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Chapter 1

The Fourier Transform and Tempered
Distributions

In this chapter, we introduce the Fourier transform and study its more el-
ementary properties, and extend the definition to the space of tempered dis-
tributions. We also give some characterizations of operators commuting with
translations.

1.1 The L' theory of the Fourier transform

We begin by introducing some notation that will be used throughout this
work. R™ denotes n-dimensional real Euclidean space. We consistently write
x = (21,22, ,xn), & = (&1,&,- -+, &), - -+ for the elements of R”. The
inner product of x, £ € R™ is the number x-§ = 2?21 z;€;, thenormof v € R”
is the nonnegative number |z| = +/z - z. Furthermore, dz = dxidxy - - - dx,
denotes the element of ordinary Lebesgue measure.

We will deal with various spaces of functions defined on R". The simplest of
these are the L? = LP(R") spaces, 1 < p < oo, of all measurable functions f
such that || f||, = ([gn |f(x)\pdx)1/p < 00. The number || f||, is called the L?
norm of f. The space L>°(R") consists of all essentially bounded functions on
R™ and, for f € L>*(R"), we let || f||~ be the essential supremum of | f(z)],
x € R™. Often, the space Cy(R™) of all continuous functions vanishing at
infinity, with the L° norm just described, arises more naturally than L> =
L*>(R™). Unless otherwise specified, all functions are assumed to be complex
valued; it will be assumed, throughout the note, that all functions are (Borel)
measurable.

In addition to the vector-space operations, L' (R") is endowed with a “mul-
tiplication” making this space a Banach algebra. This operation, called convo-
lution, is defined in the following way: If both f and g belong to L!(R™), then
their convolution h = f * g is the function whose value at z € R" is
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h(x) = - flxz —y)g(y)dy.

One can show by an elementary argument that f(z — y)g(y) is a measurable
function of the two variables = and y. It then follows immediately from Fib-
ini’s theorem on the interchange of the order of integration that & € L'(R")
and [|h]l; < ||f|l1|lg]l1- Furthermore, this operation is commutative and as-
sociative. More generally, we have, with the help of Minkowski’s integral in-
equality || [ F(z,y)dy|lz < [||F(x,y)| zzdy, the following result:

Theorem 1.1. If f € LP(R™), p € [1,00], and g € L'(R™) then h = f * g is
well defined and belongs to LP(R™). Moreover,

1Pl < 1 f1lpllglls-

Now, we first consider the Fourier! transform of L' functions.
Definition 1.2. Let w € R\ {0} be a constant. If f € L'(R"), then its
Fourier transform is % f or f : R* — C defined by
Fi) = [ e s (1.1)

n

for all £ € R™.

We now continue with some properties of the Fourier transform. Before
doing this, we shall introduce some notations. For a measurable function f on
R", z € R™ and a # 0 we define the translation and dilation of f by

7y f(z) =f(x —y), (1.2)
0o f(2) =f(az). (1.3)

Proposition 1.3. Given f,g € L'(R"), z,y,£ € R", a multiindex, a,b € C,
e € Rand ¢ # 0, we have

(i) Linearity: # (af + bg) = a7 f + bF .

(i) Translation: F1,f () = e *w*¢ f (€).

(iii) Modulation: .F (e f(x)) (&) = 7, f(€).

(iv) Scaling: F6.f(§) = |e| ™01 f(§). A A

(v) Differentiation: . F0*f(&) = (wWi&)*f(£), 0*f(&) =
F((—wiz)" f(2))(€). A

(vi) Convolution: F(f * g)(§) = f(£)g(§)

(vii) Transformation: F (f o A)(§) = f(AE), where A is an orthogonal
matrix and & is a column vector.

—

(viii) Conjugation: f(z) = f(=¢).

! Jean Baptiste Joseph Fourier (21 March 1768 — 16 May 1830) was a French mathematician and physi-
cist best known for initiating the investigation of Fourier series and their applications to problems of
heat transfer and vibrations. The Fourier transform and Fourier’s Law are also named in his honor.
Fourier is also generally credited with the discovery of the greenhouse effect.
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Proof. These results are easy to be verified. We only prove (vii). In fact,

F(FoA)© = [ e pandn = [ e )y
- / A f(y)dy = / e A f(y)dy = f(AS),

where we used the change of variables y = Az and the fact that A=! = AT
and |det A| = 1. |

Corollary 1.4. The Fourier transform of a radial function is radial.

Proof. Let £, € R™ with |£| = |n|. Then there exists some orthogonal matrix
A such that A¢ = 7. Since f is radial, we have f = f o A. Then, it holds

F[(n) = F [(AE) = F(f o A)(€) = F [ (&),
by (vii) in Proposition 1.3. |
It is easy to establish the following results:
Theorem 1.5 (Uniform continuity). (i) The mapping .% is a bounded linear

transformation from L*(R™) into L>=(R™). In fact, ||.Z flloo < || f]|1-
(i) If f € L*(R™), then .Z f is uniformly continuous.

Proof. (1) is obvious. We now prove (ii). By

~

flern) = O = [ et~ 1)f(@)do,
we have

fE+R) = FEOI< [ e —1]|f(z)|dz

Rn

—wiz-h
< /| e 1| f(2)|de + 2 / f(@)ldx

|z|>r
< / (ol [l (2)|d + 2 / f(a)|da
lz|<r |z|>r
=0 + I,

since for any 6 > 0

€% 1] = /(cos — 1)? +sin® 6 = V2 — Zeos0 = 2[sin(6/2)] < |9].
Given any ¢ > 0, we can take r so large that I, < £/2. Then, we fix this r
and take |h| small enough such that [; < /2. In other words, for given ¢ > 0,
there exists a sufficiently small § > 0 such that | f(£ + k) — f(£)| < ¢ when
|h| < 6, where ¢ is independent of . [ |

Ex. 1.6. Suppose that a signal consists of a single rectangular pulse of
width 1 and height 1. Let’s say that it gets turned on at z = —3 and
turned off at 2 = 1. The standard name for this “normalized” rectan-
gular pulse is
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Lif —1<z<3, —
0, otherwise. - -

—= 1 T

I(z) = rect(x) := { 1 f

It is also called, variously, the normalized boxcar function, the top hat
function, the indicator function, or the characteristic function for the
interval (—1/2,1/2). The Fourier transform of this signal is

R ' 1/2 ' —wize |1/2 9
() = /Re‘mfﬂ(x)dx = / e wint gy — & = — s.inw—5

1/2 —Wi |y WE 2
when ¢ # 0. When ¢ = 0, I1(0) = ff@ dx = 1. By I'Hopital’s rule,
cowé w w
. B Y sSm 5. 50087: _ 5
SO =i e —a L T Ao

so I1(¢) is continuous at & = 0. There is a standard function called
“sinc”? that is defined by sinc(¢) = % In this notation /() = sinc%.

Here is the graph of 11 ().

—_

i | %w\/ I

Remark 1.7. The above definition of the Fourier transform in (1.1) ex-
tends immediately to finite Borel measures: if ;1 is such a measure on
R", we define .7 by letting

Fule) = [ e dula).

Theorem 1.5 is valid for this Fourier transform if we replace the Lt
norm by the total variation of p.

The following theorem plays a central role in Fourier Analysis. It takes its
name from the fact that it holds even for functions that are integrable according
to the definition of Lebesgue. We prove it for functions that are absolutely
integrable in the Riemann sense.’

2 The term “sinc” (English pronunciation:['sik]) is a contraction, first introduced by Phillip M.
Woodward in 1953, of the function’s full Latin name, the sinus cardinalis (cardinal sine).

3 Let us very briefly recall what this means. A bounded function f on a finite interval [a, b] is
integrable if it can be approximated by Riemann sums from above and below in such a way that the
difference of the integrals of these sums can be made as small as we wish. This definition is then
extended to unbounded functions and infinite intervals by taking limits; these cases are often called
improper integrals. If I is any interval and f is a function on I such that the (possibly improper)
integral [, |f(z)|dx has a finite value, then f is said to be absolutely integrable on 1.
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Theorem 1.8 (Riemann-Lebesgue lemma). If f € LY(R") then Z f — 0
as || — oo; thus, in view of the last result, we can conclude that F f €
Co(R™).
{‘ i i / ] \r | \( M\ The Riemann-Lebesgue lemma states that the integral of a function like the
W\p‘d/\,‘[\m”(\u\/\ / (\“ w left is small. The integral will approach zero as the number of oscillations
SRR

increases.
Proof. First, for n = 1, suppose that f(x) = x(a) (%), the characteristic func-
tion of an interval. Then

. b ) e—wiaf . e—wib&
f(§ = / e W dy = , — 0, as|¢|— oc.
a wig
Similarly, the result holds when f is the characteristic function of the n-
dimensional rectangle I = {x € R" : a1 < 1 < by, ,a, < x, < by}

since we can calculate .% f explicitly as an iterated integral. The same is there-
fore true for a finite linear combination of such characteristic functions (i.e.,
simple functions). Since all such simple functions are dense in L', the result
for a general f € L'(R") follows easily by approximating f in the L' norm by
such a simple function g, then f = g+ (f — g), where .# f — % g is uniformly
small by Theorem 1.5, while .#¢(&) — 0 as || — oc. |

Theorem 1.8 gives a necessary condition for a function to be a Fourier trans-
form. However, that belonging to Cj, is not a sufficient condition for being the
Fourier transform of an integrable function. See the following example.

Ex. 1.9. Suppose, for simplicity, that n = 1. Let
1
1.~ 5 > €,

In¢’
§

27 0<€<67

9(§) =—g(=¢), £<0.
It is clear that ¢(&) is uniformly continuous on R and ¢(¢§) — 0 as |{| —
Q.

Assume that there exists an f € L*(R) such that f(¢) = ¢(¢), i.e.,
9= [ e

e}

9(§) =

Since ¢(¢) is an odd function, we have

g(&) = /_OO e f(r)de = —i /Oo sin(wzf) f(z)dx = /OOO sin(wxf) F(x)dzx,

where F(z) = i[f(—z) — f(z)] € L'(R). Integrating @ over (0, N)
yields

[0 [ ([ [ ([ )

Noticing that
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N -
t
lim P = z,
N—oo /g t 2
and by Lebesgue dominated convergence theorem,we get that the inte-

gral of rh.s. is convergent as N — oc. That is,

N 0o
im [ 98 g g/o F(2)dz < oo,

N—oo Jg 5
which yields [ %d& < oo since [; %dé = 1. However,

N B [(9 T A S
e T

€
This contradiction indicates that the assumption was invalid.

We now turn to the problem of inverting the Fourier transform. That is,
we shall consider the question: Given the Fourier transform f of an integrable
function f, how do we obtain f back again from f ? The reader, who is familiar
with the elementary theory of Fourier series and integrals, would expect f(x)
to be equal to the integral

C / ) eI f(€)dE. (1.4)

Unfortunately, f need not be integrable (for example, let n» = 1 and f be the
characteristic function of a finite interval). In order to get around this difficulty,
we shall use certain summability methods for integrals. We first introduce the
Abel method of summability, whose analog for series is very well-known. For
each ¢ > 0, we define the Abel mean A. = A.(f) to be the integral

A = A= [ o) (15)

n

It is clear that if f € L'(R™) then lim A.(f) = Jgn f(x)dz. On the other
hand, these Abel means are well-defined even when f is not integrable (e.g.,
if we only assume that f is bounded, then A.(f) is defined for all ¢ > 0).
Moreover, their limit

lim A.(f) = lim [ e~*llf(2)dx (1.6)
e—0 e—0 R™
may exist even when f is not integrable. A classical example of such a case is
obtained by letting f(x) = sinc(x) when n = 1. Whenever the limit in (1.6)
exists and is finite we say that fRn fdx is Abel summable to this limit.

A somewhat similar method of summability is Gauss summability. This

method is defined by the Gauss (sometimes called Gauss-Weierstrass) means

Gl = [ e (e (1.7)
We say that [, fdx is Gauss summable (to /) if
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limG.(f) =lim [ e f(z)dx (1.6)

e—0 e—0 R™
exists and equals the number /.
We see that both (1.6) and (1.6”) can be put in the form

Mea(f) = M.(f) = / P(ex) f(x)d. (1.8)

R
where & € Cj and #(0) = 1. Then [, f(z)dz is summable to ¢ if
lim._,o M.(f) = ¢. We shall call M_(f) the ¢ means of this integral.

We shall need the Fourier transforms of the functions e ~<*I° and e/, The
first one is easy to calculate.

Theorem 1.10. For all a > 0, we have
M l¢|2

Fem bl () = (27r ) h (4ma) e 1o, (1.9)

Proof. The integral in question is

—wir-f — 2
/ e Wi Ee alwz| dr.
n

Notice that this factors as a product of one variable integrals. Thus it is suffi-
cient to prove the case n = 1. For this we use the formula for the integral of a
Gaussian: [, e=™"dz = 1. It follows that

o & 2
/ 6_wix§€_aw2x2 dr = / e_a(W$+i£/(2a))2€_fTadx
_ —00

o0
o pootit/a)
:|w|_16_4a/ e dx
—oo+i€/(2a)

2 00

ol e /e [ ey
-1

:<_|w|> (471‘(1)_1/26_%,

2w
where we used contour integration at the next to last one. |

The second one is somewhat harder to obtain:

Theorem 1.11. For all a > 0, we have

—a|wx |CU| - CnG F(<n+1)/2)
Fle |>:<§ @Ry = e (110

Proof. By a change of variables, i.e.,

y(efa\w:d) — / efwix-ﬁefa\wx\dx — <a|w|)n/ efiz{/aefkr\dx’

n

we see that it suffices to show this result when a = 1. In order to show this, we
need to express the decaying exponential as a superposition of Gaussians, i.e.,
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e M 2
= —e g~ > 0. (1.11)
VT /0 Vi

Then, using (1.9) to establish the third equality,

e—iamfe—klc\daj :/ —ix-t ( —|:z:|2/477d17 dr
1 - -
-7 7 (/R 6"”'t€"”/4"d9") &
0 n

I% /0 h % ((4m)n/%*nlflz) dn

o
_onp(n-1)/2 / e+ 25t g
0
—ong(n=1)/2 (1 + |t|2)—"§1/ %Cmfldg
0
+1 1
—on (n=1)/2 (” )
2 ) (L+[tH)+nr
Thus,
ﬁ(e—a\wz\) (a|w|)—n(27r>n _ M - Cn@
(L+[g/aP)m D2~ \27 ) (a2 + [R)HD2”

Consequently, the theorem will be established once we show (1.11). In fact,
by changes of Variables we have

- v/ —e 72/477d,7

2\/_/ do  (byn=nr0?)

27 o 1 1
/ 25) —2dO' (by0' —> %)

\/7_1'
—\/—— e_“’“ U u-a—i

20
: (by / e dr = 1)
R
which yields the desired identity (1.11). |

n n
We shall denote the Fourier transform of (‘M) e~alwe* and ('“ﬁ) e~ alwal

a > 0, by W and P, respectively. That is,
1€ Cna

W(, a) = (47Ta)7n/2€7@, P(§,a) = (a2 + |£]2)(n+D)/2° (1.12)

<1 + —) do  (by averaging the last two formula)

=1
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The first of these two functions is called the Weierstrass (or Gauss-
Weierstrass) kernel while the second is called the Poisson kernel.

Theorem 1.12 (The multiplication formula). If f, g € L'(R"), then
F©g&de = | flz)g(x)de
Rn Rn

Proof. Using Fubini’s theorem to interchange the order of the integration on
R?", we obtain the identity. |

Theorem 1.13. If f and & belong to L'(R™), o = ® and ¢.(z) = e "p(z /<),
then
| e=aai©a = [ ety-osay
n R

forall e > 0. In particular,

w " . ~

(|2_|) / erte I f(€)ds = | Ply—w.2)f(y)dy,

m n Rn

and

(M) /n el (Vg = | W(y— ) f(y)dy.

2T R™

Proof. From (iii) and (iv) in Proposition 1.3, it implies (.Z e *®(e))(y) =
we(y — x). The first result holds immediately with the help of Theorem 1.12.
The last two follow from (1.9), (1.10) and (1.12). |

Lemma 1.14. (i) [, W (x,e)dz =1 forall ¢ > 0.
(ii) [pn P(z,€)dx = 1 forall e > 0.

Proof. By a change of variable, we first note that

ac2
W(z,e)dx :/ (47r8)’"/2e’%dx = W(z,1)dzx,
Rn n R"
and
P(z,e)dr — Cn® dr = | P(z,1)d
) (x,e)dx = o T ) v= [ (x,1)dz.
Thus, it suffices to prove the lemma when ¢ = 1. For the first one, we

use a change of variables and the formula for the integral of a Gaussian:
Jpe ™ dz = 1to get

W(z,1)dx = / (47?)_”/26_%%5 = / (47) "2~ or /2 gy — 1.

RTL
For the second one, we have

1
P 1dx = dx.
/n (@, 1)dz C/Rn(masmnﬂ g
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Letting 7 = |z|, 2’ = x/r (when z # 0), S"' = {z € R" : |z| = 1}, d2’ the
element of surface area on S™~! whose surface area* is denoted by w,_1 and,
finally, putting » = tan 6, we have

1
dr = dz'r"d
/Rn(1+|x| VP //Sn11+7~)n+l e

-1
=Wn— 1/0 <1+r2)(n+1)/ dr

w/2
=Wp_1 / sin™* 0do.
0

Butw,_;sin” !6is clearly the surface area of the
sphere of radius sin 6 obtained by intersecting 5™
with the hyperplane z; = cos#. Thus, the area
of the upper half of S™ is obtained by summing
these (n — 1) dimensional areas as ¢ ranges from
0 to 7/2, that is,

/2
wn_l/ sin" ' 0dh = &,
0 2

which is the desired result by noting that 1/¢,, = w,, /2. [

Theorem 1.15. Suppose ¢ € L'(R") with [, ¢(x)dx = 1 and let . (x)
"p(x/e) fore > 0.1f f € LP(R"), 1 < p < o0, Orf € Cp(R™) C L>®(R™),
thenforl <p< oo
|\ f*¢e— fll, >0, ase = 0.
In particular, the Poisson integral of f:

u(z,e) = / P(x —y,e)f(y)dy

and the Gauss-Weierstrass integral of f:

s(x,e) = Wz —y,e)f(y)dy

R
converge to f in the LP norm as ¢ — 0.

Proof. By a change of variables, we have

/n e (y)dy = / e "p(y/e)dy = / p(y)dy = 1.

(Fx 0@ — @) = [ (=)~ f@le.)dy.

Therefore, by Minkowski’s inequality for integrals and a change of variables,
we get

Hence,

Ywn_1 =21"2/I(n/2).
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1= o < [ 1@ =) = F@)lhelola/e)lds

- R" 1f(z = ey) = f(@)]ple(y)ldy.

We point out that if f € LP(R"), 1 < p < oo, and denote ||f(x —t) —
f(@)|l, = Ap(t), then Ay(t) — 0, as t — 0.° In fact, if f € Z(R") =
C§°(R™) of all C*™ functions with compact support, the assertion in that case
is an immediate consequence of the uniform convergence fi(x —t) — fi(z),
as t — 0. In general, for any o > 0, we can write f = f; + fo, such that f; is
as described and || f2||, < o, since Z(R") is dense in LP(R") for 1 < p < oc.
Then, Af(t) < Ay, () + Ap,(¢), with Ay (1) — 0ast — 0, and Ay, (t) < 20.
This shows that Af(¢) — 0 as ¢ — 0 for general f € LP(R"), 1 < p < o0.

For the case p = oo and f € Ch(R™), the same argument gives us the result
since Z(R™) is dense in Cy(R") (cf. [Rud87, p.70, Proof of Theorem 3.17]).

Thus, by the Lebesgue dominated convergence theorem (due to ¢ € L' and
the fact A¢(ey)|e(y)| < 2| f]lpl¢(y)]) and the fact A¢(ey) — 0 as e — 0, we
have
i 11 0.~ Sl <ty | Aytelotwldy = [l Aslen)let)ldy = .
e—0 —0 R™ e—0

R‘IL
This completes the proof. |

With the same argument, we have
Corollary 1.16. Let 1 < p < oo. Suppose ¢ € L'(R") and [, ¢(x)dz = 0,

then ||f * ¢ell, — 0as e — 0 whenever f € LP(R"), 1 < p < oo, or
f e Co(R™) C L*(R™).

Proof. Once we observe that

(F +0)(@) =( +0)@) = F() 0 = (F 0)(&) = f(0) [ uluhdy
= [ e =) f@llei)a,

the rest of the argument is precisely that used in the last proof. |
In particular, we also have

Corollary 1.17. Suppose p € L'(R") with [,, o(x)dx = 1 and let o (x) =
"o(x/e) fore > 0. Let f(x) € L>(R") be contznuous at {0}. Then,

tim [ f(a)g(a)de = £(0)

e—0

Proof. Since [, f(x)gos(x)dx — = Jan(f f(0))pe(x)dx, then we
may assume without loss of generahty that f(0 ) = O Srnce f is continuous at
{0}, then for any n > 0, there exists a > 0 such that

5 This statement is the continuity of the mapping ¢t — f(z — t) of R™ to LP(R™).
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n
[f(2)] < 7=
el
whenever || < §. Noticing that | [, ¢(x)dz| < ||¢||1, we have
Ui
f@ypetads| <2 [ fe@lde + 1l [ lec@lda
R el || <8 |z =6

el
=1+ || flloc e
But I. — 0 as € — 0. This proves the result. ]

U
<ol + 1l [ letw)ldy
y|=d/e

From Theorems 1.13 and 1.15, we obtain the following solution to the
Fourier inversion problem:

Theorem 1.18. If both ¢ and its Fourier transform @ = & are integrable and
Jon p(@)dz = 1, then the  means of the integral (Jw|/2m)" [, e f(€)d¢
converges to f(z) in the L* norm. In particular, the Abel and Gauss means of
this integral converge to f(x) in the L' norm.

We have singled out the Gauss-Weierstrass and the Abel methods of summa-
bility. The former is probably the simplest and is connected with the solution
of the heat equation; the latter is intimately connected with harmonic functions
and provides us with very powerful tools in Fourier analysis.

Since s(x,¢g) = (%) Jan ewirte—elwt £(£)d¢ converges in L' to f(x) as
e > 0 tends to 0, we can find a sequence ¢, — 0 such that s(z,e) — f(z)
for a.e. x. If we further assume that f € L!(R"), the Lebesgue dominated

convergence theorem gives us the following pointwise equality:

Theorem 1.19 (Fourier inversion theorem). If both f and fare integrable,
then
fa) = (L) / e f(€)de
2 n ’

Remark 1.20. We know from Theorem 1.5 that f is continuous. If f is in-
tegrable, the integral fRn evi6 f(£)d¢ also defines a continuous function

for almost every .

(in fact, it equals f(—z)). Thus, by changing f on a set of measure 0, we
can obtain equality in Theorem 1.19 for all .

It is clear from Theorem 1.18 that if f(¢) = 0 for all £ then f(z) = 0
for almost every z. Applying this to f = f; — f,, we obtain the following
uniqueness result for the Fourier transform:

Corollary 1.21 (Uniqueness). If fi and f, belong to LY(R™) and f,(¢) =
f2(&) for & € R™, then fi(x) = fo(x) for almost every x € R™.
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We will denote the inverse operation to the Fourier transform by .% ~! or
If f € L', then we have

for= () [ e .13

We give a very useful result.

~

Theorem 1.22. Suppose f € L*(R™) and f > 0. If f is continuous at 0, then

0= (57) 56

Moreover, we have f € L'(R™) and
s = () [ eiea

Proof. By Theorem 1.13, we have

(M)n/n eelsl f(e)de = . P(y,e)f(y)dy.

'\m

for almost every .

2
From Lemma 1.14, we get, for any 6 > 0,

/Rn P(y,e)f(y)dy — f(O)’ = / P(y,e)[f(y) — f(())]dy’

4ﬂwpm@ww—ﬂwwh

=0 + bs.
Since f is continuous at 0, for any given o > 0, we can choose ¢ small enough
such that | f(y) — f(0)| < o when |y| < §. Thus, I; < o by Lemma 1.14. For
the second term, we have, by a change of variables, that

/Mpmamw—ﬂw@\

I, <[ f]lx sup P(y,e) +1f(0)] P(y,e)dy
lyl> ly|>6
n&
= f] + 1£(0)] P(y,1)dy — 0,
(2 52)("“)/2 i>d/e

as ¢ — 0. Thus, (‘;—‘) Jgn € e~ f(€)de — f(0) as ¢ — 0. On the other

hand, by Lebesgue dominated convergence theorem, we obtain

(@) nﬂO%—(Q)Eg/;*Wﬂaﬁzﬂw

which implies f € L'(R™) due to f > 0. Therefore, from Theorem 1.19, it
follows the desired result. [ |

An immediate consequence is

Corollary 1.23. i) [,, e“#$W (£, e)d¢ = e~elal’,
) J 7€ PE g = ]
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Proof. Noticing that

W( ) =F <<%>n em?) cand P(¢,6) =7 ((g)n e€|‘”|> :

we have the desired results by Theorem 1.22. |
We also have the semigroup properties of the Weierstrass and Poisson ker-
nels.
Corollary 1.24. If oy and oy are positive real numbers, then
) W( a1 +a) = fRn W (& —n,a0)W(n, az)dn.
ii) P(§, 01 + ) = fRn P& —n,a1)P(n, az)dn.

Proof. 1t follows, from Corollary 1.23, that

W(ga a1 + 042) — <%) " (gef(aﬁrag)‘ww‘z)(g)

ﬁ(e—a1|w1’\2e—a2|wx\2>(§)

)
_ (%) 5 (e [ . as)in) (©
)

n
efwix{efal\wxﬁ / ewix-nw(n7 a2)d77d$
R™ "

. w " 2
[ ([ e (B o) wig

= [ W(&—n,a)W(n,a)dn.

Rn
A similar argument can give the other equality. |

Finally, we give an example of the semigroup about the heat equation.
Ex. 1.25. Consider the Cauchy problem to the heat equation
u— Au =0, u(0)=u(z), t>0 xeR"
Taking the Fourier transform, we have
Gy + |wg|*a =0, 4(0) = do(€).
Thus, it follows, from Theorem 1.10, that
u=F e Wt Fug = (F e ) woug = (dmt) T2 1A g,
=W (x,t) *xuy =: H(t)up.
Then, we obtain
H(ty + to)ug =W(x, t; + to) x ug = Wix,ty) * Wz, ta) * ug
=Wz, t1) *x (W(x,ts) x ug) = Wiz, t1) * H(t2)ug
=H (t1)H (t2)uo,
ie., H(t, +ty) = H(t1)H(t2).
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1.2 The L? theory and the Plancherel theorem

The integral defining the Fourier transform is not defined in the Lebesgue
sense for the general function in L2(]R”); nevertheless, the Fourier transform
has a natural definition on this space and a particularly elegant theory.

If, in addition to being integrable, we assume f to be square-integrable then
f will also be square-integrable. In fact, we have the following basic result:

Theorem 1.26 (Plancherel theorem). If f € L'(R")NL2(R"), then || f|, =

()™ 11

Proof. Let g(z) = f( x). Then, by Theorem 1.1, h = f x g € L'(R") and,
by Proposition 1.3, h = fg g.But g g = f thus h = | f | > 0. Applying Theorem
1.22, we have i € L'(R") and h(0 ('“') Jon h(€)dE. Thus, we get

[ Vieras= [ ias= (1) wo

_ (%) [ i - (%) R

which completes the proof. ]

Since L' N L? is dense in L2, there exists a unique bounded extension, .%,
of this operator to all of L2. .% will be called the Fourier transform on L?; we
shall also use the notation f = .% f whenever f € L2 (R™).

A linear operator on L?(IR") that is an isometry and maps onto L?(R") is
called a unitary operator. It is an immediate consequence of Theorem 1.26

n/2
that (‘M) % is an isometry. Moreover, we have the additional property that
W\ o
<g> & 1S onto:
nf2 _ .
Theorem 1.27. ('“") ZF is a unitary operator on L*(R™).

1]
2w

L*(R™). If this subspace were not all of L?(R"), we could find a function g
such that [, fgdz = 0 forall f € L? and ||g||s # 0. Theorem 1.12 obvi-
ously extends to L?; consequently, [, fgdz = [, fgdx = 0forall f € L2
But this implies that g(x) = 0 for almost every x, contradicting the fact that

R w —n/2
lgll2 = (52) " llglls # 0. .

/2 : .
Proof. Since ( . is an isometry, its range is a closed subspace of
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Theorem 1.27 is a major part of the basic theorem in the L? theory of the
Fourier transform:

Theorem 1.28. The inverse of the Fourier transform, %, can be obtained
by letting

[l
2m

e = (2 = ni-o

forall f € L*(R").

We can also extend the definition of the Fourier transform to other spaces,
such as Schwartz space, tempered distributions and so on.

1.3 Schwartz spaces

Distributions (generalized functions) aroused mostly due to Paul Dirac and
his delta function ¢. The Dirac delta gives a description of a point of unit mass
(placed at the origin). The mass density function is such that if its integrated on
a set not containing the origin it vanishes, but if the set does contain the origin
it is 1. No function (in the traditional sense) can have this property because
we know that the value of a function at a particular point does not change the
value of the integral.

In mathematical analysis, distributions are objects which generalize func-
tions and probability distributions. They extend the concept of derivative to all
integrable functions and beyond, and are used to formulate generalized solu-
tions of partial differential equations. They are important in physics and en-
gineering where many non-continuous problems naturally lead to differential
equations whose solutions are distributions, such as the Dirac delta distribu-
tion.

“Generalized functions” were introduced by Sergei Sobolev in 1935. They
were independently introduced in late 1940s by Laurent Schwartz, who devel-
oped a comprehensive theory of distributions.

The basic idea in the theory of distributions is to consider them as lin-
ear functionals on some space of “regular” functions — the so-called “test-
ing functions”. The space of testing functions is assumed to be well-behaved
with respect to the operations (differentiation, Fourier transform, convolution,
translation, etc.) we have been studying, and this is then reflected in the prop-
erties of distributions.

We are naturally led to the definition of such a space of testing functions by
the following considerations. Suppose we want these operations to be defined
on a function space, ., and to preserve it. Then, it would certainly have to
consist of functions that are indefinitely differentiable; this, in view of part (v)
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in Proposition 1.3, indicates that each function in ., after being multiplied by
a polynomial, must still be in .. We therefore make the following definition:

Definition 1.29. The Schwartz space .7 (R") of rapidly decaying func-
tions is defined as

SR = {90 € Co(R™ : [plas i= sup [¢*(0%0)(a)] < o0, Y, B € Ng}

rER™
(1.14)
where Ny = NU {0}.

If o € .7, then |p(z)| < Cp,(1 + |x]|)~™ for any m € Ny. The second part
of next example shows that the converse is not true.

Ex. 1.30. ¢(z) = e~<1*I’, ¢ > 0, belongs to .; on the other hand, ¢(z) =
e~¢ll fails to be differential at the origin and, therefore, does not belong
to 7.

Ex. 1.31. ¢(x) = e==(+1#1)) belongs to .7 for any ¢, > 0.
Ex. 1.32. .# contains the space Z(R").

But it is not immediately clear that & is nonempty. To find a function in &,

consider the function
eVt t>0,
ﬂ”:{a t<0.

Then, f € C, is bounded and so are all its derivatives. Let ¢(t) = f(1 +
t)f(1 —t), then p(t) = e =) if |t| < 1, is zero otherwise. It clearly
belongs to 2 = Z(R'). We can easily obtain n-dimensional variants from .
For examples,

(i) For z € R™, define ¢(x) = ¢(x1)p(x2) - - - ¢(x,,), then b € Z(R™);

(i) For z € R", define ¢(x) = e~%(1=11") for || < 1 and 0 otherwise, then
Y e 2(R");

(iii) If n € C*° and ® is the function in (ii), then ¥ (sz)n(x) defines a func-
tion in Z(R"); moreover, e (sx)n(z) — n(z) as e — 0.
Ex. 1.33. We observe that the order of multiplication by powers of
x1,- - ,, and differentiation, in (1.14), could have been reversed. That
is, ¢ € # if and only if ¢ € C* and sup, g~ |0°(z%p(x))| < oo for all
multi-indices a and 3 of nonnegative integers. This shows that if P is a
polynomial in n variables and ¢ € . then P(z)p(z) and P(0)p(x) are
again in ., where P(0) is the associated differential operator (i.e., we
replace z* by 0° in P(x)).
Ex.1.34. Sometimes . (R") is called the space of rapldly decaying func-
tions. But observe that the function ¢(z) = e **¢" is not in .7 (R).
Hence, rapid decay of the value of the function alone does not assure
the membership in .7 (R).
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Theorem 1.35. The spaces Co(R™) and LP(R™), 1 < p < oo, contain .7 (R").
Moreover, both . and 9 are dense in Cy(R™) and LP(R") for 1 < p < oo.

Proof. ¥ C Cy C L is obvious by (1.14). The L? norm of ¢ € . is
bounded by a finite linear combination of L°° norms of terms of the form
x%p(x). In fact, by (1.14), we have

1/p
( |w<x>\pdx)
Rn
1/p 1/p
<( / |¢<x>|pdx) +( / |¢<x>|pdx)
lz|<1 |z|>1
1/p ) ) 1/p
<||so||oo(/ daz) +|||x|“|so<x>|||oo(/ |xr-“pdas)
|z|<1 |z|>1

Wp— 1/p Wh— 1/p n
() e+ (2] Nlafiel

<o0.

For the proof of the density, we only need to prove the case of & since
2 C . We will use the fact that the set of finite linear combinations of
characteristic functions of bounded measurable sets in R” is dense in LP(R"),
1 < p < oco. This is a well-known fact from functional analysis.

Now, let £ C R" be a bounded measurable set and let £ > 0. Then, there
exists a closed set /' and an open set ) such that F' C £ C @ and m(Q \
F) < € (or only m(Q) < &P if there is no closed set ' C E). Here m
is the Lebesgue measure in R™. Next, let ¢ be a function from & such that
suppp C Q, ¢|r =1and 0 < ¢ < 1. Then,

lo=xely = [ lo@) ~xpl@Pde < [ do=m(@\F)<er
R™ Q\F
or
HQO - XEHP <é,
where Yz denotes the characteristic function of E. Thus, we may conclude
that (R") = LP(R") with respect to L? measure for 1 < p < oo.
For the case of Cj, we leave it to the interested reader. [ |

Remark 1.36. The density is not valid for p = co. Indeed, for a nonzero
constant function f = ¢, # 0 and for any function ¢ € Z(R"), we have

1f = #lloo = o] > 0.
Hence we cannot approximate any function from L>*(R") by functions
from Z(R™). This example also indicates that . is not dense in L*>
since | l‘iin lpo(x)] =0 forall p € .7.

From part (v) in Proposition 1.3, we immediately have
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Theorem 1.37. If ¢ € ., then ¢ € ..

If p,v € .7, then Theorem 1.37 implies that ¢, @/A) € 7. Therefore, (,57,@ €
. By part (vi) in Proposition 1.3, i.e., % (p x 1)) = {1, an application of the
inverse Fourier transform shows that

Theorem 1.38. If v,y € .77, then p x ) € .7
The space .#’(R™) is not a normed space because |¢|, s is only a semi-norm
for multi-indices « and 3, i.e., the condition
|¢|a,s = 0 if and only if ¢ = 0

fails to hold, for example, for constant function ¢. But the space (.7, p) is a
metric space if the metric p is defined by

Z o-la18]__|P = Vlas o — V]as

7B€Nn ]‘+ |S0 w|0¢ﬁ

Theorem 1.39 (Completeness). The space (.7, p) is a complete metric space,
i.e., every Cauchy sequence converges.

Proof. Let {}52 = C . be a Cauchy sequence. For any ¢ > 0 and any
v €Ng, lete = 1+2 2, then there exists an Ny(e) € N such that p(pg, om) < €
when k, m > Ny(e) since {¢y}72, is a Cauchy sequence. Thus, we have
’@k B (Pm‘o,'y o
L+ ok = Omloy 1407

and then
sup |07 (gr — om)| <0
reK

for any compact set X' C R™. It means that {¢ }72, is a Cauchy sequence in
the Banach space C'"!(K). Hence, there exists a function ¢ € Cl(K) such
that

hm or = ¢, in CPI(K).

Thus, we can conclude that ¢ € C*(R™). It only remains to prove that p € ..
It is clear that for any «, € Ny
sup [0 p| < sup [0 (i1 — )| + sup a0 i
zeK zeK
<Ca( ) sup |07 (px — )| + sup [2°07 gy .
zeK rzeK

Taking k — oo, we obtain
sup |2°0°p| < limsup |@x|a.s < 00.

zeK k—o0
The last inequality is valid since {}}7° , is a Cauchy sequence, so that ||,
is bounded. The last inequality doesn’t depend on K either. Thus, |¢|, 53 < 0o

and then ¢ € .%. |
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Moreover, some easily established properties of . and its topology, are the
following:

Proposition 1.40. i) The mapping ¢(x) — x*0°p(z) is continuous.

11) If<p € y, then limhﬁo Thp = .

iii) Suppose ¢ € % and h = (0,--- , h;,--- ,0) lies on the i-th coordinate
axis of R™, then the difference quotient [¢ — 1,/ h; tends to Oy /0x; as |h| —
0.

iv) The Fourier transform is a homeomorphism of . onto itself.

v) .7 is separable.

Finally, we describe and prove a fundamental result of Fourier analysis that
is known as the uncertainty principle. In fact this theorem was "discovered" by
W. Heisenberg in the context of quantum mechanics. Expressed colloquially,
the uncertainty principle says that it is not possible to know both the position
and the momentum of a particle at the same time. Expressed more precisely,
the uncertainty principle says that the position and the momentum cannot be
simultaneously localized.

In the context of harmonic analysis, the uncertainty principle implies that
one cannot at the same time localize the value of a function and its Fourier
transform. The exact statement is as follows.

Theorem 1.41 (The Heisenberg uncertainty principle). Suppose 1 is a

function in .7 (R). Then
s (e el
> -
levlaliedla > (1) o,
and equality holds if and only if 1(z) = Ae=P*" where B > 0 and A € R.
Moreover, we have

1 — o) all(€ — &)1z (

for every xo, § € R.

—1/2
M) 1012

2T 2|w|

Proof. The last inequality actually follows from the first by replacing ¢(x) by
e~wiw€oq) (1 4 10) (Whose Fourier transform is e*i0(+60)q)(¢ 4 £,) by parts (ii)
and (iii) in Proposition 1.3) and changing variables. To prove the first inequal-
ity, we argue as follows.

Since ¢ € ., we know that ¢) and v’ are rapidly decreasing. Thus, an
integration by parts gives

00 00 d
ll2 = / () P = — / IR

o0 -

—— [ (w0 @@ + 0@ da

[e.9]
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The last identity follows because |¢|? = 1. Therefore,
(KBRS 2/ |z l[¢ ()] |4 () |dz < 2[|z 214 ]l2,

where we have used the Cauchy-Schwarz inequality. By part (v) in Proposition
1.3, we have .7 (V') (&) = wi&y(&). It follows, from the Plancherel theorem,

that
|w| 1/2 ‘w‘ 1/2 .
1= (52) 1@ = (52) " llede

Thus, we conclude the proof of the inequality in the theorem.

If equality holds, then we must also have equality where we applied the
Cauchy-Schwarz inequality, and as a result, we find that ¢’ (x) = Sz (x) for
some constant 5. The solutions to this equation are i (z) = AeP*I2 where
A is a constant. Since we want 1) to be a Schwartz function, we must take

b =-2B <. |

1.4 The class of tempered distributions

The collection .’ of all continuous linear functionals on .¥ is called the
space of tempered distributions. That is

Definition 1.42. The functional 7" : . — C is a tempered distribution if
i) T'is linear, i.e., (T, o+ ) = (T, p) + B(T,¢) for all o, 5 € C and
PR URSIS
ii) T'is continuous on .¥, i.e., there exist ny € Ny and a constant ¢y > 0
such that
(T o) <co D> [¢las
CINEIS

forany ¢ € .~7.
In addition, for T, T € .#’, the convergence T, — T in .’ means that
(Ty, ) — (T, ) in Cforall p € .7.

Remark 1.43. Since 9 C .7, the space of tempered distributions . is
more narrow than the space of distributions 7', i.e., .’/ C Z'. Another
more narrow distribution space &” which consists of continuous linear
functionals on the (widest test function) space & := C*°(R"). In short,
2 C & C & implies that

&cs Ccy.
Ex.1.44. Let f € LP(R"), 1 < p < 0o, and define T = T by letting

(T, ) = Ty, ) = . f(x)o(x)dr
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for p € 7. Itis clear that T} is a linear functional on .. To show that it
is continuous, therefore, it suffices to show that it is continuous at the
origin. Then, suppose ¢, — 0in . as k — oo. From the proof of Theo-
rem 1.35, we have seen that for any ¢ > 1, |||, is dominated by a finite
linear combination of L* norms of terms of the form z®py(z). That is,
| ¢kl is dominated by a finite linear combination of semi-norms |y a0
Thus, ||¢x|l; — 0as k — oco. Choosing ¢ = p/,i.e.,1/p+1/q = 1, Holder’s
inequality shows that [(T, vx)| < [|fl,ll¢klly — 0 as k& — oo. Thus,
Te .

Ex. 1.45. We consider the case n = 1. Let f(z) = >, axz" be a poly-
nomial, then f € . since

Z arz®o(x)d

R -0

< a] | (L4 J2)) 7@ ) ) o(a) | da
k=0 R

[Ty, )| =

<CZ ‘Clk||90’k+1+5,0/(1 + ’x|)7175dx,
k=0 R

so that the condition ii) of the definition is satisfied for ¢ = 1 and ny =
m+ 2.

Ex. 1.46. Fix xy € R" and a multi-index § € Nf. By the continuity of
the semi-norm | - |, 5 in ., we have that (T, p) = 9°¢p(x,), for ¢ € .7,
defines a tempered distribution. A special case is the Dirac J-function:
(T5, ) = 9(0).

The tempered distributions of Examples 1.44-1.46 are called functions or
measures. We shall write, in these cases, f and ¢ instead of T’ and 7T}. These
functions and measures may be considered as embedded in .. If we put on
" the weakest topology such that the linear functionals 7' — (T, ¢) (¢ € .¥)
are continuous, it is easy to see that the spaces LP(R"), 1 < p < oo, are
continuously embedded in .’. The same is true for the space of all finite
Borel measures on R™, i.e., Z(R").

There exists a simple and important characterization of tempered distribu-
tions:

Theorem 1.47. A linear functional T on .7 is a tempered distribution if and
only if there exists a constant C' > 0 and integers { and m such that

(T <C Y [@las

laf <&, Bl<m

forall p € 7.
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Proof. 1t is clear that the existence of C, £, m implies the continuity of 7.

Suppose 7' is continuous. It follows from the definition of the metric that a
basis for the neighborhoods of the origin in .% is the collection of sets N, 4, =
{© 1 2 /<t 81<m |#Plag < €}, where £ > 0 and £ and m are integers, because
v — @ as k — oo if and only if |p; — ¢|as — 0 for all (o, §) in the
topology induced by this system of neighborhoods and their translates. Thus,
there exists such a set N, ,,, satisfying |(T, ¢)| < 1 whenever ¢ € N, .

Let [[of| = > 10 1<eipi<m |#las forall p € F If o € (0,), then ¢ =
oo/|l¢|l € Negm if ¢ # 0. From the linearity of 7', we obtain

o
But this is the desired inequality with C' = 1/0. |
Ex.1.48. Let T € " and ¢ € Z(R") with ¢(0) = 1. Then the product
o(x/k)T is well-defined in . by
(p(x/k)T, ) == (T, p(x/k)),
for all ¢ € .. If we consider the sequence T}, := p(z/k)T", then
(T, ) = (T, p(x/k)y) = (T, 9)
as k — oo since p(z/k)Yy — ¢ in . Thus, Ty, — T in .’ as k — oc.

Moreover, T}, has compact support as a tempered distribution in view
of the compactness of ¢, = p(z/k).

Now we are ready to prove more serious and more useful fact.

Theorem 1.49. Let T' € .#/, then there exists a sequence {1}, }3>, C . such
that

(Tk, ) = / T(z)p(x)dr — (T, ), ask — oo,
R
where ¢ € 7. In short, 7 is dense in . with respect to the topology on ..

Proof. If h and g are integrable functions and ¢ € .¥, then it follows, from
Fubini’s theorem, that

(h*xg,p) = / o(z) / hz —y)g(y)dydx = / 9(y) / h(z — y)p(z)dedy

= / 9(y) / Rh(y — x)p(z)drdy = (g, Rh* @),

where Rh(z) := h(—=z) is the reflection of h.

Let now ¢ € 2(R") with [, ¥ (z)dr = 1 and ¢)(—x) = (x). Let ¢ €
2(R™) with ((0) = 1. Denote ¢y (z) := k™p(kx). For any T" € ., denote
Ty = g * Ty, where T}, = (x/k)T. From above considerations, we know
that (¢, * Ty, @) = (T), Ry * ).

Let us prove that these 7}, meet the requirements of the theorem. In fact, we
have
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(Th, ) =(Wr * Tir, ) = (Th, Ribi ) = (C(x/ k)T, by, )
=(T,C(x/k) (Y x @) = (T, ), ask — oo,
by the fact ¢y * ¢ — @ in.¥ as k — oo in view of Theorem 1.15, and the fact
((z/k) — 1 pointwise as k — oo since ((0) = 1 and ((z/k)p — ¢ in .7 as
k — oo. Finally, since ¢, ¢ € Z(R"), it follows that 7}, € Z(R") C ./ (R").
|

Definition 1.50. Let L : . — ¥ be a linear continuous mapping. Then,
the dual/conjugate mapping L' : ./ — .7 is defined by

(L'T, 0y :=(T,Lp), TeS pe.
Clearly, L' is also a linear continuous mapping.

Corollary 1.51. Any linear continuous mapping (or operator) L : & — &
admits a linear continuous extension L : ./ — &',

Proof. If T € ., then by Theorem 1.49, there exists a sequence {7} }7°, C
. such that 7), — T in .’ as k — oo. Hence,

(LTy, ) = (Ty, L'p) — (T, L'p) == (LT, ), ask — oo,
forany ¢ € .77. |

Now, we can list the properties of tempered distributions about the multipli-
cation, differentiation, translation, dilation and Fourier transform.

Theorem 1.52. The following linear continuous operators from . into ./’
admit unique linear continuous extensions as maps from /' into #': For
Te S and p € .,

i) (WT,¢) = (T,vp), v €7

ii) (0°T, @) := (T, (—1)1*19%yp), a € NZ.

iii) (7T, ) := (T, 7_np), h € R™

iv) (0T’ ) := (T, |A["d12), 0 # A € R,

VI(FT, ) = (T, F ).

Proof. See the previous definition, Theorem 1.49 and its corollary. [ |

Remark 1.53. Since (F'.FT,p) = (FT,F o) = (I,F7.F ') =
(T,p),weget F 'Z =7F ' =1in.7".
Ex. 1.54. Since for any ¢ € .7,

(FLe) =170 = [ (Fole)
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= <%) B (0,9),

i:<M> §, in.s"

2

we have

Moreover, 6 = (%) - 1.

Ex. 1.55. For ¢ € ., we have
b.o) = (6.50) = 9(0) = | e =0p(a)dz = (1,

Thus, § = 1in.7".
Ex. 1.56. Since
(00, 0) =(0°3,¢) = (—1)*I(5,0°3) = (5, F[(wi&)"¢])
=(0, (wi)*p) = ((Wi)", ¥,
we have 076 = (wi&)®.
Now, we shall show that the convolution can be defined on the class ..
We first recall a notation we have used: If g is any function on R", we define

its reflection, Ry, by letting Rg(x) = g(—x). A direct application of Fubini’s
theorem shows that if u, ¢ and ¢ are all in ., then

/n(u * ) (7)Y (v)dr = /n u(z)(Rp x ) (x)dx.

The mappings ¢ — [g, (u* ) (x)(x)dr and 0 — [, u(x)0(x)dx are linear
functionals on .. If we denote these functionals by u * ¢ and u, the last
equality can be written in the form:

(ux* @, 1) = (u, Rp ). (1.15)
Ifu € . and g, ¢ € .7, the right side of (1.15) is well-defined since Rp*1) €
. Furthermore, the mapping 1) — (u, Ry * 1), being the composition of two
continuous functions, is continuous. Thus, we can define the convolution of the
distribution u with the testing function ¢, u * ¢, by means of equality (1.15).
It is easy to show that this convolution is associative in the sense that (u *
) *x 1) = u * (¢ * 1) whenever u € .¥" and p, ¢ € .. The following result
is a characterization of the convolution we have just described.

Theorem 1.57. If u € " and ¢ € ., then the convolution u * ¢ is the
function f, whose value at v € R" is f(z) = (u, 7, Rp), where 1, denotes the
translation by x operator. Moreover, f belongs to the class C* and it, as well
as all its derivatives, are slowly increasing.

Proof. We first show that f is C° slowly increasing. Let h =
(0,---,hj,---,0), then by part iii) in Proposition 1.40,
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Toyn o — T, Rep ORp
— -7, ,
h; dy,
as |h| — 0, in the topology of .. Thus, since u is continuous, we have

flz+h)— f(z) = (u, Torh R — 7_st0> — (u, _Txaﬂi>
hj hj dy;
as hj — 0. This, together with ii) in Proposition 1.40, shows that f has con-
tinuous first-order partial derivatives. Since dRy/0y; € ., we can iterate
this argument and show that 9° f exists and is continuous for all multi-index
3 € NI. We observe that 0° f(z) = (u, (—1)/¥17,0° Rp). Consequently, since
9°Ryp € .7, if f were slowly increasing, then the same would hold for all the
derivatives of f. In fact, that f is slowly increasing is an easy consequence of
Theorem 1.47: There exist C' > 0 and integers ¢ and m such that
[f@)] = [{u,mR)| <C Y [TRlags.
|o|<e,|Bl<m

But |7, Rp|a,s = Supyepa [y*0° Rp(y — )| = sup,czn |(y+2)*0° Rp(y)| and
the latter is clearly bounded by a polynomial in .

In order to show that u * ¢ is the function f, we must show that (u* @, ¢) =

fRn f(x)(x)dz. But,
(ux 0,0) ={u R ) = (u, [ Rl = a)(a)d)

n

. [ R )
- [ twnre@s = [ favs

since w 1is continuous and linear and the fact that the integral
Jan ToRe(y) () dx converges in .7, which is the desired equality. |

1.5 Characterization of operators commuting with translations

Having set down these facts of distribution theory, we shall now apply them
to the study of the basic class of linear operators that occur in Fourier analysis:
the class of operators that commute with translations.

Definition 1.58. A vector space X of measurable functions on R" is
called closed under translations if for f € X we have 7,f € X for all
y € R". Let X and Y be vector spaces of measurable functions on R"
that are closed under translations. Let also 7" be an operator from X to
Y. We say that T' commutes with translations or is translation invariant if

T(ryf) = 7(Tf)
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forall f € X and all y € R™.

It is automatic to see that convolution operators commute with translations.
One of the main goals of this section is to prove the converse, i.e., every
bounded linear operator that commutes with translations is of convolution
type. We have the following:

Theorem 1.59. Let 1 < p,q < oo. Suppose T' is a bounded linear operator
from LP(R™) into LQ(R") that commutes with translations. Then there exists
a unique tempered distribution u such that

Tf=uxf, Vfe..
The theorem will be a consequence of the following lemma.

Lemma 1.60. Let 1 < p < oo. If f € LP(R™) has derivatives in the LP norm
of all orders < n + 1, then f equals almost everywhere a continuous function

g satisfying
0I<C >, 110°fl

o <n+1
where C depends only on the dimension n and the exponent p.

Proof. Let £ € R". Then there exists a C!, such that
(L+[ER)V2 At ]+ &)™ <O Y 10
o <n+1

Let us first suppose p = 1, we shall show f € L'. By part (v) in Proposition
1.3 and part (i) in Theorem 1.5, we have

O <SCL+ e~ 0237 (eI f(©)

la|<n+1

=CL(L+ €)% w7 F (07 )(©)]
la|<n+1

SC"(L+ [P "2 N (|10 fh
|a| <n+1

Since (1 + |£]?)~("*1)/2 defines an integrable function on R™, it follows that
f € L'(R") and, letting C"" = C” [, (1 4 |¢[*)~("T1/2d¢, we get

Ifle<c™ > 10 flh
|| <n+1
Thus, by Theorem 1.19, f equals almost everywhere a continuous function g
and by Theorem 1.5,

|9(0)|<||f||oo<(|w|> fh<c S ol

la|<n+1
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Suppose now that p > 1. Choose ¢ € Z(R") such that p(z) = 1if |z] < 1
and o(x) = 0if |x| > 2. Then, it is clear that fo € L'(R"). Thus, fy equals
almost everywhere a continuous function /& such that

ROI<C Y 0 (Fo)ll
lal<n+1
By Leibniz’ rule for differentiation, we have 0%(fy) = >_ ,,_, o b gr fo¥
and then

1o (F)lh < / 3 —Ia”flla”so|daf

‘\ ptrv= a
Z C sup [0" ()| 0" f(x)|dx
pt+r=a |z[<2 |z]<2
5 / 0 f(@)ldzr < AB S [0 f,,
<ol 1212 lul<al

where A > ||0" ||, V] < |al, and B depends only on p and n. Thus, we can
find a constant K such that
0 <K Y [[0°fl,
|| <n+1

Since p(z) = 1if |z| < 1, we see that f is equal almost everywhere to a

continuous function g in the sphere of radius 1 centered at 0, moreover,
g(O) = RO <K Y 0°flp.
|a|<n+1

But, by choosing ¢ appropriately, the argument clearly shows that f equals
almost everywhere a continuous function on any sphere centered at 0. This
proves the lemma. |

Now, we turn to the proof of the previous theorem.
Proof of Theorem 1.59. We first prove that

OTf=Tof, VYfe.ZR". (1.16)
In fact,if h = (0,--- , hj,---,0) lies on the j-th coordinate axis, we have
w(Tf)=Tf _ Tf)-Tf _p(mf =
h; h; hy )’

since 7' is linear and commuting with translations. By part iii) in Proposition
1.40, M — —gf in . as |h| — 0 and also in L? norm due to the den-
sity of 5/ in LP. Slrice T is bounded operator from L” to L9, it follows that
M — — %Tf in L9 as |h| — 0. By induction, we get (1.16). By Lemma

1. 60 T f equals almost everywhere a continuous function g satisfying

g () <C " ATl =C > ITE@ ),

[Bl<n+1 |Bl<n+1
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<ITie Y 10°f1,.
IBl<n+1
From the proof of Theorem 1.35, we know that the L” norm of f €&
. is bounded by a finite linear combination of L*>° norms of terms of
the form zf(x). Thus, there exists an m € N such that |gf(0)] <
C o <m|l<nt 2908 floo = C > ai<msi<ni | flag- Then, by Theorem
1.47, the mapping f +— ¢(0) is a continuous linear functional on .#, denoted
by u;. We claim that u = Ru; is the linear functional we are seeking. Indeed,
if f € ., using Theorem 1.57, we obtain

(u * f) (m) :<ua Tfo> = <u7 R(fof» = <Ru> fof> = <u17 T*mf>
=(T(m-2f))(0) = (7= T'f)(0) = T f(x).
We note that it follows from this construction that « is unique. The theorem
is therefore proved. n

Combining this result with Theorem 1.57, we obtain the fact that 7'f, for
f € 7, is almost everywhere equal to a C'*™ function which, together with all
its derivatives, is slowly increasing.

Now, we give a characterization of operators commuting with translations
in L'(R").
Theorem 1.61. Let T be a bounded linear operator mapping L'(R™) to itself.
Then a necessary and sufficient condition that T' commutes with translations
is that there exists a measure ;i in B(R"™) such that Tf = p x f, for all
f € LY(R™). One has then ||T|| = ||u-

Proof. We first prove the sufficiency. Suppose that T'f = p * f for a measure
€ B(R") and all f € L'Y(R"). Since Z C ., by Theorem 1.57, we have
Tw(Tf)(@) =(Tf)(x = h) =, 7o Rf) = (u(y), f(—y —z + h))
=(u, o R f) = pr i f =TT f,
i.e., 7,7 = T'1,. On the other hand, we have ||T'f||y = |l * fll < ||«llllflx
which implies || T|| = ||u]].

Now, we prove the necessariness. Suppose that 7' commutes with transla-
tions and ||Tf|l, < ||T||||f]l1 for all f € L'(R™). Then, by Theorem 1.59,
there exists a unique tempered distribution p such that Tf = p * f for all
f € .. The remainder is to prove u € Z(R").

We consider the family of L! functions . = puxW(-,&) = TW(-,€),e > 0.
Then by assumption and Lemma 1.14, we get

lpelle < ATIW )l = 1.
That is, the family {z.} is uniformly bounded in the L' norm. Let us consider
L'(R™) as embedded in the Banach space Z(R"). (R") can be identified
with the dual of Cy(R™) by making each v € % corresponding to the linear
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functional assigning to ¢ € C; the value [, ¢(2)dv(x). Thus, the unit sphere
of A is compact in the weak* topology. In particular, we can find a v € £
and a null sequence {} such that y., — v as k — oo in this topology. That
is, for each ¢ € C,

tin [ oo e = [ o)) (1.17)
— 00 Rn n
We now claim that v, consider as a distribution equals ,u

Therefore, we must show that (u, ¢ fRn ) for all ¢ € .. Let
. = W(-,€) x 1. Then, for all « € N“, we have 80‘1/15 =W(,e)* 0. It

follows from Theorem 1.15 that 0“1 () converges to 9*)(x) uniformly in .
Thus, ). — 9 in . as € — 0 and this implies that (u,1.) — (u,1)). But,
since W (-, &) = RW (-, ¢),

(e) = (W (-2 % ) = (s W(-,2), ) = / pela)(a)dr.

Thus, putting ¢ = &, letting k —> oo and applying (1.17) with ¢ = 1, we
obtain the desired equality (u, v fRn . Hence, 1 € %. This
completes the proof. |

For L2, we can also give a very simple characterization of these operators.

Theorem 1.62. Let T be a bounded linear transformation mapping L*(R") to
itself. Then a necessary and sufficient condition that T' commutes with trans-
lation is that there exists an m € L>°(R™) such that Tf = u x f withu = m,
forall f € L*(R™). One has then ||T|| = ||m||-

Proof. If v € %" and ¢ € ., we define their product, v, to be the element
of .’ such that (vi), ) = (v,9p) for all ¢ € .. With the product of a
distribution with a testing function so defined we first observe that whenever
u € .Y and ¢ € ¥, then

F(ux*p)=up. (1.18)
To see this, we must show that (% (u x @), v) = (up,¢) for all ¥ € &. It
follows immediately, from (1.15), part (vi) in Proposition 1.3 and the Fourier
inversion formula, that

(F(uxp), ) =(uxp,d) = (u, Rpx ) = (@, F ' (Rp * 1))
w|

_ < ('27) (F(Rp » 0))(—¢)
- (o (&) F@a-aEhi-o) - auoue)
— (i, ).

Thus, (1.18) is established.
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Now, we prove the necessariness. Suppose that 7' commutes with transla-
tions and || Tf|l2 < ||T||||f]]2 for all f € L*(R"). Then, by Theorem 1.59,
there exists a unique tempered distribution u such that Tf = u * f for all

f € .. The remainder is to prove & € L*>°(R").
w 2 —?’L/Q
Let pg = e='5'17 | then, we have po € % and @y = <%> ©o by
Theorem 1.10 with a = 1/2|w|. Thus, Ty = u * ¢y € L? and therefore
Dy = F(ux*@y) = upy € L* by (1.18) and the Plancherel theorem. Let

n/ wl o2
mie) = ()" 5P 6) = Bole) /20 (6)
We claim that

Fuxp)=mg (1.19)
for all ¢ € .. By (1.18), it suffices to show that (up,v) = (mg, ) for
all v € 2 since Z is dense in .. But, if ¢» € &, then (¢¥/$o)(&) =
<%>n/2¢(§)65'5'2 € 7; thus,

(U, ) =(a, pv) = (i, ppotp /o) = (Upo, P/ o)
n/2
— [ a@ee) (51) vt

= [ m(©pe (e = mvv).

It follows immediately that & = m: We have just shown that (u, py) =
(m@, ) = (m, p) forall p € ¥ and ) € Z. Selecting ¢ such that p(£) = 1
for £ € supp ¢, this shows that (@, 1) = (m, ) forall ¢ € 2. Thus, u = m.

Due to

) |CU| —n/2
[mpllz =[|7 (ux )2 = (% [u* |2

|W| —n/2 R
<l 1T lelle = [IT[Sll2
for all ¢ € .7, it follows that

[ = ) e > o

for all o € .. This implies that ||T||> — |m|?> > 0 for almost all z € R™.
Hence, m € L>®°(R") and ||m||s < || T

Finally, we can show the sufficiency easily. If « = m € L*(R"), the
Plancherel theorem and (1.18) immediately imply that

n/2
MVMzWMsz(ED

[mfllz < lmlleoll£1l2

2w
which yields ||T|| < [|m]|co-
Thus, if m = 4 € L, then ||T]| = ||m/| - |
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For further results, one can see [SW71, p.30] and [Gra04, p.137-140].
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Chapter 2

Interpolation of Operators

2.1 Riesz-Thorin’s and Stein’s interpolation theorems

We first present a notion that is central to complex analysis, that is, the
holomorphic or analytic function.
Let 2 be an open set in C and f a complex-valued function on (2. The
function f is holomorphic at the point z, € 2 if the quotient
f(z0+h) — f(20)

h
converges to a limit when h — 0. Here h € C and h # 0 with zy + h € (2,

so that the quotient is well defined. The limit of the quotient, when it exists, is
denoted by f’(2p), and is called the derivative of f at zy:

. flzo+h) = f(z0
F(z0) = lim ( })L (20)
It should be emphasized that in the above limit, 4 is a complex number that
may approach 0 from any directions.

The function f is said to be holomorphic on (2 if f is holomorphic at every
point of 2. If C'is a closed subset of C, we say that f is holomorphic on C' if
f is holomorphic in some open set containing C'. Finally, if f is holomorphic
in all of C we say that f is entire.

Every holomorphic function is analytic, in the sense that it has a power
series expansion near every point, and for this reason we also use the term
analytic as a synonym for holomorphic. For more details, one can see [SS03,
pp-8-10].

Ex.2.1. The function f(z) = z is holomorphic on any open set in C, and
f'(#) = 1. The function f(z) = z is not holomorphic. Indeed, we have

flzo+h) = f(z) _h

h h
which has no limit as ~ — 0, as one can see by first taking h real and

then h purely imaginary.

(2.1)

33
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Ex.2.2. The function 1/z is holomorphic on any open set in C that does
not contain the origin, and f'(z) = —1/2%

One can prove easily the following properties of holomorphic functions.

Proposition 2.3. If f and g are holomorphic in (2, then
i) f + g is holomorphic in 2 and (f +g)' = f' + ¢
ii) fg is holomorphic in 2 and (fg) = f'g+ f¢'.
iii) If g(z0) # O, then f /g is holomorphic at z, and
<[)' _fl9-1d
g 9
Moreover, if f : 2 — Uand g : U — C are holomorphic, the chain rule
holds

(go ) (2) =9¢'(f(2)f (2), forall=ze 1.
The next result pertains to the size of a holomorphic function.

Theorem 2.4 (Maximum modulus principle). Suppose that (2 is a region
with compact closure (2. If f is holomorphic on §2 and continuous on (2, then

sup [f(2)] < sup |f(z)].
2€02 z€\2

Proof. See [SS03, p.92]. ]

For convenience, let S = {z € C : 0 < Rz < 1} be the closed strip, S° =
{z € C:0 < Rz < 1} be the open strip, and IS = {z € C: Rz € {0,1}}.

Theorem 2.5 (Phragmen-Lindel6f theorem/Maximum principle). As-
sume that f(z) is analytic on S° and bounded and continuous on S. Then

sup ()] < max (sup 1) supl1(1-+0)])
z€S teR teR
Proof. Assume that f(z) — 0as |3z| — oo. Consider the mapping 4 : S — C
defined by
¢
h(z) = Gy 2 €S (2.2)
Then h is a bijective mapping from S onto U = {z € C : |z| < 1} \ {£1},
that is analytic in S° and maps 95 onto {|z| = 1} \ {£1}. Therefore, g(2) :=
f(h™%(z)) is bounded and continuous on U and analytic in the interior U°,
Moreover, because of limg.|oo f(2) = 0, lim.,41 g(2) = 0 and we can
extend ¢ to a continuous function on {z € C : |z| < 1}. Hence, by the

maximum modulus principle (Theorem 2.4), we have

9(:)] < maxlafe)] = max (sup (i) sup (1 +i0)]).

which implies the statement in this case.
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Next, if f is a general function as in the assumption, then we consider
Fomo(2) = G0 F(2), 6>0, 2 € 5°.

Since |e‘5(z*z°)2| <@V with 2 — 29 = +iy, -1 <z <landy € R, we
have f;s.,(z) — 0 as |Sz| — oo. Therefore

o)l =)l < m (s0p s 0. 51 i1+ 1)

<e’ max (sup |f(it)], sup |f(1+ zt)|) :
teR teR

Passing to the limit § — 0, we obtain the desired result since 2y € S is arbi-
trary. |

As a corollary we obtain the following three lines theorem, which is the
basis for the proof of the Riesz-Thorin interpolation theorem and the complex
interpolation method.

Theorem 2.6 (Hadamard three lines theorem). Assume that f(z) is ana-

lytic on S° and bounded and continuous on S. Then
0

1-6
sup | F(6 + it)| < (stgﬂyf(it)r) (stgﬂg\f(lﬂtﬂ) ,

teR

for every 6 € [0, 1].

Proof. Denote
Ay = sup [f(it)], Ay = sup| F(1+it)].

teR teR

Let A € R and define
F(z) = ¥ f(2).
Then by Theorem 2.5, it follows that
|F\(2)| < max(Ag, e*4;).
Hence,
|£(0 +it)] < e max(Ag, e*A))

for all ¢ € R. Choosing A = In ﬁ—‘; such that e*A; = Ay, we complete the
proof. |

In order to state the Riesz-Thorin theorem in a general version, we will state
and prove it in measurable spaces instead of R™ only.

Let (X, i) be a measure space, u always being a positive measure. We adopt
the usual convention that two functions are considered equal if they agree ex-
cept on a set of y-measure zero. Then we denote by LP(X,du) (or simply
LP(du), LP(X) or even LP) the Lebesgue-space of (all equivalence classes of)
scalar-valued p-measurable functions f on X, such that
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Hﬂu:([Qﬂwmmym

is finite. Here we have 1 < p < oo. In the limiting case, p = oo, LP consists
of all y-measurable and bounded functions. Then we write

[flloe = sup [f(x)].
X

In this section, scalars are supposed to be complex numbers.
Let 7" be a linear mapping from L? = LP(X,du) to L(Y, dv). This means
that T'(af + Bg) = aT'(f) + ST (g). We shall write

T:LP — L1

if in addition 7' is bounded, i.e., if

T
PO
20 £l
is finite. The number A is called the norm of the mapping 7.

It will also be necessary to treat operators 7' defined on several L” spaces
simultaneously.

Definition 2.7. We define L”* + L to be the space of all functions f,
such that f = f, + fo, with f; € LP* and f, € LP2.

Suppose now p; < po. Then we observe that
LP C LPY + LP*, Yp € [p1,pal-
In fact, let f € L? and let -y be a fixed positive constant. Set

(i@, @] >
ﬁ@»‘{& ()] <
and fo(x) = f(z) — fi(z). Then
/mmwm=/mmwmmwwm<Wﬂ/W@Wu

since p; — p < 0. Similarly,

[15@prde = [n@Pla@rrd < [1epe,
so fi € LP*and fo € LP?, with f = f| + f.
Now, we have the following well-known theorem.

Theorem 2.8 (The Riesz-Thorin interpolation theorem). Let T be a linear
operator with domain (LP° + LP*)(X, du), po, p1, qo, ¢1 € [1, 00]. Assume that
1Tl oo (viany < Aoll fllzwo x.ay, 3 f € L7(X, dp),

and
1T Lo vavy < Adllflloexa, 3 f € LPH(X, dp),
for some py # p1 and qo # q1. Suppose that for a certain 0 < § < 1
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1 1-6 6 1 1—-6 0
= — - = + —. (2.3)
p Do D1 q 4o q1
Then
I T fllzavary < Aol fllLex.aw, if f € LP(X, du),
with

Ag < ATAY (2.4)

Remark 2.9. 1) (2.4) means that Ay is logarithmi-
cally convex, i.e., In Ay is convex.

2) The geometrical meaning of (2.3) is that the
points (1/p,1/q) are the points on the line seg-
ment between (1/po, 1/q0) and (1/p1,1/q1).

3) The original proof of this theorem, published
in 1926 by Marcel Riesz, was a long and difficult
calculation. Riesz’ student G. Olof Thorin subse-

1A
‘ (1,1)

<=y

quently discovered a far more elegant proof and ©
published it in 1939, which contains the idea be-
hind the complex interpolation method.

Proof. Denote

(h,g) = /Y h(y)g(y)dv(y)
and 1/¢' = 1 — 1/q. Then we have, by Holder inequality,
[blly = sup [k, g)], and Ag = sup  [(T'f,g)l.
llgllyr=1 £ llp=llgllgr=1

Noticing that C.(X) is dense in LP(X, ) for 1 < p < oo, we can assume
that f and g are bounded with compact supports since p, ¢’ < oo.! Thus, we
have |f(z)] < M < oo forall z € X, and supp f = {z € X : f(z) # 0}
is compact, i.e., p(suppf) < oo which implies [, |f(z)|‘du(z) =
Joupp 1 (@) [“dps() < M p(supp f) < oo forany £ > 0. So g does.

For 0 < Rz < 1, we put

L_l—z_i_i 1 _1—z z
piz)  p o () 4 v
and
z:xz:xppf(x)x :
n(z) =n(z,2) = |f(z)|?® @) € X;
0 =€) = o7 0y e v

)
Now, we prove 7)(2), 1'(z) € LPi for j = 0, 1. Indeed, we have

1=1/90 > 1if ¢/ = .

1 Otherwise, it will be pg = p1 = oo if p = 00, or 6 = Tt 2
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I =|1 7@ | = P (PTG
=|f(x) “+%:umww-
Thus,
@l = | Inte. 2 Praua) = [ £ (o) <
We have
i s |2 ] @)
n@—umw>b@}U@WMAm

(1 s J@
pQ1 Juuwwﬂ”1m>

On one hand, we have lim ¢(z)—0, |f(2)|*In|f(z)| = 0 for any o > 0, that
is, Ve > 0,35 > O s.t. [|[f(2)|*In|f(x)||] < eif |f(x)] < J. On the other
hand, if |f(x)| > §, then we have ||f(z)|*In|f(z)]| < M*|ln|f(z)|] <
M*max(|In M|, |Ind|) < oco. Thus, ||f(x)|*In|f(z)|| < C.Hence,

@l = = | @l @
=l

<C |If @)1

which yields
) <€ [ 175 (o) < oc
X

Therefore, (z), 7/(z) € LPi for j = 0,1. So {(z2), ¢'(z) € L% for j = 0,1
in the same way. By the linearity of 7', it holds (7'n)'(z) = T(2) in view of
(2.1). It follows that Tn(z) € L%, and (Tn)'(z) € L% with 0 < Rz < 1, for
j =0, 1. This implies the existence of

F(:) = (Tn(2).¢()). 0< Rz <L
Since
di?=%amw«a> /am<>< v (y)
Z/Y(Tn)z(y, 2)¢( +/YT77 Y,2)C:(y, 2)dv(y)

=((Tn)'(2),¢(2)) + (T'n(2),¢'(2)),
F(z) is analytic on the open strip 0 < Rz < 1. Moreover it is easy to see that

F(z) is bounded and continuous on the closed strip 0 < 2z < 1
Next, we note that for j =0, 1

P

I+ i)l = I1f1" = 1.
Similarly, we also have [|((j + it)||¢; = 1 for j = 0, 1. Thus, for j = 0, 1

|F(j +it)| =T +it), CG + i) < T+ it)lg, 16 +it) g
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<AlInG + )l ISG + bl = A;
Using Hadamard three line theorem, reproduced as Theorem 2.6, we get the
conclusion

|F(0+it)] < APAY, vteR.
Taking ¢t = 0, we have |F(0)] < A}~ Af. We also note that 7(f) = f and
C(0) = g, thus F(0) = (Tf,g). That is, |[(Tf,g)| < AJ~"AY. Therefore,
Ag < ATPAY. |
Now, we shall give two rather simple applications of the Riesz-Thorin inter-
polation theorem.

Theorem 2.10 (Hausdorff-Young inequality). Let 1 < p < 2and 1/p +
1/p" = 1. Then the Fourier transform defined as in (1.1) satisfies

]\ ™
1750 < (52) Wl

Proof. It follows by interpolation between the L'-L* result ||.Z |l < ||f]]1
—n/2
(cf. Theorem 1.5) and Plancherel’s theorem ||.7 f||2 (M) | fll2 (cf.

2w

Theorem 1.26). [ |

Theorem 2.11 (Young’s inequality for convolutions). If f € L?(R") and
g€ LIR"),1<p,qr< oopmd% = }D—ir % — 1, then

1F gllr < 17 11nll9lo-

Proof. We fix f € LP, p € [1, 00| and then will apply the Riesz-Thorin in-
terpolation theorem to the mapping g — f * g. Our endpoints are Holder’s
inequality which gives

[fxg(@)] < [ fllpllgll

and thus g — f * g maps LP (R") to L>°(R") and the simpler version of
Young’s inequality (proved by Minkowski’s inequality) which tells us that if
g € L', then

1F* gllp < [fllpllglls-
Thus g — f * g also maps L' to LP. Thus, this map also takes L9 to L" where

1 1-6 6 1 1-6 0
-—=——+—,and - = —— + —.
q Ly r p 00
Eliminating 6, we have l = % +1-1.
The condition ¢ > 1 1s equivalent with # > 0 and » > 1 is equivalent with
the condition # < 1. Thus, we obtain the stated inequality for precisely the

exponents p, ¢ and r in the hypothesis. |
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Remark 2.12. The sharp form of Young's inequality for convolutions can
be found in [Bec75, Theorem 3], we just state it as follows. Under the
assumption of Theorem 2.11, we have

1F * gllr < (ApAgAr)" [ fllpllgllqs
where A,, = (m'/™/m"/™)/2 for m € (1,00), A; = A, = 1 and primes
always denote dual exponents, 1/m + 1/m’ = 1.

The Riesz-Thorin interpolation theorem can be extended to the case where
the interpolated operators allowed to vary. In particular, if a family of operators
depends analytically on a parameter z, then the proof of this theorem can be
adapted to work in this setting.

We now describe the setup for this theorem. Suppose that for every z in the
closed strip .S there is an associated linear operator 7, defined on the space of
simple functions on X and taking values in the space of measurable functions
on Y such that

/Y To(f)gldv < oo 25)

whenever f and g are simple functions on X and Y, respectively. The family
{T,}. is said to be analytic if the function

z—>/yTZ(f)ng (2.6)

is analytic in the open strip S° and continuous on its closure S. Finally, the
analytic family is of admissible growth if there is a constant 0 < @ < 7 and a
constant C'y ; such that

e~ ¥ <Cpy <00 (2.7)

/Y T.(f)gdv

for all z € S. The extension of the Riesz-Thorin interpolation theorem is now
stated.

Theorem 2.13 (Stein interpolation theorem). Let T, be an analytic fam-
ily of linear operators of admissible growth. Let 1 < po, p1,qo, 1 < 00 and
suppose that My and M, are real-valued functions such that

sup e n M;(t) < oo (2.8)
teR
for j =0,1and some 0 < b < 7. Let 0 < 6 < 1 satisfy
1 1-60 6 1 1-60 6
g +—, and -= + —. (2.9)
p Po b1 q do eal
Suppose that
1Tt (Fllao < Mo Fllpos ([Tt (F)llar < Ma(@)]| s (2.10)

for all simple functions f on X. Then
ITo(F)lle < MO)[[ fllp,  when 0 <6 <1 (2.11)
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for all simple functions f on X, where
sin 76 In My(t) In M, (t)
M) = :
(6) = exp { 2 /R {cosh mt — cos w0 * cosh 7t + cos 6 at

By density, Ty has a unique extension as a bounded operator from LP(X, u)
into LYY, v) for all p and q as in (2.9).

The proof of the Stein interpolation theorem can be obtained from that of
the Riesz-Thorin theorem simply “by adding a single letter of the alphabet”.
Indeed, the way the Riesz-Thorin theorem is proven is to study an expression
of the form

F(z) = (T'n(2),¢(2)),

the Stein interpolation theorem proceeds by instead studying the expression

F(z) = (Tn(2),¢(2)).
One can then repeat the proof of the Riesz-Thorin theorem more or less verba-
tim to obtain the Stein interpolation theorem. Of course, the explicit expression
of M (#) need an extension of the three lines theorem. For the detailed proof,
one can see [SW71, p. 205-209] or [Gra04, p.38-42].

2.2 The distribution function and weak LP spaces

We shall now be interested in giving a concise expression for the relative
size of a function. Thus we give the following concept.

Definition 2.14. Let f(x) be a measurable function on R". Then the
function f, : [0, 00) — [0, oo] defined by

fila) =m({z - [f(z)] > a})

is called to be the distribution function of f.

The distribution function f, provides information about the size of f but not
about the behavior of f itself near any given point. For instance, a function on
R™ and each of its translates have the same distribution function.

In particular, the decrease of f,(«) as o grows describes the relative large-
ness of the function; this is the main concern locally. The increase of f.(«)
as « tends to zero describes the relative smallness of the function “at infinity”;
this is its importance globally, and is of no interest if, for example, the function
is supported on a bounded set.

Now, we give some properties of distribution functions.

Proposition 2.15. For the distribution function, we have following funda-
mental properties.
(i) fi(«) is decreasing and continuous on the right.
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(i) IF | £ (2)] < |g()], then f.(a) < g.(a)

(i) If |f(z)] < liminfy o |fi(z)| for ae =z, then f.(a) <
lim infy o0 (fi)«(0) for any o > 0.

(i) If [f(z)] < lg(@) + |h(z)], then fi(on + az) < gular) + hu(az) for
any oy, o = 0.

V) (f9)«(1az) < filan) + gu(ag) for any ay, ag > 0.

(vi) For any p € (0,00) and o > 0, it holds f.(a) <
O Jiais@i>ay [/ (@)

(vil) If f € L?, p € [1,00), then lim,_, o &P fu() = 0 = lim, 0 &P fo ().

(viii) If [° o~ fo(@)da < oo, p € [1,00), then o® f.(a) = 0as a — 400
and o — 0, respectively.

Proof. For simplicity, denote E¢(«) = {z : |f(z)| > a} fora > 0.

(i) Let {a}} is a decreasing positive sequence which tends to «, then we
have E¢(a) = U2 E¢(ay). Since { E¢(cy,) } is a increasing sequence of sets,
it follows limy_, o fx(ax) = fi(c). This implies the continuity of f,(«) on the
right.

(i) Let £ = {z : |f(z)| > a} and E}, = {z : |fx(z)| > a}, k € N. By the
assumption and the definition of inferior limit, i.e.,

|f(z)] < liminf | fx(z)| = supinf | fx(z)],
k—o0 teN k>¢

for x € E, there exists an integer M such that for all & > M, |fi(x)| > «.
Thus, £ C Uy—; Nreas Ex. and for any ¢ > 1

k>¢ k—o0

(ﬂ Ek> mf m(FEy) < sup inf m(£y) = liminf m(Ey).

Since {(,—,,; Ex}37_1 is an increasing sequence of sets, we obtain

fo(@) =m(F) <m ( U N Ek> = lim m ( N Ek> < lim inf(f). (@),

M=1k=M k=M

(v) Noticing that {z : |f(z)g(x)] > araa} C {x : |f(z)] > au} U {x :
lg(x)| > ay}, we have the desired result.

vi) fila) = m{z : |f(&)] > a}) = f{x;\f(g;)|>a} dr <
Jiorysay (TP da

= a7 [ pwisay 1 (@)
(vii) From (vi), it follows o”f.(a) < [ mpa lf(@)Pde <

Jen 1 f(@)[Pdz. Thus, m({z : |f(z)| > a}) = 0 as @ — 400 and

lim |f(z)|Pdx = 0.

aTH0 e f(w)] >0}
Hence, o f,(a) — 0 as o — +oo since o f,(a)) > 0.
For any 0 < av < 3, we have, by noticing that 1 < p < oo, that
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lim a7 . (o) = lim o (fu(@) — £.(8)) = lim a"m({a : o < | /()] < 5}

a—0 a—0

/ ().
{z:|f(z)|<B}

By the arbitrariness of 3, it follows o® f,(a) — 0 as v — 0.
(viii) Since f (tP)'dt = of — (a/2)P and f.(a) < fio(t) fort < a, we
have

N

«

flaari=27) <p [ i
a/2
which implies the desired result.

For other ones, they are easy to verify. ]

From this proposition, we can prove the following equivalent norm of L”
spaces.

Theorem 2.16 (The equivalent norm of L?). Let f(x) be a measurable func-
tion in R", then

L (a)da)'", if1<p < oo,

D) [[fllee = inf {ev: fu(a) = 0}.

Proof. In order to prove i), we first prove the following conclusion: If f(z) is
finite and f,(a) < oo for any a > 0, then

z)Pdxr = — ooozpd*oz. 2.12
[ @pds == [ o 2.12)

Indeed, the r.h.s. of the equality is well-defined from the conditions. For the
integral in the lL.h.s., we can split it into Lebesgue integral summation. Let
0<e<2<---<ke<--- and

Bj={z eR": (j— Ve <|f(@)| <je}, j=12--,
then, an(E) = 1.((j ~ 1)¢)  £:(je), and

MﬂW@ﬂmeﬂM@—AmZﬁrﬂm £ = De)]

:_AwM%@)

Now we return to prove i). If the values of both sides are infinite, then it is
clearly true. If one of the integral is finite, then it is clear that f,(a) < +o0
and f(z) is finite almost everywhere. Thus (2.12) is valid.

If either f € LP(R") or [;~ o~ f.(a)do < oo for 1 < p < oo, then we
always have o? f,(a) — 0 as @« — +o0 and o — 0 from the property (vii) and
(viil) in Proposition 2.15.

Therefore, integrating by part, we have

_/OOO adf.(a) :P/OOO o (a)da — P f. ()] F>° :p/ooo a1, (a)da.



-44- 2. Interpolation of Operators

Thus, 1) is true.
For ii), we have

inf{a: fi(a) =0} =inf {a: m{z : |f(z)] > a}) =0}
=inf{a:|f(2)] < @, a.e.}

f@)[ = [l fllze-

We complete the proofs. |

=€SS SupxeRn

Using the distribution function f,., we now introduce the weak LP-spaces
denoted by L?.

Definition 2.17. The space L?, 1 < p < oo, consists of all f such that
Ifllzz = sup af/P(a) < oo.
In the limiting case p = oo, we put L = L.

By the part (iv) in Proposition 2.15 and the triangle inequality of L? norms,
we have

I1f + gl <201 fllzz + llgllze)-
Thus, one can verify that L? is a quasi-normed vector space. The weak LP
spaces are larger than the usual L? spaces. We have the following:

Theorem 2.18. Forany 1 < p < oo,and any f € LP, we have || f|
hence LP C LP.

12 < ISl

Proof. From the part (vi) in Proposition 2.15, we have

1/p
@< ([ liwps)

which yields the desired result. |

The inclusion LP C LP? is strict for 1 < p < oo. For example, let h(x) =
|z| /7. Obviously, & is not in LP(R™) but h is in L?(R") and we may check
easily that

k]l 2 =sup ahy/?(a) = sup a(m({z : 2|77 > a}))"/”

—supa(m({z : |z| < aP/"})VP = sup a(aPV,)VP

v,
where V,, = 7/2/I'(1 4+ n/2) is the volume of the unit ball in R" and I'-
function I"(z) = [~ t*~'e~"dt for Rz > 0.

It is not immediate from their definition that the weak LP spaces are com-
plete with respect to the quasi-norm || - || .. For the completeness, we will state
it later as a special case of Lorentz spaces.
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2.3 The decreasing rearrangement and Lorentz spaces

The spaces L are special cases of the more general Lorentz spaces L”9. In
their definition, we use yet another concept, i.e., the decreasing rearrangement
of functions.

Definition 2.19. If f is a measurable function on R", the decreasing rear-
rangement of f is the function f* : [0, 00) — [0, oo] defined by

fr(t) =inffa > 0: fila) < t},

where we use the convention that inf @ = .

Now, we first give some examples of distribution function and decreasing
rearrangement. The first example establish some important relations between
a simple function, its distribution function and decreasing rearrangement.

Ex. 2.20 (Decreasing rearrangement of a simple function). Let f be a
simple function of the following forrn

Z a]XA

7=1
where a; > as > - >ap >0, A, ={zr € R: f(z) = q;} and x4 is the
characteristic function of the set A (see Figure (a)). Then

k

fole) =m{z : [f(z)| > a}) = m({z: Z%XA >a}) =) bixs, (),
j=1

where b; = Zgzl m(4;), B; = [ajH,aj) forj=1,2,--- ,kand ag,1 =0

which shows that the distribution function of a simple function is a

simple function (see Figure (b)). We can also find the decreasing rear-
rangement (by denoting by = 0)

k
f1(t) =inf{a > 0: fu(a) <t} =infla>0: ) bxs, (o) <t}
Jj=1

k
= a;Xp,1iy)(t)
j=1

which is also a simple function (see Figure (c)).
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T fi(e) (@)
air ! ail
[ |
a2 I ] az h
asr M [ [ [ b5 a3 | 1
aqf . L . ba =~ Qa4 o H
S N R o L
asr 11 [ N asf |
Loy bz - o
R R — — il
[ A . | > ! L
As Ay A1 As A x as a4 azaz ai o b1 bo by babs t

—~
o
s

(b) c)

Ex.2.21. Let f : [0,00) > [0, 00) be
_[1—(z—=1)* 0<z<2,
flw) = {0, T > 2.
It is clear that f.(«) = 0 for a > 1 since |f(z)| < 1. For a € [0, 1], we
have
fo(a) =m({x €[0,00) : 1 — (x — 1)* > a})
=m({zr €[0,00): 1 -V]l—-a<z<l+vV1l—a})=2V1-a.
That is,
2¢/1—a, 0<a<],
fula) = {O, a>1.

The decreasing rearrangement f*(t) = 0 for ¢ > 2 since f.(a) < 2 for
any a > 0. For t < 2, we have

() =inf{a > 0:2v1 —a < t}

=infla>0:a>1-t*/4} =1-1*/4

Thus,
1) = 1—t%/4, 0<t<2,
00, t>2.
fA; f*AL f*A;
2 2 2
14 1+ 1'\
'1 '2 .7:' i :2 a: '1 é t'

(a) (b) (c)

Observe that the integral over f, f, and f* are all the same, i.e.,

/Ooof(x)da:—/:[l—(x—l)Q]dx—/12md@—/ (1 — ¢2/4)dt = 4/3.

2
0 0
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Ex. 2.22. We define an extended function f : [0, 00) — [0, 00| as
(

0, xz =0,
In({X), 0<z<l1,
flz) =< oo, 1<z <2,
In(-45), 2<z<3,

\0, T = 3.

Even if f is infinite over some interval the distribution function and the
decreasing rearrangement are still defined and can be calculated, for
any a = 0

1
fela) =m({z € [1,2] : 00 >a}U{z € (0,1): ln(1 — x) > a}
1
U{z € (2,3) : In( 2)>a})
=l+m((1—-e 1)) +m((2,e" +2)
=1+ 2e 7,
and
00, 0<t <,
fft) =4 In(%), 1<t<3,
0, t> 3.
i1 g 2
4T 4 4T
3 3 3
21 2 2T
1+ 1 1T
——~— T T T

Ex.2.23. Consider the function f(z) = z forall z € [0, c0). Then f.(«) =
m({zx € [0,00) : > a}) = oo for all @ > 0, which implies that f*(t) =
inf{ov > 0:00 <t} =ocforallt > 0.

Ex. 2.24. Consider f(z) = i for z > 0.

It is clear that f.(«) = 0 for a > 1 since

|f(x)] < 1.For a € [0,1), we have 2
x
fo(a) =m({z € [0,00) : T > al) .
=m({z € [0,00) : x > a }) = . L
11—« 7
That is, | o
oo, 0<a<l, 1 5

fule) = {O, a>1.
Thus, f*(t) =inf{a > 0: f.(a) <t} = 1.
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Proposition 2.25. The decreasing rearrangement f* of the measurable func-
tion f on R™ has the following properties:
(i) f*(t) is a non-negative and non-increasing function on [0, 00).
(ii) f*(t) is right continuous on [0, co).
(iii) (kf)* = |k|f* for k € C.
(iv) | f| < |g| a.e. implies that f* < g*.
(V) (f +9)"(ts + t2) < [ (1) + g7 (t2).
(Vi) (fg)*(t1 + t2) < f*(t1)g"(ta).
(vii) | f| < liminfy_, | fi| a.e. implies that f* < liminf, . fy.
(viii) | fx| T | f| a.e. implies that f; 1 f*.
(ix) f*(fe(@)) < a whenever f.(a) < occ.
() fu(f* (1) = m{{[f] > f*(O)}) <t <m{|f] = [} if f*(£) < o0
(xi) f*(t) > aifand only if f.(a) >t
(xii) f* is equimeasurable with f, that is, (f*).(«) = f.(a) for any o > 0.
(xiii) (|F7)"(5) = (F*()" for 1 < p < ox.
() 11y =l for 1< p <
) [[flloo = £7(0).
(xVi) sup;so t°f*(t) = supyso @(fe(@))® for 0 < s < 0.

Proof. (v) Assume that f*(t1) + ¢*(t2) < oo, otherwise, there is nothing to
prove. Then for a; = f*(¢1) and ay = g*(¢2), by (x), we have f,(«;) < t; and
g«(ag) < to. From (iv) in Proposition 2.15, it holds

(f + 9):(a1 + az) < filan) + gulaz) <t + o,
Using the definition of the decreasing rearrangement, we have

(f+9)"(ti+tz) = inf{a : (f+g)(@) <ttt} S artag = [*(t)+g" (L)
(vi) Similar to (v), by (v) in Proposition 2.15, it holds that (fg).(a1as) <
fs(aq) + g«(c2) < t1 + to. Then, we have
(f9)"(t1 +t2) = inf{ar: (fg)u() <t + 2} < aran = [7(t1)g" (ta).
(xi) If f.(«) > t, then by the decreasing of f,, we have a < inf{5 : f.(3) <
t} = f*(t). Conversely, if f*(t) > «, ie., inf{s : fi(8) < t} > «a, we get
f«(a) > t by the decreasing of f, again.
(xii) By the definition and (xi), we have
(f)le) =m{{t =2 0: f*(t) > a}) =m({t =2 0: fi(a) > t}) = fu(a).
(xiii) For o € [0, 00), we have
(LF17)* (@) =inf{a = 0: m({z : | f(2)]" > o}) < 1}
—inf{o? > 0 m({a: |f(@)] > o)) <)
where o = /7.
(xiv) From Theorem 2.16, we have

= (/")
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1@l = / PPt =p / o (). (a)da
—p / o1 f.(a)da = | £IE.

We remain the proofs of others to interested readers. |

Having disposed of the basic properties of the decreasing rearrangement of
functions, we proceed with the definition of the Lorentz spaces.

Definition 2.26. Given f a measurable function on R” and 1 < p,q <

oo, define
L a dt .
</ <tpf (t>) 7) ) q < 00,
[lna =4 \Jo

suptr f*(t), q = o0.
t>0

The set of all f with || f||Lr« < oo is denoted by LP?(R") and is called
the Lorentz space with indices p and q.

As in L? and in weak L?, two functions in LP? will be considered equal if
they are equal almost everywhere. Observe that the previous definition implies
that L7>° = LP in view of (xvi) in Proposition 2.25 and PP = LP in view
of (xiv) in Proposition 2.25 for 1 < p < oo. By (i) and (xv) in Proposition
2.25, we have || f| e = sup,oq f*(t) = f*(0) = || f|l~ which implies that
L~ = L = L. Thus, we have

Theorem 2.27. Let 1 < p < oo. Then it holds, with equality of norms, that
PP =1IP, I[P =LP.

Remark 2.28. For the Lorentz space LP, the case when p = oo and 1 <
q < oo is not of any interest. The reason is that || f|| L~.« < co implies that
f = 0 a.e. on R". In fact, assume that L>*? is a non-trivial space, there
exists a nonzero function f € L°>? on a nonzero measurable set, that is,
there exists a constant ¢ > 0 and a set E of positive measure such that
|f(z)| > cforall x € E. Then, by (iv) in Proposition 2.25, we have
oo oo m(E)
s = [P T > [y s [ af o
0 0 0

since (fxg)*(t) = 0fort > m(E). Hence, we have a contradiction. Thus,
f=0a.e. onR".

The next result shows that for any fixed p, the Lorentz spaces L”? increase
as the exponent ¢ increases.

Theorem 2.29. Let 1 < p < ocand 1 < g < r < oo. Then, there exists some
constant C,, 4 » such that

[ llzrr < Cpgrll Fllzra, (2.13)
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where C,, ., = (q/p)Y/97Y/". In other words, LP4 C LP".

Proof. We may assume p < oo since the case p = oo is trivial. Since f* is
non-creasing, we have

e = |4 / sy i = {21 t[sl/Pf*@)P@}l/q

P S

t 1/q 1/q
q 1/p q@ g
2 [irerth < (1) 1l

Hence, taking the supremum over all ¢ > 0, we obtain

1/q
q
1l < (];) . (2.14)

This establishes (2.13) in the case » = oo. Finally, when r» < oo, we have by

(2.14)
h AR
Hf”Lpa"‘ = {/ [tl/pf*(t)]rq+q_}
0 t
- )"
< Sup[tl/l’f* (t)](r_q)/r {/ [tl/pf*(t)]q—}
t>0 ; p
r=q)/T r q rq
15211 < ()™ Wl
This completes the proof. .

In general, LP? is a quasi-normed space, since the functional ||-|| 1».« satisfies
the conditions of normed spaces except the triangle inequality. In fact, by (v)
in Proposition 2.25, it holds

1f + gllzea < 2Y2(1 fllzra + llgllzra)- (2.15)

However, is this space complete with respect to its quasi-norm? The next the-
orem answers this question.

Theorem 2.30. Let 1 < p,q < oo. Then the spaces LP4(R™) are complete
with respect to their quasi-norms and they are therefore quasi-Banach spaces.

Proof. See [Gra04, p. 50, Theorem 1.4.11]. [ |
For the duals of Lorentz spaces, we have

Theorem 2.31. Let 1 < p,q< oo, 1/p+1/p =1and 1/q+1/q¢ = 1. Then
we have

(LMY = (L) = L%, (LM = {0}, (1P = 1/,
Proof. See [Gra04, p. 52-55, Theorem 1.4.17]. [ |

For more results, one can see [Gra04, Kri02].
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2.4 Marcinkiewicz’ interpolation theorem

We first introduce the definition of quasi-linear operators.

Definition 2.32. An operator 7' mapping functions on a measure space
into functions on another measure space is called quasi-linear if T'(f 4 g)
is defined whenever T'f and Tg are defined and if |T(\f)(z)] <
kAT f(z)|and |T(f + g)(x)| < K(|Tf(x)| +|Tg(z)|) for a.e. x, where x
and K is a positive constant independent of f and g.

The idea we have used, in Definition 2.7, of splitting f into two parts ac-
cording to their respective size, is the main idea of the proof of the theorem
that follows. There, we will also use two easily proved inequalities, which are
well-known results of Hardy’s (see [HLP8S, p. 245-246]):

Lemma 2.33 (Hardy inequalities). If ¢ > 1, r > 0 and g is a measurable,

non-negative function on (0, co), then
00 - d 1/q
(/ (y9(¥))"y jlj) . (216)
0

(/OOO (/Otg(y)dy>qt‘ Cff) <
(/0“’ </toog(y)dy) ﬂc?) <. (/Ooo(yg(y))qy’"d—;)l/q. (2.17)

Proof. To prove (2 16), we use Jensen’s inequality? with the convex function
o(z) = 2% on ( ). Then

t P q t ) q
1-r/q rqfld / rqld)
(0 ( e ldy 9y "y y) <Oy y
q—1
( / y"/1- 1dy> / (g(y)y*79) y 7 dy
0 0

q T q_ ' —1—T7
(;t/q) / (yg(y)y™/ " dy.

By 1ntegrat1ng both sides over (0, o) and use the Fubini theorem, we get that

( ) t 1 dt
S (F) /0 el (/Ot (yg(y))qyr/q‘l‘rdy> dt
- (g>q1 /OOO (yg(y))y =" (/yoo t_l_r/th) dy

2 Jensen’s inequality: If f is any real-valued measurable function on a set {2 and ¢ is convex over

the range of f, then
o (g [ r@san) < & [ s

where g(x) > 0 satisfies G = [, g(x)dz > 0.

S

=)
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= (g)q/ooo (o) y ™' "dy,

which yields (2.16) immediately.

To prove (2.17), we denote f(z) = g(1/x)/x?. Then by taking ¢ = 1/s and
y = 1/x, and then applying (2.16) and changing variable again by = = 1/y,
we obtain

(/oo (/OO (y )dy)qtr—ldt) v = (/OOO (/: g(y)dy>q8—r_1d8> 1/q
( ( 1/m)/w2da:>q3—r_1d8) 1/q
( (/ f(x d:):) < r_lds) 1/q
<4

([ sy -T-ldx)l/qz (/ °°<g<1/x>/qu-r-1dx)1/q
:g (/Ooo(g(y)y)qy’“‘ldy) Uq-

Thus, we complete the proofs. ]

= IR

Now, we give the Marcinkiewicz® interpolation theorem* and its proof due
to Hunt and Weiss in [HW64].

Theorem 2.34 (Marcinkiewicz interpolation theorem). Assume that 1 <
pi < ¢ <00, py < p1,qo # qand T is a quasi-linear mapping, defined on
LPo 4 LPv, which is simultaneously of weak types (po, o) and (p1, q1), i.e.,

17 fllzooe < Aol Fllpos T Fllzaree < Avllfllpy- (2.18)
If0<6<1,and
1-0 0

1-6 0

1 1
PP P4 G @
then T is of type (p, q), namely

Tfllqg <Allfllp, feLP
Here A = A(A;, pi, ¢;,0), but it does not otherwise depend on either T or f.

)

Proof. Let o be the slope of the line segment in R? joining (1/po, 1/qo) with
(1/p1,1/qq)- Since (1/p, 1/q) lies on this segment, we can denote the slope of
this segment by

3 J6zef Marcinkiewicz (1910-1940) was a Polish mathematician. He was a student of Antoni Zyg-
mund; and later worked with Juliusz Schauder, and Stefan Kaczmarz.

4 The theorem was first announced by Marcinkiewicz (1939), who showed this result to Antoni Zyg-
mund shortly before he died in World War II. The theorem was almost forgotten by Zygmund, and
was absent from his original works on the theory of singular integral operators. Later Zygmund
(1956) realized that Marcinkiewicz’s result could greatly simplify his work, at which time he pub-
lished his former student’s theorem together with a generalization of his own.
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_Yaw—-1/q _1/q—1/q
po=1/p  1/p—1/p’
which may be positive or negative, but is not either 0 or co since gy # ¢; and
Po < p1-
For any ¢ > 0, we split an arbitrary function f € L? as follows:

f=r+h
where
ooy f@), (@) > (@),
fle) = {O, otherwise,
and f; = f — f".

Then we can verify that

drm{ Sy osusn

’ y>t, (2.19)
(1)) < { L ses

)y oy >t
f*I < |f|implies ()" (y) < f*(y) for all
y = 0. Moreover, by the deﬁnition of f! and (x) in Proposition 2.25, we have
(f9)+() < (f)(f(t7)) = fo(f*(t7)) < 27 for any o > 0, since (f*).(a) =
m({z : |[f(z)] > a}) = m({z : [f(z)] > f*(t7),and |f(z)] > a}) =
m({z : [f(z)] > f*(t7)}) = m({z : [f(=)] > f*(t7)}) = (f).(f*(t7)) for
0 < a < f*(t7). Thus, for y > t°, we get (f*)*(y) = 0. Similarly, by (iv) in
Proposition 2.25, we have (f;)*(y) < f*(y) for any y > 0 since |f;| < |f].
On the other hand, for y > 0, we have (f;)*(y) < (f:)*(0) = || felloo < f*(27)
with the help of the non-increasing of (f;)*(y) and (xv) in Proposition 2.25.
Thus, (f:)*(y) < min(f*(y), f*(t7)) for any y > 0 which implies (2.19).
Suppose p; < oo. Notice that p < ¢, because p; < ¢;. By Theorems 2.27
and 2.29, (iv) and (v) in Proposition 2.25, (2.18), and then by a change of
variables and Hardy’s inequalities (2.16) and (2.17), we get

I7fllg = I7f 120 < (/)" T 0o
sk (g)w " ( /0 ) [(zt)l/q(Tft+Tft)*(2t)]p%>1/
<o () o { ([ emsyor ) ”

+ (/OOO ROk %)W}

1/p—1/q 0 dt 1/p
<o () {Ao UGN
0
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o0 » dt 1/p
A ( [ 1) —)
0 t
1/p—1/q o0 1-1/po pdt 1/p
<Y (E) Ag / t1/a=1/a0 (i) £ pon | —
q 0 Do t

1/p
1 1_1/p1 p dt
([ e ) e
D1
1/p—1/q 1\~ 1/po
A
p
. OO tt/a=1/90 Yo f(y @ ﬂ
y t
1-1/
+ A = " tl/q Vg 1/p1f d " dt
y t
1-1/
N Al (l) p1 ( |:t1/q 1/q1 ( l/plf to’ d ):| dt)
D1 Y t
1/p—1/q ) 1 1-1/po
() o )
q Do
() 1/P
. (/ g~ P(1/po=1/p) (/ 1/pof ( )dy) @)
0 0 Y s
1-1/ 00 ) P 1/p
+ A (i) " </ gP(1/p=1/p1) (/ yl/mf*(y)@) @)
D1 0 s Yy S
1-1/ 0o 1/p
+ Ay (i) " (/ gP(1/p=1/p1) (/ 1/p1f ( )dy) @)
Y41 0 0 Yy S
1/p—1/q 1-1/ 0o 1/p
1 1 Ly p dy
<21/q[( (E) o ,1, A (_ (/ yl/pf* y _>
q i *\»o aﬁ/po —1/p) \Jo ( ) Y
1 1-1/p1 1 o0 » dy 1/p
+A —) —(/ Y (y —)
' (Pl (1/p— 1/]91) 0 ( ( )) Yy

1—1/291 [e%s) d l/p
(o) ([ e et }
P1 0 S

1
T+ Ap/" S 1If Il
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For the case p; = oo the proof is the same except for the use of the estimate
I filloe < f*(t9), we can get

1-1/po
D 1/p-1/q A <pi0>
A=V (_) o d )y
q

1 _1
pop

Thus, we complete the proof. |

From the proof given above it is easy to see that the theorem can be extended
to the following situation: The underlying measure space R™ of the LPi(R™)
can be replaced by a general measurable space (and the measurable space oc-
curring in the domain of 7" need not be the same as the one entering in the
range of T'). A less superficial generalization of the theorem can be given in
terms of the notation of Lorentz spaces, which unify and generalize the usual
LP spaces and the weak-type spaces. For a discussion of this more general
form of the Marcinkiewicz interpolation theorem see [SW71, Chapter V] and
[BL76, Chapter 5].

As an application of this powerful tool, we present a generalization of the
Hausdorff-Young inequality due to Paley. The main difference between the
theorems being that Paley introduced a weight function into his inequality and
resorted to the theorem of Marcinkiewicz. In what follows, we consider the
measure space (R", u) where ;1 denotes the Lebesgue measure. Let w be a
weihgt function on R", i.e., a positive and measurable function on R". Then
we denote by LP(w) the LP-space with respect to wdz. The norm on LP(w) is

1l o) = ( / N f(a:)lpw(:v)dx) l/p.

With this notation we have the following theorem.

Theorem 2.35 (Hardy-Littlewood-Paley theorem on R"). Assume that
1 <p<2 Then

||ﬁf||LP(|§|*"<2*P>) < OprHp'

Proof. We considering the mapping (7f)(£) = |£["f(€). By Plancherel theo-
rem, we have

|T fllc2qei-2ny) < T fllz2qe-2m) = | fll2 < C|If]l2,

which implies that T is of weak type (2,2). We now work towards showing
that 7" is of weak type (1, 1). Thus, the Marcinkiewicz interpolation theorem
implies the theorem.

Now, consider the set E, = {¢ : [€|"f(€) > «}. For simplicity, we let v
denote the measure |¢|~2"d¢ and assume that || f||; = 1. Then, |f(¢)| < 1. For
¢ € E,, we therefore have o < [£|". Consequently,
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(Tf).(0) = v(Ea) = [E €72 < /5 €2de < Ca',

[">a
Thus, we proves that
a- (Tf)(a) <Ol flh,
1

which implies 7" is of weak type (1, 1). Therefore, we complete the proof. W
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Chapter 3

The Maximal Function and Calder6n-Zygmund
Decomposition

3.1 Two covering lemmas

Lemma 3.1 (Finite version of Vitali covering lemma). Suppose B =
{B1, By, - -+, Bx} is a finite collection of open balls in R™. Then, there exists
a disjoint sub-collection B;,, Bj,, - - -, B;, of B such that

m <U B£> <3") m(By,).
/=1 =1

Proof. The argument we give is constructive and relies on the following simple
observation: Suppose B and B’ are a pair of balls that intersect, with the
radius of B’ being not greater than that of B. Then B’ is contained in the ball
B that is concentric with B but with 3 times its radius. (See Fig 3.1.)

As a first step, we pick a ball B, in B with maximal
(i.e., largest) radius, and then delete from B3 the ball B, as
well as any balls that intersect ;. Thus all the balls that
are deleted are contained in the ball le concentric with
Bj,, but with 3 times its radius.

The remaining balls yield a new collection 53’, for which
we repeat the procedure. We pick Bj, and any ball that

. .. . Fig. 3.1 The balls B
intersects B;,. Continuing this way, we find, after at most angd B

N steps, a collection of disjoint balls B;,, Bj,, - -+, Bj,.
Finally, to prove that this disjoint collection of balls sat-

isfies the inequality in the lemma, we use the observation made at the begin-

ning of the proof. Let Bji denote the ball concentric with Bj,, but with 3 times

its radius. Since any ball B in B must intersect a ball B;, and have equal or

smaller radius than 5;,, we must have Upn Bjﬂ,g@B C B;,, thus
N ko k ) k
; (U ) - (U B) <> m(By) =3y (B,
(=1 i=1 i=1 i=1

57
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In the last step, we have used the fact that in R™ a dilation of a set by § > 0
results in the multiplication by 6" of the Lebesgue measure of this set. |

For the infinite version of Vitali covering lemma, one can see the textbook
[Ste70, the lemma on p.9].

The decomposition of a given set into a disjoint union of cubes (or balls) is
a fundamental tool in the theory described in this chapter. By cubes we mean
closed cubes; by disjoint we mean that their interiors are disjoint. We have in
mind the idea first introduced by Whitney and formulated as follows.

Theorem 3.2 (Whitney covering lemma). Let F' be a non-empty closed
set in R™ and (2 be its complement. Then there exists a collection of cubes
F = {Qu} whose sides are parallel to the axes, such that

(1) Uy Qu = 2 =F,

(ii) Q5 N Qy = D if j # k, where Q° denotes the interior of Q,

(iii) there exist two constants ci,cy > 0 independent of F' (In fact we may
take ¢y = 1 and cy = 4.), such that

cp diam (Q) < dist (Qg, F) < o diam (Qy).

Proof. Consider the lattice of points in R" whose coordinates are integers.
This lattice determines a mesh .#,, which is a collection of cubes: namely
all cubes of unit length, whose vertices are points of the above lattice. The
mesh .# leads to a two-way infinite chain of such meshes {.#}}*>_, with
%k = 2_k%0.

Thus each cube in the mesh .7,
gives rise to 2" cubes in the mesh
M1 by bisecting the sides. The
cubes in the mesh .#) each have

M-y

I
1
T
T
I
i
Rl e )

sides of length 27 and are thus of di- i S 33 “
ameter \/n27~. 1 0 O
In addition to the meshes .#,, we | ‘ ;

consider the layers {2, defined by e

_ . o—k . —k+1
Qk - {l‘ L2 < dist (I ) F ) < c2 Fié.?3.2 Meshes and layers: .#, with dashed
where ¢ is a positive constant which (green) lines; .#; with dotted lines; .#_1 with
K . solid (blue) lines
we shall fix momentarily. Obviously,
o0
2 =Upe o (2.

Now we make an initial choice of cubes, and denote the resulting collection
by .%. Our choice is made as follows. We consider the cubes of the mesh .7,
(each such cube is of size approximately 27%), and include a cube of this mesh
in % if it intersects (2, (the points of the latter are all approximately at a
distance 2% from F). Namely,
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yQIU{QE%kQﬂQk#@}
k

We then have
U e=x
QeFo
For appropriate choice of ¢, we claim that

diam (Q) < dist (Q, F) < 4diam (Q), Q € %. (3.1)
Let us prove (3.1) first. Suppose Q € .#; then diam (Q) = /n27*. Since
Q € H, there exists an x € Q N (2. Thus dist (Q, F)) < dist (z, F) <
c27F1 and dist (Q, F) > dist (z, F) — diam (Q) > c27% — \/n27%. If we
choose ¢ = 2y/n we get (3.1).

Then by (3.1) the cubes () € % are disjoint from F' and clearly cover {2.
Therefore, (i) is also proved.

Notice that the collection .% has all our required properties, except that the
cubes in it are not necessarily disjoint. To finish the proof of the theorem, we
need to refine our choice leading to %, eliminating those cubes which were
really unnecessary.

We require the following simple observation. Suppose (); and (), are two
cubes (taken respectively from the mesh .#}, and .#},). Then if (); and Q-
are not disjoint, one of the two must be contained in the other. (In particular,
Q1 C Qo,if by > ky.)

Start now with any cube ) € %, and consider the maximal cube in .%
which contains it. In view of the inequality (3.1), for any cube Q' € .%, which
contains () € %y, we have diam (Q') < dist (@', F) < dist (@, F) <
4 diam (Q). Moreover, any two cubes )" and )" which contain () have ob-
viously a non-trivial intersection. Thus by the observation made above each
cube ) € % has a unique maximal cube in .%; which contains it. By the
same taken these maximal cubes are also disjoint. We let .% denote the collec-
tion of maximal cubes of .%;. Then obviously

() Upes @ = 2

(ii) The cubes of .# are disjoint,

(i) diam (Q) < dist (Q, F) < 4diam (Q), Q € .Z.

Therefore, we complete the proof. |

3.2 Hardy-Littlewood maximal function
Maximal functions appear in many forms in harmonic analysis. One of the

most important of these is the Hardy-Littlewood maximal function. They play
an important role in understanding, for example, the differentiability properties
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of functions, singular integrals and partial differential equations. They often
provide a deeper and more simplified approach to understanding problems in
these areas than other methods.

First, we consider the differentiation of the integral for one-dimensional
functions. If f is given on [a, b] and integrable on that interval, we let

/f )y, x € [a,b].

To deal with F’(x), we recall the definition of the derivative as the limit of the

quotient w when h tends to 0, i.e.,

F h)—F
F'(z) = lim (x+h) (x)
h—0 h
We note that this quotient takes the form (say in the case h > 0)

1 z+h 1
i = [ s

where we use the notation / = (z, x4+ h) and || for the length of this interval.

At this point, we pause to observe that the above expression in the “average”
value of f over I, and that in the limit as |I| — 0, we might expect that
these averages tend to f(x). Reformulating the question slightly, we may ask
whether

=0 |I]
holds for suitable points z. In higher dimensions we can pose a similar ques-
tion, where the averages of f are taken over appropriate sets that generalize
the intervals in one dimension.

In particular, we can take the sets involved as the ball B(z,r) of radius 7,

centered at z, and denote its measure by m(B(z,r)). It follows

_ 1
Let us first consider a simple case, when f is continuous at x, the limit
does converge to f(x). Indeed, given ¢ > 0, there exists a § > 0 such that
|f(z) — f(y)| < e whenever |x — y| < 4. Since

1 1
we find that whenever B(z, ) is a ball of radius r < ¢, then
1 1
flz) - m/}g(w) f(y)dy‘ < W/B(w) |f(z)=f(y)ldy <e,
as desired.
In general, for this “averaging problem” (3.2), we shall have an affirmative
answer. In order to study the limit (3.2), we consider its quantitative analogue,
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where “lim,_,(” is replaced by “sup,..,”, this is the (centered) maximal func-
tion. Since the properties of this maximal function are expressed in term of
relative size and do not involve any cancelation of positive and negative val-
ues, we replace f by |f].

Definition 3.3. If f is locally integrable' on R", we define its maximal
function M f : R™ — [0, oo] by

1 n
Mf(r) = iggm/jg(w) |f(y)ldy, =€R" (3.3)

Moreover, M is also called as the Hardy-Littlewood maximal operator.

The maximal function that we consider arose first in the one-dimensional
situation treated by Hardy and Littlewood.? It is to be noticed that nothing
excludes the possibility that M f(x) is infinite for any given z.

It is immediate from the definition that

Theorem 3.4. If f € L>(R"), then M f € L>(R") and
1M fllse < 11f |-

By the previous statements, if f is continuous at x, then we have

1
=lim ———— d
0 =l ey o Vs
1
<SP ) o Oy = M@
Thus, we have proved
Theorem 3.5. If f € C(R"), then
[f ()] < Mf(x)
forall x € R™.

Sometimes, we will define the maximal function with cubes in place of
balls. If Q(x, r) is the cube [x; — r, x; + r|", define
M'f(z) = sup

Gy Wl reR G4

When n = 1, M and M’ coincide. If n > 1, then there exist constants c,, and
C,, depending only on n, such that

e M f(x) < Mf(x) < C, M f(x). (3.5)

1" A measurable function f on R™ is called to be locally integrable, if for every ball B the function
f(z)x B (z) is integrable. We shall denote by L{, _(R™) the space of all locally integrable functions.
Loosely speaking, the behavior at infinity does not affact the local integrability of a function. For
example, the functions e!®! and |z|~1/2 are both locally integrable, but not integrable on R™.

2 The Hardy-Littlewood maximal operator appears in many places but some of its most notable uses
are in the proofs of the Lebesgue differentiation theorem and Fatou’s theorem and in the theory of

singular integral operators.
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Thus, the two operators M and M’ are essentially interchangeable, and we
will use whichever is more appropriate, depending on the circumstances. In
addition, we can define a more general maximal function
1 1

W ge) = s o |y 36)
where the supremum is taken over all cubes containing x. Again, M” is point-
wise equivalent to M. One sometimes distinguishes between M’ and M" by
referring to the former as the centered and the latter as the non-centered max-
imal operator. Alternatively, we could define the non-centered maximal func-
tion with balls instead of cubes:

~ 1
N£a) = s —s [ |y
at each x € R". Here, the supremum is taken over balls B in R which contain
the point = and m(B) denotes the measure of B (in this case a multiple of the
radius of the ball raised to the power n).

Ex.3.6. Let f : R = R, f(x) = x(0,1)(¢). Then

%, x> 1,
Mf(x)=M'f(z) =< 1, 0<x<1,
ﬁ, x <0,
2 7T > 1,
Mf(z)=M"f(z)={1, 0<z<I,
ﬁ, x <0
In fact, for z > 1, we get
1 z+h
Mf(z) = le(ﬂf) =Ssup oh X(o,1)(3/>dy
h>0 z—h
1—z+h 1 1
< (o P o) < g
B x+ho
M) = M f@) = swp s [ vy
hiho>0 B1 +ha o g,

( l—z+hy 1 ) 1
= 1max sup ————, sup — | = —.
O<z—hi<1 hy z—h1<0 hy X

For 0 < z < 1, it follows
1 x+h

Mf(zx) = M'f(x) =sup - X(0,1)(y)dy
h>0 2h x—h

( 2h l—xz+h
= max sup — sup S
O<z—h<zth<l 2R ocz—h<i<a+n 2D

x+h 1 )
sup , sup —
e—h<0<e+h<1  2h " a_n<o<i<a+n 2h
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=max 1,1,1,1min 1, L =1,
2 r 1—=x

5 1 z+ho
Mf(x) = M"f(zx) = su / d
f(z) f(z) S X(0.1)(y)dy

e—hy
= max < sup fu + h2, su LhQ,
O<az—hy<wtha<1 N1+ N2 o hy<0<etha<1 R1 + B2
l—ax+ M 1
O<x—hsllgl)<x+h2 hi 4+ ho ,:p—h1<§)grl)<z+hg hi + h2)
=1.
For z < 0, we have
, x+h 1 1
Mflz) =M f(x) =max (o<mf’fﬁ,h>o 20 ainn ﬁ) T (1)
~ y x + hs 1
M) = M7[(x) = max <h17h2>08,:)l<px+h2<1 hy + hy’ h1>os,;lfh2>1 hy + h2)
1
1z

Observe that f € L'(R), but M f, M'f, M" f, M f ¢ L'(R).
Remark 3.7. (i) M f is defined at every point z € R* and if f = g a.e,,
then M f(z) = Mg(x) at every x € R".

(ii) It may be well that M f = oo for every x € R". For example, let
n=1and f(z) = 2%

(iii) There are several definitions in the literature which are often
equivalent.

Next, we state some immediate properties of the maximal function. The
proofs are left to interested readers.

Proposition 3.8. Let f,g € L;,.(R™). Then
(i) Positivity: M f(x) > 0 for all x € R™
(ii) Sub-linearity: M(f + g)(x) < M f(x) + Mg(x).
(iii) Homogeneity: M (af)(x) = |a|M f(z), a € R.
(iv) Translation invariance: M (1, f) = (r,M f)(z) = M f(x — y).

With the Vitali covering lemma, we can state and prove the main results for
the maximal function.

Theorem 3.9 (The maximal function theorem). Let f be a given function
defined on R™.

(@) If f € LP(R™), p € [1, 00|, then the function M f is finite almost every-
where.

(ii) If f € L' (R™), then for every o > 0, M is of weak type (1,1), i.e.,
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m({e : Mf(z) > a}) < S f]h-
(iii) If f € LP(R™), p € (1, 00|, then M f € LP(R™) and

1M fllp < Apllfllp:
where A, =3"p/(p— 1)+ 1forp e (1,00) and A, =

Proof. We first prove the second one, i.e., (ii). Denote
E,={x: Mf(z) > a},
then from the definitions of M f and the supremum, for each x € FE, and
0 <e< Mf(x)— a, there exists a r > 0 such that
BT o, @y > M) 2> 0
We denote that ball B(z, ) by B, that contains x. Therefore, for each B,, we
have

m(B,) < [ |y 37)

Fix a compact subset K of £,. Since K is covered by U,cp_ B,, by Heine-
Borel theorem,®> we may select a finite subcover of K, say K C Uévzl By.
Lemma 3.1 guarantees the existence of a sub-collection B, - - -, B;, of dis-
joint balls with

N k
m(| JB)) <3") m(B)). (3.8)
/=1 i=1

Since the balls B; B, are disjoint and satisfy (3.7) as well as (3.8), we

FREE
find that
k

SIUEIEED SRUREES oy LTS

=1
S e o
a Uf:l Bj, & Jre

Since this inequality is true for all compact subsets K of E,,, the proof of the
weak type inequality (ii) for the maximal operator is complete.

The above proof also gives the proof of (i) for the case when p = 1. For the
case p = o0, by Theorem 3.4, (i) and (iii) is true with A, =

Now, by using the Marcinkiewicz interpolation theorem between L' —
LY and L™ — L*, we can obtain simultaneously (i) and (iii) for the case
p € (1,00). |

Now, we make some clarifying comments.

8 The Heine-Borel theorem reads as follows: A set K C R™ is closed and bounded if and only if K isa
compact set (i.e., every open cover of K has a finite subcover). In words, any covering of a compact
set by a collection of open sets contains a finite sub-covering. For the proof, one can see the wiki:
http://en.wikipedia.org/wiki/Heine%E2%80%93Borel_theorem.


http://en.wikipedia.org/wiki/Heine%E2%80%93Borel_theorem
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Remark 3.10. (1) The weak type estimate (ii) is the best possible for the
distribution function of M f, where f is an arbitrary function in L' (R").
Indeed, we replace | f(y)|dy in the definition of (3.3) by a Dirac mea-
sure d; whose total measure of one is concentrated at the origin. The
integral |’ B(a.) At = 1 only if the ball B (x,r) contains the origin; other-
wise, it will be zeros. Thus,
1
M) = b o mB(a.7)
i.e,, it reaches the supremum when r = |z|.
function of M (dpu) is

(M(dp).(e) =m({z : [M(dp)(z)] > a}) =m({z : (Valz|") ™" > a})
=m({z : V,|z|" < a™'}) = m(B(0, (V,a) /™))
=V, (Vha) ™t =1/a.
But we can always find a sequence { f,,,(z)} of positive integrable func-
tions, whose L' norm is each 1, and which converges weakly to the
measure du. So we cannot expect an estimate essentially stronger than
the estimate (ii) in Theorem 3.9, since, in the limit, a similar stronger

version would have to hold for M (du)(x).
(2) It is useful, for certain applications, to observe that

1
A—O( ), asp — 1.
p—1

In contrast with the case p > 1, when p = 1 the mapping f +— M f is not
bounded on L' (R™). So the proof of the weak bound (ii) for M f requires a less
elementary arguments of geometric measure theory, like the Vitali covering

= (Vala™)™

Hence, the distribution

lemma. In fact, we have

Theorem 3.11. If f € L'(R") is not identically zero, then M f is never inte-
grable on the whole of R", i.e., M f ¢ L'(R").

Proof. We can choose an NV large enough such that

/ F@)ldz > S
B(0,N)

Then, we take an = € R™ such that |z| > N. Let r = 2(|z| + ), we have

1 1
VI > iy o 150 = gy L 16l

1 1
Va(2 <|x| )" /B@,N) FWldy > 5oy M

It follows that for sufﬁciently large |z|, we have
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Mf(x) = cle|™, c= (2Vad") 7| fll1-
This implies that M f ¢ L'(R"™). |
Moreover, even if we limit our consideration to any bounded subset of R",

then the integrability of M f holds only if stronger conditions than the integra-
bility of f are required. In fact, we have

Theorem 3.12. Let E be a bounded subset of R™. If fIn" |f| € L*(R") and
supp f C E, then

[ Mi@ar < 2m(®)+C [ |10 |f(e)ld,
where In" ¢ :Emax(ln t,0). :
Proof. By Theorem 2.16, it follows that
/EMf(x)dx 9 /OO m({z € E: Mf(z) > 2a})da

_2</ /) (o€ B: Mf(z) > 2a})da

<L2m(F) + 2/ m({x € E: Mf(x)>2a})do

1
Decompose f as f1 + fo, where fi = fX{a:|f(2)>a} @nd fo = f — f1. Then, by
Theorem 3.4, it follows that

Mfy(z) < [[M follso < [f2lloo < @,
which yields

{reE:Mf(x) >2a} C{x e E:Mfi(x)> a}l.

Hence, by Theorem 3.9, we have

/1°°m<{er:Mf<>>2a}> < [Tmite € B M) > a)in

oo 1 maxl\f(x|)d
<C’/ —/ x)|drdo < C/|f |/ ax
1 o {xEE:|f(x)\>a}

—c [ 5@ " 7o) do.
E
This completes the proof. ]
As a corollary of Theorem 3.9, we have the differentiability almost every-
where of the integral, expressed in (3.2).

Theorem 3.13 (Lebesgue differentiation theorem). If f € LP(R"), p €
1, 00], or more generally if f is locally integrable (i.e., f € L},.(R™)), then
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Proof. We first consider the case p = 1. It suffices to show that for each o > 0,
1

the set
STy 10| 0]

E, = {x : lim sup
r—0

has measure zero, because this assertion then guarantees that the set £/ =

Uj; E1/, has measure zero, and the limit in (3.9) holds at all points of E°.
Fix «, since the continuous functions of compact support are dense in

LY(R™), for each ¢ > 0 we may select a continuous function g of compact

support with || f — g||; < e. As we remarked earlier, the continuity of g implies

that

1

hm—/ g(y)dy = g(x), forall x.
P S Bw.1) ey T I

Since we may write the difference ——— | Blaw) | (y)dy — f(z) as

m(B(z,r))
1
w(B. ) /B(I,T)(f(y) —g(y))dy
1
+ BET) /BW) 9(y)dy — g(x) + g(x) — f(z),
we find that
imsup m / . Ty = f(a)| MU =9)(@) +lo(a) = S @)

Consequently, if

Fo=Az:M(f —g)(x) >a} and Go={z:|f(z)—g(z)]>a},
then £, C F,UG,, because if u; and u, are positive, then u; + us > 2« only
if u; > « for at least one ;.

On the one hand, Tchebychev’s inequality* yields

1
m(Ga) < <1 =gl
and on the other hand, the weak type estimate for the maximal function gives
3n
m(Fa) < 2 = gl
Since the function g was selected so that || f — g||; < &, we get

3n 1 3" +1
m(E,) < —e+ —e = il
a o«

€.
(0%

Since ¢ is arbitrary, we must have m(FE,) = 0, and the proof for p = 1 is
completed.

4 Tchebychev inequality (also spelled as Chebyshev’s inequality): Suppose f > 0, and f is integrable.
Ifa>0and E, = {z € R" : f(z) > a}, then

L
m(Ea)gf/ fdz.
« Jrn
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Indeed, the limit in the theorem is taken over balls that shrink to the point
x, so the behavior of f far from x is irrelevant. Thus, we expect the result to
remain valid if we simply assume integrability of f on every ball. Clearly, the
conclusion holds under the weaker assumption that f is locally integrable.

For the remained cases p € (1, 00|, we have by Holder inequality, for any
ball B,

[ 1@z < 1l 1) < 2B
Thus, f € L},.(R") and then the conclusion is valid for p € (1, oo|. Therefore,

we complete the proof of the theorem. |

By the Lebesgue differentiation theorem, we have
Theorem 3.14. Let f € L}, (R"). Then
f@) < Mf(), aexeR"

Combining with the maximal function theorem (i.e., Theorem 3.9), we get
Corollary 3.15. If f € LP(R™), p € (1, 00|, then we have
[fllp < 1M fllp < Apll flp-

As an application, we prove the (Gagliardo-Nirenberg-) Sobolev inequality
by using the maximal function theorem for the case 1 < p < n. We note that
the inequality also holds for the case p = 1 and one can see [Eva98, p.263-264]
for the proof.

Theorem 3.16 ((Gagliardo-Nirenberg-) Sobolev inequality). Let p €
(1,n) and its Sobolev conjugate p* = np/(n — p). Then for f € Z(R"),
we have

r < OV fllp,
where C depends only on n and p.

Proof. Since f € 2(R™), we have
* 0
fa) == [ Gettatraar

where z € S™!. Integrating this over the whole unit sphere surface S !
yields

wn1f(z) = f(z /Sn 1/ —f (x +rz)drdo(z)

Sn—1

:_/Sn_l/o Vi +r2) - zdrdo()
:_/OOO /S V(x4 1) - 2do(=)dr.
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Changing variables y = z + 7z, do(2) = =" Vdo(y), z = (y — 2)/|y — 2|
and r = |y — x|, we get

st == [ [ it

—— | Vi) Ly,

RN ly — x|

< = [ L,

Wn—1 Jgn |y — 2|71
We split this integral into two parts as fRn =/ Ban T fRn\ Ber): For the
first part, we have

1 IV f(y)l
/ »lr =yl oy 1™

which implies that

Vi)l
T 1 B(a,2-kr)\B(z,2—k-1r) [T — Y[

IV£(y)l

—k—1,\n— d
wnl (w2k\Bx2k1)<2 T)

- L VW)
< 2n 1 ‘ d
Z nV 2k 7“/ Bz,2-Fr) (2=kp)n—t y
1
<— 9 ktn=1y. / Vfy)|dy
n kz:% m(B(z,27Fr)) B(s, Z_k,,)| ()]

n—1

—rM(Vf)( 22 k——rM (Vf)(z).

For the second part, by Holder 1nequahty, wegetforl <p<n

\Y
[ vl
R™\ B(z,r) ’Q? - y’
1/p ) 1/p
<([ wrwra) ([ )
R7\B(z,r) R7\B(z,r)

oo ) 1/p
< (w,” Jas p“dp) IV 51,

(p — )wn— v —n
= (5 2em) T oy,

(p—1)(P—1)/n |V p/n o
(nfp)(Pfl)/nwiCnl2p (M(Vf)(z;)) SatISfylng

Choose r =

_ 1/
QnTM(Vf)(m) _ n 1 ((p 1)wn—1> Tlfn/pHVpr,

Wiy n—p
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then we get
(@) < CIIVFIB™(M(V ()P
Thus, by part (iii) in Theorem 3.9, we obtain for 1 < p <n
n 1— n
11l <CIV AR IM DA™

=C|[V A" IM VIl < CIV £,
This completes the proof. |

3.3 Calderén-Zygmund decomposition

Applying Lebesgue differentiation theorem, we give a decomposition of R",
called Calder6n-Zygmund decomposition, which is extremely useful in har-
monic analysis.

Theorem 3.17 (Calderén-Zygmund decomposition of R"). Let f €
LY(R™) and « > 0. Then there exists a decomposition of R™ such that

HR"=FUNL FN2=0.

(i) |f(z)| < aforae x € F.

(iii) {2 is the union of cubes, {2 = |, Qr, whose interiors are disjoint and
edges parallel to the coordinate axes, and such that for each Q)

1 n
o /Q F(2)|dz < 2. (3.10)

a <

Proof. We decompose R"™ into a mesh of equal cubes QI(CO) (k =1,2,---),
whose interiors are disjoint and edges parallel to the coordinate axes, and

whose common diameter is so large that

1

since f € L.
Split each Q,(CO) into 2" congruent cubes. These we denote by Q,(:), k =
1,2, --. There are two possibilities:

. 1 1
either m/@y |f(z)|dz < o, or m /Q<1) |f(x)|dz > a.

k k
In the first case, we split Q,(:) again into 2" congruent cubes to get Qf) (k=

1,2,---). In the second case, we have
1 1

k
in view of (3.11) where QS) is split from Qg)), and then we take QS) as one
of the cubes ().
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A repetition of this argument shows thatif v ¢ 2 =: | J,-, Q thenx € ng )
(j =0,1,2,---) for which '

1
m(Q}) = 0as j — oo, andﬁ/ f@)dz<a (j=0,1,---).
Thus |f(z)| < cwa.e. x € F = (2° by a variation of the Lebesgue differentia-
tion theorem. Thus, we complete the proof. |

We now state an immediate corollary.

Corollary 3.18. Suppose f, o, F, {2 and @y, have the same meaning as in
Theorem 3.17. Then there exists two constants A and B (depending only on
the dimension n), such that (i) and (ii) of Theorem 3.17 hold and

@m(2) < 2051,

1
) g | Ifldr<Ba
Im(Qk) Qk
Proof. In fact, by (3.10) we can take B = 2", and also because of (3.10)

= Y@ < = [ r@lde < Sl

This proves the corollary w1th A=1land B =2". |

It is possible however to give another proof of this corollary without using
Theorem 3.17 from which it was deduced, but by using the maximal function
theorem (Theorem 3.9) and also the theorem about the decomposition of an
arbitrary open set as a union of disjoint cubes. This more indirect method of
proof has the advantage of clarifying the roles of the sets F' and (2 into which
R"™ was divided.

Another proof of the corollary. We know that in F', | f(x)| < «, but this fact
does not determine F'. The set F' is however determined, in effect, by the fact
that the maximal function satisfies M f(z) < « on it. So we choose F' =
{r:Mf(z)<a}and 2 = E, = {z: M f(x) > a}. Then by Theorem 3.9,
part (ii) we know that m(£2) < 2-|| f||;. Thus, we can take A = 3".

Since by definition F' is closed, we can choose cubes (), according to The-
orem 3.2, such that 2 = | J, Qx, and whose diameters are approximately pro-
portional to their distances from F'. Let (), then be one of these cubes, and py,
a point of /' such that

dist (F, Qk) = dist (pk, Qk)
Let B, be the smallest ball whose center is p; and which contains the interior
of (). Let us set
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We have, because p;, € {z : M f(z) < a}, that

1 1
0> MIw) > o5 | @l > s /Q 1Sl

Thus, we can take a upper bound of y, as the value of B.
The elementary geometry and the inequality (iii) of Theorem 3.2 then show
that

radius(By) <dist (px, Qx) + diam (Qy) = dist (F, Q) + diam (Qy)
<(eg + 1) diam (Qy),
and so
m(By) =V, (radius(By))" < Vi (co + 1) (diam (Qg))"
=Va(ca +1)"n"m(Qy),

since m(Q;) = (diam (Qy)/v/n)". Thus, 1 < Vi(cy 4+ 1)"n™/2 for all k.
Thus, we complete the proof with A = 3" and B = V,,(cy + 1)"n"/2. u

Remark 3.19. Theorem 3.17 may be used to give another proof of the
fundamental inequality for the maximal function in part (ii) of Theorem
3.9. (See [Ste70, §5.1, p.22-23] for more details.)

The Calder6n-Zygmund decomposition is a key step in the real-variable
analysis of singular integrals. The idea behind this decomposition is that it is
often useful to split an arbitrary integrable function into its “small” and “large”
parts, and then use different techniques to analyze each part.

The scheme is roughly as follows. Given a function f and an altitude o, we
write f = g-+b, where g is called the good function of the decomposition since
it is both integrable and bounded; hence the letter g. The function b is called
the bad function since it contains the singular part of f (hence the letter b), but
it is carefully chosen to have mean value zero. To obtain the decomposition
f = g + b, one might be tempted to “cut” f at the height o; however, this
is not what works. Instead, one bases the decomposition on the set where the
maximal function of f has height a.

Indeed, the Calderén-Zygmund decomposition on R™ may be used to de-
duce the Calder6n-Zygmund decomposition on functions. The later is a very
important tool in harmonic analysis.

Theorem 3.20 (Calderén-Zygmund decomposition for functions). Let
f € LY(R™) and o > 0. Then there exist functions g and b on R™ such that
f=g+band

@) lglls < 17111 and [lg]lc < 270

(i) b = >_; b;, where each b; is supported in a dyadic cube Q; satisfying
fQj bj(z)dz = 0and ||bj||; < 2" am(Q,). Furthermore, the cubes Q; and
Qy, have disjoint interiors when j # k.

(iif) >2; m(Q;) < ™M f]1.
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Proof. Applying Corollary 3.18 (with A = 1 and B = 2"), we have
DR"=FUR, FNR2 =g
2) |f(x)] < ayae .z € F,
3) = U _1 (;, with the interiors of the Q] mutually disjoint;
Hm(2) <ot [ |f(z)|dz, and o0 < —— fQ |f(z)|dx < 2"«

Now deﬁne
1
b, = - d v
! (f m(Q;) /Qj d x) ra

b=>_;bjand g = f — b. Consequently,

/ lbjlde < / F(2)ld + m(Q;) | —

m(Q;) Jo
\f( ldz < 2" am(Q;),

which proves ||b;||; < 2”+1oam(Q .
Next, we need to obtain the estimates on g. Write R” = U;Q); U F', where
F is the closed set obtained by Corollary 3.18. Since b = O on F'and f —b; =

f (x)dx

IR Jo, f(z)dx, we have
fs on F|
g — (162]-) f)de, onQ;. 3-12)
On the cube @);, g is equal to the constant —=~ fQ x)dz, and this is
bounded by 2"« by 4). Then by 2), we can get || g||oo < 2"«v. Finally, it follows
from (3.12) that ||g||y < || f||1. This completes the proof. |

As an application of Calderén-Zygmund decomposition and Marcinkiewicz
interpolation theorem, we now prove the weighted estimates for the Hardy-
Littlewood maximal function.

Theorem 3.21 (Weighted inequality for Hardy-Littlewood maximal
function). For p € (1,00), there exists a constant C' = C,,,, such that, for
any nonnegtive measurable function ¢(x) on R™, we have the inequality

| at@ye@ar<c [ @ripade. 613)

Proof. Except when M () = oo a.e., in which case (3.13) holds trivially, M ¢
is the density of a positive measure y.. Thus, we may assume that M ¢(z) < oo
a.e.z € R"and My(x) > 0. If we denote

du(x) = Mp(z)de and dv(z) = ¢(x)dx,
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then by the Marcinkiewicz interpolation theorem in order to get (3.13), it
suffices to prove that M is both of type (L>°(u), L*>°(v)) and of weak type

(L' (), LY ().
Let us first show that M is of type (L>°(p), L*(v)). In fact, if || f|| poo () <
a, then

/ Mo(z)dz = p({z € R™ : | f(z)| > a}) = 0.
{zeR™:|f(z)|>a}

Since M¢(x) > 0 for any x € R", we have m({z € R" : |f(z)| > a}) =0,
equivalently, |f(z)| < a a.e. z € R"™. Thus, M f(x ) a a.e. x € R™ and this
follows || M f|| <y < o Therefore, || M f|| ooy < || f1] oo ()-

Before proving that M is also of weak type (L'(u), L'(v)), we give the
following lemma.

Lemma 3.22. Let f € L'(R™) and o > 0. If the sequence {Qy} of cubes is
chosen from the Calderén-Zygmund decomposition of R™ for f and o > 0,
then

{z eR": M'f(x) > Ta} C UQ}Z,
k
where Q)f = 2Q. Then we have
m({z € R": M'f(x) > Ta}) < Q”Zn’n(Qk)
k

Proof. Suppose that = ¢ | J, Q;. Then there are two cases for any cube () with
the center z. If Q C F := R" \ |J, Q. then

1
m—Q)/QV(JT)Wx <.

If Q N Qy # @ for some k, then it is easy to check that (), C 3@, and
L@k QinQ # 2} C3Q.
k

Hence, we have

z)|dx < ) |dx z)|dx
/Qlf( ) </QOF|f( Jaz+ S [ 15

QxnQ#£e ¥ @k

> 2'am(Qy)

QrNQ#D
<am(Q) + 2"am(3Q)
<7"om(Q).
Thus we know that M’ f(x) < 7"« for any = ¢ |, @}, and it yields that

m({z € R": M'f(x) > Ta}) < (UQk) —Q”Zn’n Q).

We complete the proof of the lemma. |
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Let us return to the proof of weak type (L' (i), L'(v)). We need to prove
that there exists a constant C' such that for any o > 0 and f € L'(u)

/{ R () }@(x)dx =v({zr e R": Mf(z) > a})
| C (3.14)
S5 - |f(z)|Mo(z)dz.

We may assume that f € L'(R™). In fact, if we take f; = |f|Xp(0,), then
fe € LYR™),0 < fo(z) < foyr(z) forx € R" and ¢ = 1,2, --. Moreover,
hmg_)oo fg(.%’) = ’f(.’ﬂ)’ and
{xER":Mf(x)>a}:U{xER":Mfg(x)>oc}.
¢

By the pointwise equivalence of M and M’, there exists ¢, > 0 such that
Mf(z) < ¢,M'f(x) for all z € R"™. Applying the Calderén-Zygmund de-
composition on R™ for f and o = «a/(c,7"), we get a sequence {Qy} of
cubes satisfying

a < @/@k |f(x)|dx < 2"/

By Lemma 3.22 and the pointwise equivalence of M and M”, we have that

/ o(x)dx
{zeR™: M f(z)>a}

< / o(r)dx
{z€R": M’ f(z)>T"a’}

g/ o(x)dx < / o(x)dx
Us @k ; Q%

= (m(le) /. W)dx) (7 ] 1)

k

cp " 2m
ey /Q 15 (m(@:g) /Q z*"(x)dx) dy
<My /Q )M (y)dy

«

<< [ 1rwinret)ay
o

Thus, M is of weak type (L'(u), L'(v)), and the inequality can be obtained
by applying the Marcinkiewicz interpolation theorem. ]
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Chapter 4

Singular Integrals

4.1 Harmonic functions and Poisson equation

Among the most important of all PDEs are undoubtedly Laplace equation
Au =0 4.1)
and Poisson equation
—Au = f. 4.2)
In both (4.1) and (4.2), x € §2 and the unknown is u : 2 — R, u = u(z),

where (2 C R” is a given open set. In (4.2), the function f : 2 — R is also
given. Remember that the Laplacian of u is Au =" | 927 u.

Definition 4.1. A C? function v satisfying (4.1) is called a harmonic func-
tion.

Now, we derive a fundamental solution of Laplace’s equation. One good
strategy for investigating any PDEs is first to identify some explicit solutions
and then, provided the PDE is linear, to assemble more complicated solutions
out of the specific ones previously noted. Furthermore, in looking for explicit
solutions it is often wise to restrict attention to classes of functions with cer-
tain symmetry properties. Since Laplace equation is invariant under rotations,
it consequently seems advisable to search first for radial solutions, that is, func-
tions of r = |z|. Let us therefore attempt to find a solution u of Laplace equa-
tion (4.1) in 2 = R", having the form

u(z) = (r),
where r = |z| and v is to be selected (if possible) so that Au = 0 holds. First
note for k = 1,--- , n that
or =«

k
— =, 0.
oxy, r T
We thus have
2 2
o T 2 - n L / 1 Ly,
=% =) () (1 - %)

77
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fork=1,---,n,and so
Au="(r) + t ; 10’(7“).
Hence Au = 0 if and only if
V" + n—_lv’ = 0. (4.3)
If v" 2 0, we deduce '
v 1—n
(Inv') = o = pa

and hence v'(r) = Tn‘l_l for some constant a. Consequently, if » > 0, we have

blnr+c¢, n=2,
v(r) =19 b

Tn—2

+c, n=3,

where b and c are constants.
These considerations motivate the following

Definition 4.2. The function

1
— —In |z, n=2,

2
n =3,

n(n — 2)V, |z|»=2’
defined for = € R", x # 0, is the fundamental solution of Laplace equa-
tion.

The reason for the particular choices of the constants in (4.4) will be appar-
ent in a moment.

We will sometimes slightly abuse notation and write &(z) = &(|z|) to em-
phasize that the fundamental solution is radial. Observe also that we have the
estimates

C

|‘T|n71’

[Ve(r)| < V2P(x)| < (z #0) (4.5)

C
[
for some constant C' > 0.

By construction, the function = — &(z) is harmonic for x # 0. If we shift
the origin to a new point y, the PDE (4.1) is unchanged; and so = +— &(z — y)
is also harmonic as a function of x for x # y. Let us now take f : R" — R
and note that the mapping x — &(z — y) f(y) (x # y) is harmonic for each
point y € R", and thus so is the sum of finitely many such expression built for
different points y. This reasoning might suggest that the convolution

-5 [ nle—ubrtdn. n =2

2
uw) = [ oa-piway =4 7
. f(y)
/R" |z — y!”*Qdy’ n=s
(4.6)

n(n —2)V,
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would solve Laplace equation (4.1). However, this is wrong: we cannot just
compute

Aule) = [ A8~ )1y =0. (47)

Indeed, as intimated by estimate (4.5), A®(z — y) is not summable near the
singularity at y = x, and so the differentiation under the integral sign above
is unjustified (and incorrect). We must proceed more carefully in calculating
Au.

Let us for simplicity now assume f € C?(R"), that is, f is twice continu-
ously differentiable, with compact support.

Theorem 4.3 (Solving Poisson equation). Let f € CZ(R"), define u by
(4.6). Then u € C*(R"™) and —Au = f in R".

We consequently see that (4.6) provides us with a formula for a solution of
Poisson’s equation (4.2) in R™.
Proof. Step 1: To show u € C?(R™). We have

uw)= [ - rwdy= [ o)y
hence
w(x + hep) —u(z) fla+hey —y) — flz —y)
where h # 0 and ¢ = (0,---,1,---,0), the 1 in the k*"-slot. But

flx+hey—y)— flx—y) _ Of
h —>axk($—y)

uniformly on R" as h — 0, and thus

9 )
@) = [ gt =y k=1

Similarly,
2 2
s @) = [ B = ki1 @9

As the expression on the r.h.s. of (4.8) is continuous in the variable x, we see
that u € C*(R™).

Step 2: To prove the second part. Since @ blows up at 0, we will need for
subsequent calculations to isolate this singularity inside a small ball. So fix
€ > (. Then

Au(r) = / D(y) A f(x — y)dy + / D(y)Apf(z — y)dy =: I. + J..
B(0,¢) R\ B(0,¢) (4.9)
49

Now
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Ce*(1 + |lnegl), n=2,

4.10
Ce?, n >3, ( )

L] < C| S|l / \@(y)\dyg{
B(0,e)

since

/ “n‘dey:—Qﬂ/ rinrdr = —m (rQInr\g—/ rdr)
B(O,E) 0 0

= —n(e®Ine — £%/2)

=7e?|Ine| + 352,

for e € (0, 1] and n = 2 by an integration by parts.
An integration by parts yields

J. = / O(y) A f(z — y)dy
R\ B(0,¢)

_ of R
_/8B(05 ()au( y)do(y) /Rn\B(o,e)wj(y) V, f( y)dy

=K. + Le>
(4.11)

where v denotes the inward pointing unit normal along 0B(0, ). We readily
check

K| <Vl / B(y)|do(y) < C|o(c)| do(y) = C|d(e)|e"!
9B(0,¢) 0B(0,e)
Cellne|l, n=2,
<
Ce, n >3,
(4.12)

since @(y) = D(|y|) = P(¢) on 0B(0,¢e) = {y € R" : |y| = ¢}.
We continue by integrating by parts once again in the term L., to discover

0P
e — — —_— — A _
L /GB(W) By () f(z —y)do(y) + /RH\B(O’E) B(y) f(z —y)dy

- / 92 ) f(x — y)doly),

B(0,¢) v
since @ is harmonic away from the origin. Now, V@(y) = nV ‘y|n fory #0
and v = ﬁ = —% on 9B(0,¢). Consequently, 22(y) = v - VP(y) = W
on 9B(0, ¢). Since nV,,e" ! is the surface area of the sphere 9B(0, €), we have
1

e = — r —y)do

L e /a o f(z —y)do(y)
- _ 1 _/ fy)do(y) — —f(z) ase—0
B m(@B(x, 6)) 0B (z,€) Y Y '

by Lebesgue differentiation theorem.

(4.13)
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Combining now (4.9)-(4.13) and letting ¢ — 0, we find that —Au(x) =
f(x), as asserted. [

Remark 4.4. We sometimes write

—AP =§y inR",
where ¢, denotes the Dirac measure on R" giving unit mass to the point
0. Adopting this notation, we may formally compute

—Au(z) = . —AeP(z —y)f(y)dy = . 0o f(y)dy = f(x), z€R",
in accordance with Theorem 4.3. This corrects the erroneous calculation
4.7).

Consider now an open set {2 C R” and suppose u is a harmonic function
within (2. We next derive the important mean-value formulas, which declare
that u(x) equals both the average of u over the sphere 0B (x, r) and the average
of u over the entire ball B(z, ), provided B(z,r) C (2.

Theorem 4.5 (Mean-value formula for harmonic functions). If v €
C?*(£2) is harmonic, then for each ball B(z,r) C 12,
1 1

) = @B @) /am,r) ulw)do ) = B ) /BW) uly)dy.

Proof. Denote

1 1
fr:—/ u(y)do(y) = / u(z +rz)do(z).
) m(9B(z,7)) Jopr Wydo Wn—1 Jgn-1 ( o
Obviously,
f'(r) = L / En:(() w(z+rz)z;do(z) = L / @(anrz)da(z)
N Wnp—1 Jgn-1 =1 i J N Wn—1 Jgn-1 ov ’
where (% denotes the differentiation w.r.t. the outward normal. Thus, by

changes of variable
1 ou
/
= — —(y)d .
P = s | i)
By Stokes theorem, we get

1
/T = — AU dy = 0.
P = G [, vy

Thus f(r) = const. Since lim,_,¢ f(r) = u(x), hence, f(r) = u(x).
Next, observe that our employing polar coordinates gives, by the first iden-
tity proved just now, that

/B<z,r) uly)ey = /0 </aB<x,s) u(wda(y)) ds = /0 m(9B(z, s))u(x)ds

—u(x)/ nV,s" tds = Vor'u(z).
0
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This completes the proof. ]

Theorem 4.6 (Converse to mean-value property). If u € C?(2) satisfies
1 /
ulr) = ———— u(y)do(y
= @B Jogir "W

for each ball B(x,r) C {2, then u is harmonic.

Proof. If Au # 0, then there exists some ball B(x,r) C (2 such that, say,
Au > 0 within B(z, ). But then for f as above,
1
0= () = [ Aulwdy >0,
B(z,r)

rn lwn—l

1s a contradiction. [ |

4.2 Poisson kernel and Hilbert transform

We shall now introduce a notation that will be indispensable in much of
our further work. Indeed, we have shown some properties of Poisson kernel
in Chapter 1. The setting for the application of this theory will be as follows.
We shall think of R™ as the boundary hyperplane of the (n + 1) dimensional
upper-half space R™™. In coordinate notation,

R = {(z,y) : x € R",y > 0}.
We shall consider the Poisson integral of a function f given on R". This
Poisson integral is effectively the solution to the Dirichlet Problem for ]R?r“:

find a harmonic function u(x,y) on R, whose boundary values on R" (in
the appropriate sense) are f(x), that is

Agyu(z,y) =0, (z,y) € R,
{u(:p,(]) =f, xzeR"
The formal solution of this problem can be given neatly in the context of the
L? theory.
In fact, let f € L*(R™), and consider

u(z,y) = (M>”/n emg'””e"“’é‘yf(ﬁ)df, y > 0. (4.15)

(4.14)

2T

This integral converges absolutely (cf. Theorem 1.15), because f e L*(R"),
and e~ “¢I¥ is rapidly decreasing in |¢| for y > 0. For the same reason, the
integral above may be differentiated w.r.t. x and y any number of times by
carrying out the operation under the sign of integration This gives

Agyu = Z axk 0,
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because the factor e~ e~ I“¢lY satisfies this property for each fixed &. Thus,
u(z,y) is a harmonic function on R’/ *".

By Theorem 1.15, we get that u(z,y) — f(z) in L?(R") norm, as y —
0. That is, u(z,y) satisfies the boundary condition and so u(x,y) structured
above is a solution for the above Dirichlet problem.

This solution of the problem can also be written without explicit use of the
Fourier transform. For this purpose, we define the Poisson kernel P,(x) :=

P(z,y) by
P,(z) = (?) / et Temwlge — (e (1), y > 0. (4.16)
7 n
Then the function u(x, y) obtained above can be written as a convolution

u(z,y) = / P,(2)f(x — 2)dz, (4.17)
as the same as in Theorem 1.15. We shall say that u is the Poisson integral of

f.

For convenience, we recall (1.12) and (1.10) as follows.

Proposition 4.7. The Poisson kernel has the following explicit expression:

Py(z) = %7 Cn = M (4.18)
(lz? +42) ™

Remark 4.8. We list the properties of the Poisson kernel that are now
more or less evident:

(i) Py(z )>Ofory>0

(i) [, P,(x)dz = P,(0) = 1,y > 0; more generally, P,(¢) = e~V by
Lemma 1. 14 and Corollary 1.23, respectively.

(iii) P,(x) is homogeneous of degree —n: Py(x) =y "Pi(z/y), y > 0

(iv) P,(x) is a decreasing function of |z|, and P, € LP(R"), 1 < p < o0
Indeed, by changes of variables, we have for 1 < p < oo

p
_ y
||Py||£ =y, /R” ((|x|2+y2)(n+l)/2) dx
1

T=YE p,, —n(p—1)
==y /]R” (1+ |Z|2)p(n+1)/2dz

o o 1
Z=TZ —n(p—1) n—1
==cny Wn—1 /0 (14 202 " dr

<Cﬁy (p— 1) (/ dr+/ P 1— p(n-i—l)d,r,)

<hy P N,y (1+

m)

—n

For p = oo, it is clear that | P, ()| = cny
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(v) Suppose f € LP(R"), 1 < p < oo, then its Poisson integral u, given
by (4.17), is harmonic in R}*'. This is a simple consequence of the fact
that P,(z) is harmonic in R’™'; the latter is immediately derived from
(4.16).

(vi) We have the “semi-group property” P, * Py, = P, 1, if y1,y> > 0
in view of Corollary 1.24.

The boundary behavior of Poisson integrals is already described to a signif-
icant extension by the following theorem.

Theorem 4.9. Suppose f € LP(R"), 1 < p < oo, and let u(z,y) be its
Poisson integral. Then

(@) sup,~q [u(z,y)| < M f(x), where M f is the maximal function.

(b) lim, o u(z,y) = f(x), for almost every x.

(c) If p < o0, u(x,y) converges to f(x) in LP(R™) norm, as y — 0.

The theorem will now be proved in a more general setting, valid for a large
class of approximations to the identity.
Let o be an integrable function on R", and set ¢.(z) = e "p(x/e), e > 0.

Theorem 4.10. Suppose that the least decreasing radial majorant of ¢ is in-
tegrable; i.e., let \)(x) = supy, sy l0(y)|, and we suppose [,, P (x)dr = A <
oo. Then with the same A,

(2) P |(f * ¢2) (@) < AMf(z), f € LP(R"), 1 < p < oo.

(b) If in addition [, ¢(x)dx = 1, then lim._o(f * ¢.)(z) = f(x) almost
everywhere.

(c) If p < oo, then || f * p. — fl|, = 0,as ¢ — 0.

Proof. For the part (c), we have shown in Theorem 1.15.

Next, we prove assertion (a). We have already considered a special case of
(a) in Chapter 3, with ¢ = ﬁx - The point of the theorem is to reduce
matters to this fundamental special case.

With a slight abuse of notation, let us write ¢ (r) = (), if |z| = r; it
should cause no confusion since () is anyway radial. Now observe that ()
is decreasing and then [, W(x)dz > ¥(r) [, e, dv = c(r)r"
Therefore the assumption ¢ € L' proves that r"¢(r) — 0 asr — 0 or
r — oo. To prove (a), we need to show that

(f %) (z) < AM f(z), (4.19)
where f >0, f € LP(R"),e > 0and A = [, ¥(z)dz.
Since (4.19) is clearly translation invariant w.r.t f and also dilation invariant
w.r.t. v and the maximal function, it suffices to show that

(f *)(0) < AMf(0). (4.20)
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In proving (4.20), we may clearly assume that M f(0) < oo. Let us write
A(r) = fSnfl f(ra")do(z"), and A(r) = f‘x|<r f(x)dx, so

A(r) :/0 s f(tzdo (2" t" dt :/0 At dt, e, A'(r) = A(r)r" .
We have

0O = [ St = [ [ g oo

:/OOO " IN(r)(r)dr = lim () (r)r™dr

e—0
N—ooo Y€

= iy [ rpinar = tiy { () - | S Amavn |

Since A(r) = flxlér f(x)dx < V,r"M f(0), and the fact 7" (r) — Oasr — 0

or r — 00, we have
0< lim A(N)Y(N) < V,Mf(0) lim N"(N) =0,
N—oo N—o0

which implies limy_,o, A(N)¢(N) = 0 and similarly lim._,o A(¢)y(e) = 0.
Thus, by integration by parts, we have

(f *1)(0) = / A d(—p(r)) < VaMLF(0) / " rd(—(r)
VM F(0) / () dr = MA(0) Re

since 1(r) is decreasing which implies ¥'(r) < 0, and nV,, = w,_;. This
proves (4.20) and then (4.19).

Finally, we prove (b) in a familiar way as follows. First, we can verify that
if f1 € C,, then (f; *¢.)(z) — fi(x) uniformly as ¢ — 0 (cf. Theorem 1.15).
Next we can deal with the case f € LP(R"), 1 < p < oo, by writing f =
f1+ f2 with f; as described and with || f5|, small. The argument then follows
closely that given in the proof of Theorem 3.13 (the Lebesgue differentiation
theorem). Thus we get that lim._,o f * .(x) exists almost everywhere and
equals f(x).

To deal with the remaining case, that of bounded f, we fix any ball B =
B(x,7), and set ourselves the task of showing that

lirré(f * o) (z) = f(z), for almost every z € B.
E—

Let B; be any other ball which strictly contains B and the origin {0} sat-
isfying 6 > |zo| + r where 0 = dist (B, BY) is the distance from B to the
complement of B;. Let fi(z) = {f(:c), ve Bl’; flx) = fi(x) + faox).

0, €T ¢ Bl,
Then, f; € L'(R™), and so the appropriate conclusion holds for it. However,
forz € B,
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|(f2 % @) ()] =

[ pe—pati|< [ (nG- el

z—y|=6>0

<||f||oo/ lo(y)|dy — 0, as e — 0.
ly|=(6—|z[)/e>0

Thus, we complete the proof. |

Proof of Theorem 4.9. Theorem 4.10 then applies directly to prove Theorem
4.9, because of properties (i)—(iv) of the Poisson kernel in the case p(z) =
U(x) = Py(z). [

There are also some variants of the result of Theorem 4.10, which apply
equally well to Poisson integrals. The first is an easy adaptation of the argu-
ment already given, and is stated without proof.

Corollary 4.11. Suppose f is continuous and bounded on R™. Then (f *
©:)(x) = f(x) uniformly on compact subsets of R™.

The second variant is somewhat more difficult. It is the analogue for finite
Borel measures in place of integrable functions, and is outlined in further result
of [Ste70, §4.1, p.77-78].

Now, we give the definition of harmonic conjugate functions as follows.

Definition 4.12. The harmonic conjugate to a given function u(z,y) is a
function v(x, y) such that

f(x,y) = u(z,y) +iv(z,y)
is analytic, i.e., satisfies the Cauchy-Riemann equations
Uy = Vy, Uy = —y,
where u, = 0u/0x, u, = 0u/0y. It is given by
(z,y)
v(z,y) = / uydy — uydr + C,
(

0,%0)
along any path connecting (zo, yo) and (z, y) in the domain, where C'is
a constant of integration.

Given a function f in . (RR), its harmonic extension to the upper half-plane
is given by u(z,y) = P, * f(z), where P, is the Poisson kernel. We can also
write, in view of (4. 15)

u(e) =ufey) = S [ et figyag
0
:% {/0 ewiﬁwe—lwlﬁyﬂé)dér + /_OO ewii-relwlﬁyf(g)dg}

:M [/DOO 6wi§-(m+isgn(w)y)f(§)d§ + /0 Wit (z—isgn (w)y) f(g)d{} ,

2m oo
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where z = x + 1y. If we now define

isgn ()u(z) = S| [ et n fejag

0
_/ ewiﬁ-(r—isgn(w)y)f(g)df]’

—0o0
then v is also harmonic in R? and both « and v are real if f is. Furthermore,
u + v is analytic since it satisfies the Cauchy-Riemann equations u, = v, =
wifu(z) and u, = —v, = —wiév(z), so v is the harmonic conjugate of .
Clearly, v can also be written as, by Theorem 1.12, Proposition 1.3 and
Theorem 1.28,

v(z) :% . —isgn (w)sgn (f)emf‘xe*|wf|yf(€)d€
:g i —isgn (w)Fe|sgn (f)eWif'we—\wély} () f(n)dn
:% | isen (W) Felsen (©)e™ W] (i — ) f (1)

= [ —isen ()7 (s (O (o~ ),
R
which is equivalent to

v(x,y) = Qy x f(z), (4.21)

where

Qy(&) = —isgn (w) sgn (§)e e, (4.22)
Now we invert the Fourier transform, we get, by a change of variables and
integration by parts,

Qy(x) = —isen ()] o [ s (©)e e

= — isgn (W)M |:/ eWim'ﬁe_W‘Eydf _ / 6wix~§€w§yd§:|
2 | Jo e
= — isgn (OJ)M |:/ 6wix~§€—|w\§yd€ _ / 6—wiz-§€—|w|§yd€:|
0

O.e—wlsy
__ngn |w|/ wm:f —wmﬁ) 56 df
—|wly
1

i gl (e ey
[k (e e
0

|C<J|IL' /Oo i€ —wiz-€\ —|w|€y
— wir wir w d
_27ry ; (e +e ) e ¢
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. ]w[x / efwix-§€7|w£|yd£ — {(g‘ <M€|Wf|y)
R

27y Y 2m
T Ty 1w
:—P = — =
y (@) yy?+a?  yr+a?
where ¢; = I'(1)/m = 1/n. That is,
1 =z
Qy(‘r) = ;yg _i_xg‘

One can immediately verify that Q(x,y) = Q,(z) is a harmonic function in
the upper half-plane and the conjugate of the Poisson kernel P,(x) = P(z,y).
More precisely, they satisfy Cauchy-Riemann equations
1 2ay 1 2% — 2
s 0TS r e
In Theorem 4.9, we studied the limit of u(z,t) as y — 0 using the fact
that { P, } is an approximation of the identity. We would like to do the same for
v(z,y), but we immediately run into an obstacle: {Q, } is not an approximation
of the identity and, in fact, (), is not integrable for any y > 0. Formally,
1
llJli% Qy(l‘) = %7
this is not even locally integrable, so we cannot define its convolution with
smooth functions.
We define a tempered distribution called the principal value of 1/x, abbre-
viated p.v.1/x, by
<p.v. l,¢> = lim de, pes.
T e—0 |z|>¢ xT
To see that this expression defines a tempered distribution, we rewrite it as

(o) [ 000, [ s,

x lzj>1 %

0,P = 08,Q = —

this holds since the integral of 1/z on e < |z| < 1 is zero. It is now immediate

that
1
’<p.v. -, qb>
T

Proposition 4.13. In .'(R), we have liné Qy(x) =
Y—>

< C(1¢'llso + llz¢llo0)-

Y-
8=

p.v.

Proof. For each ¢ > 0, the functions t).(z) = x~'xy>. are bounded and

define tempered distributions. It follows at once from the definition that in .%”,

. 1
limye(z) = pv. —.

Therefore, it will suffice to prove that in .%”

hm(QM—%%):O

y—0
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Fix ¢ € .7, then by a change of variables, we have

(7Qy — by 6) = /R 70 gy /| >de:B

y? + 22 x

_ zp(x) x 1
_/|m|<y y2+x2da:—|—/|m>y (—y2 e :r;) o(x)dx

B zp(yx) ¢(yx)
_/|m|<1 [+ 2 dzx /x|>1 —$(1+x2)dx.

If we take the limit as y — 0 and apply the dominated convergence theorem,
we get two integrals of odd functions on symmetric domains. Hence, the limit

equals 0. |
As a consequence of this proposition, we get that
1 —t
lim Q, * f(z) = = lim fle=1),,
y—0 T e—0 It >e t

and by the continuity of the Fourier transform on .’ and by (4.22), we get
1 1 .
7 (2pv1) O = -issn w)sen ),

Given a function f € ., we can define its Hilbert transform by any one of
the following equivalent expressions:

Hf =1mQ, .

Hf :lp.v.l*f7
™ s .
Hf =F ' (—isgn (w)sgn (£)f(£)).

The third expression also allows us to define the Hilbert transform of functions
in L?(R), which satisfies, with the help of Theorem 1.26,

1/2 /2
sl = (52) 0l = (52) 1= 1fle @23)

that is, H is an isometry on L*(R). Moreover, H satisfies

H*f = H(Hf) =7 '((~isgn (w)sgn () () = —f, (4249
By Theorem 1.28, we have

Hf ) — / HF - gda — / F 7 (—isen () sen () £(€)) - g
_ / —isgn (w) sgn (§)F(€) - 9(&)de
_ / f(w) - F[—isgn (w) sgn ()3()](x)da

jwi

_ / f(x) - Z[=isgn (w) sen (§) 5 9(~E))(x)da

T
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_ / f(x) - Fisgn (w) sen (m)g(n)] (x)da
—— [ - tode = (f.~Hg), (4.25)

namely, the dual/conjugate operator of H is H' = — H. Similarly, the adjoint
operator H* of H is uniquely defined via the identity

(f.Hg) = /R f - Hgde = /R Higde = (~Hf.q) = (Hf.q).

thatis, H* = — H.
Note that for given x € R, H f(z) is defined for all integrable functions f
on R that satisfy a Holder condition near the point x, that is,

[f(@) = O] < Cala —tf*
for some C, > 0 and ¢, > 0 whenever |t — x| < J,. Indeed, suppose that this
is the case, then

1 1
lim @, * f(z) == lim Mdt + —/ &dt
y—0 T e—0 e<|z—t|<bs x—1 ™ |e—t| >0 T —1
1 — 1
1 OETCIMEY N (P
T e—0 e<|z—t|<6z x—t ™ |z—t|>62 x—t

Both integrals converge absolutely, and hence the limit of (), * f(x) exists
as € — 0. Therefore, the Hilbert transform of a piecewise smooth integrable
function is well defined at all points of Holder-Lipschitz continuity of the func-
tion. On the other hand, observe that (), * f is well defined for all f € L?,
1 < p < o0, as it follows from the Holder inequality, since Q,, () isin L?.

Ex.4.14. Consider the characteristic function x,; of an interval [a, b]. It
is a simple calculation to show that
1. |z —a
H(xjq =—1 .
(Xfaay)(2) = —In P

Let us verify this identity. By the definition, we have

(4.26)

1 — 1 1
H(X[a)(z) = = lim wdy = —lim ~dy.
; T e—0 |y|>s y T e=0 b\<y\><5 y
z—b<y<z—a

Thus, we only need to consider three cases: x — b > 0, z — a < 0 and
r — b < 0 < z — a. For the first two cases, we have

1 [ 1 1. |z —a
H (X)) (2) = p /b ;dy = %111 lz— b’

For the third case we get (without loss of generality, we can assume
e < min(|z — al, |z — b]))

L. -1 z—a |
Hev )~ ([ Sy [ 2ay)
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1 _
=—1lim (| In |x a| +In c
T e—0 € |z — b

:l In —|I —d
7 |z —0b|
where it is crucial to observe how the cancellation of the odd kernel 1/x
is manifested. Note that H ([, ) (z) blows up logarithmically for x near
the points a and b and decays like 27! as # — +o0. See the following
graph witha = 1and b = 3:

The following is a graph of the function H (x[-10,0jup,21u11,7):

4
¥

It is obvious, for the dilation operator d. with £ > 0, by changes of variables
(ey — y), that

(H(Ss)f(x)zclfig[l)% " f(el‘T—gy)dy
—tim [ gy e,

ly|>eo Yy
so H). = d.H; and it is equally obvious that H6. = —d.H, if ¢ < 0.

These simple considerations of dilation “invariance” and the obvious trans-
lation invariance in fact characterize the Hilbert transform.

Proposition 4.15 (Characterization of Hilbert transform). Suppose T is
a bounded linear operator on L*(R) which satisfies the following properties:
(@) T commutes with translations;
(b) T' commutes with positive dilations;
(c) T anticommutes with the reflection f(x) — f(—x).
Then, T is a constant multiple of the Hilbert transform.
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Proof. Since T commutes with translations and maps L?(R) to itself, ac-
cording to Theorem 1.62, there is a bounded function m({) such that
Tf (&) = m(€)f(€). The assumptions (b) and (c) may be written as T, f =
sgn (¢)0. T f for all f € L*(R). By part (iv) in Proposition 1.3, we have

F(T5.£)(&) =m(&) F (5. f)(€) = m(©)|e] ' f(€/e),
sgn ()7 (8.7 £)(€) =sen (e)[e] ' Tf (/) = sen (2)[e] ' m(&/2) f(&/2),

which means m(e§) = sgn(e)m(§), if ¢ # 0. This shows that m(&) =
csgn (€), and the proposition is proved. [

The next theorem shows that the Hilbert transform, now defined for func-
tions in . or L?, can be extended to functions in L”, 1 < p < oo.

Theorem 4.16. For f € .7 (R), the following assertions are true:
(i) (Kolmogorov) H is of weak type (1,1):

C
m({z € R: [Hf(2)] > a}) <~
(ii) (M. Riesz) H is of type (p,p), 1 < p < oc:
IH fllp < Cpllfllp-

Proof. (i) Fix a > 0. From the Calderén-Zygmund decomposition of f at
height o (Theorem 3.20), there exist two functions g and b such that f = g+ b
and

M llgll < N1l and [lg]lee < 20
(2) b= E b;, where each b; is supported in a dyadic interval I; satisfying

[, b I z)dr = 0 and ||b;]|; < 4a1rn(] ). Furthermore, the intervals /; and I,
have dlS_]Olnt interiors when j # k.

3) >, m(Z) < a Y flh

Let 21, be the interval with the same center as /; and twice the length, and
let 2 = U;[; and 2* = U;21;. Then m(2*) < 2m($2) < 2a7 Y| f||:-

Since Hf = Hg + Hb, from parts (iv) and (vi) of Proposition 2.15, (4.23)
and (1), we have

(Hf)u(a) < (Hg)i(a/2) + (HD).(/2)
<(a/2)_2/R|Hg(x)|2dx +m(2") +m({x & 2°: |Hb(z)| > «/2})

4
<—2/]g(x)\2d:v+2a1HfH1+2al/ |Hb(x)|dx
a” Jr R\ 02+
< [lo@ldz+ 21+ 2 [ Y |Hb (@)l

— [ |g(z)|dx + — — (x)|dx
a Jr o ! (6] R\ £2* ; J

8 2 9
<Uf e+ 2l + 2 / Hb, (2)|dz.

M+ 1Ak a; R\ﬂjl i ()]
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For x ¢ 2I;, we have
1 b, 1 b,
Hb;(z) = —p.v. / biy) dy = —/ biy) dy,
m L=y T™J =Y
since suppb; C I; and |« — y| > m(I;)/2 for y € I;. Denote the center of I;
by c;, then, since b; is mean zero, we have

1 b,
/ |Hbj(a:)|da::/ —/ b9 4,
R\2I; rR\21; | T J; £ — Y
1 1 1
(e Y
T Jr\ar, |J1; r—Yy TG
1/ ly — ¢l
<-— bi(y / ——————dx | dy
T ]j’]( )|(R\2I]- |x—y|\x—cj|
1/ m(I;)
<— bi(y / —— 1 dx | dy.
=5t >\(M PRy )

The last inequality follows from the fact that |y —¢;| < m(/;)/2 and |z —y| >
|z — ¢;|/2. Since |x — ¢;| > m(;), the inner integral equals

>~ 1 1
Thus, by (2) and 3),
10 4
(HP(0) <l + — / by )y < Nl + = S dom(1;)
J

16 1 10+16/7
—Hf|!1+——Hf|!1— [ f1]1-

(ii) Since H is of weak type (1,1) and of type (2, 2), by the Marcinkiewicz
interpolation theorem, we have the strong (p, p) inequality for 1 < p < 2. If
p > 2, we apply the dual estimate with the help of (4.25) and the result for
p <2 (where 1/p+1/p =1):

IHfll,= sup [(Hf g)|= sup [(f Hg)l

llgll,r <1 llgll,r <1
<Ifllp sup ([Hglly < Corl[flp-
llgll,r <1
This completes the proof. |

dx

dx

Remark 4.17. i) Recall from the proof of the Marcinkiewicz interpolation
theorem that the coefficient

o1/ 10+ 16/7 N (1/2)1/2 o2
1-1/p  1/p—1/2

, 1/2)4/2
oL/P <(10 +16/7)p + ML) + 21/2) : p>2.

1<p<?2,
C, =

1/2—1/p
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So the constant C), tends to infinity as p tends to 1 or co. More precisely,
C,=0(p)asp— o0, and C, =O((p—1)"")asp — 1.
ii) The strong (p, p) inequality is false if p = 1 or p = oo, this can easily

lz—al

be seen from the previous example H [,y = = 1In o5 Which is neither
integrable nor bounded. See the following figure.

The integra

iii) By using the inequalities in Theorem 4.16, we can extend the
Hilbert transform to functionsin L, 1 < p < co.If f € L' and {f,} isa
sequence of functions in . that converges to f in L, then by the weak
(1,1) inequality the sequence {H f,,} is a Cauchy sequence in measure:
foranye > 0,

limm({e € R |(H, — Hbn)(a)| > €)= 0.

Therefore, it converges in measure to a measurable function which we
define to be the Hilbert transform of f.

If fell,1<p< oo and {f,}is a sequence of functions in .# that
converges to f in L?, by the strong (p, p) inequality, {H f,,} is a Cauchy
sequence in L?, so it converges to a function in L? which we call the
Hilbert transform of f.

In either case, a subsequence of {H f, }, depending on f, converges
pointwise almost everywhere to H f as defined.

4.3 The Calder6n-Zygmund theorem

From this section on, we are going to consider singular integrals whose ker-
nels have the same essential properties as the kernel of the Hilbert transform.
We can generalize Theorem 4.16 to get the following result.

Theorem 4.18 (Calderén-Zygmund Theorem). Let K be a tempered dis-
tribution in R™ which coincides with a locally integrable function on R™\ {0}
and satisfies

K(€) < B, (4.27)
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/ |[K(z —y) — K(z)|de < B, yeR" (4.28)
|| >2ly]

Then we have the strong (p, p) estimate for 1 < p < oo
1K fllp, < Gyl Fll, (4.29)

and the weak (1,1) estimate

(K * o) < SNl (4.30)

We will show that these inequalities are true for f € .7, but they can be
extended to arbitrary f € L” as we did for the Hilbert transform. Condition
(4.28) is usually referred to as the Hormander condition; in practice it is often
deduced from another stronger condition called the gradient condition (i.e.,
(4.31) as below).

Proposition 4.19. The Hormander condition (4.28) holds if for every x # 0
C
[VE(2)| <

|x’n+1'

(4.31)

Proof. By the integral mean value theorem and (4.31), we have
1
| K=K< [ VK- ol
|z|>2]y| |z|>2]y]

Cly| / / Cly|
——dzxdf < ————dxdf
/ /|x>2y| |z — Oy|" |x\>2|y| (J|/2)+1

1
<2"MCly|w, - 1/ —dr = 2" Cly|wn—1 5
2y 2!y|

This completes the proof. |

= 2"Cwn 1-

Proof of Theorem 4.18. Since the proof is (essentially) a repetition of the proof
of Theorem 4.16, we will omit the details.
Let f € S and T'f = K * f. From (4.27), it follows that

|(,d| n/2 - |w| n/2 .
o= (52) 1 = (50) 1k

W\ A R W\ (4.32)
<= <B( ==
<(8D) 1Rz <5 (E) 1

=B| £l
by the Plancherel theorem (Theorem 1.26) and part (vi) in Proposition 1.3.

It will suffice to prove that 7" is of weak type (1, 1) since the strong (p, p)
inequality, 1 < p < 2, follows from the interpolation, and for p > 2 it follows
from the duality since the conjugate operator 7" has kernel K'(z) = K(—x)
which also satisfies (4.27) and (4.28). In fact,

<Tf,90>—/ Tf(x dar—/n RnKx— y) f(y)dyp(x)dx
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=[] Kt anstermar= [ [ 5w

=(f,T'¢).

To show that f is of weak type (1,1), fix @« > 0 and from the Calderén-
Zygmund decomposition of f at height «, then as in Theorem 4.16, we can
write f = g + b, where

@ llglls < lI£1lx and [|gl[oc <270

(ii) b = Z b;, where each b; is supported in a dyadic cube (); satisfying
fQ z)dr = 0 and ||b;]l; < 2""™am(Q;). Furthermore, the cubes (); and
Qk have dlS]OlIlt interiors when j # k.

(iif) >°, m(Q;) < 7| f]]1.

The argument now proceeds as before, and the proof reduces to showing

that
/ ITh;(2)|de < C / b, (2)]d, (4.33)
R7\Q7 Qj

where ()} is the cube with the same center as @; and whose sides are 2,/n
times longer. Denote their common center by c;. Inequality (4.33) follows from
the Hormander condition (4.28): since each b; has zero average, if = ¢ Q@]

/ K (2 — )by (y)dy = / K(z — ) — K — )by (w)dy:

Qj

hence,

Tb:(x)|dx < K(x —y) — K(z —¢j)|dz | |b;j(y)|dy.
/RH\Q;\ i(@)] </j<4n\Q;| (z—y) — Kz —¢)| )| (y)|dy

However, by changing variables + — ¢; = 2’ and y — ¢; = v/, and the fact
that |z — ¢;| > 2|y — ¢;| forall z ¢ Q7 and y € Q; as an obvious geometric
consideration shows, and (4.28), we get

/ ]K(x—y)—K(x—cj)]dxg/ |K(z' —y') — K(2)|de' < B
R™M\Q5 || >2y’|

This completes the proof. |

4.4 Truncated integrals

There is still an element which may be considered unsatisfactory in our
formulation, and this is because of the following related points:

1) The L? boundedness of the operator has been assumed via the hypothesis
that § € L™ and not obtained as a consequence of some condition on the
kernel K;
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2) An extraneous condition such as K € L? subsists in the hypothesis; and
for this reason our results do not directly treat the “principal-value” singular
integrals, those which exist because of the cancelation of positive and negative
values. However, from what we have done, it is now a relatively simple matter
to obtain a theorem which covers the cases of interest.

Definition 4.20. Suppose that K € L} _(R"\ {0}) and satisfies the fol-
lowing conditions:

[K ()| < Blz[™", V& #0,

/||>2| \ |K(z —y) — K(z)|de < B, Vy#0, (4.34)

and
/ K(z)dr =0, V0<R; <Ry <o0. (4.35)
R1<|I‘<R2
Then K is called the Calderén-Zygmund kernel, where B is a constant
independent of = and y.

Theorem 4.21. Suppose that K is a Calderén-Zygmund kernel. For € > 0
and f € LP(R"), 1 < p < oo, let

Tof(z) = y flz —y)K(y)dy. (4.36)
ylze
Then the following conclusions hold.
(i) We have

where A, is independent of f and e.
(ii) For any f € LP(R™), lim. o T.(f) exists in the sense of LP norm. That
is, there exists an operator T such that
Tf(x)=pv. | K(y)f(z—y)dy.

Rn

(i) (|71, < Apllfllp for f e LP(R™).

Remark 4.22. 1) The linear operator 7" defined by (ii) of Theorem 4.21 is
called the Calderon-Zygmund singular integral operator. T is also called
the truncated operator of T.

2) The cancelation property alluded to is contained in condition
(4.35). This hypothesis, together with (4.34), allows us to prove the L?
boundedness and from this the L” convergence of the truncated inte-
grals (4.37).

3) We should point out that the kernel K (z) = =, z € R?, clearly sat-
isfies the hypotheses of Theorem 4.21. Therefore, we have the existence
of the Hilbert transform in the sense that if f € L’(R), 1 < p < oo, then
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1 —
T A et )P
0T Sy Y
exists in the L” norm and the resulting operator is bounded in L?, as

has shown in Theorem 4.16.

For L? boundedness, we have the following lemma.

Lemma 4.23. Suppose K satisfies the conditions (4.34) and (4.35) of the
above theorem with bound B. Let

_ [ K(z), |z|>¢,
Ke(@) = {O, lz| < e.
Then, we have the estimate
sup |[K.(€)] < CB, >0, (4.38)
3

where C' depends only on the dimension n.

Proof. First, we prove the inequality (4.38) for the special case ¢ = 1. Since
K;(0) = 0, thus we can assume ¢ # 0 and have

K, (&) = ]%im e K (2)da
70 J|z|<R
:/ e K (x)dx 4 lim e K (2)dx
| <2/ (|l €]) R=00 Jor/(Jwlle]) <|z|<R
:Ifl + IQ.

By the condition (4.35), f1<|z|<27r/(\wug|) K (x)dx = 0 which implies

/ Ki(z)dz = 0.
|z <27/ (Jwl|€])
Thus, |

—wiz-€ _ —wiz-
el<2n/ulie) € T K@) = [ o upenle 1] K, (x)da.
Hence, from the fact |e® — 1| < || (see Section 1.1) and the first condition in
(4.34), we get

|11 </ wllz]|§][ Ky (2)|de < |w|BlE| x| d
lzl<2m/(lwll€]) lz|<2m/(lwll€])
2 /(lwll€1)
=w,_1B|wl|[¢] / dr = 27w, _1B.
0
To estimate I, choose z = z(£) such that e=*%* = —1. This choice can be

realized if z = 7€ /(w|&[?), with |2] = 7/(Jw]||€]). Since, by changing variables
T+ z =1y, we get

/ e K (2)dr = — / e @ADL () d = _/ e VK (y — 2)dy

_ / e (1 — 2)da,
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which implies [, e "¢ Ky (z)dz = % [o. e " [K;(x)— K1 (z—z)]dz, then
we have

(hm/ / > e K (2)dx
R—o0 JI11<R |z <27/ (|wl]€])

L A
= / e Ky (2) — Ky(x — 2)]dx — / e TS K () da
2 i le|<R jel<2n/(lwllE])
1 .
=— lim e K () — Ky (z — 2)]dx
2 =00 Jor /(g <2l <R

1 . 1 .
- —/ e K (2)da — —/ e K (1 — 2)da.
2 Jjej<2m/(wlleD 2 Jjej<2m/(wlle)

The last two integrals are equal to, in view of the integration by parts,

1 —wix- 1 —wi Z)-
— 5/ e K (x)dr — 5/ e WL I (y)dy
|z <2 /(|wl[€]) ly+2|<2m/(lwl]€])
1 ) 1 .
= 5/ e K (2)da + 5/ e TS K () da
|z <2 /(|wl[€]) lz+2]<2m/(lwl[€])
1 , 1 )
_ —wix-§ —wiz-€
=— - e Ki(x)dx + = e Ki(x)dx.
2 /z@rmwm () 2 /z+z<27r/<|w|s> ()
|lz+z2]>2m/ (Jw]|€]) |z >2m/(|w]|€])

For the first integral, we have 27 /(|w||¢]) = || >
|2 +z2]=[2] > 2n/(|w[[§]) =7/ (lw]|¢]) = 7/ (lwl|€]),
and for the second one, 27/(|w||€]) < |z| < |z +
z| + |z| < 37/( ). These two integrals are
taken over a region contained in the spherical shell,
m/(lwll€]) < || < 3m/(Jwl[¢]) (see the figure), and
is bounded by 3 Bw,,_1 In 3 since | K (z)| < Blz|™.
By |z| = 7/(Jw||¢|) and the condition (4.34), the
first integral of /5 is majorized by

1

5/ | K1 (z — 2) — Ky(x)|dx
|| =27/ (|w][€])

1 1
== Ki(z — dx < =B.
3, K=~ K <

Thus, we have obtained

= 1 1
|K1(§)| < 27Twn—lB + §B + §Bwn_1 1n3 < CB7

where C' depends only on n. We finish the proof for K.

To pass to the case of general K., we use a simple observation (dilation
argument) whose significance carries over to the whole theory presented in
this chapter.

Let 0. be the dilation by the factor ¢ > 0, i.e., (0. f)(z) = f(ex). Thus if T
is a convolution operator
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Tf(z)=¢x* f(z)= / o(r —y)f(y)dy,

then

n

76, f(a) = [ e~ y) ey
= [ el o= DI = o

where . (z) = e "p(e'x). In our case, if T' corresponds to the kernel K (x),

then 0.-17'. corresponds to the kernel e ™" K (¢~ 'z). Notice that if K satisfies
the assumptions of our theorem, then e " K (¢~ 'x) also satisfies these assump-
tions with the same bounds. (A similar remark holds for the assumptions of all
the theorems in this chapter.) Now, with our K given, let K’ = " K (cx). Then
K satisfies the conditions of our lemma with the same bound B, and so if we
denote

n

K'(z), |zl >1
/ . ) = 1,
File) = {o, ] < 1,

then we know that |K}(¢)| < CB. The Fourier transform of ="K/ (s z)

is K!(££) which is again bounded by C B; however e "K/ (e~ 'z) = K.(x),

therefore the lemma is completely proved. |
We can now prove Theorem 4.21.

Proof of Theorem 4.21. Since K satisfies the conditions (4.34) and (4.35),
then K. (z) satisfies the same conditions with bounds not greater than C'B.
By Lemma 4.23 and Theorem 4.18, we have that the L? boundedness of the
operators { K. }.~, are uniformly bounded.

Next, we prove that {7 f;}.~¢ is a Cauchy sequence in L? provided f, €
CH(R™). In fact, we have

T fi(z) = T, fi(z) = K(y) fi(z —y)dy — K(y)fi(r —y)dy

lyl=e ly|=n
—sgn(n—<) [ K()[fi(x — ) - A()dy,
min(e,n) < |y|<max(e,n)
because of the cancelation condition (4.35). For p € (1,00), we get, by the
mean value theorem with some 6 € [0, 1], Minkowski’s inequality and (4.34),
that

\Lf = Tofilly < \ KWV A - 0)llyldy

/min(s,n) <ly[<max(e,n)

< KWV fi(x = 0y)llplyldy

~

/min(s,n) <lyl<max(e,n)

<C / K ()| lyldy
min(e,n) <|y|<max(e,n)
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<CB/ ly| " dy
min(e.n) <[yl <max(e.n)

max(e,n)
=CBw,,_1 / dr

min(e, )
=CBw,_1|n — €

which tends to 0 as €, — 0. Thus, we obtain 7 f; converges in LP as ¢ — 0

by the completeness of L.

Finally, an arbitrary f € LP” can be written as f = f; + f; where f; is
of the type described above and || f2||, is small. We apply the basic inequality
(4.37) for f5 to get ||T% f2]|, < C| f2]|,, then we see that lim._,o 7, f exists in
LP norm; that the limiting operator 7" also satisfies the inequality (4.37) is then
obvious. Thus, we complete the proof of the theorem. |

4.5 Singular integral operators commuted with dilations

In this section, we shall consider those operators which not only commute
with translations but also with dilations. Among these we shall study the class
of singular integral operators, falling under the scope of Theorem 4.21.

If T corresponds to the kernel K (x), then as we have already pointed out,
d.—1T'. corresponds to the kernel e " K (¢ 'z). So if 6,-1T3. = T we are back
to the requirement K (x) = e "K (e 'z), i.e., K(ex) = e "K(x), € > 0; that
is K is homogeneous of degree —n. Put another way

K(z) = %, (4.39)
with {2 homogeneous of degree 0, i.e., 2(sx) = {2(x), ¢ > 0. This condition
on {2 is equivalent with the fact that it is constant on rays emanating from the
origin; in particular, {2 is completely determined by its restriction to the unit
sphere S 1.

Let us try to reinterpret the conditions of Theorem 4.21 in terms of (2.

1) By (4.34), 2(x) must be bounded and consequently integrable on S™~';
flz(af—|y) _ f|1(|af)
r—y|" x|™

and another condition f‘x dr < C which is not easily re-

1=2[yl
stated precisely in terms of (2. However, what is evident is that it requires a

certain continuity of (2. Here we shall content ourselves in treating the case
where (2 satisfies the following “Dini-type” condition suggested by (4.34):

ifw(n):= sup |2(z)— 2(2')|, then /0 #dn <oco.  (4.40)

lz—a/|<n
|zl =le’|=1

Of course, any (2 which is of class C, or even merely Lipschitz continuous,
satisfies the condition (4.40).
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2) The cancelation condition (4.35) is then the same as the condition

‘Lnlnumw@g:o (4.41)

where do () is the induced Euclidean measure on S™!. In fact, this equation
implies that

Joog = [
_m(&)éwfx>w()

Theorem 4.24. Let 2 € L>(S"1) be homogeneous of degree 0, and suppose
that (2 satisfies the smoothness property (4.40), and the cancelation property
(4.41) above. For 1 < p < oo, and f € LP(R"™), let

T.f(x) = /| 209) ¢, yyay.

(')r =Ly

y|>e ‘y’n
(a) Then there exists a bound A, (independent of f and e) such that
7= fllp < Apll £l
(b) im,_,oT.f = T'f exists in LP norm, and
1T fllp < Apl[flp-

( o) If f € L*(R"), then the Fourier transforms of f and T f are related by
Tt (&) = m(€)f(€), where m is a homogeneous function of degree 0. Explic-
itly,

[ ™ san (w)sn (€ 2) + (1/J¢ - 2])| 2(a)do(a), g =1
(4.42)

Proof. The conclusions (a) and (b) are immediately consequences of Theorem

4.21, once we have shown that any K (z) of the form (IZ(I") satisfies
| K@y - K@l < B, (4.43)
|z >2y|
if {2 is as in condition (4.40). Indeed,
Qz—y)— 2(x) 1 1
K(x—y) - K(z) = + Q) -
[z =yl z =yl fal]?

The second group of terms is bounded since {2 is bounded and

1 1 n __ _ n
[ o= [ [l
lz|>2]y| |zl =2yl

o —yl* ol |z —y[*|z|"

/ || = |z — yl| X0 [a|" e — yp
= dx
|z >2y|

dx

M—yHﬂ"
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n—1
< / 1yl S el — e
|z|>2]y|

J=0

n—1
</| | |Iyl D el (el /2y e (since | — y| > |x| = [yl > |2]/2)
|22y j=0

n—1

= [ e e =2 =] [ el
|z|>2]y]

j=0 |z =2yl

=2(2" ~ Dlylwn 157

YlWn— 12| |

To estimate the first group of terms, we notice that if |z| > 2|y|, the distance

|PQ| between the projections of x — y and = on the unit sphere as in the
following picture.

(2” — l)wn_l.

Case 2: |z] < |z —y|, sinf < -

By the sine theorem, we have ISIIDHQHI = STZ)H where |OP| = 1. Since |y| <

|z|/2, we have 6 < 7 and so cosf > 0. Thus, cosg = \/HCOSG 1/\/_

Then, we have
r—y

o=yl \xl
since sin § < % for both cases. So the integral corresponding to the first group

of terms is dominated by

!yl) / > dr
2”/ w (2 =2" (2/|z|) =2"w,_ (2/7“)
|| >2Jy] jz]) Ja|" 2]>2 |2 |” '

1
_ony / wlmdn _

0 n

in view of changes of variables = |y|z and the Dini-type condition (4.40).

Now, we prove (c). Since T is a bounded linear operator on L? which com-
mutes with translations, we know, by Theorem 1.62 and Proposition 1.3, that
T can be realized in terms of a multiplier m such that 7/’7(5 ) = m(€)f(€). For
such operators, the fact that they commute with dilations is equivalent with the
property that the multiplier is homogeneous of degree 0.

sin(% — g) cos § |a:\ |a:|

sin @ sm@
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For our particular operators we have not only the existence of m but also
an explicit expression of the multiplier in terms of the kernel. This formula is
deduced as follows.

Since K (z) is not integrable, we first consider its truncated function. Let
0 <e<n<oo,and

Key(w) =3 Taf"
0, otherwise.

Clearly, K., € L'(R"). Tf f € L2(R") then K., * f(€) = K-,(€)f(€).

We shall prove two facts about [a(f ).

(i) sup, |I/(;,(§ )| < A, with A independent of ¢ and 7;

(ii) if € # 0, lim -—o K., (€) = m(€), see (4.42).

For this purpose,ni??é convenient to introduce polar coordinates. Let z = rz/,
r=lzl, 2 =z/|z] € S and £ = RE, R = |¢], & = ¢/[¢] € S". Then
we have

— ' 0
K. p(§) :/ eiwmes,n(iU)diU = / e’wmfﬂdl‘
: e<lz|<n

’r] - ! !
:/ 2(x) (/ e wiltra'-€ r"r”ldr> do(z")
Sn—1 €

,r] ; !¢l d
— 2(x) (/ e wiire' € —T> do(z").
Sn—1 e T

/S 0ol =0,

we can introduce the factor cos(|w|Rr) (which does not depend on ') in the
integral defining K. ,(£). We shall also need the auxiliary integral

e < |z <,

Since

/ K —wiRrx'-¢' dr
ILy&2)= [ e - cos(|w|Rr)]7, R > 0.
Thus, it follows
Ko (6) = /S L€ )2 ydo ().

Now, we first consider I, , (£, ’). For its imaginary part, we have, by chang-
ing variable wRr(x' - ') = t, that

L, (€,0) = — /77 sinwRr(z' - £)

e r

dr

—— s @) (s ¢) | S,

w|Re(ar-ey
COl’lVGI'gCS to
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t
s (w)sgn o7+ €) [ T dt =~ s ) s 0 ),
0
ase — 0 and n — oo.

For its real part, since cosr is an even function, we have

K d
RL(62") = [ leos(ful Brla’ - ) — cos(lwl Rr)) T

€

If o' - & = %1, then R, , (&, 2') = 0. Now we assume 0 < € < 1 < 7. For the
case 2’ - £’ # +1, we get the absolute value of its real part

1
IRI, (& 2")] < / —2sin %Rrﬂx’ &'+ 1) sin %Rrﬂx’ - 1)%

K d " d
/ cos |w|R7‘|:17'-§’|—T —/ cos |w|Rr—T
1 r 1 r

’wP 201 | . 12 '
<—2 R(1—|2"- &%) [ rdr

I Rnlé’ 2’| oo ¢ wIRn gt
/ ﬁ—/ dt
wiRlera| 1 wir L

2
g'wTRQ + 1.

+

+

If n|¢ - 2| > 1, then we have

lwl 2 cost |l B cost
/' ——ﬁ—/ cost
iRt wiRnlerar|

|w| R dt |w|Rn dt
</‘ —+/ dt
wiRlea| T JwlRrylerar|

<2In(1/|¢" - ')).
If 0 < nl¢ - 2’| <1, then
i | gy
h</ <2In(1/[¢' - 2/)).
|

wIRIE" 2|

[1:

Thus,
R ) < LR 4 omye o
[RIy (& 2)] < =R+ 2In(1/|¢- o)),

and so the real part converges as ¢ — 0 and  — oo. By the fundamental
theorem of calculus, we can write

/ COS()\T) —cos l” / / sin(tr)dtdr = / / sin(tr)drdt
. _
/ / 0, cos(tr) drd _/ cos(in) t cos(ts)dt
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An A t : An AN o: A ¢
:/ Cos(s)ds _/ cos( E)dt _ sins +/ SH;SdS _/ cos( g)dt
B § B t S pn S B t

A
1
_>0_/ Ed]f: —ln()\/,u) :],n(/,[,/)\), asn — oo, e — 0.
W

Take A = |w|R|2" - &'|, and u = |w|R. So
hI% R(Ley (€, 2")) = / [cos |w|Rr (2" - &) — cos |w|R7“]ﬁ = In(1/]2"- £']).
- 0 r

) — 00

By the properties of /., just proved, we have

@< [ 5+ B r om0 1))

<o+ Bl py oo [ mae - ado(
D 4 o sn-1 ! CYEE

For n = 1, we have S® = {—1,1} and then [, ,In(1/[¢" - 2/|)do(2') =
2In1 = 0. For n > 2, we can pick an orthogonal matrix A such that Ae; = &',
and so by changes of variables and using the notation § = (y2, y3, ..., Yn),

/ In(1/|¢ - 2'|)do(2') = / In(1/|Ae; - 2'|)do (")

Sn—1 Sn—1

= [ (e A7 o) 222 [ a1 fes - yldoty)
Sn—1 Sn—1

= n o(y) = 1 n ol dy
= [/ aoto) = [ ol [ aoto)2s

=y/\/1-v7 [ e _
SB[ ) [ = )9 o)y

-1

1
—nca [ W11 ) 2y

1

1
2z [ I/}~ o)y,
0

=CO0s 7T/2
gé:ian_g/ In(1/ cos 6)(sin §)"2df = 2w,,_o1>.
0
For n > 3, we have, by integration by parts,
/2 /2
Ir < / In(1/ cos ) sin Odo = / sinfdf = 1.
0 0

For n = 2, we have, by the formula foﬁ/ 2 In(cos0)dd = —51n2 (see [GR,
4.225.3, p.531)),

w/2 /2 T
I = / In(1/cos0)do = —/ In(cos 6)df = B In 2.
0 0

Hence, [, , In(1/]¢" - 2'[)do(2") < C forany ¢’ € S" 1.
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Thus, we have proved the uniform boundedness of I/(;(f ),i.e., (). In view
of the limit of I.,(&,2") as e — 0, n — oo just proved, and the dominated
convergence theorem, we get

lim K., (¢) = m(€),

e—0
n— 00

if ¢ £ 0, that s (ii).

By the Plancherel theorem, if f € L*(R"), K., * f converges in L? norm
as ¢ — 0 and 1) — 0o, and the Fourier transform of this limit is m (&) f(€).

However, if we keep ¢ fixed and let ) — oo, then clearly [ K. ,(y)f(x —
y)dy converges everywhere to fm% K(y)f(x — y)dy, whichis T. f.

Letting now € — 0, we obtain the conclusion (c) and our theorem is com-

pletely proved. |

Remark 4.25. 1) In the theorem, the condition that {2 is mean zero on
S™~1is necessary and cannot be neglected. Since in the estimate

[ =[] ], ] B

the main difficulty lies in the first integral. For instance, if we assume
2(x) =1, f is a nonzero constant, then this integral is divergent.

2) From the formula of the symbol m(¢), it is homogeneous of degree
0 in view of the mean zero property of (2.

3) The proof of part (c) holds under very general conditions on f2.
Write (2 = (2. + (2, where (2, is the even part of (2, (2.(x) = 2.(—x),
and (2,(x) is the odd part, 2,(—x) = —§2,(z). Then, because of the uni-
form boundedness of the sine integral, i.e., 31, ,,({, 2’), we required only
Jgn-1 192,(a")|do(2") < oo, ie., the integrability of the odd part. For the
even part, the proof requires the uniform boundedness of

|19l ootz

This observation is suggestive of certain generalizations of Theorem
4.21, see [Ste70, §6.5, p.49-50].

4.6 The maximal singular integral operator

Theorem 4.24 guaranteed the existence of the singular integral transforma-
tion
lim Q) flz —y)dy (4.44)
=0 Jyse |yl”
in the sense of convergence in the L” norm. The natural counterpart of this
result is that of convergence almost everywhere. For the questions involving
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almost everywhere convergence, it is best to consider also the corresponding
maximal function.

Theorem 4.26. Suppose that (2 satisfies the conditions of the previous theo-
rem. For f € LP(R™), 1 < p < oo, consider

T.f(x) = /| 2W) (0 —yydy, >0

y|=e |y|n
(The integral converges absolutely for every x.)
(a) lim._,o 1. f (x) exists for almost every x.
(b) Let T* f(z) = sup.-o |T-f(x)|. If f € LY(R™), then the mapping [ —
T* f is of weak type (1, 1).
(© I 1 < p < oo, then |T* ], < 4, |/,

Proof. The argument for the theorem presents itself in three stages.

The first one is the proof of inequality (c) which can be obtained as a rela-
tively easy consequence of the L” norm existence of lim,._,q 7, already proved,
and certain general properties of “approximations to the identity”.

Let Tf(z) = lim.,o 7. f(x), where the limit is taken in the L? norm. Its
existence is guaranteed by Theorem 4.24. We shall prove this part by showing
the following Cotlar inequality

T f(x) < M(TF)(@) + CM f(z).
Let ¢ be a smooth non-negative function on R", which is supported in the

unit ball, has integral equal to one, and which is also radial and decreasing in
|z|. Consider

K €Tr) = ‘xln ! = ’
() {0, lz| < e.

This leads us to another function ¢ defined by
P =px K — Ky, (4.45)

where ¢ * K = lim._,o ¢ * K, = lim._, f\x—y|>a K(z —y)p(y)dy.
We shall need to prove that the smallest decreasing radial majorant of @ is
integrable (so as to apply Theorem 4.10). In fact, if |z| < 1, then

K()eta = o)is| = | [ K)ot~ ) - ooy

P =|p* K| =

R

< [ IKllpte ) = sty < [ FEZLZEDg < c,

since (4.41) implies [, K (y)dy = 0 and by the smoothness of ¢.

If 1 < |x| < 2,then ® = p x K — K is again bounded by the same reason
and K is bounded in this case.

Finally if |z| > 2,
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R"

#@) = [ Koy K@) = [ K@)~ K@lewy
yI<1
Similar to (4.43), we can get the bound for |y| < 1
[ K-y - K@lde< [ (K -y) - K@)z < €.
|z >2 |z >2y]
Thus we obtain
[ e@lds<c [ pay<c
|z >2 lyl<1
Therefore, we have proved that & € L'(R") from three cases discussed above.
From (4.45), it follows, because the singular integral operator ¢ — ¢ * K
commutes with dilations, that

pe * K — K. =®., with®.(z) = "P(z/e). (4.46)
Now, we claim that for any f € LP(R"), 1 < p < oo,
(e * ) % f(x) = Tf * pe(x), (4.47)
where the identity holds for every x. In fact, we notice first that
(pe * Ks) * f(x) =T5f * (), foreveryd >0 (4.48)

because both sides of (4.48) are equal for each x to the absolutely con-
vergent double integral | _p, f|y|> sKW)f(z —y)e-(x — z)dydz. Moreover,
we € LYR™),with1l < ¢g<oocand 1/p+1/q¢=1,50 p. x K5 = ¢, * K in
L?norm, and T5f — T'f in L” norm, as 0 — 0, by Theorem 4.24. This proves
(4.47), and so by (4.46)

jéf::‘A;’kf)::@6*‘P(*Lf__dk’kf::{Tf)*g%‘_mf*(p&
Passing to the supremum over ¢ and applying Theorem 4.10, part (a), The-
orem 3.9 for maximal funtions and Theorem 4.24, we get

1T fllp <[[sup |T'f * e[|l + | sup [ f * P|[|,
e>0 e>0

SCIMTHlly + CIMfllp < CITFllp + CllA Al < Cl -

Thus, we have proved (c).

The second and most difficult stage of the proof is the conclusion (b). Here
the argument proceeds in the main as in the proof of the weak type (1, 1) result
for singular integrals in Theorem 4.18. We review it with deliberate brevity so
as to avoid a repetition of details already examined.

For a given o > 0, we split f = g + b as in the proof of Theorem 4.18. We
also consider for each cube (); its mate )}, which has the same center ¢; but
whose side length is expanded 2+/n times. The following geometric remarks
concerning these cubes are nearly obvious (The first one has given in the proof
of Theorem 4.18).

() If v ¢ @7, then |z — ¢j| > 2|y — ¢;] for all y € @, as an obvious
geometric consideration shows.
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(ii) Suppose = € R™\ (; and assume that
for some y € ()}, |x — y| = €. Then the closed
ball centered at x, of radius 7,¢, contains ()},
ie., B(z,r) D Q;,if r = y,e.

(i11) Under the same hypotheses as (ii), we
have that [z — y| > /¢, forevery y € Q.

Here +,, and ~/, depend only on the dimen-
sion 7, and not the particular cube ();.

With these observations, and following the
development in the proof of Theorem 4.18, we
shall prove that if x € R™ \ U;Q?,

sup [T0(0)] < 3 [ 1K(o =) = Ko = ()l

Fig. 4.1 Observation for (ii) and (iii)

e>0

(4.49)
+ C'sup

1
r>0 W /B(x,r) b(y)|dy,

with K () = 252

The addition of the maximal function to the r.h.s of (4.49) is the main new
element of the proof.

To prove (4.49), fix v € R" \ U;Q7, and £ > 0. Now the cubes Q; fall into
three classes:

I)forally € Q;, |z —y| <e;

2)forally € Q;, | —y| > ¢;

3) there is a y € Q;, such that |z — y| = €.

We now examine

Tb(z) = 5 K.(z — y)b(y)dy. (4.50)

Case 1). K.(x —y) = 01if |z — y| < ¢, and so the integral over the cube Q);
in (4.50) is zero.

Case 2). K.(x —y) = K(x — y), if |x — y| > ¢, and therefore this integral
over (; equals

[ K=y = | 1K=y~ Ko = ey
This term is majorized in absolute value by

|G )~ K el

which expression appears in the r.h.s. of (4.49).
Case 3). We write simply

< o [ Kz —y)l[b(y)|dy

K. (x —y)b(y)dy
Q;
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_ / K. (z — y)||b(y)|dy,
Q;NB(x,r)

by (ii), with r = ~,,¢. However, by (iii) and the fact that {2 is bounded, we have
2z —vy) C
|Ke(z —y)| = SIS o
|z =yl (7€)

Thus, in this case,

K (z —y)b(y)dy c

— [b(y)ldy.
Q; m(B(:zc, T)) /er‘lB(:t:,r)
If we add over all cubes ();, we finally obtain, for r = v,e,

)| <Y [ 1K (=) = Ko = ey
C

<

+ [b(y)ldy.

m(B(x, 7")) /;(z,r)
Taking the supremum over ¢ gives (4.49).
This inequality can be written in the form
T"b(z)| < ¥+ CMb(z), x€F*,
and so

m({z € R"\ U;Q; : [T"b(z)| > a/2})
<m({r € R"\ U;Qj : X' > a/4}) + m({r € R"\ U;Qj : CMb(x) > a/4}).

The first term in the rh.s. is similar to (4.33), and we can get
fRn\Uij Y(x)dx < C||b||, which implies m({z € R*\ U;Q : ¥ > a/4}) <
bl

For the second one, by Theorem 3.9, i.e., the weak type estimate for the
maximal function M, we get m({z € R" \ U;Q; : CMb(z) > a/4}) <
S lIblls.-

The weak type (1, 1) property of 7* then follows as in the proof of the same
property for 7', in Theorem 4.18 for more details.

The final stage of the proof, the passage from the inequalities of 7™ to the ex-
istence of the limits almost everywhere, follows the familiar pattern described
in the proof of the Lebesgue differential theorem (i.e., Theorem3.13).

More precisely, for any f € LP(R™), 1 < p < o0, let

Af(z) = [limsup 7. f(z) — lim iglf T.f(x)|.
e—0 e

Clearly, Af(z) < 2T*f(x). Now write f = f; + f, where f; € C!, and
Ifelly < 6.

We have already proved in the proof of Theorem 4.21 that 7.f; con-
verges uniformly as ¢ — 0, so Afi(x) = 0. By (4.37), we have || Afs]|, <
24, | follp < 24,01f 1 < p < oo. This shows Af, = 0, almost everywhere,
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thus by Af(z) < Afi(z) + Afs(z), we have Af = 0 almost everywhere. So
lim,._,o 7. f exists almost everywhere if 1 < p < oo.

In the case p = 1, we get similarly

A Ad
m({z: Af(2) > a}) < —llfollh < —

and so again A f(x) = 0 almost everywhere, which implies that lim._,o 7% f ()
exists almost everywhere. ]

4.7 *Vector-valued analogues

It is interesting to point out that the results of this chapter, where our func-
tions were assumes to take real or complex values, can be extended to the case
of functions taking their values in a Hilbert space. We present this generaliza-
tion because it can be put to good use in several problems. An indication of
this usefulness is given in the Littlewood-Paley theory.

We begin by reviewing quickly certain aspects of integration theory in this
context.

Let 7 be a separable Hilbert space. Then a function f(z), from R” to 7
is measurable if the scalar valued functions (f(x), ) are measurable, where
(+, ) denotes the inner product of .#, and  denotes an arbitrary vector of .77 .

If f(x) is such a measurable function, then |f(x)| is also measurable (as a
function with non-negative values), where | - | denotes the norm of 7.

Thus, LP(R™, 5¢) is defined as the equivalent classes of measurable
functions f(x) from R" to .7, with the property that the norm | f||, =
(fgn |f(2)[Pdz)"/? is finite, when p < oo; when p = oo there is a similar
definition, except || f||oc = esssup |f(z)].

Next, let 74 and % be two separable Hilbert spaces, and let L(J4, 745)
denote the Banach space of bounded linear operators from .77 to .7, with the
usual operator norm.

We say that a function f(x), from R" to L(J#, 74) is measurable if f(x)p
is an J#-valued measurable function for every ¢ € 4. In this case | f(z)] is
also measurable and we can define the space LP(R", L(.741, 7)), as before;
here again | - | denotes the norm, this time in L(J4, 74).

The usual facts about convolution hold in this setting. For example, suppose
K(z) € LY(R", L(JA, 56)) and f(x) € LP(R", 74), then g(x) =[5, K(x—
y) f(y)dy converges in the norm of 7% for almost every x, and

l9(x)] < / [K(z—y)f(y)ldy < / |K(z = y)llf (y)|dy.
n Rn
Also [lgllr < 1K gl fllps if 1/ =1/p+1/¢ — 1, with 1 <7 < oo,
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Suppose that f(z) € L'(R", ). Then we can define its Fourier trans-
form f(§) = [p. e @ f(x)dz which is an element of L*(R", ). If
f e LYR™ ) N LR, H), then f(¢) € L*R", ) with |fll, =

—n/2
(%) || f||2- The Fourier transform can then be extended by continuity to

a unitary mapping of the Hilbert space L*(R™, ) to itself, up to a constant
multiplication.

These facts can be obtained easily from the scalar-valued case by introduc-
ing an arbitrary orthonormal basis in .77.

Now suppose that 7] and 775 are two given Hilbert spaces. Assume that
f(z) takes values in 7], and K (z) takes values in L(5#, .7). Then

Tf(x)= | K(y)f(z—y)dy,
R

whenever defined, takes values in .7%.
Theorem 4.27. The results in this chapter, in particular Theorem 4.18, Propo-
sition 4.19, Theorems 4.21, 4.24 and 4.26 are valid in the more general context
where [ takes its value in 4, K takes its values in L(74, 76) and T f and
T.f take their value in %, and where throughout the absolute value | - | is
replaced by the appropriate norm in 71, L(7€, 7) or 7 respectively.

This theorem is not a corollary of the scalar-valued case treated in any obvi-
ous way. However, its proof consists of nothing but a identical repetition of the
arguments given for the scalar-valued case, if we take into account the remarks
made in the above paragraphs. So, we leave the proof to the interested reader.

Remark 4.28. 1) The final bounds obtained do not depend on the Hilbert
spaces 741 or ¢, but only on B, p, and n, as in the scalar-valued case.

2) Most of the argument goes through in the even greater generality
of Banach space-valued functions, appropriately defined. The Hilbert
space structure is used only in the L? theory when applying the variant
of Plancherel’s formula.

The Hilbert space structure also enters in the following corollary.
Corollary 4.29. With the same assumptions as in Theorem 4.27, if in addition
ITfllz = cllfll2, ¢>0, feL*R"4),

then || fll, < AT Sy, if f € LP(R", 74), if 1 < p < oc.
Proof. We remark that the L?(R™, %) are Hilbert spaces. In fact, let (-, -); de-

note the inner product of ¢, j = 1,2, and let (-, -); denote the corresponding
inner product in L*(R", %;); that is

)= [ (e gta))ds
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Now 7' is a bounded linear transformation from the Hilbert space
L?(R", 7#) to the Hilbert space L*(R", %), and so by the general the-
ory of inner products there exists a unique adjoint transformation 7', from
L2(R", ) to L*(R™, 2#,), which satisfies the characterizing property

(Tfi, f2)2 = (f1.Tfo)1, with fi € L*(R", 765).
But our assumption is equivalent with the identity (see the theory of Hilbert
spaces, e.g. [Din07, Chapter 6])

<Tf,Tg>2:CZ<f,g>1, for all f>g€L2(Rn7f%01)-
Thus using the definition of the adjoint, (T'T'f, g)1 = ¢*(f,g)1, and so the
assumption can be restated as

TTf =cf, feL*R"4). (4.51)

T is again an operator of the same kind as 7T but it takes function with values
in /% to functions with values in .77, and its kernel K (x) = K*(—x), where

« denotes the adjoint of an element in L(7#], 74).
This is obvious on the formal level since

Lhs fa)e = / . / (E(x = y) /i), fola))adyda
_/n /n(f1<y),K*(_<y — @) fo(x))rdady = (f1, Tfo)1.

The rigorous justification of this identity is achieved by a simple limiting ar-
gument. We will not tire the reader with the routine details.

This being said we have only to add the remark that K*(—z) satisfies the
same conditions as K (x), and so we have, for it, similar conclusions as for K
(with the same bounds). Thus by (4.51),

ENfllo = ITTflp < AT -
This proves the corollary with A, = A,/ 2. |

Remark 4.30. This corollary applies in particular to the singular in-
tegrals commuted with dilations, then the condition required is that
the multiplier m (&) have constant absolute value. This is the case, for
example, when T is the Hilbert transform, K(z) = -+, and m(¢) =

—isgn (w) sgn (§).
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Chapter 5

Riesz Transforms and Spherical Harmonics

5.1 The Riesz transforms

We look for the operators in R” which have the analogous structural charac-
terization as the Hilbert transform. We begin by making a few remarks about
the interaction of rotations with the n-dimensional Fourier transform. We shall
need the following elementary observation.

Let p denote any rotation about the origin in R”. Denote also by p its induced
action on functions, p(f)(x) = f(pz). Then

(1) = [ e plpndo = [ e gy
= [ ey = 7 (0) = p7510),

n

that is,
Fp=pF.
Let {(z) = (¢1(x),lo(x), ..., 0, (x)) be an n-tuple of functions defined on
R™. For any rotation p about the origin, write p = (p;) for its matrix realiza-

tion. Suppose that ¢ transforms like a vector. Symbolically this can be written
as

U(pz) = p(L(z)),

or more explicitly
Ui(pz) = Z pikli(z), for every rotation p. (5.1)
k

Lemma 5.1. Suppose ( is homogeneous of degree 0, i.e., {(cx) = {(x), for
e > 0. If € transforms according to (5.1) then {(x) = c3; for some constant c;

that is
t(x) = et (52)

el

115
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Proof. It suffices to consider z € S™~! due to the homogeneousness of degree
0 for . Now, let ey, eo, ..., €, denote the usual unit vectors along the axes. Set
c = {1(e1). We can see that /;(e;) = 0, if j # 1.

In fact, we take a rotation arbitrarily such that e; fixed under the acting
of p, ie., pel = e;. Thus, we also have e; = p~lpe; = ple; = pley.
From pe; = ,weget piy = land py, = pj1 = Ofork # 1

- —1
B 10 (10 1T
and j # 1. So p = < > Because <0A> = (()A‘1> and p~ = p',

we obtain A~! = AT and det A = 1, i.e., A is a rotation in R"!. On the
other hand, by (5.1), we get {;(e1) = > 7, pjuti(er) for j = 2,...,n. That

is, the n — 1 dimensional vector (¢5(e1), l5(eq), -, ln(e1)) is left fixed by all
the rotations on this n — 1 dimensional vector space. Thus, we have to take
62(61) = £3<61) = = fn(€1) = 0

Inserting again in (5.1) gives ¢;(pe1) = pjili(er) = cpji. If we take a
rotation such that pe; = z, then we have p;; = z;, so {(;(z) = cz;, (Jz| =1
which proves the lemma. |

We now define the n Riesz transforms. For f € LP(R"), 1 < p < oo, we set

R;f(z) = lim cn/l |y|7f+1f(x —y)dy, j=1,..,n, (5.3)
y|=e

e—0

; _ I'((n+1)/2) gz
with ¢, = =57~ where 1/c, = F 775 is half the surface area of the

unit sphere S™ of R™. Thus, R; is defined by the kernel K;(z) = (‘Zi—l(f), and
2;(z) = caps.

Next, we derive the multipliers which correspond to the Riesz transforms,
and which in fact justify their definition. Denote

Q(ZL‘) = (Ql<x)7 92<x)7 s “Qn(x))7 and m(f) = (ml(g)’ mQ(g)’ a mn(g))
Let us recall the formula (4.42), i.e.,

m©= [ o 0L, ¢ =1, 54

with @(t) = —Z¢ sgn (w) sgn () + In |1/t|. For any rotation p, since {2 com-
mutes with any rotations, i.e., {2(pz) = p(£2(x)), we have, by changes of
variables,

pm@) = [ 9l 2)pl@@)iot@) = [ (e 2pn)ao(a)

— /Snl D& p ) 2(y)do(y) = /Snl B(p¢ - y) 2(y)do(y)
=m(p§).

Thus, m commutes with rotations and so m satisfies (5.1). However, the m;
are each homogeneous of degree 0, so Lemma 5.1 shows that m;(§) = fé,
with
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c=mq(e) = /Sn_l &(ey - ) (z)do(x)

:/ [_% sgn (w) sgn (z1) + In |1/ x1|]c,z1do(2)

Sn—1

= — sgn (w)%cn/ |z1|do(x) (the 2nd is O since it is odd w.r.t. ;)
Sn—1

B mi[((n+1)/2) 2xt=D2 ,
= — sgn (u))E TR (s /2 sgn (w)i.
Here we have used the fact [, , |z1|do(z) = 27(""Y/2/T"((n+1)/2). There-

fore, we obtain

RI(€) = —sn (@)L f(©), = 1m (55)

This identity and Plancherel’s theorem also imply the following “unitary”
character of the Riesz transforms

DRI = 15
j=1

By m(p€) = p(m(§)) proved above, we have m;(p§) = >y pjrmu(§) for
any rotation p and then m;(p¢) f(€) = >, pjrrmu(§) f(£). Taking the inverse
Fourier transform, it follows

T mi(p) f() =F Y pirmi(€) ()
= Z ijﬁ'_lmk(f)f(f) = Z pikRef-
k K

But by changes of variables, we have

F 'y (p€) £(€)
_ (g) / e, (o) f(€)de

=(F " (m; (&) (071 )))(px) = pF " (m; () f(p~ ")) (@)
=pR;p~'f,
since the Fourier transform commutes with rotations. Therefore, it reaches

pRip™' f = Z,Oijkf, (5.6)
!

which is the statement that under rotations in R", the Riesz operators transform
in the same manner as the components of a vector.
We have the following characterization of Riesz transforms.
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Proposition 5.2. Let T' = (11,75, ...,T,,) be an n-tuple of bounded linear
transforms on L*(R™). Suppose

(a) Each T; commutes with translations of R";

(b) Each T; commutes with dilations of R™;

(c) For every rotation p = (pji) of R™, pTip~ ' f =", pjr Tk f.
Then the T} is a constant multiple of the Riesz transforms, i.e., there exists a
constant c such that T; = cR;, j = 1,...,n.

Proof. All the elements of the proof have already been discussed. We bring
them together.

(i) Since the 7} is bounded linear on L*(R") and commutes with transla-
tions, by Theorem 1.62 they can be each realized by bounded multipliers 1,
ie., Z(T;f) =m;f.

(ii) Since the 7; commutes with dilations, i.e., T;0.f = 6.1} f, in view of
Proposition 1.3, we see that F1;0.f = m;(§).F0.f = m; (E)e ™61 f(€) =

A

m;(€)e " f(E)e) and F.T;f = e 6.1 FT;f = e "0.1(m;f) =
e7"m;(€/e) f(€/e), which imply m;(€) = m;(£ /) or equivalently m (e€) =
m;(&), € > 0; that is, each m; is homogeneous of degree 0.

(iii) Finally, assumption (c) has a consequence by taking the Fourier trans-
form, i.e., the relation (5.1), and so by Lemma 5.1, we can obtain the desired

conclusion. [

One of the important applications of the Riesz transforms is that they can
be used to mediate between various combinations of partial derivatives of a
function.

Proposition 5.3. Suppose f € C?(R"). Let Af = > " 2! Then we have

N
j=1 dx%

Proof. Since .7 (0,, f)(§) = wi&;-F f(€), we have

7 (5o ) (© =~ 67 10

the a priori bound
0*f
ox j or k

< AllAfll,, 1<p<oo. (5.7)

p

- (cm @) (~sm @) e e

€]
=—FRjR,Af.
Thus, &Ea?—af% = —R;R,Af. By the L? boundedness of the Riesz transforms,
we have the desired result. [ |

Proposition 5.4. Suppose f € C}(R?). Then we have the a priori bound
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’ of of

Oxy ], || 0w,
Proof. The proof is similar to the previous one. Indeed, we have
Z0,. f =wi&; F = w2 e\F — Z’SJ€1+’520"
% (& —i&) (& + ifz)y
“H K 1o

__ —sgn(w)ig; —sgn (w)i(& — %2)9(8%]“ iy, f)
€] €
— FRj(R1 — iR2)(0y, f + 10y, f).
Thatis, 0,,f = —R;(Ry — iR2)(0y, f + 10, f). Also by the L” boundedness
of the Rresz transforms, we can obtain the result. [ |

, 1<p<oo.

p ‘ p

Ff(€)

We shall now tie together the Riesz transforms and the theory of harmonic
functions, more particularly Poisson integrals. Since we are interested here
mainly in the formal aspects we shall restrict ourselves to the L? case. For L?
case, one can see the further results in [Ste70, §4.3 and §4.4, p.78].

Theorem 5.5. Let f and fy, ..., f, all belong to L*(R™), and let their respective
Poisson integrals be ug(z,y) = Py f, uy(x,y) = Py * fi, ..., un(x,y) =
P, x f,. Then a necessary and sufficient condition of
fi=Ri(f), j=1..n, (5.8)
is that the following genemlized Cauchy-Riemann equations hold:
Z Ou;
« Ju; =0
au] . 8uk . . o
o, a—xj, j#k, withxy=y.

Remark 5.6. At least locally, the system (5.9) is equivalent with the exis-
tence of a harmonic function g of the n + 1 variables, such that u; = (%’j,
j=0,1,2,...n

Proof. Suppose f; = R, f, then fj(ﬁ) = —sgn (w)f—?f(f) and so by (4.15)

u;(,y) = —segn () (’2“;’) f© ,3 e levag j=1,..,m,

(5.9)

and
wiog) = () [ At
T R7
The equation (5.9) can then be immediately verified by differentiation under
the integral sign, which is justified by the rapid convergence of the integrals in
question.
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Conversely, let u;(z,y) = (M>nfRnfj(g)ewiﬁwe—lwflydf,j =0,1,...n

2
with fy = f. Then the fact that g%? = 27"2 = %i;,j = 1,...,n, and Fourier
inversion theorem, show that

wig; fo(€)e” MW = —|we| fi(§)e e,
therefore fj(g) = —sgn (w)%fo(f), and so

fj = ijo = ij, j = 1, L n.

5.2 Spherical harmonics and higher Riesz transforms

We return to the consideration of special transforms of the form
2
Tf(x) =1lim (Z)f(x —y)dy, (5.10)
=0 Jiyze Yl
where (2 is homogeneous of degree 0 and its integral over S™~! vanishes.

We have already considered the example, i.e., the case of Riesz transforms,
2i(y) = ¢, j =1,..,n.Forn =1, 2(y) = csgny, and this is the only
possible case, i.e., the Hilbert transform. To study the matter further for n > 1,
we recall the expression

m(©) = [ Aw-o2Ww)inw). €=

where m is the multiplier arising from the transform (5.10).

We have already remarked that the mapping {2 — m commutes with ro-
tations. We shall therefore consider the functions on the sphere S™~! (more
particularly the space L?(S™!)) from the point of view of its decomposition
under the action of rotations. As is well known, this decomposition is in terms
of the spherical harmonics, and it is with a brief review of their properties that
we begin.

We fix our attention, as always, on R", and we shall consider polynomials
in R™ which are also harmonic.

Definition 5.7. Denote o = (ai,..., ), [a| = > 7 a; and 2* =
it - x0n. Let &, denote the linear space of all homogeneous poly-
nomials of degree £, i.e.,

Py, = {P(m) = Zaaxo‘ el = k} .
Each such polynomial corresponds its dual object, the differential operator

P(0,) = > a,02, where 03 = 031 - - - 09". On &, we define a positive inner
product (P,Q) = P(9,)Q. Note that two distinct monomials 2z and z® in
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2. are orthogonal w.r.t. it, since there exists at least one ¢ such that a; > o,
then 0%z = 0. (P, P) = 3" |aa|*a! where a! = (ai!) - - - (an!).

Definition 5.8. We define .77, to be the linear space of homogeneous
polynomials of degree k which are harmonic: the solid spherical harmon-
ics of degree k. That is,

My, :={P(r) € Py : AP(x) = 0}.

It will be convenient to restrict these polynomials to S, and there to de-
fine the standard inner product,

(P.Q)= [ PEQ@olz).
Sn—
For a function f on S™"~!, we define the spherical LaplaceanAg by

Asf(x) = Af(x/|z]),
where f(x/|x|) is the degree zero homogeneous extension of the function f to
R™\ {0}, and A is the Laplacian of the Euclidean space.'

Proposition 5.9. We have the following properties.

(1) The finite dimensional spaces {74} -, are mutually orthogonal.

(2) Every homogeneous polynomial P € &), can be written in the form
P = P, + |x|* Py, where P, € 4, and Py € Py_s.

(3) Let Hy, denote the linear space of restrictions of 4, to the unit sphere.?
The elements of Hy, are the surface spherical harmonics of degree k, i.e.,

Hy, ={P(z) € 7 : |z| = 1}.
Then L*(S"~1) = Y72, Hy. Here the L? space is taken w.r.t. usual measure,

and the infinite direct sum is taken in the sense of Hilbert space theory. That
is, if f € L*(S™ 1), then f has the development

=Y Vi(x), Yie€H,, (5.11)

where the convergence is in the Lz(S””) norm, and

[ s =32 [ miwpaota)

(4) IfYk(ZE) € Hy, then ASYk( ) = —k(k? +n— Q)Yk( )

! This is implied by the well-known formula for the Euclidean Laplacian in spherical polar coordi-

nates:
n—1 8f
or

Af:rl_"3 <7’

or )—I—r s/

2 Sometimes, in order to emphasize the distribution between %}, and H},, the members of Hj, are
referred to as the surface spherical harmonics.
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(5) Suppose f has the development (5.11). Then f (after correction on a
set of measure zero, if necessary) is indefinitely differentiable on S™~* (i.e.,
f e C>(S"1)) ifand only if

/ Vi (2)|2do(z) = O(k™™), ask — oo, for each fixed N. ~ (5.12)
Sn—1

Proof. (1) If P € Py, ie., P(x) =) a,x® with |a| = k, then

n n n
a;i—1
g 10, P = g x; E e R R g Q; E anr® = kP,

On S” Lt follows kP = where 5 denotes dlfferentlatlon w.r.t. the out-
ward normal vector. Thus, for Pe ,%’ig, and () € J;, then by Green’s theorem

k-3 [ Past = [ (50 - P52 ) dote

= / [QAP — PAQ)dx =
lz|<1

where A is the Laplacean on R”.

(2) Indeed, let |z|*>Z?),_5 be the subspace of £, of all polynomials of the
form |z|>P, where P, € ),_,. Then its orthogonal complement w.r.t. (-, )
is exactly 7. In fact, P, is in this orthogonal complement if and only if
(|2]2Py, Pi) = 0 for all P. But {|z]?Py, P) = (Py(0,)A)P, = (P, AP)),
so AP, = 0 and thus &, = 4, @ |x|* P},_,, which proves the conclusion. In
addition, we have for P € &,

|z|*Py(x), K even,

P(z) = Py(z) + [ Pia(w) + - + { lz[FL Py (), k odd,

where P; € JZ; by noticing that &; = JZ; for j = 0, 1.
(3) In fact, by the further result in (2), if || = 1, then we have
P(z) = Pu() + Pos(z) +--- . + {ggg Zzzzn
with P; € ;. That is, the restriction of any polynomial on the unit sphere is a
finite linear combination of spherical harmonics. Since the restriction of poly-
nomials is dense in Lz(S”_l) in the norm (see [SW71, Corollary 2.3, p.141])
by the Weierstrass approximation theorem,’ the conclusion is then established.
(4) In fact, for |z| = 1, we have
AsYy(z) =A(|z|"Yi(2)) = 2| "AY; + A2 F)Ye + 2V (2] 7F) - VY,
=(k* + (2 = n)k)|z|*72Y;, — 2% x| 7F %Y,
=—k(k+n—2)z[F?Y, = —k(k +n —2)Y;,
since 2;'“:1 10, Yy = kY, for Yy, € 2.

3 If g is continuous on S™ !, we can approximate it uniformly by polynomials restricted to S™ 1.
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(5) To prove this, we write (5.11) as f(z) = > .o, arY(x), where the
Y)) are normalized such that [, , |Y)(z)[?do(x) = 1. Our assertion is then
equivalent with a; = O(k™"/?), as k — oo. If f is of class C?, then an
application of Green’s theorem shows that

/ AsfYdo = | fAsY do.
Sn—1 Sn—1
Thus, if f € C, then by (4)

/ ALfY0do = fALY do = [—k(k +n —2)]" / > ;Y)Y do
Sn—l Sn 1 —0

Sn—l

=[~k(k+n— 2)]7“%/ Y2 |2do = ap[—k(k +n —2)]".
Sn—1
So aj, = O(k™2") for every r and therefore (5.12) holds.

To prove the converse, from (5. 12) we have forany r € N

145 F1Iz =(A%f, Asf ZAgY ZNYk

0
M8 .

<
Il
<)
B
Il

=(Q_[=i( +n=2)]Yj(x), }_[-k(k+n—=2)]"Yi(z))

0

[—k(k +n = 2)]" (Yi(), Yi(z))

M)

B
Il
o

[—k(k+n—2)]"0k M) <C,

I
ngl;

if we take NV large enough. Thus, f € C>(5"1). |

Theorem 5.10 (Hecke’s identity). It holds
|w]

F(po)e ) - (1

—n/2
27?) (—isgn () Pu(€)e™ 2T, VP, € JARY).

(5.13)

Proof. That is to prove

—n/2
[ petage e Bt - (G1) 7 (s ) Rlg)e 51
(5.14)

Applying the differential operator P (0:) to both sides of the identity (cf.
Theorem 1.10)

—n/2
[ etbrg = (Y v

we obtain
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—n/2
(—Wi)k/ Pk(ﬂs)e_mxf_%updx = (%) Q(g)e—%lfﬁ

Since Py (x) is polynomial, it is obvious analytic continuation P (z) to all of
C™. Thus, by a change of variable

n/2
Q) =i (W) [ Ryttt

n/2
iy (Y ~l5 (@tisgn ()6)?
=(—wi) Py(z)e” 2 dx

=(—wi)* (M) " /n Py — isgn (w)€)e™ 2 M dy.

Qlisen ()€) =(—wi)’ (—)W [ Bty e ¥y

n/2 00
=(—wi)F (M) / rnlegTz/ Pe(€ + 1y )do(y )dr.
27T 0 Sn—1

Since P is harmonic, it satisfies the mean value property, i.e., Theorem 4.5,
thus

| e o) = wna PO = P | dot),

Snfl
Hence

Qlisen (w)€) =(~wi)’ (M)W A [ ® [ dota

n—1

~coir ()" o [ i = et

Thus, Q(§) = (—wi)" Pi(—isgn (w)§) = (—wi)*(—isgn (w))*Pi(¢), which
proves the theorem. |
The theorem implies the following generalization of itself, whose interest
is that it links the various components of the decomposition of L?(R"), for
different n.
If f is a radial function, we write f = f(r), where r = |x|.

Corollary 5.11. Let Py(z) € 4, (R™). Suppose that f is radial and
Py(z)f(r) € L*(R™). Then the Fourier transform of Py(z)f(r) is also of the
form Py(x)g(r), with g a radial function. Moreover, the induced transform
[ — g9 Twrf = g, depends essentially only on n + 2k. More precisely, we
have Bochner's relation .

Thr = (|W|> (—isgn (w))* Thiaro- (5.15)

21
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Proof. Consider the Hilbert space of radial functions

% = {f(m I = /Ooo ) 2ty < oo} |

with the indicated norm. Fix now Pj(x), and assume that P is normalized,
1.e.,

/ |Py(2)[2do(2) = 1.
Sn—1
Our goal is to show that

k
w .
Tuh) = (52 (isen @) Tmal)0), 636
foreach f € Z#.
First, if f(r) = e“%w, then (5.16) is an immediate consequence of Theo-
rem 5.10, i.e.,

(T 37)(R) = (M)_W (—isgn (w)be 27

|w] .2

('”') (—isgn (@) (Tosanoe~ 57)(R).
w|
)

which implies T}, . f = (' (—isgn (W) Tyyonof for f = o2

Jw]|

Next, we consider e~ 2 “" for a fixed € > 0. By the homogeneity of P and
the interplay of dllatlons with the Fourier transform (cf. Proposition 1.3), i.e.,
Fo. = e "6.—1.%, and Hecke’s identity, we get

F (Pk(x)e_Ts‘ﬂQ) = e_k/Qﬁ(Pk(glﬂx)e_%E'le)
:E—k/Q—n/25671/2y(Pk($)e—%|z\2)

__—k/2—n/2 M e . k _%|§|2
=e o (—isgn (w))"0.-12(Pr()e )

—n/2
B <|§u—|) (—isgn (w))'e 7P g)e B I
™

—n/2
:@) (—isgn (w))'e ™2 Py (g)e 3 Ve,

—n/2 "
This shows that 7T}, ye™ fgler? _ (M> (—isgn (w))’fg—k—n/%—%ﬂ/e’ and
SO

(—isgn (w))OE—O—(n+2k)/2€_%T2/E
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k
_lwl 2 . _lwl 2
Thus, T, re~ 2 <" = % (—isgn (w))*T o 0e™ 2 <" fore > 0.

To finish the proof, it suffices to see that the linear combination of
lwl . . .
{6*75’"2}0@@0 is dense in Z. Suppose the contrary, then there exists a (al-
. lw]
most everywhere) non-zero g € %, such that g is orthogonal to every e~ ze”

in the sense of %, i.e.,
/ e’%gﬂg(r}r%*”’ldr =0, (5.17)
0

for all e > 0. Let ¢(s) = [ e " g(r)r"t?~1dr for s > 0. Then, putting
e = 2(m + 1)/|w|, where m is a positive integer, and by integration by parts,
we have

0:/0 e 1/1(r)dr:2m/0 e " (r)rdr.

r

By the change of variable z = e~ °, this equality is equivalent to

1
O:/ 2" hp(/Inl/2)dz, m=1,2,...
0

Since the polynomials are uniformly dense in the space of continuous func-
tions on the closed interval [0, 1], this can only be the case when ¢/(/In1/2) =
0 for all z in [0,1]. Thus, ¥'(r) = e " g(r)r"*?*~1 = 0 for almost every
r € (0,00), contradicting the hypothesis that ¢g(r) is not equal to 0 almost
everywhere.

k

Since the operators 7}, ;, and (%) (—isgn (w))*T, 49k are bounded and
agree on the dense subspace, they must be equal. Thus, we have shown the
desired result. [ |

We come now to what has been our main goal in our discussion of spherical
harmonics.

Theorem 5.12. Let Py(x) € 4, k > 1. Then the multiplier corresponding
to the transform (5.10) with the kernel |1; ’I‘,fle is

L w2 p T(K/2)
%W7 with v, = 7/*(—isgn (w)) T2 +n2)
Remark 5.13. 1) If k > 1, then P, (=) is orthogonal to the constants on the
sphere, and so its mean value over any sphere centered at the origin is
Zero.

2) The statement of the theorem can be interpreted as

F (P’“(a’)) = ykﬁz—(’f). (5.18)

|x|k+n

3) As such it will be derived from the following closely related fact,

F (P’“—(‘”)) =~ P () (5.19)

|z|F+n—a - ’WW’
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n wl ¢ ) I'(k/2+a/2
where vy, =T /2 (%) (—isgn (w>>k_F(k/(2—&/—n—~/_2—/o¢)/2)'

Lemma 5.14. The identity (5.19) holds in the sense that
Py(z) / Py(§)
————p(x)dr = Y0 ¢, Vo€ L. 5.20
/Rn |x|k+nfa90( ) o | |€|k+as0(€) £, Vo (5.20)

It is valid for all non-negative integer k and for 0 < ao < n.

Remark 5.15. For the complex number a with ®a € (0,n), the lemma
and (5.19) are also valid, see [SW71, Theorem 4.1, p.160-163].

Proof. From the proof of Corollary 5.11, we have already known that
F(Py(x)e5) = (M

—n/2
m) (—isgn ()P (€)o7 K,

so we have by the multiplication formula,

-n/2
_ (M) (=i sgn (w))Fe /2 / P(§e F (),

_lwl

el (€)p(e)de

2m
for e > 0.
We now integrate both sides of the above w.r.t. €, after having multiplied the
equation by a suitable power of ¢, (°~1, 3 = (k + n — )/2, to be precise).
That is

/ / Py(z e~ 5ielal® o(x)dxde

—n/2 ()
(2#) (isgn ()" [t [ p e Bt

(5.21)
By changing the order of the double integral and a change of variable, we get

Lh.s. of (5.21) = / Py(x)p(x) / ePle= 5 el ey
n 0

_ _/B o
t‘:“’éé'z:/z/ Pi(z)p(z) <%|$i2) / t7 e dtdx
n 0

w —B
() e [ Awewl e
Similarly,

r.h.s. of (5.21) = <M) _n(/ii sgn (w))* /n Pr(§)e(§)

2m
/ o= (k/24a/241) =I5l /e g de
0
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=280 (W) sy [ aroe (Kher) "

/00 tk/2+oz/2—1€—tdtd€
0

_ (M) " s @) (M) T k2 ag)

2 2

JRCGIGIRERS

Thus, we get
(’%’) T @ | Payela)al s
- (%) o (—isgn (w))* (’%’) e I'(k/2+a/2)

¥ R GEGIERERE

which leads to (5.20).

Observe that when 0 < o < n and ¢ € ., then double integrals in the
above converge absolutely. Thus the formal argument just given establishes
the lemma. |

Proof of Theorem 5.12. By the assumption that £ > 1, we have that the inte-
gral of P} over any sphere centered at the origin is zero. Thus for ¢ € ., we

get
| ppetan = [ 2R 6) - g0

|| <
Dy ()
d
+/|x|>1 |z[FHn—a (z)d

Obviously, the second term tends to f‘x|>1 %g&(m)dm as a — 0 by the

dominated convergence theorem. As in the proof of part (c) of Theorem 4.26,
% [o(x) — ¢(0)] is locally integrable, thus we have, by the dominated con-

vergence theorem, the limit of the first term in the r.h.s. of the above

i Ble) 5 Pe(x) . .
lim <p:l:—g00dx:/ G(x) — 5(0)|da
a—0 |z|<1 |Jj|k‘+n—a[ ( ) ( )] <1 ‘Ji|k+”[ ( ) ( )]
Pi(z) . . Pi()

= r)dzr = lim 2)dx.

/g;|<1 ’Jf|k+n90< ) e=0 Joglal<t ’x|k+n%0< )
Thus, we obtain
i Pi(x) o Py()
alir(r)lJr R |x|k,+n_a§0<l’)d$ - lg% 2| >e |x|k+n<'0($)dx (522)

Similarly,



5.3. Equivalence between two classes of transforms -129-

. Pi(§) L Pi(§)
g, /R \akm@(f)dg_l%/a% L PO

Thus, by Lemma 5.11, we complete the proof with v, = lim,_,0 Vx.a- ]
For fixed k& > 1, the linear space of operators in (5.10), where 2(y) = P{;—Tky)

and P, € 7, form a natural generalization of the Riesz transforms; the latter
arise in the special case £ = 1. Those for £ > 1, we call the higher Riesz
transforms, with k as the degree of the higher Riesz transforms, they can also
be characterized by their invariance properties (see [Ste70, §4.8, p.79]).

5.3 Equivalence between two classes of transforms

We now consider two classes of transforms, defined on L?(R"). The first
class consists of all transforms of the form

Tf=c-f+lim 20y) F(x — y)dy, (5.23)
=0 Jye |yl

where ¢ is a constant, 2 € C*°(S™!) is a homogeneous function of degree
0, and the integral [, , £2(x)do(x) = 0. The second class is given by those
transforms 7" for which

F(TF)(€) =m(&)f(©) (5.24)

where the multiplier m € C>(S™!) is homogeneous of degree 0.

Theorem 5.16. The two classes of transforms, defined by (5.23) and (5.24)
respectively, are identical.

Proof. First, support that 7" is of the form (5.23). Then by Theorem 4.24, T is
of the form (5.24) with m homogeneous of degree 0 and

m©) =c+ [ -5 s (s (e 0) + m(1/lg o) | 2wo(e), -1
(5.25)

Now, we need to show m € C°°(S"!). Write the spherical harmonic de-
velopments

2z) = Vi(z), m(z)

1=

Yi(z), my(x) =Y Vi),

(5.26)
where Y}, Y/k € Hj, in view of part (3) in Proposition 5.9. £ starts from 1 in the
development of {2, since [, , £2(z)dx = 0 implies that {2(x) is orthogonal to
constants, and H, contains only constants.

Then, by Theorem 5.12, if {2 = 2y, then m(x) = my(z), with

> Yi(x), Qu(x) =
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But sy () — m(e) = fouor | =5 s8n () sgn (v 2) + In g ] [ue(y) -
2n(y)|do(y). Moreover by Holder’s inequality,
sup [ma () — my(z)|
zesSn—1
» ) 1/2
i
(w)sgn (y - x) + In(1/]y - 2|) dff(y))
(5.27)

—7 sgn

o
€T Snfl

([t - osrasw) o

)

[\3|>L3

do(y)

as M, N — oo, since* forn =1, 5% = {—1,1},
g)
-5 sen @) sen(y )+ In(1/ly - )
S
and for n > 2, we can pick a orthogonal matrix A satisfying Ae; = x and
2
do(y)

det A = 1 for |z| = 1, and then by a change of variable,
(w)sgn (y - @) +1In(1/]y - =)

swip/sn1 —%isgn
T a1/l 1)) dot)

/ |:
Sup
Sn—1

xT

7T2
=W, + sUp
xT

. [ wly- Acipasty)
[ mlaty-alpasy)
gn—1

7T2 i
=—w,_1 +su
1 1 xp
. / (In |21])2dor (=) < oo.
Snfl

2
=A—1ly T
= = —Wn—1 +
Here, we have used the boundedness of the integral in the r.h.s., i.e., (with the
le

p———— 4
-y Zn ), cf. [Gra04, p.A-20,p.267])
) V1= 22

notation zZ = (2o,
1
(In |zl|)2/ do(z
1—238n—2
D2 do (y)dz

[ wlapaee) - [
[ -

-1
1
s / (I [2a]2(1 — 22) 9724,
-1
/ (In | cos 6])?(sin 0)"2d = wy,_»1,.
0

z1=cos 6
::::wn—Q

If n > 3, then, by integration by parts,
L < / (In | cos A])? sin 0df = —2/ In | cos 8| sin 6df = 2/ sinfdf = 4
0 0 0

4 There the argument is similar with some part of the proof of Theorem 4.24.
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If n = 2, then, by the formula fo (In(cos0))?dd = Z[(In2)* + x%/12], cf.
[GR, 4.225.8, p.531], we get

T /2
I = / (In] cos 6])?df = 2/ (In(cos 0))*df = 7[(In2)* + 72/12].
0 0
Thus, (5.27) shows that

Since 2 € C*°, we have, in view of part (5) of Proposition 5.9, that

/nl Vs, (2)Pdo(z) = O(k™)

as k — oo for every fixed N. However, by the explicit form of v, we see that
Vi ~ k=2, so m(z) is also indefinitely differentiable on the unit sphere, i.e.,
m e C®(S" ).

Conversely, suppose m(x) € C*°(S™!) and let its spherical harmonic de-
velopment be as in (5.26). Set ¢ = Yp, and Yj,(z) = %ffk(x) Then 2(x),
given by (5.26), has mean value zero in the sphere, and is again indefinitely
differentiable there. But as we have just seen the multiplier corresponding to
this transform is m; so the theorem is proved. |

As an application of this theorem and a final illustration of the singular
integral transforms we shall give the generalization of the estimates for partial
derivatives given in 5.1.

Let P(z) € Z(R"). We shall say that P is elliptic if P(x) vanishes only
at the origin. For any polynomial P, we consider also its corresponding differ-
ential polynomial. Thus, if P(z) = 3" aqz®, we write P(2) = Y a,(2)" as
in the previous definition.

Corollary 5.17. Suppose P is a homogeneous elliptic polynomial of degree k.
Let (&) be any differential monomial of degree k. Assume f € C¥, then we

have the a priori estimate
o\ 0
= <A P =
(5:) 1 (5211,
p
Proof. From the Fourier transform of 82) fand P ( ) fs

#(P(5) 1)@= [ e=er (o) s = wirreice,

" 7 (((%) 1) © = wire i

we have the following relation

, 1l<p<oo. (5.28)

p
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roz ((5) 1)@= (r(5)1)©

o

Since P(§) is non-vanishing except at the origin, % is homogenous of degree

0 and is indefinitely differentiable on the unit sphere. Thus

o\“ 0
= —T7(lp(=
() 1=7(#(3)7).
where T is one of the transforms of the type given by (5.24). By Theorem 5.16,

T is also given by (5.23) and hence by the result of Theorem 4.24, we get the
estimate (5.28). |
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Chapter 6
The Littlewood-Paley g-function and Multipliers

In harmonic analysis, Littlewood-Paley theory is a term used to describe a
theoretical framework used to extend certain results about L? functions to L?
functions for 1 < p < oo. It is typically used as a substitute for orthogonality
arguments which only apply to L? functions when p = 2. One implementa-
tion involves studying a function by decomposing it in terms of functions with
localized frequencies, and using the Littlewood-Paley g-function to compare
it with its Poisson integral. The 1-variable case was originated by J. E. Little-
wood and R. Paley (1931, 1937, 1938) and developed further by Zygmund and
Marcinkiewicz in the 1930s using complex function theory (Zygmund 2002
[1935], chapters XIV, XV). E. M. Stein later extended the theory to higher
dimensions using real variable techniques.

6.1 The Littlewood-Paley g-function

The g-function is a nonlinear operator which allows one to give a useful
characterization of the L” norm of a function on R" in terms of the behavior of
its Poisson integral. This characterization will be used not only in this chapter,
but also in the succeeding chapter dealing with function spaces.

Let f € LP(R"™) and write u(z, y) for its Poisson integral

wl\" wiéx  —|wkly £
u(z,y) = (%) / e emlwtly f(£)dg = P,(t)f(x —t)dt
n Rn
as defined in (4.15) and (4.17). Let A denote the Laplace operator in R/,
that is A = g—; + 25 8872?; V is the corresponding gradient, |Vu(x,y)|? =

22 4 |V, u(z, y) Voule,y)2 = S0, |2,

Definition 6.1. With the above notations, we define the Littlewood-Paley
g-function g(f)(x), by

2 where

133



-134- 6. The Littlewood-Paley g-function and Multipliers

o)) = < | wue y>|2ydy) " 6.1)

We can also define two partial g-functions, one dealing with the y differ-
entiation and the other with the x differentiations,

1)) = ( G 2ydy>,1/;<f><x> - ( / OO|VxU($,y)|2ydy)1/2.

8_y(xv y)
(6.2)
Obviously, ¢* = ¢7 + g2.

The basic result for g is the following.

Theorem 6.2. Suppose f € LP(R"), 1 < p < oo. Then g(f)(x) € LP(R"),
and

ANl < Nlg(Hlle < Apll £l (6.3)

Proof. Step 1: We first consider the simple case p = 2. For f € L*(R"), we
have

Lo = / / Vu(z, y)Pydyde = / y [ V(e y)Pdedy.
R™ J0O 0 Rn

In view of the identity

o) = (1) [ esmetonfigpe
Ou _ (N [ el f(eyevie ooty
o= () [ —lelf@eeeteg

Ju |("‘ | " e wifx  —|w
_333]- = <_) /n (,U’ng ] (f)@ € e | §|yd€.
Thus, by Plancherel’s formula,

we have

and

ou |’ ou |?
Vu(z,y)|*dx :/ — —| | dx
[ IVupPas = | [ RS ]
_' % 2 n % 2
dy 2 O L2

= [H T (—|wl f(€)e M) H”ZHJ (wi&; f(E)e "““’)H%]

-(3) [n el FEe I+ 3 ||wzsjf<s>e-'w5y||3]
j=1
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- <|2 |> W[ |€] £ (€)e W13

- [ 2 () wepirepea

and so

= [ v [ 2 (B) wlepirpe 2 racay
= / 2 (%) P OF /0 ey
- [ 2 () wepiror g =5 () 1

1
=5 I715

Hence,

lg(Hll2 =272 fl2- (6.4)
We have also obtained [|g1(f)lla = [|g.(f)ll2 = 3l f]l2-

Step 2: We consider the case p # 2 and prove ||g(f)|l, < A, fl,- We
define the Hilbert spaces .77 and 773 which are to be consider now. .77 is the
one-dimensional Hilbert space of complex numbers. To define 775, we define
first 77 as the L? space on (0, co) with measure ydy, i.e.,

Y = {f AP = [ 1w Puay < oo}.

Let 775 be the direct sum of n + 1 copies of j‘éo; so the elements of 773 can
be represented as (n + 1) component vectors whose entries belong to 7.
Since 7] is the same as the complex numbers, then L(.74, 7%) is of course
identifiable with 775. Now let € > 0, and keep it temporarily fixed.

Define
K.(z) = (8Py+£($) aPy-&-a(x) aPy—l—é(I)) '

oy  Ory 7 Oxy,
Notice that for each fixed , K.(x) € %. This is the same as saying that
| OPyc(z) | | 0P, (x)|?
/ OFyi<(2) ydy < oo and / OFyi<(2) ydy < oo, forj=1,...,n
0 8y 0 8xj

In fact, since Py(z) =
bounded by

ey ory opy
' (eETo2) o7z We have that both 5y and oo, are
W. So the norm in % of KE(I),

> d
K <A+ 1) [ I
, Tl

Tl
<A(n+1) / :

dy
gt e S -

and in another way
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> ydy AQ(" + 1) 2, 9\— -2
K. < A%(n+1 = "< "
K@) < rt) [ e = S oty <
Thus,
K. (2)] € LL(R"). (65)
Similarly,
aKa(ﬁ) ? /OO ydy /OO ydy —2n—2
<C — < C s < O "
' o1, s Qe+ SO e SO

Therefore, K. satisfies the gradient condition, i.e.,

K
‘a “0)] ¢ O, (6.6)

J

with C' independent of ¢.
Now we consider the operator 7. defined by

T:f(z) = K.(t)f(z —t)dt.

R"
The function f is complex-valued (take their value in J#]), but 7, f(z) takes
its value in .7%45. Observe that

sl = ([ 19w+ fty) < ([ 19utlaiy) < oo
) 6.7)
Hence, ||T.f(7)||2 < 27Y2|| |2, if f € L*(R"), by (6.4). Therefore,
|Ko(x)| <2712, (6.8)
Because of (6.5), (6.6) and (6.8), by Theorem 4.27 (cf. Theorem 4.18), we get

T fllp, < Apllfllps 1 < p < oo with A, independent of e. By (6.7), for each
x, |T. f(z)| increases to g(f)(z), as € — 0, so we obtain finally

lg(Dllp < Apl[fllp, 1 <p < o0, (6.9)
Step 3: To derive the converse inequalities,
Al < Nlg(Pllp, 1 <p < oo. (6.10)

In the first step, we have shown that ||gi(f)||2 = 1|/ f]|2 for f € L*(R™).
Let u, uy are the Poisson integrals of f1, fo € L2 respectively Then we have

lgr(fr + )13 = 31f1 + Fall i fou [o7 12552 Pydyde = | o |1+
fo|*dx. Tt leads to the 1dent1ty

/n/ aUI (flf y)ydyds = 5 fi(2) fo(@)dz

This identity, in turn, leads to the inequality, by Holder’s inequality and the
definition of gy,
1

. fi(z) fo(z)da

< [ o @n())d
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Suppose now in addition that f; € LP(R") and f, € L¥ (R™) with || fo||,y <
land 1/p + 1/p’ = 1. Then by Holder inequality and the result (6.9).

- fu(@) fa@)de| < 4 (f)llpllgr ()l < 4Ap g1 ()l (6.11)

Now we take the supremum in (6.11) as f, ranges over all function in
L2 N LY, with | f2|ly < 1. Then, we obtain the desired result (6.10), with
A, = 1/4Ay, but where f is restricted to be in L* N LP. The passage
to the general case is provided by an easy limiting argument. Let f,,, be a
sequence of functions in L? N LP, which converges in L? norm to f. No-
tice that [g(fm)(x) — g(fn)(2)| = ‘Hvum”LQ(O,OO;ydy) - ||vun||L2(0,<>0;ydy)‘ S
|Vn — V|| 120,00dy) = 9(fm — fn)(x) by the triangle inequality. Thus,
{g9(fm)} is a Cauchy sequence in L” and so converges to ¢g(f) in L?, and we
obtain the inequality (6.10) for f as a result of the corresponding inequalities
for f,. |

We have incidentally also proved the following, which we state as a corol-
lary.
Corollary 6.3. Suppose f € L*(R"), and g,(f) € LP(R"), 1 < p < oo. Then
;e LPRY), and AL[| fllp < llgr (f)llp-

Remark 6.4. There are some very simple variants of the above that
should be pointed out:

(i) The results hold also with g, ( f) instead of ¢( f). The direct inequal-
ity lg.(f)|l, < A4,/ f], is of course a consequence of the one for g. The
converse inequality is then proved in the same way as that for g;.

(ii) For any integer k > 1, define

9 1/2
y2k1dy> )

0@ = ( [ 15

oy*
Then the L? inequalities hold for g, as well. both (i) and (ii) are stated
more systematically in [Ste70, Chapter 1V, §7.2, p.112-113].

(iii) For later purpose, it will be useful to note that for each z,
9i(f)(z) = Argi(f)(z) where the bound A, depends only on k.

It is easily verified from the Poisson integral formula that if f €
LP(R™), 1 < p < oo, then

0" u(x, y)
oYk

(z,y)

— 0 for each z, asy — oc.

Thus,
Mu(z,y) _/°° " u(r,s) yds
5yk - y Osk+1 gk’

By Schwarz’s inequality, therefore,
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k 2 o) k+1 2 o0

9 U<I,y) < 9 U(I,S) S2kd8 SkadS
ayk = y Osk+1 y )

Hence, by Hardy’s inequality (2.17) (on p.51, with ¢ = r = 1 there), we
have

2

ak
u y2k71 dy

NP = [ \a—ym,y)
e’} [e%e} ak+1u
< [
\/Ov (/y ‘85k+1 (33', 8)
1 oo [ oo | ghtly,
T2k -1 /0 /y skl (z,5)
1 < | gkl
<5oi)) [
1 < | ght+ly
T2k -1 /0 ’ Oskt1 (z,5)

! 2
=55 1 Wkr(H)))"

Thus, the assertion is proved by the induction on &.

2

SdeS) (/ SdeS) kafldy
Yy

2
52kd5> dy
2

52k+1d8

2
G2+ ~1 7

The proof that was given for the L? inequalities for the g-function did not, in
any essential way, depend on the theory of harmonic functions, despite the fact
that this function was defined in terms of the Poisson integral. In effect, all that
was really used is the fact that the Poisson kernels are suitable approximations
to the identity.

There is, however, another approach, which can be carried out without re-
course to the theory of singular integrals, but which leans heavily on character-
istic properties of harmonic functions. We present it here (more precisely, we
present that part which deals with 1 < p < 2, for the inequality (6.9)), because
its ideas can be adapted to other situations where the methods of Chapter 4 are
not applicable. Everything will be based on the following three observations.

Lemma 6.5. Suppose u is harmonic and strictly positive. Then
AuP = p(p — 1)uP2|Vul? (6.12)

Proof. The proof is straightforward. Indeed,
Oy, uP = puP~'0y,u, Qijup = p(p — DuP*(9y,u)* + pupflﬁfju,
which implies by summation
Au? = p(p — 1)u??[Vul]? + pu? " Au = p(p — D)u?*|Vul?,
since Au = 0. |
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Lemma 6.6. Suppose F(z,y) € C(R') N C?(R™™), and suitably small at
infinity. Then

/ yAF (z,y)dzdy = / F(z,0)dz. (6.13)
]Ri+1 n

Proof. We use Green’s theorem

/D(UAU —vAu)dxdy = / (uaaTU/, — v%) do

where D = B, N R, with B, the ball of radius 7 in R"*! centered at the
origin, \V is the outward normal vector. We take v = F’, and v = y. Then, we
will obtain our result (6.13) if

/yAF(x,y)dmdy%/ yAF (z,y)dxdy,
D R+

and

as r — oo. Here 0D, is the spherical part of the boundary of D. This will
certainly be the case, if for example AF > 0, and |F| < O((|z|+y)™"¢) and
IVFE| = O((|z| +y) " 179), as |z| + y — oo, for some & > 0. |

Lemma 6.7. If u(x,y) is the Poisson integral of f, then
sup [u(z, y)| < M (). (6.14)
y>0

Proof. This is the same as the part (a) of Theorem 4.9. It can be proved with a
similar argument as in the proof of part (a) for Theorem 4.10. |

Now we use these lemmas to give another proof for the inequality

lg(Pllp < Apllfllp, T <p < 2.

Another proof of ||g(f)ll, < Apllfll,, 1 < p < 2. Suppose first 0 < f €
Z(R™) (and at least f 7é 0 on a nonzero measurable set). Then the Poisson
integral u of f, u = Jgu Py(t) f(x — t)dt > 0, since P, > 0 for any
x € R" and y > 0 and the majorlzatlons u(z,y) = O((|z| + y)™") and
|Vu| = O((|z| +y)™™'), as |x] + y — oo are valid. We have, by Lemma 6.5,
Lemma 6.7 and the hypothesis 1 < p < 2,

2 7 20y = 1 7 2P AP
@@= [Vl = ——— [yt avay

ME@PT (<
S -0 / yAudy.

We can write this as

g(f) () < Cp(M f(2) P2 (I(2))"2, (6.15)
where [ (z fo yAuPdy. However, by Lemma 6.6,



-140- 6. The Littlewood-Paley g-function and Multipliers

/ I(x)dx :/ yAuPdydr = / uP(z,0)dz = || f|I7. (6.16)
n Ri‘Fl n

This immediately gives the desired result for p = 2.
Next, suppose 1 < p < 2. By (6.15), Holder’s inequality, Theorem 3.9 and
(6.16), we have, for 0 < f € Z(R"),

| th@yar<cy [ usaye i)yt

n

1/r 1/r
<oy ([ aswyas) ([ 1@as) < - s

where r =2/p € (1,2)and 1/r + 1/1' = 1, thenr’ = 2/(2 — p).

Thus, ||g(f)|l, < Apllfllp» 1 < p < 2, whenever 0 < f € Z(R").

For general f € LP(R™) (which we assume for simplicity to be real-valued),
write f = f* — f~ as its decomposition into positive and negative part; then
we need only approximate in norm f* and f~, each by a sequences of positive
functions in Z(R™). We omit the routine details that are needed to complete
the proof. ]

Unfortunately, the elegant argument just given is not valid for p > 2. There
1s, however, a more intricate variant of the same idea which does work for the
case p > 2, but we do not intend to reproduce it here.

We shall, however, use the ideas above to obtain a significant generalization
of the inequality for the g-functions.

Definition 6.8. Define the positive function

G@r= [ () w617

Before going any further, we shall make a few comments that will help to
clarify the meaning of the complicated expression (6.17).

First, g5(f)(x) will turn out to be a pointwise majorant of g(f)(x). To un-
derstand this situation better we have to introduce still another quantity, which
is roughly midway between ¢ and g3. It is defined as follows.

Definition 6.9. Let I" be a fixed proper cone in R with vertex at the
origin and which contains (0, 1) in its interior. The exact form of I" will
not really matter, but for the sake of definiteness let us choose for /" the
up circular cone:
I'={(t,y) eRT": |t| <y,y>0}.
For any x € R", let I'(x) be the cone I" translated such that its vertex
is at 2. Now define the positive Luzin’s S-function S(f)(x) by

[S(f) ()] = /F " [Vu(t,y)|*y' " dydt = /F [Vu(z —t,y) [y "dydt.
(6.18)
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We assert, as we shall momentarily prove,
that ,1

Proposition 6.10. o) s
g(f)(l’) < C'S(f)(x) < Ckgi(f)(x) (619) Fig. 6.1 I"and I'(x) forn =1

What interpretation can we put on the inequalities relating these three quan-
tities? A hint is afforded by considering three corresponding approaches to the
boundary for harmonic functions.

(a) With u(x,y) the Poisson integral of f(x), the simplest approach to the
boundary point x € R"™ is obtained by letting y — 0, (with = fixed). This
is the perpendicular approach, and for it the appropriate limit exists almost
everywhere, as we already know.

(b) Wider scope is obtained by allowing the variable point (¢, y) to approach
(x,0) through any cone ['(z), (where vertex is x). This is the non-tangential
approach which will be so important for us later. As the reader may have al-
ready realized, the relation of the S-function to the g-function is in some sense
analogous to the relation between the non-tangential and the perpendicular ap-
proaches; we should add that the S-function is of decisive significance in its
own right, but we shall not pursue that matter now.

(c) Finally, the widest scope is obtained by allowing the variable point (¢, )
to approach (z,0) in an arbitrary manner, i.e., the unrestricted approach. The
function g} has the analogous role: it takes into account the unrestricted ap-
proach for Poisson integrals.

Notice that g (z) depends on A. For each z, the smaller A the greater g5 (x),
and this behavior is such that that L” boundedness of gy depends critically
on the correct relation between p and A. This last point is probably the main
interest in ¢}, and is what makes its study more difficult than g or .S.

After these various heuristic and imprecise indications, let us return to firm
ground. The only thing for us to prove here is the assertion (6.19).

Proof of Proposition 6.10. The inequality S(f)(z) < Cig;(f)(z) is obvious,
since the integral (6.17) majorizes that part of the integral taken only over [,

and
An
(L 5 L
tl+y 22

since |t| < y there. The non-trivial part of the assertion is:

9(f)(z) < CS(f)(x).
It suffices to prove this inequality for z = 0. Let
us denote by B, the ball in R’;"" centered at (0, y)
and tangent to the boundary of the cone [’; the ra-
dius of B, is then proportional to y. Now the partial

Fig. 6.2 I"and B,
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derivatives g—z and a% are, like u, harmonic func-

tions. Thus, by the mean value theorem of harmonic
functions (i.e., Theorem 4.5 by noticing (0, y) is the
center of B,),

0 1
09) L[ i),
Jy m(By) Jp, 0Os
where m(B,) is the n + 1 dimensional measure of B,, i.e., m(B,) = cy"™

for an appropriate constant c. By Schwarz’s inequality

Au(0,y) |? 1 / du(z, s)|? /
< — | dxds dxds
Ay (m(By))* Jp,| Os B,
1 u(z, s)|”
_m(By) /By 95 dxds.

If we integrate this inequality, we obtain

00 2 0o
/ y ou(0,y) dy </ lyn (/ ou(z, s)
0 0 By

2
dads | dy.
By Bs “)y

However, (z,s) € B, clearly implies that ¢;s < y < cas, for two positive
constants ¢; and c,. Thus, apart from a multiplicative factor by changing the

order of the double integrals, the last integral is majorized by
2

0 ’ 0
/ (/ y"dy) M dxds < c’/ M 1" dxds.
r c1s 88 r aS
This is another way of saying that,
= ou(0,y)|? 5, 2
/ y U( 7:(/) dy g C/// u(:r:, y) ‘ yl_ndiﬂdy
0 dy r dy
The same is true for the derivatives %, j =1,...,n, and adding the corre-
J

sponding estimates proves our assertion. |

We are now in a position to state the L estimates concerning g;.

Theorem 6.11. Let A > 1 be a parameter. Suppose f € LP(R"). Then
(a) For every x € R”, g(f)(z) < Chgi(f)(2).
b)If1 <p<oo,andp > 2/, then

lgA(Pp < ApallF - (6.20)

Proof. The part (a) has already been proved in Proposition 6.10. Now, we prove
(b).

For the case p > 2, only the assumption A > 1 is relevant since 2/\ < 2 <

.
Let ¢ denote a positive function on R", we claim that

| @@ <a [ en@promeds. 62
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The 1.h.s. of (6.21) equals
Y(z) A, —
y|Vul(t,y)| [/ y "y dx | dtdy,
L e (L= 2] + )

so to prove (6.21), we must show that

o [ e A, 62)

However, we know by Theorem 4.10, that
Sulg(¢ * o) (t) < AM(t)
e>

—n

for appropriate o, with ¢.(x) = e "p(z/ec). Here, we have in fact p(z) =
(1 + |z])=*, ¢ = y, and so with A > 1 the hypotheses of that theorem are
satisfied. This proves (6.22) and thus also (6.21).

The case p = 2 follows immediately from (6.21) by inserting in this in-
equality the function ¢» = 1 (or by the definitions of g5(f) and g(f) directly),
and using the L? result for g.

Suppose now p > 2; letus set 1/q+ 2/p = 1, and take the supremum of the
Lh.s. of (6.21) over all ¢ > 0, such that ¢» € L?(R") and ||¢||, < 1. Then, it
gives || g3 (f) 12); Holder’s inequality yields an estimate for the right side:

Allg(OIGIM .

However, by the inequalities for the g-function, ||g(f)|l, < A f][,; and by
the theorem of the maximal function || Mv||, < A,||¥|l, < A7, since qg>1,if
p < oo. If we substitute these in the above, we get the result:

g (D lp < Apall fllps 2 <p <00, A>T,

The inequalities for p < 2 will be proved by an adaptation of the reasoning
used for g. Lemmas 6.5 and 6.6 will be equally applicable in the present situa-
tion, but we need more general version of Lemma 6.7, in order to majorize the
unrestricted approach to the boundary of a Poisson integral.

It is at this stage where results which depend critically on the L? class first
make their appearance. Matters will depend on a variant of the maximal func-
tion which we define as follows. Let p > 1, and write M, f(z) for

1 iy 1/p
M, f(z) = <r>10)m/3(x,r) ()l y) : (6.23)
Then M, f(z) = M f(x), and M, f(z) = ((M|f|*)(z))"/*. From the theorem

of the maximal function, it immediately follows that, for p > p,
" 1
M, fllp = LY @)l = LY @D < I = 1l
(6.24)

This inequality fails for p < p, as in the special case p = 1.
The substitute for Lemma 6.7 is as follows.
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Lemma 6.12. Let f € LP(R"), p > p > 1; if u(z,y) is the Poisson integral

of f, then
lu(z —t,y)| < A (1 + %) M f(z), (6.25)
and more generally
n/p
t
e~ ol < A, (14 2) s . (626)

We shall now complete the proof of the inequality (6.20) for the case 1 <
p < 2, with the restriction p > 2/\.

Let us observe that we can always find a © € [1,p) such that if we set
N =)\— %, then one still has \' > 1. In fact, if 4 = p, then A\ — % > 1
since A > 2/p; this inequality can then be maintained by a small variation of
. With this choice of 1, we have by Lemma 6.12

n/p
)
u(x —t, —_— <A M, f(z). 6.27
o=t (525) < A @) 627)
We now proceed the argument with which we treated the function g.

(gr(f)(2))?
An
__ /R Ly (L) WP (z — t,y) | AuP (z — t,y)|dtdy

p(p—1) y+ [t
1 2—p 2—p 1%
<o A M @) @), (629)
where

Nn
I"(z) = / y't " ( i ) AuP(x —t,y)dtdy.
R y + [¢]

It is clear that

Nn
I (x)dx —/ / ( ) AuP(t, y)dxdtdy
/]R” rn+ JRe y+[t— 1zl )

n+1
+

The last step follows from the fact that if A" > 1

y Nn y Nn
y"/ (—) dx:y"/( > dx
ge \Y + |t — 2| re \ Y + ||
B 1 Nn
= ()
re \ 1+ 2|

=Cy < 0.

So, by Lemma 6.6
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n R?’L
Therefore, by (6.28), Holder’s inequality, (6.24) and (6.29),
lg5()llp < CIMf ()21 @)1, < CIMF I 1Y < Cllf -
That is the desired result. ]
Finally, we prove Lemma 6.12.

Proof of Lemma 6.12. One notices that (6.25) is unchanged by the dilation
(x,t,y) — (6,6t dy), it is then clear that it suffices to prove (6.25) with
y=1.

Setting y = 1 in the Poisson kernel, we have P;(z) = ¢,(1 + |z|?)~
and u(z — t,1) = f(z) * Pi(x — t), for each ¢. Theorem 4.10 shows that
lu(z —¢,1)] < AMf(x), where 4, = [ Q;(x)dz, and Q,(x) is the smallest
decreasing radial majorant of P (z — t), i.e

(n+1) /2

1
U= 2 T - e

For Q;(x), we have the easy estimates, Qi(x ) Cn for |a:| 2t and Q4(x) <
A1+ |2]?)~ D2 for |z| > <A1+
|t])" and hence (6. 25) is proved

Since u(x — t,y) = [ Py(s)f(x —t — s)ds, and [, P,(s)ds = 1, by
Holder inequality, we have

u(z —t,y) <IBy " flul Byl

1/p
<([ nelse—c-apis) - e,
R”
where U is the Poisson integral of | f|*. Apply (6.25) to U, it gives
[u(a —t,y)| SAYEL+ [t /y) (M| f1) ()"

—Au(l + ]t‘/y)”/“]\/[uf(x)’
and the Lemma is established. [ ]

6.2 Fourier multipliers on L?

In this section, we introduce briefly the Fourier multipliers on LP, and we
prove two (or three) main multiplier theorems.

In the study of PDEs, we often investigate the estimates of semigroups. For
example, we consider the linear heat equation

w— Au =0, u(0) = up.

It is clear that u = .F e "“¢” Zuy =: H(t)uo is the solution of the above
heat equation. The natural question is: Is H (¢) a bounded semigroup from L?
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to LP? In other word, is the following inequality true?

|7 e ||, < [luolly,  for 1 < p < oo
Of course, we have known that this estimate is true. From this example, we
can give a general concept.

Definition 6.13. Let p € .7’ p is called a Fourier multiplier on L? if the
convolution (. 1p) x f € L? forall f € ., and if
1ollas, = Sup 17~ 0) * £l

is finite. The linear space of all such p is denoted by M,,.

Since . is dense in L? (1 < p < o0), the mapping from . to L”: f —
(Z~1p) x f can be extended to a mapping from L” to L with the same norm.
We write (% ~1p) x f also for the values of the extended mapping.

For p = oo (as well as for p = 2) we can characterize M,,. Considering the
map:

f—=(Fp)xf forfe.?,

we have
peMee|F px fO)]<CO|flle, fe (6.30)
Indeed, if p € M, we have
T % flloo
F % £(0)] < %wum < Ollf o

On the other hand, if |.Z ~!p * f(0)] < C||f|ls» We can get
17 p# fllow = sup |7 p+ f(x)| = sup [[(F"p)  (f(z +-))](0)]

TER™ r€eR™

<SC[f (& +)llse = Clif lloos
which yields ||p|/a, < C,ie., p € M.

But (6.30) also means that .% ~!p is a bounded measure on R”. Thus M is
equal to the space of all Fourier transforms of bounded measures. Moreover,
| pllaz., is equal to the total mass of .% ~!p. In view of the inequality above and
the Hahn-Banach theorem, we may extend the mapping f — .# ~'p * f from
< to L™ to a mapping from L>° to L*° without increasing its norm. We also
write the extended mapping as f — .% “1px f for f € L*.

Theorem 6.14. Let 1 < p < ooand 1/p+ 1/p = 1, then we have

M, = M, (equal norms). (6.31)
Moreover,
My ={pe .+ F'pisabounded measure}
B . (6.32)
|\ pllar, =total mass of F " p = | F " p(x)|dx
RTL

and
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My = L* (equal norm). (6.33)
For the norms (1 < pg, p1 < 00)
ol < llpllag ol Vo € My, 0 My, (6.34)

if1/p = (1 —60)/po+ 0/p1 (0 < 0 < 1). In particular, the norm || - || p»
decreases with p in the interval 1 < p < 2, and

My CM,CM,C M, (1<p<qg<2). (6.35)
Proof Let f € L, g € L* and p € M,. Then, we have
Ipllar, = sup [(Fp) xglly = sup  [((F7'p) x g(x), f(—2))]
llgllr=1 £ llp=llgll, =1
= sup  [(FTp)xgx f(0)= sup  |(F'p)x fxg(0)]
lflo=llgllr =1 £ llp=llgll, =1
= s [ [ (T Nw-v)d
I £llp=llgll, =1 n
= sup [[(Z ') * fllp = llpllas,-

|
I £llp=1
The assertion (6.32) has already been established because of M; = M.
The Plancherel theorem immediately gives (6.33). In fact,

n/2

_ w o

Iplla, = sup [|(F'p) * flla = sup ] lofll2 < llplloo-
Ifll2=1 Ifllo=1 \ 27

On the other hand, for any € > 0, we can choose a non-zero measurable set £/
such that [p(€)| = ||pllec — € for & € E. Then choose a function f € L? such
that supp.Z f C E, we can obtain ||p||rs, = [|p|lcc — &-

Invoking the Riesz-Thorin theorem, (6.34) follows, since the mapping f —
(.F'p) x f maps LP — L with norm [|p||5,, and LP* — L' with norm
I35,

Since 1/q¢ = (1 — 0)/p + 6/p' for some § and p < ¢ < 2 < p/, by using
(6.34) with pg = p, p1 = p/, we see that

lpllaz, < NIpllas,,
from which (6.35) follows. [

Proposition 6.15. Let 1 < p < oo. Then M, is a Banach algebra under
pointwise multiplication.

Proof. It is clear that || - |5, is a norm. Note also that M, is complete. Indeed,
let {py} is a Cauchy sequence in M,. So does it in L*> because of M, C L™.
Thus, it is convergent in L and we denote the limit by p. From L>* C .,
we have F p.Ff — F1pFf for any f € .7 in sense of the strong
topology on .#’. On the other hand, {.% ~'p,.Z f} is also a Cauchy sequence
in LP C ./, and converges to a function g € LP. By the uniqueness of limit
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in ./, we know that g = Z 'p.Z f. Thus, ||px — plls, — 0as k — oo.
Therefore, M), is a Banach space.
Let p; € M, and py € M,. For any f € ., we have

I(F " p1p2) * fllp =I(F " o1) % (F 7 p2) * fllp < lloallag, I(F " p2)  fll,
<llpillag o2l 2, 1 f 1155
which implies p;p2 € M, and
lp1p2llaz, < llprllag, o2l as, -
Thus, M,, is a Banach algebra. n

In order to clarify the next theorem we write M, = M,(R") for Fourier
multipliers which are functions on R™. The next theorem says that M,(R") is
isometrically invariant under affine transforms of R".

Theorem 6.16. Let a : R® — R™ be a surjective affine transform' with
n = m, and p € M,(R™). Then
lo(@()) gy @y = [0l g, @em)-
If m = n, the mapping a* is bijective. In particular, we have
lo(e) g, @ =lp()ag, @), Ve #0, (6.36)
(@, ) [z, @y =p(C) gy, Ve 70, (6.37)
where (x,&) =Y 1, 2.
Proof. It suffices to consider the case that ¢ : R” — R™ is a linear transform.
Make the coordinate transform
m=a(§), 1<i<m; oy =§, m+1<j<n, (6.38)
which can be written as 7 = A~1€ or € = An where det A # 0. Let A" be the
transposed matrix of A. It is easy to see, for any f € .(R"), that

vl

7o) 10 = () [ eptanine

| det A ('—) N e F Ay

w .
=| det A (2—> e A Moy, ) f(An)dn

=|det A[(F~ pm,---ﬂ?m) [(An))(ATz)
=[Z (- n) (FFIAT)TH) ()] (AT2).
It follows from p € M,(R™) that for any f € . (R")
17~ pla(€ ))fpr
=|det A["VPF " plr, -+ na) (FFAT)T) ()]l

1 An affine transform of R™ is a map F : R™ — R" of the form F(p) = Ap + q forall p € R™,
where A is a linear transform of R™ and q € R™.




6.2. Fourier multipliers on L? -149-

=| det A\_l/p || (32',7_11 ,nmp(nh T 777m)) * Hf((AT)—l')HLP(R”—’"')HLI»(Rm)

<llpllaz, @)l £1lp-
Thus, we have

[o(al ) I agmny < [l ag, @em)- (6.39)
Taking f((AT)™') = filzy, -, 2m)fo(Tmy1, - ,2,), one can conclude
that the inverse inequality (6.39) also holds. |

Now we give a simple but very useful theorem for Fourier multipliers.

Theorem 6.17 (Bernstein multiplier theorem). Assume that k > n/2 is an
integer, and that 0, p € L*R™),j=1,--- ,nand 0 < a < k. Then we have
p e M,(R"), 1< p< oo, and

n n/2k
Ipllas, < llolls ™ 108 plla |
J
j=1

Proof. Lett > O and J(z) = 37, |z;|*. By the Cauchy-Schwartz inequality
and the Plancherel theorem, we obtain

/|ﬁ%mm=/ J@) ™ T (@) 7 pla)lde S 7Y% pll
|z|>t |z[>t j=1
Similarly, we have
/| (7 pla)|da S 2 |p]l-
z|<t

Choosing t such that ||p|ls = t7* > i1 H8§j pll2, we infer, with the help of
Theorem 6.14, that

n n/2k
_ 1-n/2k
II/)IIM,J<HPHMl=/]R \F p(@)ldz S Jlolls™ <§ ||3§jp||2> :

This completes the proof. |

The first application of the theory of the functions ¢g and gy will be in the
study of multipliers. Our main tool when proving theorems for the Sobolev
and Besov spaces, defined in the following chapters, is the following theorem.
Note that 1 < p < oo here in contrast to the case in Theorem 6.17. We give
the theorem as follows.

Theorem 6.18 (Mihlin multiplier theorem). Suppose that p(¢) € C*(R™\
{0}) where k > n/2 is an integer. Assume also that for every differential
monomial (%)a, a=(ag,ay, ..., ap), with | = a1 +ay + ... + ay,, we have
Mihlin’s condition

‘ (%)Qp(f)‘ < Alg|7!, whenever |a| < k. (6.40)
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Then p € M,, 1 < p < oo, and
ollar, < CprA.

The proof of the theorem leads to a generalization of its statement which we
formulate as a corollary.

Corollary 6.19 (Hormander multiplier theorem). The assumption (6.40)
can be replaced by the weaker assumptions, i.e., Hormander’s condition

p(§)] <A,

(a%)ap(f) 2

The theorem and its corollary will be consequences of the following lemma.
Its statement illuminates at the same time the nature of the multiplier trans-
forms considered here, and the role played by the g-functions and their vari-
ants.

6.41
sup R2|a|fn / ( )
0<R<oo R<|€|<2R

d§¢ <A, |a| <k

Lemma 6.20. Under the assumptions of Theorem 6.18 or Corollary 6.19, let
us set for f € L*(R™)
F(z) =T,f(z) = (F(p(&)) * f)(2).
Then
g1(F)(z) < Axgx(f)(z), where A = 2k/n. (6.42)

Thus in view of the lemma, the g-functions and their variants are the char-
acterizing expressions which deal at once with all the multipliers considered.
On the other hand, the fact that the relation (6.42) is pointwise shows that to a
large extent the mapping 7, is “semi-local”.

Proof of Theorem 6.18 and Corollary 6.19. The conclusion is deduced from
the lemma as follows. Our assumption on k is such that A = 2k/n > 1. Thus,
Theorem 6.11 shows us that

lgx(N) @)y < Axpllfllp, 2 <p<oo, if fe L*NLP.
However, by Corollary 6.3, A | F|[, < [[gi1(F)(x)|, therefore by Lemma
6.20,

7ol = 1F1l, < AMIGA (P (@)l < Apll fllp,  if2<p<ooand f e L*NLP.

Thatis, p € M,, 2 < p < co. By duality, i.e., (6.31) of Theorem 6.14, we have

also p € M,, 1 < p < 2, which gives the assertion of the theorem. |
Now we shall prove Lemma 6.20.

Proof of Lemma 6.20. Let u(z,y) denote the Poisson integral of f, and U (z, y)
the Poisson integral of F'. Then with”denoting the Fourier transform w.r.t. the
x variable, we have

W€, y) = e W f(€), and U(E,y) = e “WE(€) = e p(e) f(€).
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Define M(x,y) = (I“") Jgn €S8 p(€)dE. Then clearly M(,y) =
e 1€l p(€), and so
Uy +y2) = M(Ey)u&y2), y=vi+y, y1,% >0.

This can be written as

Uz, y1 + 1) = M(t, y1)u(z — t,y2)dl.
]Rn
We differentiate this relation £ times w.r.t. y; and once w.r.t. yo, and set y; =

y2 = y/2. This gives us the identity
U (,y) = [ MP(t,y/2)u (z —t,y/2)dt. (6.43)
Rn
Here the superscripts denote the differentiation w.r.t. y.
Next, we translates the assumptions (6.40) (or (6.41)) on p in terms of
M (z,y). The result is

|M®)(t,y)| <Ay, (6.44)
/ 220 (1, )2t <Ay~ (6.45)

In fact, by the definition of M and the condition |p(§)| < A, it follows that

Ml < () lolt [ e

i ()t [ s
0

which is (6.44).
To prove (6.45), let us show more particularly that

|a* M® (2, y)Pdz < Ay,
R"
By Plancherel’s theorem

n/2 9\°
Hx‘“M““)(:r,wIIz:(%) |w|* (a_g) (|€]F p(€)e™+8l)

So we need to evaluate, by using Leibniz’ rule,

(a) (el p©)e ) = 3 ¢y, (ag) ePole) (aag)ve‘wg'y.

where |a| = k.

(6.46)

2

B+v=«a
(6.47)
Case I: (6.40) = (6.45). By the hypothesis (6.40) and Leibniz’ rule again,
we have
AN PSTI LT
() (elfoten| < A1, witn| ) < k.

Thus,
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8 (0%
(5%) tetatreeo)
<C Z |§|k—|ﬂ\ylvle—\w€\y <C Z |§|ryre—\w§|y_

1Bl+1v1=k o<r<k
Since forr > 0

y2r / ’6‘2r672|w§|yd€ :Cy2r / R2T€72\w\Ran71dR
Rn 0

=Cy™" /OO ZPem AWl n=lg, L Oy,
we get ’
lz*MB (2, )3 < Ay, lal =k,
which proves the assertion (6.45).

Case II: (6.41) —> (6.45). From (6.46) and (6.47), we have, by Leibniz’
rule again and (6.41),

|2 M ® ()|

a 8 2 8 8" 2 1/2
<o > ([ 1(5) 1] |(5) et] e
B/1+18" 1=k \7F
8" 2 1/2
) 0
<C Sph / g[2—13) (_> o(&)] ety g
6'|+|/3Z'|j+|v| ; Pyl *y %
<C Z 23(23'-5-1y)1<:—|5’\yl“/le—IwIij2
18'1418" 1+|v|=k JEZ
1/2

dg

” 2

o B
<8_£> p(€)

<A S SN — A S S e
Iv|<k JEZ 0<r<k j€Z
gcyfn/Q,
which yields (6.45).

Now, we return to the identity (6.43), and for each y divide the range of
integration into two parts, |t| < y/2 and |¢| > y/2. In the first range, use the
estimate (6.44) on M (¥) and in the second range, use the estimate (6.45). This
together with Schwarz’ inequality gives immediately

UE P <oy [ e - /)P
[tI<y/2

copn [ W tat
It|>y/2 ]2

.(2jy)f\ﬁ”|+n/2 <2jy)2lﬁ”n/

27y<[€]<2ty
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=11 (y) + La(y).

Now
o0 2 00
(grs1(F)(2))? :/ UED (2, )2y 2 dy < Z/ Ly dy.
0 —~ J

However, by a change of variable y/2 — v,

/ L™y <C/ / [t (@ — t,y/2)]y ™" dtdy
’ 0 i<y

< / Vule — t, )Py dtdy = C(S(f) ()’

<Cr(gr(f)(2))*.
Similarly, with n\ = 2k,

/ L(y)y*+dy <C/ /| y TR V(e — ¢, y) | Pdidy
0 0 t|>y

<C(g3(f)(x))*.
This shows that g1 (F')(z) < Cygi(f)(x). However by Remark 6.4 (iii) of g-
functions after Corollary 6.3, we know that g, (F')(z) < Crgg+1(F)(z). Thus,
the proof of the lemma is concluded. |

6.3 The partial sums operators

We shall now develop the second main tool in the Littlewood-Paley theory,
(the first being the usage of the functions g and g*).

Let p denote an arbitrary rectangle in R". By rectangle we shall mean, in
the rest of this chapter, a possibly infinite rectangle with sides parallel to the
axes, 1.e., the Cartesian product of n intervals.

Definition 6.21. For each rectangle p denote by S, the partial sum opera-
tor, that is the multiplier operator with m = x, = characteristic function
of the rectangle p. So

F(S,()=xpf, | e LR)NLIR"). (6.48)
For this operator, we immediately have the following theorem.
Theorem 6.22.

1S,(Alp < Apllfllp, [ e LPN L7,
if 1 < p < oo. The constant A,, does not depend on the rectangle p.
However, we shall need a more extended version of the theorem which

arises when we replace complex-valued functions by functions taking their
value in a Hilbert space.
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Let 7 be the sequence Hilbert space,
A = {(cj)72 1-2’%’ 1/2 |c| < oo}

Then we can represent a function f € LP(R"™, .7), as sequences

f($) = <f1<x)7 T afj(x)> T )7
where each f; is complex-valued and |f(z)| = (332, | f;(x)[*)"/%. Let R be
a sequence of rectangle, & = { ,0]} . Then we can define the operator Sy,
mapping L2(R", ) to itself, by the rule

S%(f) ( p1<f1> ’ 7Spj(fj)7"')7 wheref:(f1,~-- 7fj7"')' (6-49)
We first give a lemma, which will be used in the proof of the theorem or its

generalization. Recall the Hilbert transform f — H (f), which corresponds to
the multiplier —i sgn (w) sgn (§) in one dimension.

Lemma 6.23. Let f(z) = (fi(x), -, f;(x),---) € L*R"2) N
LP(R", ). Denote H f(z) = (H fi(x),--- ,Hf;j(x),---). Then

IHfll, < Apll fllp, 1<p< oo,
where A, is the same constant as in the scalar case, i.e., when € is one-
dimensional.

Proof. We use the vector-valued version of the Hilbert transform, as is de-
scribed more generally in Sec. 4.7. Let the Hilbert spaces .7# and .77 be both
identical with JZ. Take in R, K (z) = I - 1/mx, where [ is the identity map-
ping on 7. Then the kernel K (z) satisfies all the assumptions of Theorem
4.27 and Theorem 4.24. Moreover,

lim K(y)f(x—y)dy = H[(x),

=70 Jly1e
and so our lemma is proved. |

The generalization of Theorem 6.22 is then as follows.

Theorem 6.24. Let f € L*(R", 5¢) N LP(R™, ). Then
159Nl < Apll fllps 1 <p < o0, (6.50)
where A, does not depend on the family R of rectangles.

Proof. The theorem will be proved in four steps, the first two of which already
contain the essence of the matter.
Step 1: n = 1, and the rectangles py, ps, - -+, pj, - - - are the semi-infinite
intervals (—o0, 0).
Itis clear that S(_ oo 0)f = F "X (o) F [ = F 115 Sgn Z f,s0
I —isgn(w)H
9 )

(6.51)

S(—00,0) =
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where [ is the identity, and S(_. ) is the partial sum operator corresponding
to the interval (—o0, 0).

Now if all the rectangles are the intervals (—oo, 0), then by (6.51),
Sy — I— isg2n (w)H
and so by Lemma 6.23, we have the desired result.

Step 2: n = 1, and the rectangles are the intervals (—o0, a;), (—00, as), « - -,
(~00,0;), . -

Notice that .7 (f(z)e ") = f(£ + a), therefore

F(H(e™"" f(x))) = —isgn (w) sgn (§) f(§ +

and hence .7 (e“*“H (e~“™ f(x))) = —isgn (w)sgn (£ —a
we see that

b

a
)£ (£). From this,

Ji = isan ()¢ H{e== f)

(S(=o0ay) fi) () = 5 . (6.52)

If we now write symbolically e=**¢ f for

(efwix-al f17 . 767wiz-aj fj7 . )
with f = (f1,---, fj,-- ), then (6.52) may be written as
f _ ngH w ewi:c'af{/ e—wia:~af
. (e ey
and so the result again follows in this case by Lemma 6.23.

Step 3: General n, but the rectangles p; are the half-spaces =1 < ay, i.e.,
p; ={x 2 <a;}.

Let S ((i)oo,aj) denote the operator defined on L?*(R"), which acts only on the
1 variable, by the action given by S (—o00,a;)- We claim that

S5y = S hasayy (6.54)
This identity is obvious for L? functions of the product form

f,(l'l)f”(lé, e >$n)>
since their linear span is dense in L?, the identity (6.54) is established.

We now use the LP inequality, which is the result of the previous step for
each fixed x5, 73, - - -, ¥,,. We raise this inequality to the p™ power and integrate
w.r.t. Zo, - - -, T,,. This gives the desired result for the present case. Notice that
the result holds as well if the half-space {z : z; < a;}32,, is replaced by the
half-space {z : x1 > a;}32,, or if the role of the x; axis is taken by the z
axis, etc.

Step 4: Observe that every general finite rectangle of the type considered is
the intersection of 2n half-spaces, each half-space having its boundary hyper-
plane perpendicular to one of the axes of R". Thus a 2n-fold application of the
result of the third step proves the theorem, where the family & is made up of
finite rectangles. Since the bounds obtained do not depend on the family R, we

(6.53)
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can pass to the general case where &t contains possibly infinite rectangles by
an obvious limiting argument. |

We state here the continuous analogue of Theorem 6.24. Let (I, dv) be a o-
finite measure space,? and consider the Hilbert space J# of square integrable
functions on I', i.e., 7 = L*(I',dv). The elements

f e LP(R", 2)
are the complex-valued functions f(z,7) = f,(x) on R" x I, which are jointly
measuable, and for which ( [, ([, |f(z,7)[?dy)P/?dx)'/? = || f||, < o0, if p <
oo. Let ® = {p, },er, and suppose that the mapping v — p, is a measurable
function from [ to rectangles; that is, the numerical-valued functions which

assign to each v the components of the vertices of p., are all measurable.
Suppose f € L*(R", 57). Then we define F' = Sy f by the rule

F(z,y) =S, (@), (fi(x) = flz,7))
Theorem 6.25.
[Sefllp < Apllfllp, 1 <p<oo, (6.55)

for f € L*(R™, )N LP(R", 7), where the bound A, does not depend on the
measure space (I, d), or on the function v — p..

Proof. The proof of this theorem is an exact repetition of the argument given
for Theorem 6.24. The reader may also obtain it from Theorem 6.24 by a
limiting argument. |

6.4 The dyadic decomposition

We shall now consider a decomposition of R" into rectangles.

First, in the case of R, we decompose it as the union of the “disjoint” in-
tervals (i.e., whose interiors are disjoint) [2%,2¥*1], —co < k < oo, and
[—2FF1 —2F] —00 < k < oo. This double collection of intervals, one col-
lection for the positive half-line, the other for the negative half-line, will be the
dyadic decomposition of R.3

Having obtained this decomposition of R, we take the corresponding prod-
uct decomposition for R". Thus we write R" as the union of “disjoint” rectan-
gles, which rectangles are products of the intervals which occur for the dyadic
decomposition of each of the axes. This is the dyadic decomposition of R".

2 If 1 is measure on a ring R, a set E is said to have o-finite measure if there exists a sequence {Ey, }
of sets in R such that E C U5 Ey, and u(Eyn) < oo, n = 1,2,--- . If the measure of every set
E in R is o-finite, the measure p is called o-finite on R.

3 Strictly speaking, the origin is left out; but for the sake of simplicity of terminology, we still refer to

it as the decomposition of R.
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The family of resulting rectangles will be
denoted by A. We recall the partial sum op-
erator S,, defined in (6.48) for each rectan-
gle. Now in an obvious sense, (e.g. L? con-
vergence) e g gy

Z S, = Identity.
peEA

Also in the L? case, the different blocks,
S,f, p € A, behave as if they were indepen-
dent; they are of course mutually orthogonal.
To put the matter precisely: The L? norm of f
can be given exactly in terms of the L? norms of S, f, i.e.,

> IS f1I5 = 113, (6.56)

pEA
(and this is true for any decomposition of R"™). For the general L” case not as
much can be hoped for, but the following important theorem can nevertheless
be established.

Tr—t—=——1"
t
[
[
\
\
f

g —FHrH—F—=——=

Fig. 6.3 The dyadic decomposition

Theorem 6.26 (Littlewood-Paley square function theorem). Suppose f €
LP(R™), 1 < p < oc. Then
IO IS0 f @)Yy ~ L
pEA

The Rademacher functions provide a very
useful device in the study of L” norms in terms ri(t)
of quadratic expressions. DR T. -

These functions, ro(t), 71 (t), - - -, rm(t), - - - L

are defined on the interval (0, 1) as follows: ‘I 2 1 t
) { 1, 0<t<1/2, o= — e ro(t)
T —=
’ -1, 1/2 <t <1, Fig. 6.4 7o(t) and r1 (t)

ro 1s extended outside the unit interval by pe-

riodicity, i.e., ro(t + 1) = ro(¢). In general, r,,,(t) = ro(2™t). The sequences
of Rademacher functions are orthonormal (and in fact mutually independent)
over [0, 1]. In fact, for m < k, the integral

/0 1rm(t) R(t)dt = / 1r0(2mt)7~0(2’f tydt =27 /0 " ro(8)ro(25™s)ds

1 1
—/ ro(s)ro(28™s / o( 2™ ds—/ (2" s)ds
0 0 1/2
2k m—1 2k m
o[
0 k—m—1
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=271 Uolro(t)dt— /Olro(t)dt] =0,

so, they are orthogonal. It is clear that they are normal since fol (1 (t))2dt = 1.
For our purposes, their importance arises from the following fact.
Suppose > |am|* < oo and set F(t) =~ amry(t). Then for every
1 <p<oo, F(t) € L?[0,1] and

ANl < IFN = (3 anP)2 < By|F ], (657)
m=0
for two positive constants A, and B,,.

Thus, for functions which can be expanded in terms of the Rademacher
functions, all the L” norms, 1 < p < oo, are comparable.

We shall also need the n-dimensional form of (6.57). We consider the
unit cube @ C R", Q = {t = (t1,t2,---,t,) : 0 < t; < 1}. Let
m be an n-tuple of non-negative integers m = (my, ma, - ,m,). Define
Tm(t) = Ty (81) Ty (B2) =+ - T, (). Write F/(t) = > @ (t). With

171, = ( / PP "

we also have (6.57), whenever Y _ |a,,|? < oc. That is

Lemma 6.27. Suppose Y |a,,|* < oo. Then it holds

o 1/2
1Fllp ~ [1F]l2 = (Z !am\2> . l<p<o. (6.58)
m=0

Proof. We split the proof into four steps.

Step 1: Let u, ag, ay, ---, ay, be real numbers. Then because the
Rademacher functions are mutually independent variables, we have, in view
of their definition,

1 1 2m 1
/ e,uamrm(t)dt _ / euamr0(2mt)dt —9—m / eyamro(s) ds = / e,uamm(s)ds
0 0 0 0

=271 (e!¥m + e7Hm) = cosh pa,.

and form < k
1 1
/ e,uamrm(t)euakrk(t) dt = / euamro(zmt) e,uak.To(zkt)dt
0 0

2m 1
—9—m / euamro(s)euakm@k"”S) ds = / euamro(s) euakro(Qk’ms) ds
0 0

1/2 1
k—m _ k—m
:/ euameuawo@ S)d8+/ e Mameﬂakﬂ’()(Q S)ds
0 1

/2
:2m—k /
0

ok—m—1 9k—m

eham pharro(t) gp + /

2k—m—1

e~ Ham pHakTo (t) dt]



6.4. The dyadic decomposition -159-

1 1 1
=271 (ekm 4 gmHam) / ehantol) gt — / ehamrm(t) gt / eranmE(®) gt
0 0 0
Thus, by induction, we can verify

' PO (t) [ (t)
€H m=0 @mTm/(t dt — / euamrm t dt.
/ 1y

If we now make use of this simple inequality cosh z < e (since coshz =
Yoo f’%, <D ”Eki,k — ¢*” for || < co by Taylor expansion), we obtain

1 N N
N
/ eﬂF(t)dt — H cosh U, < €N2a$n — 6“2 > m=0 azn’

with F(t) = SN aprm ().

Step 2: Let us make the normalizing assumption that Zﬁ;o a?, = 1. Then,
since eMFl < erF + ¢=HF we have

1
/ SHFOlgp < 200"
0

Recall the distribution function F,(«) = m{t € [0,1] : |F(t)| > a}. If we

take ;1 = «/2 in the above inequality, we have
2 2 2

ﬂ2 (e} (e
F.(a)= / dt < 62/ ez FOlgt < e~ 52022 < 2T,
|F(¢)|>a |F(t)| >

From Theorem 2.16, the above and the formula [;° abedr = I((b +
1)/2)/2vab*1, it follows immediately that

oo 1/p
7= (b [~ 0 Faa)
0

00 o2 1/p
< (20 [Tt Taa) = 2r o),
0

for 1 < p < o0, and so in general
o0

1/2
1F ], < Ap <Z !am!2> , 1< p< oo (6.59)

m=0

Step 3: We shall now extend the last inequality to several variables. The case
of two variables is entirely of the inductive procedure used in the proof of the
general case.

We can also limit ourselves to the situation when p > 2, since for the
case p < 2 the desired inequality is a simple consequence of Holder’s in-
equality. (Indeed, for p < 2 and some ¢ > 2, we have |[F|r01) <
1 E N za0,0) 1Ll avsa—21(0,1) < 1 F'l|29(0,1) by HOlder’s inequality.)

We have
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t17t2 Z Z AmymoT'ma tl T'moy t2 Z le t2 T'mq tl)

m1=0m2=0 m1=0

By(6.59), it follows

) p/2
/o |F(t1,t2)[Pdty < A (Z |Fm1(t2)|2> :

Integrating this w.r.t. ¢, and using Minkowski’s inequlaity with p/2 > 1
we have

1 p/2 p/2
/ (Z\le(taﬂg) dts =‘Z|le(tz)|2 < <Z|HFm1(t2)|2|!p/z)
0 mi mi p/2 mi
p/2
= znmmwmﬁ :

However, F},, (t2) = )., Gmym,Tm,(t2), and therefore the case already
proved shows that

p/2

||Fm1 t2 A2Z m1m2

Inserting this in the above gives

e p/2
/ / ’F(tl’tQ)‘pdtldtQ < Ag ( a/?n1m2> )
0 Jo z : E

m1 m2

which leads to the desired inequality
1Pl < Al Fl, 2<p < oo
Step 4: The converse inequality
1Ell2 < Bpll F'llp, p>1

is a simple consequence of the direct inequality.
In fact, for any p > 1, (here we may assume p < 2) by Holder inequality

1/2
|Fll: < IFIIE]
We already know that || F||,; < A ||F[[2, p" > 2. We therefore get
1Fl2 < (A1,
which is the required converse inequality. |

Now, let us return to the proof of the Littlewood-Paley square function the-
orem.

Proof of Theorem 6.26. It will be presented in five steps.
Step 1: We show here that it suffices to prove the inequality

‘ (S Is.s@e)”

peEA

<A\ fllp, 1<p< oo, (6.60)

p
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for f € L?>(R™) N LP(R™). To see this sufficiency, let g € L*(R™) N L¥'(R"),
and consider the identity

> / SofSpgdz = | fgdx
n Rn

pEA
which follows from (6.56) by polarization. By Schwarz’s inequality and then
Holder’s inequality

| gtz

1
2

<[ (2 |spf12) <Z ispgﬁ) da

< (Z |Spf2>% (Z |Spg|2>

Taking the supremum over all such g with the additional restriction that
lglly < 1, gives || f||, for the Lh.s. of the above inequality. The r.h.s. is ma-

jorized by
1/2
(> 1s0ri) |
p

since we assume (6.60) for all p. Thus, we have also

1/2
Byl fllp < (Z ISpf!2> : (6.61)

p
To dispose of the additional assumption that f € L?, for f € L” take f; €

L* N L such that || f; — f||, — 0; use the inequality (6.60) and (6.61) for f;
and f; — fj; after a simple limiting argument, we get (6.60) and (6.61) for f
as well.

Step 2: Here we shall prove the inequality (6.60) for n = 1.

We shall need first to introduce a little more notations. We let A; be
the family of dyadic intervals in R, we can enumerate them as Iy, [,
-+, I,, -+ (the order is here immaterial). For each I € A;, we con-
sider the partial sum operator S;, and a modification of it that we now
define. Let ¢ € C! be a fixed function with the following properties:

1
2

p/

Ay

1, 1<¢<2, (&)
S0(5):{0, £<§/2, oré > 4. ! j
Suppose [ is any dyadic interval, and !
assume that it is of the form [2%, 2F+1]. |
Define S 1 by Fig. 6.5 ©(£)

F(511)(€) = 027 f(£) = ¢1(€) f(£). (6.62)

1 2 3 4 13
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That is, S 1, like Sy, is a multiplier transform where the multiplier is equal to
one on the interval [; but unlike S7, the multiplier of S; is smooth.
A similar definition is made for S; when I = [—2%1 —2*]. We observe that

S1Sr =S, (6.63)

since S has as multiplier the characteristic function of /.
Now for each t € [0, 1], consider the multiplier transform
T, = ru(t)Sh,.
m=0
That is, for each ¢, T} is the multiplier transform whose multiplier is 7, (€),
with

mi(€) =D (D), (6). (6.64)

By the definition of ¢;, , it is clear that for any £ at most three terms in the
sum (6.64) can be non-zero. Moreover, we also see easily that
B
m f < B7 ‘_ g < Tel?
where B is independent of ¢. Thus, by the Mihlin multiplier theorem (Theorem
6.18)

dmt

(6.65)

ITifllp < Apl|fllps for f € L* N L, (6.66)

and with A, independent of ¢. From this, it follows obviously that

I 1/p
( / |mf||gdt) < Alfl,.

However, by Lemma 6.27 about the Rademacher functions,

/01 ITflpat :/01 /R1 )ZTm(t)(S’Imf)(g;)‘pdxdt
>A! /]R (Emj gsz(x)2)p/2 dz.

Thus, we have

1/2
(Z lgzm(f)P) < Byl fllp- (6.67)

p
Now using (6.63), applying the general theorem about partial sums,
Theorem 6.24, with ® = A; here and (6.67), we get, for ' =

(Sfof7‘§11fa"' 7‘§Imf>"')a
1/2

1/2
(Z ISzm(f)|2> = (Z \Szmgzm(f)|2> =[S, Fll,

p p
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1/2
SA[Fl, = A (Z ISzm(f)\2> S ABullfllp = Coll fllp,  (6.68)
" p
which is the one-dimensional case of the inequality (6.60), and this is what we
had set out to prove.
Step 3: We are still in the one-dimensional case, and we write 7} for the
operator

T,=> rm(t)Sr,.

Our claim is that
||Ef”LfI < APHfHP’ 1< p < 00, (669)

with A, independent of ¢, and f € L* N LP.

Write TN = ZZZO rm(t)Sr,,, and it suffices to show that (6.69) holds,
with T} in place of T} (and A, independent of N and t). Since each S7,, is a
bounded operator on L? and LP?, we have that TtN fe L? N LP and so we can
apply (6.61) to it, which has already been proved in the case n = 1. So

N

1/2
BT flle, < (Z ISsz|2> < Cpllfllp,

m=0
p

by using (6.68). Letting N — oo, we get (6.69).
Step 4: We now turn to the n-dimensional case and define Tt(ll), as the op-
erator 7;, acting only on the x; variable. Then, by the inequality (6.69), we

get

1
/ ‘ﬂgﬂf(xl’%’ oo @) |Pdrydty, < Ag/ |f(x1, - xn)[Pday,
0 R R1

(6.70)
for almost every fixed xo,x3, - ,x,, since ©1 — f(xy, 29, -+ ,2,) €
L*(RY) N LP(R') for almost every fixed =y, - - - , x,,, if f € L*(R™) N LP(R™).
If we integrate (6.70) w.r.t. 23, - - - , T,,, Wwe obtain

TS Flly , < Allfly,  feLl?nl?, (6.71)

with A, independent of ¢;. The same inequality of course holds with x; re-
placed by x5, or z3, etc.

Step 5: We first describe the additional notation we shall need. With A rep-
resenting the collection of dyadic rectangles in R"™, we write any p € A, as p =
Loy X Iy X -+ x I, where Iy, I1,- -, I,, - represents the arbitrary enu-
meration of the dyadic intervals used above. Thus if m = (mq,mg, -+ ,m,),
with each m; > 0, we write p,,, = I, X Ipp, X -+ X Iy .

We now apply the operator Tt(ll) for the x; variable, and successively its
analogues for x5, x3, etc. The result is
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1T fllzp, < Al (6.72)
Here
T = Z T (t) Spm
pmEA
with r,,,(t) = 7, (t1) - - - T, (t,) as described in the previous. The inequality
holds uniformly for each (¢, s, - ,t,) in the unit cube Q.

We raise this inequality to the p'" power and integrate it w.r.t. £, making use
of the properties of the Rademacher functions, i.e., Lemma 6.27. We then get,
as in the analogous proof of (6.67), that

1/2
( > ISpmf|2> < Al fllps

eA
Pm »

if f € L*(R") N LP(R™). This together with the first step concludes the proof
of Theorem 6.26. n

6.5 The Marcinkiewicz multiplier theorem

We now present another multiplier theorem which is one of the most im-
portant results of the whole theory. For the sake of clarity, we state first the
one-dimensional case.

Theorem 6.28. Let m be a bounded function on R, which is of bounded
variation on every finite interval not containing the origin. Suppose

(@) [m(§)| < B, =00 < & < o0,

(b) [, Im(§)|d¢ < B, for every dyadic interval 1.
Then m € M,, 1 < p < oo; and more precisely, if f € L> N LP,

1T fllp < Apllflp,
where A, depends only on B and p.

To present general theorem, we consider R as divided into its two half-lines,
R? as divided into its four quadrants, and generally R™ as divided into its 2"
“octants”. Thus, the first octants in R™ will be the open “rectangle” of those
¢ all of whose coordinates are strictly positive. We shall assume that m(§) is
defined on each such octant and is there continuous together with its partial
derivatives up to and including order n. Thus m may be left undefined on the
set of points where one or more coordinate variables vanishes.

For every k < n, we regard R* embedded in R” in the following obvious
way: R¥ is the subspace of all points of the form (£, &5, -+ , &, 0,-- - ,0).

Theorem 6.29 (Marcinkiewicz” multiplier theorem). Let m be a bounded
function on R™ that is C™ in all 2" “octant”. Suppose also
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(@) [m(§) < B,
(b) foreach 0 < k < n
ka

sup _—
Ekt1s 5En /p 851852

as p ranges over dyadic rectangles of Rk. (If k = n, the “sup” sign is omitted.)
(c) The condition analogous to (b) is valid for every one of the n! permuta-
tions of the variables &, &, - - -, &,
Then m € M,, 1 < p < oo; and more precisely, if f € L* N L?, | T, fl, <
A, fl,, where A, depends only on B, p and n.

dfl---dfkéB

Proof. It will be best to prove Theorem 6.29 in the case n = 2. This case is
already completely typical of the general situation, and in doing only it we can
avoid some notational complications.

Let f € L*R?) N LP(R?), and write F' = T,,f, that is F(F(z)) =
m(&)f ().

Let A denote the dyadic rectangles, and for each p € A, write f, = S, f,
E,=S,F, thus F, =T, f,.

In view of Theorem 6.26, it suffices to show that

(e, <al(Zws™), e
pEA ey

The rectangles in A come in four sets, those in the first, the second, the third,
and fourth quadrants, respectively. In estimating the L.h.s. of (6.73), consider
the rectangles of each quadrant separately, and assume from now on that our
rectangles belong to the first quadrant.

We will express F), in terms of an integral involving f, and the partial sum
operators. That this is possible is the essential idea of the proof.

Fix p and assume p = {(&;,&) : 28 < & < 2871 20 < & < 201}, Then,
for (&1,&) € p, it is easy to verify the identity

&2 pé1 92m tl t2 &1 B
— 2 gt dt —m(ty, 2))dt
m(&1, &) // 91,0t 1 2+/2k 8t1m( 1,2")dty

+/ —m(2F, ty)dty +m(2F,2%).
2l Oty

Now let S; denote the multiplier transform corresponding to the rectangle
{(61,&) : 2570 > & > 1y, 271 > & > t,}. Similarly, let S denote the
multiplier corresponding to the interval 2¥*1 > & > ¢,, similarly for Sg ),

Thus in fact, S; = Stl) St(f ). Multiplying both sides of the above equation by
the function f and taking inverse Fourier transforms yields, by changing the
order of integrals in view of Fubini’s theorem and the fact that S,T,,,f = F,

and SIS, = 5V, 5P — 5% 5,5, — S, we have
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F, =T,S,f = F 'my,f
— M " wix-{ & 82 t17t2 ;
N (271’) /Rz ¢ /2 / Ot, 0t dtldt2Xp(£)f(€)} d§
0 R
<|WI) W:g a_m(tl, )dtlxp(g)f(g)}dg
R2 Qk ty

(lwl) [ o] 8_2m<2 1)t (6)F(6)] g

2l

m(2", )Xp< ( )
|w| wig:- 2o m(ty,t2)
( / / Ot, 0t Xk (P X g (F2) dEr dt
(€ g

2k+1 A
<|w|) /R2 ch/ —m (t1, 2') X o ) (t1)dEr X, (€) f (€)dE
ol+1
(‘w‘) /R2 wzw§/ 2 t2)X[21762](tQ)dtQXp(g)f(g)dg

+ m(2k
82m(t1, t2)
Wdtldt2

ok+1 ~
(lwl> / /RQem-ﬁx[tl,wq<51>xp<§>f<§> fa—tlm@l» Dt

21+1
(|w|) / 2 em%,m<52>xp<s>f<s>dfa—t2m<2’% ta)dts
+ m(2k
ok+1

m(tq, 0
/Stfp e 1 Q)dtldtg + /Qk St(ll)fpa_tlm(tl,Ql)dtl

2l+1
+ / S¢: fp—m(2’“ ta)dts + m(2%,2") f,.
9l
We apply the Cauchy—Schwarz inequality in the first three terms of the above
w.r.t. the measures |0y, Or,m(t1, to)|dt dts, |0, m(ty, 21)|dty, |Or,m (25, t5)|dLs,
respectively, and we use the assumptions of the theorem to deduce

|Fp|2§</p|5tfp| O'm dtldt2></ Gl

Ot10ty Ot10ty

dtldt2>
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ok+1 ok+1
(1) l g
H ([ 18088 g an) ([ |2 an)
ol+1 ol +1
0
k E—
+ (/Ql |St2 fp| (2%, t2) dtz)(/ﬂ 8t2m<2 ,t2) dt2>
+ [m(2*,2") |fp|2
d*m om(ty, 2"
<B 2 (1) ¢ 12| 2001, 2)
h {/wtf”' 0t10t ‘dtldt2+ I SR LN e
om(2F.t
b [ 182nr P e 15
I Oty

To estimate ||(3 | F,|*)!/?]|,,, we estimate separately the contributions of each
of the four terms on the r.h.s. of the above inequality by the use of Theorem

6.25. To apply that theorem in the case of %}J we take for [’ the first quadrant,

and dy = \% |dt1dt, the functions v — p., are constant on the dyadic

rectangles. Since for every rectangle,

/d7 / (9mt1,t2

8t18t2
1/2 1/2
(Z \%ﬁ\) <G, (Z |fpl2>
P r p

Similarly, for 32, 3% and 37, which concludes the proof. |

dt,dts < B,

then
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Chapter 7

Sobolev Spaces

7.1 Riesz potentials and fractional integrals

Let f be a sufficiently smooth function which is small at infinity, then the
Fourier transform of its Laplacean Af is

F(=Af)(©) =Wl f(©). (7.1)
From this, we replace the exponent 2 in |£|? by a general exponent s, and
thus to define (at least formally) the fractional power of the Laplacean by

(=2)2f = ZH(wliED*f(€)- (7.2)
Of special significance will be the negative powers s in the range —n < s <
0. In general, with a slight change of notation, we can define

Definition 7.1. Let s > 0. The Riesz potential of order s is the operator

I, = (—A)"%2 (7.3)
For 0 < s < n, I, is actually given in the form
1
I f(x) = —— r —y| " dy, 7.4
f(z) 7) Rnl yl " f(y)dy (7.4)
with
7"/225(5/2)
Y($§) = ==
O = T2

The formal manipulations have a precise meaning.

Lemma 7.2. Let 0 < s < n.
(@) The Fourier transform of the function |x|™"" is the function
v(s)(|wl||&])~#, in the sense that

[ el = [ Aol Foe 05

whenever ¢ € .. A
(b) The identity F (I f) = (|w||&|)~*f(&) holds in the sense that

169
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| L@t = [ el 3@

whenever f,g € ..

Proof. Part (a) is merely a restatement of Lemma 5.14 since v(s) = |w|*70.s.
Part (b) follows immediately from part (a) by writing

[sf(x) =

—

; Ty = [ (wlle) -
5 | sy = [ (el — e
:An<'w|‘€!>‘$f<f>ewi5'xds = /R (wlleh T F(g)e = md,

[ ns@itiae = [ el for syt

/ (Il ) F(©)3E)de.

This completes the proof. |

SO

Now, we state two further identities which can be obtained from Lemma 7.2
and which reflect essential properties of the potentials /.

I(Lf)=Isuf, fe€S, s5,t>0,s+t<n. (7.6)

A(Lf) =,(Af)=—I,of, feS n>=3 2<s<n. (7.7)
The deduction of these two identities have no real d1fﬁcu1t1es, and these are
best left to the interested reader to work out.
A simple consequence of (7.6) is the n-dimensional variant of the beta func-
tion,!
—nts |, [~ ] Y()VE) |t (s+t)
[ o=y ay = T 73)
with s, ¢t > 0 and s+t < n. Indeed, for any ¢ € ., we have, by the definition
of Riesz potentials and (7.6), that

// |z —y[7" 0y dy (2 — 2)da

| e =y T (2 =y — (@ — y))dady

=[ly
Rn

lyl " (s) Lep(z — y)dy = ()7 () L (Tsp) (2) = y(s)y(t) Lerip(2)
_7(8)7@) ‘x|fn+(s+t)90(z - CII)dCE

(s +t)
By the arbitrariness of ¢, we have the desired result.

1 The beta function, also called the Euler integral of the first kind, is a special function defined
by B(z,y) = [§ t*~1(1 — t)¥~dt for Rz > 0and Ry > 0. It has the relation with I'-function:
B(z,y) = I'(@)'(y)/I'(z +y).
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We have considered the Riesz potentials formally and the operation for
Schwartz functions. But since the Riesz potentials are integral operators, it
is natural to inquire about their actions on the spaces L”(R™).

For this reason, we formulate the following problem. Given s € (0,n), for
what pairs p and g, is the operator f — I f bounded from L”(R") to L¢(R™)?
That is, when do we have the inequality

15 fllg < All 17 (7.9)
There is a simple necessary condition, which is merely a reflection of the

homogeneity of the kernel (y(s))~!|y|~""*. In fact, we have

Proposition 7.3. If the inequality (7.9) holds for all f € . and a finite
constant A, then 1/qg =1/p — s/n.

Proof. Let us consider the dilation operator ., defined by 0. f(z) = f(ex) for
€ > (. Then clearly, fore > 0

_L -1, _ _|—n+s
(6871]85€f)(x> _’7(8) - |5 x y| * f(gy)dy
zzzgs_”% /n etz — 2)| 7" f(2)dx
= I f(x). (7.10)
Also
18- £l = eI fllps 01 L fllg = €™ Lo llg- (7.11)

Thus, by (7.9)
1sf g =101 L0efllg = €™/ 18- £l
A5 f|, = Ae™H TP £,
If |15 f]|; # 0O, then the above inequality implies

1/qg=1/p—s/n. (7.12)
If f # 0 is non-negative, then [, f > 0 everywhere and hence ||/, f||, > 0, and
we can conclude the desired relations. |

Next, we observe that the inequality must fail at the endpoints p = 1 (then
g=n/(n—s))and ¢ = oo (then p = n/s).

Let us consider the case p = 1. It is not hard to see that the presumed
inequality

HISan/("—S) < AHlev (7.13)

cannot hold. In fact, we can choose a nice positive function ¢ € L' with
[ ¢ =1 and a compact support. Then, with . (z) = e "¢(z/e), we have that
ase — 0T,

L(p:) (@) = (y(s)) a7
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If ||Ls@clln/m-s) < Allpe|li = A were valid uniformly as e, then Fatou’s
lemma? will imply that

/ |z| "dr < oo,
and this is a contradiction.

The second atypical case occurs when ¢ = co. Again the inequality of the
type (7.9) cannot hold, and one immediate reason is that this case is dual to the
case p = 1 just considered. The failure at ¢ = oo may also be seen directly as
follows. Let f(x) = |o|~*(In1/|z|)~(F)s/? for |z| < 1/2, and f(x) = 0 for
|z| > 1/2, where ¢ is positive but small. Then f € L"/*(R™), since || f ||n Ve =

f‘x|<1/2 |z|7"(In1/|z|)~'"°dx < oo. However, I, f is essentially unbounded
near the origin since

1
LEO) =~ [ fal /el e = oc,
lz|<1/2
aslong as (14 ¢)s/n < 1.

(s)

After these observations, we can formulate the following Hardy-Littlewood-
Sobolev theorem of fractional integration. The result was first considered in
one dimension on the circle by Hardy and Littlewood. The n-dimensional re-
sult was considered by Sobolev.

Theorem 7.4 (Hardy-Littlewood-Sobolev theorem of fractional integra-
tions). Let 0 < s<mn,1<p<qg<oo,1/g=1/p—s/n.

(@) If f € LP(R™), then the integral (7.4), defining I f, converges absolutely
for almost every .

(b) If, in addition, p > 1, then || I f||, < Apqll fllp-

() If f € LYR™), then m{z : |Isf(z)] > a} < (Aa™Y||f]1)4, for all o« >
0. That is, the mapping f — I, f is of weak type (1,q), with1/q =1 — s/n.

Proof. We first prove parts (a) and (b). Let us write
WLS@ = [ e =gl g [ eyl )y
B(z,0) R7\B(z,9)
=:Ls(x) + Hs(x).
Divide the ball B(x,d) into the shells E; := B(x,277§) \ B(z,2-UtD§),
7=0,1,2, ..., thus

|Ls(x —yl " f(y)dy| <

Z > [l

2 Fatou’s lamma: If { . } is a sequence of nonnegative measurable functions, then

/lim inf frdp < lim inf/ frdu.
k— o0 k— o0
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UE) T f(y) | dy

A
WE

EJ

/ 2 GH)g) =+ £ (y) dy
B(z,2— 75
(27UD§) = Fsm(B(x,2796))
m(B(x,276)) /B(x,2j5) 17 (w)ldy

(2—(j+1)5>—n+svn(2—j6>n
. d
m(B(z,2-90)) /B(xm 7(w)ldy

V 9%2"

<.
I
<)

A
WE

.
Il
o

5'48

0

<.
Il

SERT

<.
Il
o

<V, 6°2" 822 SIMf(z) = - M f(x).

Now, we derive an estimate for H;(z). By Holder’s inequality and the con-
dition 1/p > s/n (i.e., ¢ < 00), we obtain

) 1/p
()| <Ifl, ( / gl |<—“+S>de)
1/p’
sl ([ [t
1/ . 1/p
P ||f||p (/ (—n+s)p’+n— d?“)

Wn—1 v /p'—(n—s) —n/
- (m) P fllp = Clny s, 0)0° P fllp.

By the above two inequalities, we have
(s) I f(2)] < C(n, $)6° M f(x) + C(n, s, p)0*"2| fl, =: F().
Choose § = C(n, s,p)[||fll,/M f]?/™, such that the two terms of the r.h.s. of
the above are equal, i.e., the minimizer of F'(9), to get

(s) I f ()] < COMLL)P | flIom.

Therefore, by part (i) of Theorem 3.9 for maximal functions, i.e., M f is
finite almost everywhere if f € L? (1 < p < 00), it follows that |I f(x)] is
finite almost everywhere, which proves part (a) of the theorem.

By part (iii) of Theorem 3.9, we know || M f||, < Al fll, 1 < p < o0),
thus

1Zsfllg < CUMFI 1A 5™ = Cllf N

This gives the proof of part (b).
Finally, we prove (c). Since we also have |Hs(z)| < ||f]167""*, taking
a=|flli67*, e, 6 = (|| f]l1 /)" "*), by part (ii) of Theorem 3.9, we get

m{z : |[Lf(2)] > 2(y(s)) " a}
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<m{z : |Ls(x)| > a} + m{z : |Hs(z)| > a}
<mz : |CO°Mf(x)] > a}+0

C n/(n—s
<5l = CllIfI /a7 = CllIf 11 el
This completes the proof of part (c). |

7.2 Bessel potentials

While the behavior of the kernel (y(s))™!|z|~"" as |z| — 0 is well suited
for their smoothing properties, their decay as |x| — oo gets worse as s in-
creases.

We can slightly adjust the Riesz potentials such that we maintain their es-
sential behavior near zero but achieve exponential decay at infinity. The sim-
plest way to achieve this is by replacing the “nonnegative” operator —A by
the “strictly positive” operator I — A, where I = identity. Here the terms non-
negative and strictly positive, as one may have surmised, refer to the Fourier
transforms of these expressions.

Definition 7.5. Let s > 0. The Bessel potential of order s is the operator
Jo= (I —A)™/?
whose action on functions is given by
Jof = F'GF [ =Gy |,
where
Gy(z) = F (L + W EP) ) ().

Now we give some properties of G(x) and show why this adjustment yields
exponential decay for G at infinity.
Proposition 7.6. Let s > 0.

@) Gule) = Grbzarm Jo~ e te T4

(b) Gs(xz) >0, VxeR*andG,(x) e L'(R"), precisely, [, Gs(x)dx =
1.

(c) There exist two constants 0 < C(s,n),c(s,n) < oo such that

Gy(z) < C(s,n)e ™2 when |z| > 2,

and such that
1 Gs(x)
< <
c(s,n) = Hg(x)
where H, is a function that satisfies

N

c(s,n), when |x| < 2,
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lz|*™" + 14+ O(|z|*™"2), 0<s<n,

Hy(x) = 1n%+1+0(|x|2), s =n,
14+ O(Jz|*™™), s>mn,
as |x| — 0.
(d) G.(z) € L (R") forany 1 < p < co and s > n/p.

Proof. (a) For A, s > 0, we have the I'-function identity

I'(s/2) Jo t

which we use to obtain

1 > 2 /o dt
1 2|¢12y—8/2 _ / —t ,—t|wé| t8/2—.
(el = L [Tttt

Note that the above integral converges at both ends (as || — 0, or 00). Now
take the inverse Fourier transform in ¢ and use Theorem 1.10 to obtain

1 o0 2 odt
Gs _ ﬁf—l —t —t|wé| ts/2_
W = ), :

1 © ) dt
_ —t g1 ( —t|wé] >t5/2
r<s/2>/o ¢ T t

B 1 / el dt
_(47T)”/2F(s/2) cc t

(b) We have easily’ [, Gs(z)de = FG, (0) = 1. Thus, G, € L'(R").
(c) First, we suppose |z| > 2 Then ¢ + lw‘ + 2 and also ¢ + % > |zl
This implies that
2>t 1
S e =
At 2 2t 2
from which it follows that when |z| > 2
1 ¢ 1 sadt sl _lal
Gs(x)ém/o e 2e 2f 2 76 N <O(S,’I’L>€ 2,
|s—n|/2 s—n
where C'(s,n) = 2 (4W)n/1;(1|,(s/2|)/2) for s # n, and C(s,n) = m for
s = n since

3 Or use (a) to show it. From part (a), we know Gs(z) > 0. Since [, e~mlel*/tdy = ¢n/2, by
Fubini’s theorem, we have

/G x)dx_/ m/m e @dx

0 s—n dt
:7/ et / e g dxtT—
(471')"/2F(s/2) R t

s—n dt
—t(47nt)”/2tT7

<47r>n/2r(s/2> /

e tt27ldt = 1.

F(s/2) /
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00 1 00
/ Londt / S / . ;dt:/ v W 512
0 t 0 t 1/2 Yy

<2 e Ydy+2 < 4.

3

1 | 1212 s—n dt

Yy =—o—— “teT a2z —
Cel) <47r>n/2r<s/2>/o ¢ P
1 4 22 s—n dt

G? —_ lema e —
() = (@) (5)2) /We crrtEa

1 & 212 s—n dt
3 - - oGt
Colw) = (47r)n/2r(s/2)/ certry

Since t|z|?> < 16 in G, we have e~1*I = 1 4+ O(t|z|?) as |z| — 0; thus after
changing variables, we can write

1 1 2 1 s—n dt
1 — s—n —t|$| T4t 2 —
Gsl@) =lal <47r>n/2r<s/2>/o ¢ ;

_|g;|8—”—1 /1 e—%tSE”dt+—O<|x’S_n+2> /16 art 2" dt

B (4m)"2I'(s/2) Jo (4m)"/21'(s/2)

_ 2n7572|x|57n /oo efnyE"@ N on—s— 40(|x|sfn+2) /OO efyy“’;"@
(4m)"/2I(s/2) y (4m)"/2I(s/2) 2

1/4 Y
=ci |z 4+ O(|z[*"*?), as|z| — 0.

E

2
Since 0 < % < 411 and 0 < t < 4in G?, we have e7'7/* L et 9 < 1,

thus as |z| — 0, we obtain

‘x|5*n 25—n+1 <
4 dt n—s n—s ’ s n,
G%(x) ~ / te=m2 2 = 21n % it s=mn,
‘Z"Q t 25— nl
a—n S > n.

||

Finally, we have e7'/* < e="# < 1 in G?, which yields that G3(z) is
bounded above and below by fixed positive constants. Combining the estimates
for G (x), we obtain the desired conclusion.

(d) For p = 1 and so p’ = o0, by part (c), we have ||Gs(7)||o < C for
5> mn.

Next, we assume that 1 < p < oo and so 1 < p’ < oo. Again by part (¢),
we have, for |z| > 2, that G® < Ce ?'1#1/2, and then the integration over this
range |x| > 2 is clearly finite.

On the range |z| < 2, it is clear that f <2 G V' (x)dx < C for s > n. For the

case s = n and n # 1, we also have f G? (x)dx < C by noticing that

lz|<2
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2 2 2\
/ (ln —) dz = C/ <ln —) r"tdr < C
lz|<2 || 0 r

for any ¢ > 0 since lim,_,o7°In(2/r) = 0. For the case s = n = 1, we have
fmgz(ln |z|) dr =2 fOQ(ln 2/r)idr = 4f01(111 1/r)idr =4I'(¢+ 1) forg > 0
by the formula fol(ln 1/x)P~tdx = I'(p) for Rp > 0. For the final case s < n,
we have f02 rl=pn=1dr < C'if (s —n)p’ +n > 0,i.e., s > n/p.

Thus, we obtain ||G,(z)|y < C forany 1 < p < oo and s > n/p, which
implies the desired result. |

We also have a result analogues to that of Riesz potentials for the operator
Js.

Theorem 7.7. (a) Forall 0 < s < oo, the operator J, maps L"(R™) into itself
with norm 1 forall 1 < r < oo.

(b)Let0 < s <nand1 <p < q < oosatisfy 1/q =1/p—s/n. Then there
exists a constant C,, 5, < oo such that for all f € L?(R"), we have

1 s flla < Crspll £l
© If f € LYY, then m{x : |1, f(x)] > a} < (Cusa | fI1), for all
a > 0. That is, the mapping f — Jsf is of weak type (1,q), with 1/q =
1—s/n.

Proof. By Young’s inequality, we have ||J,f||, = [|Gs * fl|» < ||Gs|1]|fl- =
|| £l This proves the result (a).
In the special case 0 < s < n, we have, from the above proposition, that the
kernel G of J, satisfies
T) ~ {’x|_n+87 2| <2

Gs el |z] > 2.

—~

Then, we can write

Jf(2) <Cp [ /| =l + [l =y ey
Yy

ly|>2

<cn,s{ (1) /\f ple 'Wdy]

We now use that the function e 1%/2 ¢ " forall 1 < r < oo, Young’s
inequality and Theorem 7.4 to complete the proofs of (b) and (c). |

The affinity between the two potentials is given precisely in the following
lemma.

Lemma 7.8. Let s > 0.

(i) There exists a finite measure 1, on R™ such that its Fourier transform [i
is given by
|wé]®

1:(§) = 0T [weP)
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(ii) There exist a pair of finite measures v, and \s on R™ such that
(14 |wg[?)2 = 75(€) + |we|*As(€).

Remark 7.9. 1) The first part states in effect that the following formal
quotient operator is bounded on every LP(R"), 1 < p < oo,
(-2
2) The second part states also to what extent the same thing is true of
the operator inverse to (7.14).

s> 0. (7.14)

Proof. To prove (1), we use the Taylor expansion

(1—1)% = 1+2Am8 ot <1, (7.15)

where A, o = (=1)"C, = (=1)™ 2(2 1).;,51777”“) (7%)(17%%'.%7%71). All

the A,, , are of same sign for m > £ + 1,50 Y |4, 5| < oo, since (1 — t)*/2
remains bounded as t — 1, if s > 0. Let t = (1+ |w&]*)~!. Then

|wé|? s/2 . i": Ay (14 [wE2)~™ (7.16)
1+ |wé|? = . .

However, Go,,(z) > 0 and [, Gop(@)e ™ Sda = (1 + |wé]?)™™
We noticed already that [ G, (2)dx =1 and so |G|l = 1.
Thus from the convergence of > |A,, s/, it follows that if y is defined by

s = 0o + (i AmSGQm(x)) dx (7.17)

m=1

with &y the Dirac measure at the origin, then u, represents a finite measure.
Moreover, by (7.16),
wals

For (ii), we now invoke the n-dimensional version of Wiener’s theorem,
to wit: If ¢, € L'(R") and a(f) + 1 is nowhere zero, then there exists a
@, € L'(R") such that (D() + 1)1 = dy(€) + 1.

For our purposes, we then write

ZAmSGQm )+ Gy(z).

(7.18)

Then, by (7.18), we see that
. wel* + 1
P +1l=——"
M= T g
which vanishes nowhere. Thus, for an appropriate $5 € L', by Wiener’s theo-
rem, we have
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(14 |we?)*? = (1 + [wg|)[@a(8) + 1],

and so we obtain the desired conclusion with v, = Ay = g + Po(z)dx. [ |

7.3 Sobolev spaces

We start by weakening the notation of partial derivatives by the theory of
distributions. The appropriate definition is stated in terms of the space Z(R").
Let 0“ be a differential monomial, whose total order is |«|. Suppose we
are given two locally integrable functions on R", f and g. Then we say that
0% f = g (in the weak sense), if
F@)dp(2)dz = (1) / o()e(@)dz, Yoed. (719
R7

n

Integration by parts shows us that this is indeed the relation that we would
expect if f had continuous partial derivatives up to order ||, and 0% f = g had
the usual meaning.

Of course, it is not true that every locally integrable function has partial
derivatives in this sense: consider, for example, f(z) = ¢/1*I". However, when
the partial derivatives exist, they are determined almost everywhere by the
defining relation (7.19).

In this section, we study a quantitative way of measuring smoothness
of functions. Sobolev spaces serve exactly this purpose. They measure the
smoothness of a given function in terms of the integrability of its derivatives.
We begin with the classical definition of Sobolev spaces.

Definition 7.10. Let £ be a nonnegative integer and let 1 < p < co. The
Sobolev space W*?(R") is defined as the space of functions f in LP(R") all
of whose distributional derivatives 0® f are also in LP(R") for all multi-
indices « that satisfies |a| < k. This space is normed by the expression

1w =D 10°Fllp, (7.20)
|| <k

where 90 f = f.

The index k indicates the “degree” of smoothness of a given function in
Wkr_ As k increases, the functions become smoother. Equivalently, these
spaces form a decreasing sequence

LPOWWY O W 5. ..
meaning that each W**1?(R") is a subspace of W*P(R") in view of the
Sobolev norms.

We next observe that the space WP (R") is complete. Indeed, if {f,,} is a
Cauchy sequence in W*?, then for each o, {0%f,,} is a Cauchy sequence in
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L?, |a| < k. By the completeness of LP, there exist functions f(® such that
£ = lim,, 0% f,, in LP, then clearly

(—1)l f 0%pdx = 0 fnpdr — @ ode,
R7 R™
for each p € 7. Slnce the first expression converges to

(~1) fﬁasodz

it follows that the distributional denvatlve 0~ f is f(®). This implies that fi—
f in W*P(IR™) and proves the completeness of this space.
First, we generalize Riesz and Bessel potentials to any s € R by

rf= 1\0.;5]5 Ff, feS(R"),0¢ supp ],

PP =7+ ey S e SR,
It is clear that /=° = I, and J~° = J, for s > 0 are exactly Riesz and Bessel
potentials, respectively. we also note that J* - J* = J*** for any s,t € R from
the definition.

Next, we shall extend the spaces 1W*?(R") to the case where the number k
is real.

Definition 7.11. Let s € Rand 1 < p < oo. We write
1 g = 11 f s WS Wy = 0T F -

Then, the homogeneous Sobolev space H; (R™) is defined by
Hy®") = {f € #'(R"): f€ L (R), and |[f]ls, < o0}, (7.2D)
The nonhomogeneous Sobolev space H;(R") is defined by
HyR") = {f €' (R"): ||flluy < oo}. (7.22)
If p = 2, we denote H3(R") by H*(R") and Hj(R") by H*(R") for sim-
plicity.
It is clear that the space H;(R") is a normed linear space with the above
norm. Moreover, it is complete and therefore Banach space. To prove the com-

pleteness, let { f,,} be a Cauchy sequence in H. Then, by the completeness
of LP, there exists a g € LP such that

[fm =9l
Clearly, J=*¢g € . and thus Hj is complete.
We give some elementary results about Sobolev spaces.

s =[S fm —gll, = 0, asm — oo.

Theorem 7.12. Let s € Rand 1 < p < oo, then we have
(a) S isdensein H,, 1 < p < oo.
(b) Hy** C Hj, Ve > 0.
(c) Hy C L™, Vs >n/p.
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(d) Suppose 1 < p < coand s > 1. Then f € H3(R") if and only if
f € H;"'(R") and for each j, 887]; € H;~'(R"). Moreover, the two norms are
equivalent:

0
I7] o

ms ~ || f]

n
it
j=1

(e) HE(R") = WFP(R™), 1 < p < o0, Vk € N.

Iyt

Proof. (a) Take f € H;, ie., Jof € LP. Since .¥ is dense in L? (1 < p < 00),
there exists a g € .¥ such that
1f = glly = 117°f = gll

is smaller than any given positive number. Since J°g € ., therefore .7 is
dense in H,.

(b) Suppose that f € H;*E. By part (a) in Theorem 7.7, we see that .J. maps
LP? into LP with norm 1 for € > 0. Form this, we get the result since

1 f] Hy = HJSpr = ||J_8JS+€pr = ||J€JS+€f||p < ||JS+€f||p = [ f| Hyte-

(c) By Young’s inequality, the definition of the kernel G(z) and part (d) of
Proposition 7.6, we get for s > 0

1Fllso =111+ wel?)™2(1 + |wE?)* F flloo

1771+ wg )2 % I floo

<L A+ weP) 2y 1
1G5 (@)l [1.f 225 < CILf M-

(d) From the Mihlin multiplier theorem, we can get (w&;)(1 + |w&|?)~1/2 €
M, for 1 < p < oo (or use part (i) of Lemma 7.8 and properties of Riesz
transforms), and thus

U 11+ e )2 wie) Z 1,
aQZJ H‘;71

=177+ |we )T (we) (1 + w2 1,
=177 (1 + wg) T2 weg) + T f 1l < Il = CIIf]
H™1 < I/

| f] gt Z
j=1

Now, we prove the converse inequality. We use the Mihlin multiplier the-
orem once more and an auxiliary function y on R, infinitely differentiable,
non-negative and with x(z) = 1 for |z| > 2 and x(z) = 0 for |z| < 1. We
obtain

Hs-

Combining with || f| Hs» We get

af
Ox;

< Ol fllag.

s—1
HP
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(L4 W€ 21+ D xX(ENEN T € My, x(§)I1€ € M, 1< p < 0.
j=1

Thus,
| f]

my =17 fllp = 17711+ |we) 2Z T f],

CIF A+ D XENGNF T
j=1

n - - .~ 9
<Ol + 0 Y NF Ml # 2L,
j=1 !
<l + 3|22
Hp ; a.’L‘j H;—l

Thus, we have obtained the desired result.
(e) It is obvious that W% = H)) = L? for k = 0. However, from part (d), if
k > 1, then f € H) if and only if f and aanj € Hy7', j =1,..,n. Thus, we
can extends the identity of W"? = HY fromk =0tok =1,2,.... |
We continue with the Sobolev embedding theorem.

Theorem 7.13 (Sobolev embedding theorem). Let 1 < p < p; < oo and

s, s1 € R. Assume that s — 3 = s1 — -+ Then the following conclusions hold
H, C H), H;CH,.

Proof. It is trivial for the case p = p; since we also have s = s; in this case.

Now, we assume that p < p;. Since pil = %} — 251 by part (b) of Theorem 7.7,
we get
[ ez = N Fllpe = 1272 T fllpy = ([ Ssmsi I fllpe < CNTfllp = Cllf Nl

Similarly, we can show the homogeneous case. Therefore, we complete the
proof. ]

Theorem 7.14. Let s,0 € Rand 1 < p < oo. Then J? is an isomorphism
between H; and Hy=e.

Proof. 1t is clear from the definition. |
Corollary 7.15. Let s € Rand 1 < p < oo. Then

(Hy) = H"
Proof. Tt follows from the above theorem and the fact that (L?) = LP, if
1<p<oo. ]

Finally, we give the connection between the homogeneous and the nonho-
mogeneous spaces.
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Theorem 7.16. Suppose that f € .#'(R™) and 0 ¢ supp f. Then
feH: e feH:), VseR, 1<p< .
Moreover, for 1 < p < oo, we have
HS =L’ N H, Vs >0,
Hy =L+ H;, Vs<0,
HY =LF = HY.
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