in particular, having a power factor if $\#V_s = 2$.

Guizhen Cui (CAS)

Question [BEKP]: Does any marked rational map with constant Thurston map have a Belyi factor?

3

イロト イポト イヨト イヨト

Belyi maps

Question [BEKP]: Does any marked rational map with constant Thurston map have a Belyi factor?

Theorem 2

Let $f : (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ be a marked rational map such that $\sigma_{f,A,B}$ is a constant. Then there exists a Belyi map s with deg $s \leq \deg f$ such that $\#(s(A) \cup V_s) = 3$.

This theorem may support an affirmative answer of the above question. However, we will see later that it is not true. **Question** [BEKP]: Does any marked rational map with constant Thurston map have a Belyi factor?

Theorem 2

Let $f: (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ be a marked rational map such that $\sigma_{f,A,B}$ is a constant. Then there exists a Belyi map s with deg $s < \deg f$ such that $\#(s(A) \cup V_s) = 3.$

This theorem may support an affirmative answer of the above question. However, we will see later that it is not true.

Definition. A marked rational map $f : (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ will be called **regular** if f(A) is disjoint from V_f ; **branched** if $f(A) \subset V_f$ or **mixing** otherwise.

Regular and mixing cases may happen for maps with power factor.

10 / 21

Power factoring

Let $f: (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ be a marked rational map. Denote by

$$A_1 = A \smallsetminus f^{-1}(V_f)$$
 and $A_2 = A \cap f^{-1}(V_f)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Power factoring

Let $f: (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ be a marked rational map. Denote by $A_1 = A \smallsetminus f^{-1}(V_f)$ and $A_2 = A \cap f^{-1}(V_f)$.

Lemma 1

If $\sigma_{f,A,B}$ is a constant, then $f(A_1)$ contains at most one point.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Power factoring

Let $f:(\widehat{\mathbb{C}},A)
ightarrow (\widehat{\mathbb{C}},B)$ be a marked rational map. Denote by

$$A_1 = A \smallsetminus f^{-1}(V_f)$$
 and $A_2 = A \cap f^{-1}(V_f)$.

Lemma 1

If $\sigma_{f,A,B}$ is a constant, then $f(A_1)$ contains at most one point.

Theorem 3

If $\sigma_{f,A,B}$ is a constant and $A_1 \neq \emptyset$, then $\#A_2 \leq 2$. Moreover if $\#A_2 = 2$, then f has a power factor.

イロト イポト イヨト イヨト 二日

Lift of arcs

Lemma 2

Let $x_0 \in \widehat{\mathbb{C}} \smallsetminus f^{-1}(V_f)$ be a point. Then for any point $x_1 \in \widehat{\mathbb{C}}$ with $f(x_0) \neq f(x_1)$, there exists an open arc

$$\delta: (0,1)
ightarrow \widehat{\mathbb{C}} \smallsetminus V_f$$

joining $f(x_0)$ with $f(x_1)$ such that $f^{-1}(\delta)$ has a component $\tilde{\delta}$ joining x_0 with x_1 .

Remark. The result is not true if both x_0 and x_1 are contained in $f^{-1}(V_f)$.

くほと くほと くほと

The monodromy group

Pick $y \in \widehat{\mathbb{C}} \setminus V_f$ to be a base point. Then each $\gamma \in \pi_1(\widehat{\mathbb{C}} \setminus V_f, y)$ induces a permutation p_γ on $f^{-1}(y)$, which forms the **monodromy group** Mon(f). For each point $x \in X$, we denote by $Stab(x) \subset Mon(f)$ the stabilizer.

イロト イポト イヨト イヨト 二日

The monodromy group

Pick $y \in \widehat{\mathbb{C}} \setminus V_f$ to be a base point. Then each $\gamma \in \pi_1(\widehat{\mathbb{C}} \setminus V_f, y)$ induces a permutation p_γ on $f^{-1}(y)$, which forms the **monodromy group** Mon(f). For each point $x \in X$, we denote by $Stab(x) \subset Mon(f)$ the stabilizer.

Lemma 3

Assume that $\sigma_{f,A,B}$ is a constant and $A_1 \neq \emptyset$. For any $p \in Mon(f)$, let $A' = p(A_1) \cup A_2$. Then $\sigma_{f,A',B}$ is also a constant.

The monodromy group

Pick $y \in \widehat{\mathbb{C}} \setminus V_f$ to be a base point. Then each $\gamma \in \pi_1(\widehat{\mathbb{C}} \setminus V_f, y)$ induces a permutation p_γ on $f^{-1}(y)$, which forms the **monodromy group** Mon(f). For each point $x \in X$, we denote by $Stab(x) \subset Mon(f)$ the stabilizer.

Lemma 3

Assume that $\sigma_{f,A,B}$ is a constant and $A_1 \neq \emptyset$. For any $p \in Mon(f)$, let $A' = p(A_1) \cup A_2$. Then $\sigma_{f,A',B}$ is also a constant.

Lemma 4

Assume that $\sigma_{f,A,B}$ is a constant and $\#A_2 = 1$. Then f has a power factor if and only if $\text{Stab}(a_i) = \text{Stab}(a_j)$ for any two points $a_i, a_j \in A_1$.

イロト イポト イヨト イヨト 二日

The Arturo map

$$f(z) = rac{z^3(2-z)}{2z-1}, \quad V_f = \{0, 1, \infty\}.$$

Guizhen Cui (CAS)

Constant Thurston map

October 13, 2014 14 / 21

- 2

・ロト ・四ト ・ヨト ・ヨト

The Arturo map

$$f(z) = rac{z^3(2-z)}{2z-1}, \quad V_f = \{0, 1, \infty\}.$$

Theorem (Arturo)

Let $B = V_f \cup \{b\}$ for some point $b \in \widehat{\mathbb{C}} \setminus V_f$ and $A = f^{-1}(b)$. Then $\sigma_{f,A,B}$ is a constant.

- 4 目 ト - 4 日 ト - 4 日 ト

The Arturo map

$$f(z) = rac{z^3(2-z)}{2z-1}, \quad V_f = \{0, 1, \infty\}.$$

Theorem (Arturo)

Let $B = V_f \cup \{b\}$ for some point $b \in \widehat{\mathbb{C}} \setminus V_f$ and $A = f^{-1}(b)$. Then $\sigma_{f,A,B}$ is a constant.

Theorem (Arturo)

Let $f : (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ be a marked rational map without power factor such that $\sigma_{f,A,B}$ is a constant. Assume that $A = f^{-1}(b)$ for some point $b \in B \smallsetminus V_f$. Then f is an Arturo map.

< 回 > < 三 > < 三 >

Mixing case

Mixing case

$$f(z) = -\left[\frac{(z^2-1)(z^2+3)}{4z^2}\right]^3 = P_3 \circ g \circ P_2.$$

Let E be the set defined above. The next theorem is equivalent to Theorem 1.

Theorem 4

Let
$$A = E \cup \{\infty\}$$
 and $B = \{0, 1, b, \infty\}$. Then $\sigma_{f,A,B}$ is a constant.

3

(日) (同) (三) (三)

Mixing case

Mixing case

$$f(z) = -\left[\frac{(z^2-1)(z^2+3)}{4z^2}\right]^3 = P_3 \circ g \circ P_2.$$

Let E be the set defined above. The next theorem is equivalent to Theorem 1.

Theorem 4

Let
$$A = E \cup \{\infty\}$$
 and $B = \{0, 1, b, \infty\}$. Then $\sigma_{f,A,B}$ is a constant.

Lemma 5

Denote by
$$S = \bigcap_{a_i \in E} \text{Stab}(a_i)$$
. Then for any point $a_i \in E$,
Stab $(a_i) \setminus S \neq \emptyset$ and $p^2 \in S$ for any $p \in \text{Stab}(a_i) \setminus S$.

Corollary

The marked rational map $f: (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ has no power factor.

Proof of Theorem 4

We only need to prove that for any Jordan curve $\gamma \subset \mathbb{C} \setminus \{0, 1, b\}$, each component of $f^{-1}(\gamma)$ is trivial or peripheral by Theorem [BEKP]. It is a consequence of the following statements.

(1) For any arc $\delta \subset \mathbb{C} \setminus \{0, 1, b\}$ connecting *b* with a critical value 0 or 1, the 3 components of $f^{-1}(\delta)$ which connect points in *E* land either on the same point or 3 distinct points from another direction.

(2) For any arc $\delta \subset \mathbb{C} \setminus \{0, 1, b\}$ connecting *b* with the critical value ∞ , consider the 3 components of $f^{-1}(\delta)$ which connect points in *E*. Either two of them or nor of them land on the infinity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Mixing case

 $P_3^{-1}(S^1) = S^1$. $g^{-1}(S^1)$ divides $\widehat{\mathbb{C}}$ into 4 domains, $W_0 \ni 0, W_{\infty} \ni \infty, W_1 \ni 1$ and $W_2 \ni -3$. Denote by

$$U_0 = P_2^{-1}(W_0), \quad U_\infty = P_2^{-1}(W_\infty),$$

 U_1, U_{-1} : the two components of $P_2^{-1}(W_1)$ and U_2, U_{-2} : the two components of $P_2^{-1}(W_2).$

Guizhen Cui (CAS)

October 13, 2014 17 / 21

$$E = \partial U_2 \cap f^{-1}(b) = \{a_1, a_2, a_3\}, a_1, a_2 \in \partial U_\infty \text{ and } a_3 \in \partial U_0.$$

Let $p_{\infty} \in Mon(f)$ be generated by a loop around the infinity. Then $p_{\infty}^{6} = \text{id. Set } E_{k} := p_{\infty}^{k}(E)$ for each $0 \leq k < 6$.

Let $p_1 \in Mon(f)$ be generated by a loop around the critical value 1. Then $p_1^2 = id, p_1(E_0) = E_1 and p_1(E_3) = E_4.$

Set $E_6 = p_1(E_2)$ and $E_7 = p_1(E_5)$. Then $p_{\infty}(E_6) = E_7$ and $p_{\infty}(E_7) = E_6$.

Note that Mon(f) is generated by (p_{∞}, p_1) . We prove that:

Proposition

For each $p \in Mon(f)$ and each E_i , $p(E_i) = E_i$ for some $0 \le j \le 7$. Moreover,

- (a) $E_i \cap \partial U_\infty$ contains 0 or 2 points.
- (b) $E_i \cap \partial U_0$ contains 1 or 3 points.
- (c) $E_i \cap \partial U_i$ for $j = \pm 1, \pm 2$ contains 0,1 or 3 points.

18 / 21

Proof of Theorem 4

Now, let δ_0 be an arc defined in (1) or (2) such that it is disjoint from S^1 . Then it satisfies the above conditions due to the location of E.

Any arc δ defined in (1) or (2) differs from δ_0 by an element of the fundamental group. Thus the landing points of $f^{-1}(\delta)$ differ from $f^{-1}(\delta_0)$ by a monodromy element. Therefore the above conditions are always true due to the location of E_i for $0 \le i \le 7$.

イロト 不得下 イヨト イヨト

Mixing case

Example 2. Let s(z) be the map defined above. Let $f = g \circ s$, where g is an arbitrary rational map with deg $g \ge 2$. Pick a point

$$b \in \widehat{\mathbb{C}} \setminus (V_s \cup g^{-1}(V_g)).$$

Let A be the finite set defined above. Then $f : (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ is a mixing marked rational map and $\sigma_{f,A,B}$ is a constant for any choice of B.

イロト 不得下 イヨト イヨト

Mixing case

Example 2. Let s(z) be the map defined above. Let $f = g \circ s$, where g is an arbitrary rational map with deg $g \ge 2$. Pick a point

$$b\in\widehat{\mathbb{C}}\smallsetminus (V_s\cup g^{-1}(V_g)).$$

Let A be the finite set defined above. Then $f : (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ is a mixing marked rational map and $\sigma_{f,A,B}$ is a constant for any choice of B.

Conjecture

Let $f : (\widehat{\mathbb{C}}, A) \to (\widehat{\mathbb{C}}, B)$ be a mixing marked rational map such that $\sigma_{f,A,B}$ is a constant and f has no power factor. Then it has the above form.

イロト イポト イヨト イヨト 二日

Thanks for your attention!

3

<ロ> (日) (日) (日) (日) (日)