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THE FOURIER TRANSFORM AND TEMPERED
DISTRIBUTIONS
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In this chapter, we introduce the Fourier transform and study its more elementary
properties, and extend the definition to the space of tempered distributions. We also
give some characterizations of operators commuting with translations.

1.1 The L' theory of the Fourier transform

We begin by introducing some notation that will be used throughout this work.
R™ denotes n-dimensional real Euclidean space. We consistently write x = (z1, 2, - - ,
xn), & = (&1,&, - ,&n), - -+ for the elements of R™. The inner product of z, { € R”
is the number z - § = >, ;{;, the norm of z € R" is the nonnegative number
|z| = \/z-x. Furthermore, dz = dzidzy---dx, denotes the element of ordinary
Lebesgue measure.

We will deal with various spaces of functions defined on R". The simplest of
these are the LP = LP(R"™) spaces, 1 < p < oo, of all measurable functions f such

that || fll, = (Jgn \f(x)\pdx)l/p < o0. The number | f||, is called the LP norm of
f. The space L*(R™) consists of all essentially bounded functions on R" and, for
f € L*(R"™), we let || f||~ be the essential supremum of |f(z)|, x € R™. Often, the
space Cy(R"™) of all continuous functions vanishing at infinity, with the L norm just
described, arises more naturally than L>° = L>°(R"). Unless otherwise specified, all
functions are assumed to be complex valued; it will be assumed, throughout the note,
that all functions are (Borel) measurable.

In addition to the vector-space operations, L(R") is endowed with a “multipli-
cation” making this space a Banach algebra. This operation, called convolution, is de-
fined in the following way: If both f and g belong to L!(R"), then their convolution
h = f * g is the function whose value at x € R" is

h(z) = /Rn f(z —y)g(y)dy.

One can show by an elementary argument that f(z — y)g(y) is a measurable function
of the two variables x and y. It then follows immediately from Fibini’s theorem on

1



-2- 1. The Fourier Transform and Tempered Distributions

the interchange of the order of integration that h € L'(R") and ||A[|1 < || f||1]lg/l1. Fur-
thermore, this operation is commutative and associative. More generally, we have,
with the help of Minkowski’s integral inequality || [ F(z,y)dy||z» < [ F(z,y)| 1z dy,
the following result:

Theorem 1.1. If f € LP(R"), p € [1,00], and g € LY(R™) then h = f * g is well defined
and belongs to LP(R™). Moreover,

12llp < [1fllpllgll:-

Now, we first consider the Fourier! transform of L! functions.

Definition 1.2. Letw € R\ {0} be a constant. If f € L*(R™), then its Fourier transform
Z for f:R"— Cdefined by
Z1(©) = [ e f(a)da 1)

n

for all £ € R™.

We now continue with some properties of the Fourier transform. Before doing
this, we shall introduce some notations. For a measurable function f on R", x € R"
and a # 0 we define the translation and dilation of f by

Ty f(x) =f(z —y), (1.2)
0o f(2) =[(ax). (1.3)

Proposition 1.3. Given f,g € L'(R"), z,y,¢ € R", o multiindex, a,b € C, ¢ € R and
e # 0, we have
(i) Linearity: .7 (af + bg) = a7 f + bFg.
(i) Translation: Fr,f(€) = e “WEf(£).
(iii) Modulation: 7 (e~*'Y f (x))(€) = 7, £ (€).
(iv) Scaling: F o f(§) = [e[T"0c-1 f(§)-
(v) Differentiation: 70 f(§) = (wi€)* f(
(vi) Convolution: F(f = g)(§) = f(£)g(&
(vii) Transformation: .F (f o A)(§) = f(A
column vector. -

(viii) Conjugation: f(x) = f(=o).

)é) 0°f (&) = F((~wiz)*f(z))(€)-
§

), where A is an orthogonal matrix and & is a

Proof. These results are easy to be verified. We only prove (vii). In fact,

F(foa)) = [ e pAndn = [ ey
= [ Sy = [ gy = flae)

Rn
where we used the change of variables y = Az and the fact that A~! = AT and
|det A| = 1. [ |

Hean Baptiste Joseph Fourier (21 March 1768 — 16 May 1830) was a French mathematician and
physicist best known for initiating the investigation of Fourier series and their applications to problems
of heat transfer and vibrations. The Fourier transform and Fourier’s Law are also named in his honor.
Fourier is also generally credited with the discovery of the greenhouse effect.
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Corollary 1.4. The Fourier transform of a radial function is radial.

Proof. Let {,n € R™ with |{| = |n|. Then there exists some orthogonal matrix A such
that A¢ = . Since f is radial, we have f = f o A. Then, it holds
F () = Ff(AG) = F(f 0 A)(§) = F f(£),
by (vii) in Proposition 1.3. |
It is easy to establish the following results:

Theorem 1.5 (Uniform continuity). (i) The mapping .7 is a bounded linear transforma-
tion from L*(R™) into L (R™). In fact, |.Z f|ls < || f]1-
(i) If f € LY(R™), then F f is uniformly continuous.

Proof. (i) is obvious. We now prove (ii). By

ﬂ£+m—f@%:/ e E [ 1] (1) da,

]Rn

we have

M&+m—f@N</|fW”—1umwm
Rn
—wiz-h
</$KT! —1[f(x )Idw+2/ |f(z)|dx

lz|>r
<[ _lrbls@i 2 [ f@lds
x| <r || >r
::II + 127
since for any 6 > 0

e —1] = \/(COSG —1)2 +sin?0 = V2 — 2cos = 2|sin(0/2)| < |6].
Given any € > 0, we can take r so large that Iy < ¢/2. Then, we fix this r and take
|h| small enough such that I; < ¢/2. In other words, for given ¢ > 0, there exists
a sufficiently small § > 0 such that |f(¢ + h) — f(€)| < € when |h| < 8, where ¢ is
independent of . |

Ex. 1.6. Suppose that a signal consists of a single rectangular pulse of width 1 and height 1.
Let's say that it gets turned on at x = —3 and turned off at v = 5. The standard name for
this “normalized” rectangular pulse is

_ 1, i - % <z < %,
Il(z) = rect(x) := { 0, otherwise. T T 7
-3 2

It is also called, variously, the normalized boxcar function, the top hat function, the indicator
function, or the characteristic function for the interval (—1/2,1/2). The Fourier transform
of this signal is

N . 1/2 ' —wizg |1/2 9
I¢) = / e_“’mgﬂ(x)d:p = / L - = —sinw—g
R

~1/2 —wil |y W& 2
when £ # 0. When & = 0, I1(0) = f_lﬁ2 dx = 1. By I'Hopital’s rule,
- in << we ~
lim Fi(€) = im 252 — im 222 _ 1 _ fi(0),

£50 =0 wé £50 w
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so T1(€) is continuous at € = 0. There is a standard function called “sinc”? that is defined by
sinc(§) = 5125. In this notation TI(§) = sinc%g. Here is the graph of 11(€).

1

T | = g

w

Remark 1.7. The above definition of the Fourier transform in (1.1) extends immedi-
ately to finite Borel measures: if 1 is such a measure on R", we define .7 11 by letting
Zu(©) = [ (o).

R
Theorem 1.5 is valid for this Fourier transform if we replace the L! norm by the total
variation of .

The following theorem plays a central role in Fourier Analysis. It takes its name
from the fact that it holds even for functions that are integrable according to the def-
inition of Lebesgue. We prove it for functions that are absolutely integrable in the
Riemann sense.’

Theorem 1.8 (Riemann-Lebesgue lemma). If f € L'(R") then Z f — 0as |¢| — oo;
thus, in view of the last result, we can conclude that .7 f € Co(R™).

Proof. First, for n = 1, suppose that f(x) = x(4) (), the characteristic function of an
interval. Then

. b ) efwiaﬁ _ efwibg
fe) = / ewintgy ~ C T TR s e - oo
a wig
Similarly, the result holds when f is the characteristic function of the n-dimensional
rectangle I = {z € R" : a; < 21 < by, ,a, < 2, < by} since we can calculate

Z f explicitly as an iterated integral. The same is therefore true for a finite linear
combination of such characteristic functions (i.e., simple functions). Since all such
simple functions are dense in L', the result for a general f € L!(R") follows easily
by approximating f in the L' norm by such a simple function g, then f = g+ (f — g),
where . f — .% g is uniformly small by Theorem 1.5, while .#¢(£) — 0 as |{| — co. B

Theorem 1.8 gives a necessary condition for a function to be a Fourier transform.
However, that belonging to C is not a sufficient condition for being the Fourier trans-
form of an integrable function. See the following example.

2The term “sinc” (English pronunciation:['sipk]) is a contraction, first introduced by Phillip M.
Woodward in 1953, of the function’s full Latin name, the sinus cardinalis (cardinal sine).

® Let us very briefly recall what this means. A bounded function f on a finite interval [a,b] is
integrable if it can be approximated by Riemann sums from above and below in such a way that the
difference of the integrals of these sums can be made as small as we wish. This definition is then
extended to unbounded functions and infinite intervals by taking limits; these cases are often called
improper integrals. If I is any interval and f is a function on I such that the (possibly improper)
integral [} | f(z)|dx has a finite value, then f is said to be absolutely integrable on I.



1.1. The L?! theory of the Fourier transform -5-

Ex. 1.9. Suppose, for simplicity, that n = 1. Let

9(6) = —9(=¢), £<0.

It is clear that g(&) is uniformly continuous on R and g(§) — 0 as |{]| — oc.
Assume that there exists an f € L*(R) such that f(&) = g(€), i.e.,

o€) = [ e s
Since g(§) is an odd function, we have
_ [T wiae d:_~oo' d:OO' F(x)d
9O = [ @t = =i [ sinwat) f(a)do = [ sinluwat) Fa)da.

where F(z) = i[f(—z) — f(z)] € L*(R). Integrating = 9&) over (0, N) yields

/ON (E)d / </ Sln(fg%ﬁ)dg)
:/0 F(z) </OWN Sltntdt> da.

N—o0 0 2
and by Lebesgue dominated convergence theorem,we get that the integral of r.h.s. is conver-
gent as N — oo. That is,

N 0o
Nngloo/o g(;)dg - g/ﬂ F(z)dz < oo,

which yields [ %dﬁ < oo since [y Mdf = 1. However,
m [ 9 N odg

]\}gnoo/e e =l ) e T
This contradiction indicates that the assumption was invalid.

We now turn to the problem of inverting the Fourier transform. That is, we shall
consider the question: Given the Fourier transform f of an integrable function f, how do
we obtain f back again from f ? The reader, who is familiar with the elementary theory
of Fourier series and integrals, would expect f(x) to be equal to the integral

ewiz€ f . .
c /IR e fe)dg (1.4)

Unfortunately, f need not be integrable (for example, let . = 1 and f be the charac-
teristic function of a finite interval). In order to get around this difficulty, we shall
use certain summability methods for integrals. We first introduce the Abel method of
summability, whose analog for series is very well-known. For each ¢ > 0, we define
the Abel mean A, = A.(f) to be the integral

A(f) = Ae = / e f(z)da. (1.5)
R
It is clear that if f € L'(R") then lir% A-(f) = [z f(z)dz. On the other hand,
E—

these Abel means are well-defined even when f is not integrable (e.g., if we only

Noticing that
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assume that f is bounded, then A.(f) is defined for all € > 0). Moreover, their limit

lim A() =ty [ (o (16)

may exist even when f is not integrable. A classical example of such a case is obtained
by letting f(x) = sinc(x) when n = 1. Whenever the limit in (1.6) exists and is finite
we say that fR" fdx is Abel summable to this limit.

A somewhat similar method of summability is Gauss summability. This method is
defined by the Gauss (sometimes called Gauss-Weierstrass) means

G = | e o 1.7)
R'!L
We say that [, fdx is Gauss summable (to /) if
lm Ge(f) = lim [ e P f(z)da (1.6")
e—0 e—0

R
exists and equals the number /.
We see that both (1.6) and (1.6”) can be put in the form

Me.o(f) = M.(f) = /R B(er) f )i, (1.8)

where ® € Cp and ®(0) = 1. Then [, f(x)dx is summable to ¢ if lim._,o M (f) = ¢.
We shall call M. (f) the ® means of this mtegral.

We shall need the Fourier transforms of the functions e <1 and e~</7l. The first
one is easy to calculate.

Theorem 1.10. For all a > 0, we have

st = (5) o 19)

Proof. The integral in question is

—wir-f — 2
/ e wiT 56 alwz| dz.
n

Notice that this factors as a product of one variable integrals. Thus it is sufficient
to prove the case n = 1. For this we use the formula for the integral of a Gaussian:
Jo e ™ dz = 1. Tt follows that

o0 ) 9 9 oo /202 €2
/ e winb gmaw et gy :/ e~ wrtig/(20)° g gy
—o0

—o0
2 pootif/(2a)

:‘w|_1e_§fa / e_axQdI
oco+i€/(2a)

Wl e~ 5 /r/a / i gy

-1
:<]2w|) (4ra)™ 1/2¢=5 da
7r

where we used contour integration at the next to last one. [

The second one is somewhat harder to obtain:

Theorem 1.11. For all a > 0, we have

F(e—olwrly — <‘w|> - Cna o = Hln+1)/2) (110)

o (a2 4 ’§| ) (n+1)/2° n a(n+1)/2
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Proof. By a change of variables, i.e.,

y(e—a|wx|) _ / 6—wix~£e—a|wx\dx _ (a’w‘)—n / e—ix-{/ae—|x|dx,
n R”L
we see that it suffices to show this result when a = 1. In order to show this, we need

to express the decaying exponential asa superposition of Gaussians, i.e.,

e = e 72/477d77, v > 0. (1.11)

7h
Then, using (1.9) to establish the third equality,

/ e—iyc-te—\addm :/ —ix-t ( / —|:c| /477dn) dr
Rr n VT f
1 e —iz-t —|z|%/4n
=— — e e dx | dn
L
1 & 677] n/2 — t2
:ﬁ/o \/ﬁ<(47m) 2¢ "")dn
_2n7r(n—1)/2/(; —n(1+112), 25 g
—on(n=1)/2 (1 + |t|2)—"T+l / e—Cg"TH—ldg
0

1 1
_on(n=1)/2p (7T
" 2 ) (Lt )iz

Thus,

g (,—alwz|y _ (a|w‘)—n(2ﬂ.)ncn N M " CnQ
Fle )= (14 |&/al?)(ntD)/2 “\or (a2 4 [¢]2)(n+D)/2”

Consequently, the theorem will be established once we show (1.11). In fact, by
changes of variables, we have

ev/ 76—72/477(177

2
-2 / <’ 0_%)2650 (by n = ~0)

2f oty 1 1
/ 2 2—(10 (by o — 20)
\f / (0=35) < > do  (by averaging the last two formula)

1
= 77” = _—
ﬁ/me du (byu=0c 20)

=1, (by / e ™ dy = 1)
R
which yields the desired identity (1.11). |

n
We shall denote the Fourier transform of <|w|> e—elwzl* and (%) e~awrl g >0,

by W and P, respectively. That is,

“n _@ CnQ
W(f, a) = (47”1) /2 ) P(£> a) ( 4 |§| ) (n+1)/

(1.12)
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The first of these two functions is called the Weierstrass (or Gauss-Weierstrass) kernel
while the second is called the Poisson kernel.

Theorem 1.12 (The multiplication formula). If f,g € L*(R"), then
| F©a©ds = [ r@iaa.

Proof. Using Fubini’s theorem to interchange the order of the integration on R?", we
obtain the identity. [ |

Theorem 1.13. If f and ® belong to L' (R™), ¢ = ® and ¢.(x) = e "p(z /), then
| ecai@d = [ ooy

or all e > 0. In particular,
f p

wl\" ix-&  —e|lwé| £

(51) [ emecelfoe = [ Py-o.2)sn
and

<|w|> /n evirleeltl f Ve = | W(y—z,¢)f(y)dy.

2T R”

Proof. From (iii) and (iv) in Proposition 1.3, it implies (. e* @< ®(c€))(y) = - (y — z).
The first result holds immediately with the help of Theorem 1.12. The last two follow
from (1.9), (1.10) and (1.12). |

Lemma 1.14. (i) [, W(z,e)dx =1 forall ¢ > 0.
(i) frn P(x,c)dz =1 forall e > 0,

Proof. By a change of variable, we first note that

962
W (z,e)dz = / (dme) 2 i de = | W(z,1)dz,
R™ Rn Rn

and

Cné B
. P(z,e)dx = /R” @ 1) dx = . P(z,1)dz.

Thus, it suffices to prove the lemma when ¢ = 1. For the first one, we use a change of
variables and the formula for the integral of a Gaussian: [ e ™ dr = 1to get

P
/ W(z,1)dx :/ (47[')_71/26_%611' :/ (4%)_"/26_“‘3/'22"77"/%3/ =1.
R7 R7 R7

For the second one, we have
1
. P(xz,1)dx = ¢, /Rn (& ()2 dzx.
Letting r = |z, 2/ = z/r (wWhen z # 0), S" ! = {z € R" : |z| = 1}, d2’ the element
of surface area on S"~! whose surface area® is denoted by w,,_1 and, finally, putting
r = tan 6, we have

1 — = 1 /,.n—1
/Rn <1+y:c|2)<n+1>/2df”‘/0 /S A1)yt dr

Yop_1 =202 /T (n)2).
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00 Tn—l
=Wp—1 /0 —(1 )2 dr

/2
=Wn—1 / sin” 1 9de.
0

But w,,_; sin” ! § is clearly the surface area of the sphere
of radius sin f obtained by intersecting S™ with the hy-
perplane z; = cosf. Thus, the area of the upper half of
S™ is obtained by summing these (n — 1) dimensional
areas as 6 ranges from 0 to 7/2, that is,
/2
Wh—1 / ! sin" "1 9dh = &,
0 2
which is the desired result by noting that 1/c,, = w;, /2.
|

Theorem 1.15. Suppose ¢ € L*(R™) with [, o(x)dz = 1 and let . (x) = e "p(z /) for
e>0.Iffe LP(R"),1 <p < oo, 0r f e Co(R™) C L®(R™), then for 1 < p < oo

| f * e — fllp = 0, ase = 0.
In particular, the Poisson integral of f:

u@e) = [ Ple=y,e)f(y)dy
and the Gauss-Weierstrass integral of f:
s(x,e) = L Wi(x —y,e)f(y)dy

converge to f in the LP norm as € — 0.

Proof. By a change of variables, we have

/Rn Pe(y)dy = /Rn e "p(y/e)dy = /Rn p(y)dy = 1.

Hence,

(F *9)(@) = F@) = [ 1o =) = F@)los )

Therefore, by Minkowski’s inequality for integrals and a change of variables, we get

I <= 7l < [ 176 =) = F@)lbe " lelu/o)ldy

:/Rn 1£(x — ey) — F@)llple()ldy.

We point out thatif f € LP(R"), 1 < p < oo, and denote || f(z—t)— f(x)||, = Af(t),
then Af(t) — 0,ast — 0.° In fact, if f1 € 2(R") := C§°(R") of all C*° functions
with compact support, the assertion in that case is an immediate consequence of the
uniform convergence fi(z —t) — fi(x), ast — 0. In general, for any ¢ > 0, we can
write f = fi + fa, such that f; is as described and || f2||, < o, since Z(R") is dense in
LP(R™) for 1 < p < oo. Then, A¢(t) < Ay, (t) + Ay, (t), with Af, (1) = 0ast — 0, and
Ay, (t) < 20. This shows that A¢(t) — 0ast — 0 for general f € LP(R"), 1 < p < oo.

For the case p = oo and f € Cy(R"), the same argument gives us the result since
2(R™) is dense in Cy(R"™) (cf. [Rud87, p.70, Proof of Theorem 3.17]).

°This statement is the continuity of the mapping t — f(z —t) of R™ to L*(R™).
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Thus, by the Lebesgue dominated convergence theorem (due to ¢ € L' and the
fact Ar(ey)|e(y)| < 2|/ fllple(y)|) and the fact A¢(ey) — 0 as e — 0, we have

. _ <1 _ . _o.
lim [| £+ pe = fllp < lim /Rn Ag(ey)lp(y)ldy /Rn lim As(ey)le(y)ldy = 0
This completes the proof. [ ]

With the same argument, we have

Corollary 1.16. Let 1 < p < oo. Suppose ¢ € L*(R™) and [, ¢(x)dx = 0, then || f *
@ellp = 0as e — 0 whenever f € LP(R™), 1 < p < oo, or f € Cy(R™) C L=(R™).

Proof. Once we observe that

(F +90)(@) =(f + 9)(a) ~ Fla) -0 = (F @)~ @) [ oulu)dy
= [ =)= f@lecw)d.

the rest of the argument is precisely that used in the last proof. [ |

In particular, we also have

Corollary 1.17. Suppose ¢ € L*(R™) with [, o(x)dz = 1 and let p.(z) = e "p(z/e)
fore > 0. Let f(xz) € L*°(R™) be continuous at {0}. Then
lim /R f(@)p-(@)dz = £(0).

e—0

Proof. Since [g,, f(z)pe(x)dx — = Jan(f 1(0))¢:(z)dz, then we may assume
without loss of generality that f( ) = 0. Smce f is continuous at {0}, then for any
n > 0, there exists a § > 0 such that

n
Ol < o

whenever |z| < J. Noticing that | Jrn e(x)dz| < ||¢||1, we have

[ @) < [ @l [ ol

=

<ol + [ lloe / o(y)ldy
llellt ly|>d/e

=1+ || flloo e
But I. — 0 as e — 0. This proves the result. n

From Theorems 1.13 and 1.15, we obtain the following solution to the Fourier
inversion problem:

Theorem 1.18. If both ® and its Fourier transform ¢ = ® are integrable and Jgn o(z)dz =
1, then the ® means of the integral (lw|/2m)" [g, e €£(€)de converges to f(x) in the L'
norm. In particular, the Abel and Gauss means of this integral converge to f(x) in the L
norm.

We have singled out the Gauss-Weierstrass and the Abel methods of summability.
The former is probably the simplest and is connected with the solution of the heat
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equation; the latter is intimately connected with harmonic functions and provides us
with very powerful tools in Fourier analysis.

n . A
Since s(z,¢e) = <%> Jgn ewivEeelwe f(&)dg converges in L' to f(z) ase > 0
tends to 0, we can find a sequence ¢, — 0 such that s(z,e) — f(x) for a.e. z. If we

further assume that f € L'(R"), the Lebesgue dominated convergence theorem gives
us the following pointwise equality:

Theorem 1.19 (Fourier inversion theorem). If both f and f are integrable, then

s = (B [ e<fierae,

for almost every x.

Remark 1.20. We know from Theorem 1.5 that f is continuous. If f is integrable, the

integral [g, e”@* f(€)de also defines a continuous function (in fact, it equals f(=z)).
Thus, by changing f on a set of measure 0, we can obtain equality in Theorem 1.19
for all x.

It is clear from Theorem 1.18 that if f(¢) = 0 for all ¢ then f(z) = 0 for almost
every z. Applying this to f = fi — f2, we obtain the following uniqueness result for
the Fourier transform:

Corollary 1.21 (Uniqueness). If f; and f, belong to L' (R™) and f1(€) = fo(€) for € €
R™, then fi1(z) = fa(x) for almost every x € R™.

We will denote the inverse operation to the Fourier transform by .Z ! or *. If
f € L', then we have

for= (5) [ e <reae .13

We give a very useful result.

Theorem 1.22. Suppose f € L'(R™) and f > 0. If f is continuous at 0, then
_ (N s
0= () [ i
Moreover, we have f € L'(R™) and

s = (B [ e<jierae

for almost every x.

Proof. By Theorem 1.13, we have
(51) [ eioe= [ Pwoswi

From Lemma 1.14, we get, for any § > 0,

/Rn Ply,e)f(y)dy — f(O)‘ = ’/Rn Py, )[f(y) — £(0)]dy
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<

P(y,e)lf(y) — f(0)]dy| +

| Pl - f)ldy
ly| =6

ly|<o

=1 + Is.
Since f is continuous at 0, for any given o > 0, we can choose § small enough such
that |f(y) — f(0)] < o when |y| < 4. Thus, I; < ¢ by Lemma 1.14. For the second
term, we have, by a change of variables, that

L <|[fllh sup Ply,e) +1£0)| [ Ply,e)dy
ly| =6 ly|=d
171 T 1(0)] P(y,1)dy — 0
= 1 ) Y )
(g2 + §2)(n+1)/ ly|>8/e

as ¢ — 0. Thus, (M) Jgn el f(€)d¢ — f(0) as e — 0. On the other hand, by
Lebesgue dominated convergence theorem, we obtain

<|W|> / 4G dﬁ—(' |> hm/ el f(&)de = £(0),

which implies f € LY(R") due to f > 0. Therefore, from Theorem 1.19, it follows the
desired result. ]

An immediate consequence is

Corollary 1.23. i) [5, e TEW (€, €)dE = e—€lwzl®
ii) [pn €T EP(E €)dE = e =19z

Proof. Noticing that

W e)=F ((';J)neslwmlz) ,and P(¢,e) = .F <<|2°;|>n eﬁlwx> :

we have the desired results by Theorem 1.22. [ ]

We also have the semigroup properties of the Weierstrass and Poisson kernels.

Corollary 1.24. If a1 and o are positive real numbers, then
1) W(&a a1 + a2 fR” f 7, Oél)W(Uv a2)d77-
il) P(&, 00 + a2) = [gn P(§ —n, a1)P(n, az)dn.

Proof. 1t follows, from Corollary 1.23, that
|wl

W)n (Femlerreallonly()

)n%em'ww'%%'w?)(@
)

n
:<|> X e—wixfe—oc1|wx|2 A 6wm.nW(77,Ck2)d77dIE

:/ </ e~ wim (=) <M> 6_0‘1|W|2d$> W (n,az)dn
Rn Rn 27
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= [ Wie=na)Wna)dn
A similar argument can give the other equality. u

Finally, we give an example of the semigroup about the heat equation.

Ex. 1.25. Consider the Cauchy problem to the heat equation
—Au=0, u(0)=u(x), t>0, zecR"
Taking the Fourier transform, we have
iy + wga =0, a(0) = 1o (€).
Thus, it follows, from Theorem 1.10, that
u :ﬁfle*“"g‘ztﬁuo = (9\*16*“"5‘%) * Uy = (47rt)*"/2e*‘m|2/4t * UQ
=W(x,t) *xup =: H(t)up.
Then, we obtain
H(ty + to)ug =W (z,t1 + to) x ug = Wi(x,t1) x W(z,t2) * ug
=W (x,t1) (W (z,te) *xug) = W(x,t1) * H(t2)uo
=H (t1)H (t2)uo,
ie., H(tl + tQ) = H(tl)H(tg).

1.2 The L? theory and the Plancherel theorem

The integral defining the Fourier transform is not defined in the Lebesgue sense
for the general function in L?(R"); nevertheless, the Fourier transform has a natural
definition on this space and a particularly elegant theory.

If, in addition to being integrable, we assume f to be square-integrable then f will
also be square-integrable. In fact, we have the following basic result:

Theorem 1.26 (Plancherel theorem). If f e LY(R") N L2(R"), then |fll. =

()™ 1l

Proof. Let g(x) = f(—z). Then, by Theorem 1.1, h = f x g € L'(R") and, by Propo-
sition 1.3, h = f g. Butg = f thus h = | f > > 0. Applying Theorem 1.22, we have
h € L*(R™) and h(0 |w|> Jan 1(€)dE. Thus, we get

NGRS / aie— (54) "no
_<’2°;|> [ H@)(0 - 2)da

(N [ sor@e= ()" [ rwipae

which completes the proof. [

A

Since L' N L? is dense in L?, there exists a unique bounded extension, .%, of this
operator to all of L?. . will be called the Fourier transform on L?; we shall also use
the notation f = .% f whenever f € L?(R").
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A linear operator on L%(R™) that is an isometry and maps onto L?*(R") is called a

n/2
unitary operator. It is an immediate consequence of Theorem 1.26 that (M) F is an

n/2_
isometry. Moreover, we have the additional property that (M) Z is onto:
n/2
Theorem 1.27. <%) Z is a unitary operator on L*(R™).

||

n/2
Proof. Since (2 ) Z is an isometry, its range is a closed subspace of L?(R™). If this

subspace were not all of L?(R"), we could find a function g such that Jan fgdz =0
for all f € L? and [|gll2 # 0. Theorem 1.12 obviously extends to L?; consequently,
Jgn f9dx = [gn fgdz = 0 for all f € L?. But this implies that g(z) = 0 for almost

—n/2
every x, contradicting the fact that ||g||2 = (%) llgll2 # 0. [ |

Theorem 1.27 is a major part of the basic theorem in the L? theory of the Fourier
transform:

Theorem 1.28. The inverse of the Fourier transform, % ~1, can be obtained by letting
@l

# e = (E) =
forall f € L*(R™).

We can also extend the definition of the Fourier transform to other spaces, such
as Schwartz space, tempered distributions and so on.

1.3 Schwartz spaces

Distributions (generalized functions) aroused mostly due to Paul Dirac and his
delta function §. The Dirac delta gives a description of a point of unit mass (placed
at the origin). The mass density function is such that if its integrated on a set not
containing the origin it vanishes, but if the set does contain the origin it is 1. No
function (in the traditional sense) can have this property because we know that the
value of a function at a particular point does not change the value of the integral.

In mathematical analysis, distributions are objects which generalize functions and
probability distributions. They extend the concept of derivative to all integrable func-
tions and beyond, and are used to formulate generalized solutions of partial differ-
ential equations. They are important in physics and engineering where many non-
continuous problems naturally lead to differential equations whose solutions are dis-
tributions, such as the Dirac delta distribution.

“Generalized functions” were introduced by Sergei Sobolev in 1935. They were
independently introduced in late 1940s by Laurent Schwartz, who developed a com-
prehensive theory of distributions.

The basic idea in the theory of distributions is to consider them as linear func-
tionals on some space of “regular” functions — the so-called “testing functions”. The
space of testing functions is assumed to be well-behaved with respect to the opera-
tions (differentiation, Fourier transform, convolution, translation, etc.) we have been
studying, and this is then reflected in the properties of distributions.
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We are naturally led to the definition of such a space of testing functions by the
following considerations. Suppose we want these operations to be defined on a func-
tion space, ., and to preserve it. Then, it would certainly have to consist of functions
that are indefinitely differentiable; this, in view of part (v) in Proposition 1.3, indicates
that each function in .7, after being multiplied by a polynomial, must still be in .7
We therefore make the following definition:

Definition 1.29. The Schwartz space . (R™) of rapidly decaying functions is defined
as

L (R") = {90 € C®[R") : |plap = suﬂg ]wo‘(ﬁﬁap)(x)] < o0, Vo, B € Ng}, (1.14)
xER™
where Ny = NU {0}.

If o € .7, then |¢p(x)| < Cypn(1 + |z|)~™ for any m € Ny. The second part of next
example shows that the converse is not true.

Ex. 1.30. o(x) = e*5|x|2, e > 0, belongs to .#’; on the other hand, ¢(z) = e*5|‘”|fails to be
differential at the origin and, therefore, does not belong to ..

Ex. 1.31. ¢(z) = e =0+ belongs to . for any ,~ > 0.

Ex. 1.32. . contains the space 2(R"™).
But it is not immediately clear that & is nonempty. To find a function in 2, con-
sider the function »
e t> 0,
)= { 0, t<0.
Then, f € C*, is bounded and so are all its derivatives. Let o(t) = f(1 +1¢)f(1 —1),
then o(t) = e~2/0~) if || < 1, is zero otherwise. It clearly belongs to 2 = Z(R').
We can easily obtain n-dimensional variants from ¢. For examples,
(i) For z € R", define () = ¢(x1)p(z2) - - - p(zp), then ¢ € Z(R™);
(i) For z € R™, define 1(z) = e 2/0=171") for |z| < 1 and 0 otherwise, then v €
2(R");
(iii) If n € C*° and 9 is the function in (ii), then ¢ (ex)n(x) defines a function in
2(R™); moreover, 2y (ex)n(x) — n(z) as e — 0.

Ex. 1.33. We observe that the order of multiplication by powers of x1,--- ,x, and differ-
entiation, in (1.14), could have been reversed. That is, ¢ € ./ if and only if ¢ € C* and
sup,ern |0%(2%p(z))| < oo for all multi-indices o and B of nonnegative integers. This
shows that if P is a polynomial in n variables and ¢ € ¥ then P(z)p(x) and P(0)p(x) are
again in .#, where P(0) is the associated differential operator (i.e., we replace x by 0% in
P(xz)).

Ex. 1.34. Sometimes . (R™) is called the space of rapidly decaying functions. But observe
that the function p(x) = e~*¢'" is not in . (R). Hence, rapid decay of the value of the
function alone does not assure the membership in .7 (R).
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Theorem 1.35. The spaces Co(R™) and LP(R™), 1 < p < oo, contain . (R™). Moreover,
both .7 and 9 are dense in Cy(R"™) and LP(R") for 1 < p < oo.

Proof. ¥ C Cy C L* is obvious by (1.14). The L? norm of ¢ € . is bounded by a
finite linear combination of L norms of terms of the form z“p(z). In fact, by (1.14),

we have
1/p
( / rmx)\pdx)
1/p 1/p
<</ |so<x>pdx) +</ rwz)\pdx)
lz|]<1 |z|>1
1/p 1/p
<eroo</ dx) +H\~”C|2"!<P(x)Hoo</ W“pda:>
|z|<1 |z|>1

_ (Wn-1 1/p Wn—1 e 2n
—< " ) H<'0||°O+<(2p—1)n> H\xl ’<P|Hoo

<0o0.

For the proof of the density, we only need to prove the case of & since ¥ C .. We
will use the fact that the set of finite linear combinations of characteristic functions of
bounded measurable sets in R" is dense in LP(R"), 1 < p < oco. This is a well-known
fact from functional analysis.

Now, let £ C R" be a bounded measurable set and let ¢ > 0. Then, there exists
a closed set F' and an open set () such that ¥ C £ C Q and m(Q \ F) < & (or only
m(Q) < eP if there is no closed set F' C E). Here m is the Lebesgue measure in R".
Next, let ¢ be a function from 2 such that suppp C Q, | =1and 0 < ¢ < 1. Then,

W—XMEZ/‘¢@V—MﬂWM$</ dz =m(Q\ F) <’
Rn Q\F
or

e — xEllp <e,
where xr denotes the characteristic function of E. Thus, we may conclude that
2 (R") = LP(R™) with respect to L” measure for 1 < p < oc.
For the case of Cj, we leave it to the interested reader. [ |

Remark 1.36. The density is not valid for p = co. Indeed, for a nonzero constant
function f = ¢y # 0 and for any function ¢ € Z(R"), we have

If = ¢lloo > [co| > 0.
Hence we cannot approximate any function from L*(R") by functions from 2(R").
This example also indicates that .# is not dense in L since lim |p(z)| = 0 for all

|z|—o00
pe.S.
From part (v) in Proposition 1.3, we immediately have

Theorem 1.37. If p € ., then ¢ € .7
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If 9,9 € .7, then Theorem 1.37 implies that ¢,1 € .. Therefore, p1) € .7. By
part (vi) in Proposition 1.3, i.e., .# (¢ * 1) = ¢1), an application of the inverse Fourier
transform shows that

Theorem 1.38. If p, ¢ € .7, then p x 1 € 7.

The space .(R") is not a normed space because |¢|, s is only a semi-norm for
multi-indices « and S, i.e., the condition
|¢|a,p = 0if and only if p = 0
fails to hold, for example, for constant function ¢. But the space (.7, p) is a metric
space if the metric p is defined by

= 3 glal-isl 12" Vlap o — Plas
,ﬂEN" 1 + |()0 w|0¢,ﬁ

Theorem 1.39 (Completeness). The space (.7, p) is a complete metric space, i.e., every
Cauchy sequence converges.

Proof. Let {¢1}72, C - be a Cauchy sequence. For any o > 0 and any v € Ng, let
= 211;‘:, then there exists an Ny(¢) € N such that p(¢g, pm) < € when k,m > Ny(e)
since {¢1}72, is a Cauchy sequence. Thus, we have
[Pk — Pmloy o

1+|90k’_90m0,'y 1+o’

and then
sup |07 (g — om)| < o
rxeK

for any compact set K C R". It means that {¢.}7°, is a Cauchy sequence in the
Banach space C1"/(K'). Hence, there exists a function ¢ € C1l(K) such that

lim ¢ = ¢, in CI(K).

k—r00
Thus, we can conclude that ¢ € C°°(R"). It only remains to prove that ¢ € .. Itis
clear that for any a, 8 € Njj

sup |z 8’84,0\ sup 1299% (o1, — ©)| + sup 2207 gy
TeK zeK

<Ca( ) sup |0° (¢r — ©)| + sup |z20%y|.
rzeK zeK

Taking k£ — oo, we obtain
sup [299% | < limsup [ppla.s < oo

zeK k—o0
The last inequality is valid since {¢;}7°, is a Cauchy sequence, so that |py|q g is
bounded. The last inequality doesn’t depend on K either. Thus, |¢|, 3 < co and then
p e |

Moreover, some easily established properties of . and its topology, are the fol-
lowing:

Proposition 1.40. i) The mapping ¢ (x) — x20°p(x) is continuous.

ii) If ¢ € 7, then limp,_,0 T = .

iii) Suppose ¢ € % and h = (0,--- , h;,--- ,0) lies on the i-th coordinate axis of R",
then the difference quotient [¢ — T,]/h; tends to Op/Ox; as |h| — 0.
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iv) The Fourier transform is a homeomorphism of .# onto itself.
v) .7 is separable.

Finally, we describe and prove a fundamental result of Fourier analysis that is
known as the uncertainty principle. In fact this theorem was ”discovered” by W.
Heisenberg in the context of quantum mechanics. Expressed colloquially, the uncer-
tainty principle says that it is not possible to know both the position and the momen-
tum of a particle at the same time. Expressed more precisely, the uncertainty principle
says that the position and the momentum cannot be simultaneously localized.

In the context of harmonic analysis, the uncertainty principle implies that one
cannot at the same time localize the value of a function and its Fourier transform.
The exact statement is as follows.

Theorem 1.41 (The Heisenberg uncertainty principle). Suppose 1 is a function in
7 (R). Then

" w\ 72 |l9113
lovlledl > (1) Dele

and equality holds if and only if () = Ae~B*" where B > 0 and A € R.
Moreover, we have

(@ — zo)llal (€ — E0)ibll2 > (

-1/2

) % 013
27 2|w|
for every xg, & € R.

Proof. The last inequality actually follows from the first by replacing 1(z) by e <04 (z+
x0) (Whose Fourier transform is e2##0(£+€0)4) (¢ +&,) by parts (ii) and (iii) in Proposition
1.3) and changing variables. To prove the first inequality, we argue as follows.
Since ¢ € ., we know that ¢ and ¢’ are rapidly decreasing. Thus, an integration
by parts gives
Wl = [ lwtPds =~ [ ol o)

—00 —

— [ (20 @) + T @w(a) da

—00

The last identity follows because |)|? = 1. Therefore,
9l <2 | felote)| (@)lds < 2ov el

where we have used the Cauchy-Schwarz inequality. By part (v) in Proposition 1.3,
we have .Z (1) (&) = wi)(€). It follows, from the Plancherel theorem, that
/ WY wl\ "2 )
1= (5) " 1e @l = (52) " elledl
Thus, we conclude the proof of the inequality in the theorem.

If equality holds, then we must also have equality where we applied the Cauchy-
Schwarz inequality, and as a result, we find that ¢/(z) = Sz (z) for some constant
B. The solutions to this equation are ¢)(z) = AeP7/2 where A is a constant. Since we
want ¢ to be a Schwartz function, we must take 8 = —2B < 0. [ |
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1.4 The class of tempered distributions

The collection . of all continuous linear functionals on .# is called the space of
tempered distributions. That is

Definition 1.42. The functional 7" : . — C is a tempered distribution if
i) T'is linear, i.e., (T, ap + B) = (T, @) + B(T,¢) forall a, f € Cand ¢, ¢ € L.
ii) T is continuous on ., i.e., there exist ng € Ny and a constant ¢y > 0 such that

(T, o) <o D |¢las
|a,|B8]<no
for any ¢ € .7.

In addition, for Ty, T € ./, the convergence Tj, — T in ./ means that (T}, ¢) —
(T',p)inCforall p € .7.

Remark 1.43. Since & C .7, the space of tempered distributions .’ is more narrow
than the space of distributions 2/, i.e., ¥/ C 2'. Another more narrow distribution
space &’ which consists of continuous linear functionals on the (widest test function)
space & := C*°(R"). In short, ¥ C ./ C & implies that

&cs'c.

Ex.1.44. Let f € LP(R"), 1 < p < oo, and define T' = T by letting
To) = (Tr6) = [ f@hpla)da

for ¢ € 7. It is clear that T is a linear functional on .. To show that it is continuous,
therefore, it suffices to show that it is continuous at the origin. Then, suppose ¢, — 0 in
& as k — oo. From the proof of Theorem 1.35, we have seen that for any q > 1, ||kl is
dominated by a finite linear combination of L> norms of terms of the form x“py(x). That is,
|0k || is dominated by a finite linear combination of semi-norms |k |a,0. Thus, ||¢kllq — 0
as k — oo. Choosing q = p', i.e., 1/p+ 1/q = 1, Holder’s inequality shows that |(T, p)| <
| fllpllrlly — 0as k — oo. Thus, T € ..

Ex. 1.45. We consider the casen = 1. Let f(x) = > 1o, axz” be a polynomial, then f € "
since

(T, )] = ‘ /}R 3" apatio(z)de
k=0

<Dl /R(l + 2T+ ) el (@) |da

k=0

m
<CZ |@k|80|k+1+570/(1 + |13\)_1_6dx,
R
k=0

so that the condition ii) of the definition is satisfied for ¢ = 1 and no = m + 2.

Ex. 1.46. Fix zo € R" and a multi-index 3 € Nij. By the continuity of the semi-norm | - |, 3
in ., we have that (T, p) = 0°p(x¢), for ¢ € .7, defines a tempered distribution. A special
case is the Dirac d-function: (T, o) = ¢(0).
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The tempered distributions of Examples 1.44-1.46 are called functions or mea-
sures. We shall write, in these cases, f and 0 instead of 7 and Ts. These functions
and measures may be considered as embedded in .. If we put on .#” the weakest
topology such that the linear functionals 7' — (T',¢) (¢ € .¥) are continuous, it is
easy to see that the spaces LP(R"), 1 < p < oo, are continuously embedded in .7".
The same is true for the space of all finite Borel measures on R"”, i.e., Z(R").

There exists a simple and important characterization of tempered distributions:

Theorem 1.47. A linear functional T on .7 is a tempered distribution if and only if there
exists a constant C' > 0 and integers ¢ and m such that

(To)l<C Y o

lal <6 18l<m

a?ﬂ

forall p € 7.

Proof. It is clear that the existence of C, ¢, m implies the continuity of 7'.

Suppose T is continuous. It follows from the definition of the metric that a ba-
sis for the neighborhoods of the origin in .7 is the collection of sets N, /., = {¢ :
> lal<t,|8)<m [Pla,s < €}, where € > 0 and ¢ and m are integers, because ¢, — ¢ as
k — oo if and only if |p, — ¢|as — 0 for all («, §) in the topology induced by this
system of neighborhoods and their translates. Thus, there exists such a set N. .,
satisfying |(T', ¢)| < 1 whenever ¢ € N, /.

Let ||l¢| = Zlaléﬂ\ﬁlém |olapg forall ¢ € . If 0 € (0,¢), then ¥ = op/[l¢| €
N¢ 1.m if ¢ # 0. From the linearity of 7', we obtain

o
o STl = (Tl < 1.
But this is the desired inequality with C' = 1/0. [

Ex. 148. Let T € " and ¢ € P(R") with ¢(0) = 1. Then the product p(z/k)T is
well-defined in .7 by

(o(z/R)T, ) = (T p(z/k)Y),
forall o € .. If we consider the sequence Ty, := p(x/k)T", then

(T, ) = (T, p(x/k)p) — (T, 9)
as k — oo since p(x/k) — ¢ in . Thus, Ty, — T in . as k — oco. Moreover, T}, has
compact support as a tempered distribution in view of the compactness of ¢, = ¢(x/k).
Now we are ready to prove more serious and more useful fact.

Theorem 1.49. Let T' € ., then there exists a sequence {T},}7° , C . such that

Tig) = [ Tu@)e(o)dz = (Tp), ask =
R™
where ¢ € .. In short, 7 is dense in . with respect to the topology on ..

Proof. If h and g are integrable functions and ¢ € .7, then it follows, from Fubini’s
theorem, that

(hxg,0) = /Rn o(z) /n h(z —y)g(y)dydz = /n 9(y) / h(z — y)p(z)dady

_ / o) / Rh(y - 2)p(a)dedy = (g, Rh = ¢),
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where Rh(x) := h(—x) is the reflection of h.

Letnow ¢ € Z(R") with [, ¢¥(z)dz = 1 and ¢(—z) = ¥(z). Let ¢ € Z(R") with
¢(0) = 1. Denote ty(z) := k™ (kz). For any T € .#’, denote T}, := 1), * Ty, where
Ty = ¢(z/k)T. From above considerations, we know that (¢, * T, ©) = (Tj, Ribp % ©).

Let us prove that these T}, meet the requirements of the theorem. In fact, we have

=(T', C(z/k)(Yr * ¢)) = (T, ), ask — oo,
by the fact Y, xp — pin.# as k — oo in view of Theorem 1.15, and the fact {(x/k) — 1
pointwise as k — oo since ((0) = 1 and ((z/k)¢p — ¢ in . as k — oo. Finally, since
Vg, ¢ € 2(R™), it follows that T, € 2(R™) C ./ (R"™). [ |

Definition 1.50. Let L : . — .7 be a linear continuous mapping. Then, the
dual/conjugate mapping L' : ./ — %’ is defined by

(L'T, @) :=(T,Ly), TeS, pe.
Clearly, L' is also a linear continuous mapping.

Corollary 1.51. Any linear continuous mapping (or operator) L : ¥ — % admits a linear
continuous extension L : /" — ..

Proof. If T' € ., then by Theorem 1.49, there exists a sequence {7}}?°, C . such
that T, — T in .¥’" as k — co. Hence,
(LT, @) = (Ty, L'p) — (T, L'¢) := (LT, ), ask — oo,
forany p € .. |
Now, we can list the properties of tempered distributions about the multiplica-
tion, differentiation, translation, dilation and Fourier transform.

Theorem 1.52. The following linear continuous operators from . into . admit unique
linear continuous extensions as maps from " into .”': For T € /' and ¢ € .7,

) (WT, ) = (T,¢p), ¥ € 7.

ii) (0T, ) := (T, (—1)1*9*p), a € Ng.

iii) (7T, @) := (T, 7_p), h € R™.

iv) (0T, ) := (T, [A[T"1a00), 0 # A ER.

V) (T, ¢) = (T, F).

Proof. See the previous definition, Theorem 1.49 and its corollary. |

Remark 1.53. Since (FLFT,p) = (FT,F L¢) = (T,F7F o) = (T, p), we get
FIF=FF 1 =Iin5.

Ex. 1.54. Since for any ¢ € .7,
(71,9) =(1, F ) =/ (Fp)(€)dE
R
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_ (';’T‘) - F 1 Zp(0) = (|2er|) B ¢(0)

we have

- n
Moreover, § = (%) - 1.

Ex. 1.55. For ¢ € .7, we have
B.0) = (6.50) = 0) = [ e = 0p(a)do = (L),
Thus, 6 = 1in .7

Ex. 1.56. Since -
(090, 0) =070, ¢) = (=1)1°1(5,07¢) = (5, F[(wi€)¢])

=(0, (wi§)%p) = (wi§)*, ¥),
we have 55 = (wi&)“.
Now, we shall show that the convolution can be defined on the class .. We first
recall a notation we have used: If g is any function on R", we define its reflection, Ry,

by letting Rg(x) = g(—x). A direct application of Fubini’s theorem shows that if u, ¢
and ¢ are all in ., then

/ (u ) (@) (x)de = / u()(Rp % )(x)dz.
Rn R™

The mappings ¢ — [p.(u * ¢)(2)¢(z)dz and 0 — [, u(x)0(z)dz are linear func-
tionals on .. If we denote these functionals by u * ¢ and u, the last equality can be
written in the form:

(u* @,y = (u, Rp * ). (1.15)
If u € " and ¢, ¥ € ., the right side of (1.15) is well-defined since Ry * ¢ € ..
Furthermore, the mapping ¢ — (u, Ry *1)), being the composition of two continuous
functions, is continuous. Thus, we can define the convolution of the distribution u
with the testing function ¢, u * ¢, by means of equality (1.15).
It is easy to show that this convolution is associative in the sense that (u* ) 1) =
ux* (¢ x 1) whenever u € .’ and ¢, ¢ € .. The following result is a characterization
of the convolution we have just described.

Theorem 1.57. If u € ' and ¢ € ., then the convolution u ¢ is the function f,
whose value at x € R™ is f(x) = (u, 7 Rp), where 7., denotes the translation by x operator.
Moreover, f belongs to the class C*° and it, as well as all its derivatives, are slowly increasing.

Proof. We first show that f is C*° slowly increasing. Let h = (0,--- , hj,---,0), then
by part iii) in Proposition 1.40,
Totrh R — 7o R o 6R<,07
hj 9y;
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as |h| — 0, in the topology of .. Thus, since u is continuous, we have
fx+h)— f(x) , 7eynRp—1.Ro ORy
I - <u7 [y > ) _TxTy>
j J j
as h; — 0. This, together with ii) in Proposition 1.40, shows that f has continuous
first-order partial derivatives. Since ORyp/0y; € ., we can iterate this argument
and show that 9° f exists and is continuous for all multi-index 3 € NZ. We observe
that 9° f(x) = (u, (—1)1¥17,0° Ry). Consequently, since ° Ry € .7, if f were slowly
increasing, then the same would hold for all the derivatives of f. In fact, that f is
slowly increasing is an easy consequence of Theorem 1.47: There exist C' > 0 and
integers ¢ and m such that

[f(@)] = (0, 7Re)| S C Y [TaRplap.
laf<L|Bl<m
But |7: R|a,s = SUpycpn ly*0° Rp(y — x)| = Supyegn | (Y + x)*0” Ro(y)| and the latter
is clearly bounded by a polynomial in z.
In order to show that u * ¢ is the function f, we must show that (u * ¢,¢) =

S J (@) (x)dz. But,
(w5 0,16 =(u, Rp 5 ) = (u, / Ro(- — 2)p(z)dz)

n

~tu. [ moRe(y(e)da)
_ / (wreRepp(@)dr = | [y

since u is continuous and linear and the fact that the integral [, 7. Ro(y)(x)dx con-
verges in ./, which is the desired equality. [

— (u

1.5 Characterization of operators commuting with translations

Having set down these facts of distribution theory, we shall now apply them to
the study of the basic class of linear operators that occur in Fourier analysis: the class
of operators that commute with translations.

Definition 1.58. A vector space X of measurable functions on R" is called closed under
translations if for f € X we have 7,f € X for all y € R". Let X and Y be vector
spaces of measurable functions on R” that are closed under translations. Let also T’
be an operator from X to Y. We say that T commutes with translations or is translation
invariant if

T(ryf) = 7y(Tf)
forall f € X and all y € R™.

It is automatic to see that convolution operators commute with translations. One
of the main goals of this section is to prove the converse, i.e., every bounded lin-
ear operator that commutes with translations is of convolution type. We have the
following;:
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Theorem 1.59. Let 1 < p,q < oco. Suppose T is a bounded linear operator from LP(R™) into
L4(R™) that commutes with tmnslatzons Then there exists a unique tempered distribution u
such that

Tf=uxf, Vfe.
The theorem will be a consequence of the following lemma.

Lemma 1.60. Let 1 < p < oo. If f € LP(R™) has derivatives in the LP norm of all orders
< n+ 1, then f equals almost everywhere a continuous function g satisfying

9O <C > [10°Flp,
|a|<n+1
where C' depends only on the dimension n and the exponent p.

Proof. Let £ € R™. Then there exists a C, such that
A+[EPI2L A+ bl +--+ 16D <O, D 1€°
ol <n+1

Let us first suppose p = 1, we shall show f € L. By part (v) in Proposition 1.3
and part (i) in Theorem 1.5, we have

O <CLA+[EP) =023 g1 f(©)

la|<n+1

=C(1+ [¢)~ D2 N Jwl Tl Z(9%£)(©)]
lo]<nt1

<C"(1+ [¢) DN 0% £
la|<n+1

Since (1+|¢[2)~("+1)/2 defines an integrable function on R”, it follows that f € L'(R")
and, lettmg C" = C" [au(1+ |€[%)~(FD/2dg, we get

Ifle<c™ > 19 flh
lo|<n+1
Thus, by Theorem 1.19, f equals almost everywhere a continuous function g and by

Theorem 1.5,
W
90 < Il < (52) Ui e 32 1ol

|o| <n+1
Suppose now that p > 1. Choose ¢ € Z(R") such that p(z) = 1if |z] < 1 and
¢(z) = 0if |z| > 2. Then, it is clear that fo € L'(R"). Thus, f¢ equals almost
everywhere a continuous function h such that

RO <C D> 110*(fo)ll-

|a| <n+1
By Leibniz’ rule for differentiation, we have 9%(fy) = 3_ ., i LM f8” o, and then
10°(fo)lln < / 3 —|a“f|\a”so|dx

<2 o za P

C sup |07y oM f(x)|dx
<Y Cosup >|/|m|<2| f(@)|

,u+1/ a |z|<2
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<A ¥ / 0" f(x)|dz < AB 3" [0 f1]

ul<la 7 IS2 i<l
where A > [|0"¢||s, |V| < |a, and B depends only on p and n. Thus, we can find a
constant K such that

BOI<KE D 0%

lo|<n+1
Since p(z) = 1if |z| < 1, we see that f is equal almost everywhere to a continuous
function g in the sphere of radius 1 centered at 0, moreover,
9O = RO <K Y 110%fllp-
|a|<n+1
But, by choosing ¢ appropriately, the argument clearly shows that f equals almost ev-

erywhere a continuous function on any sphere centered at 0. This proves the lemma.
|

Now, we turn to the proof of the previous theorem.

Proof of Theorem 1.59. We first prove that

PTf=Tdf, Vfe SR". (1.16)
In fact,if h = (0,--- , hj,--- ,0) lies on the j-th coordinate axis, we have
W) =Tf _Tf) =TS _ . (mf - f>
hj h; hi )’

since 7' is linear and commuting with translations. By part iii) in Proposition 1.40,
Thf LR af in . as |h| — 0 and also in L” norm due to the density of . in LP.

J
Since T'is bounded operator from L” to L9, it follows that M %Tf

in L7 as
|h| = 0. By induction, we get (1.16). By Lemma 1.60, 7' f equals almost ever]ywhere a

continuous function g satisfying

lgr () <C Y- NPT Hlle=C Y IIT@ Nl

Bl<n+1 |Bl<n+1

<ITie Y- 107 fllp-
|Bl<n+1
From the proof of Theorem 1.35, we know that the L? norm of f € .7 is bounded
by a finite linear combination of L*° norms of terms of the form z® f(x). Thus, there
exists an m € N such that
groI<c > 2%flle=C > flas

|lal<m, |Bl<n+1 lal<m, |Bl<n+1
Then, by Theorem 1.47, the mapping f + g;(0) is a continuous linear functional on
<, denoted by u;. We claim that u = Ru is the linear functional we are seeking.
Indeed, if f € .7, using Theorem 1.57, we obtain

(ux f)(z) =(u, 7o Rf) = (u, R(T—2 f)) = (Bu, T f) = (u1, 7= f)
=(T (7= /))(0) = (7T f)(0) = Tf(x).
We note that it follows from this construction that u is unique. The theorem is
therefore proved. |

Combining this result with Theorem 1.57, we obtain the fact that T'f, for f € .7,
is almost everywhere equal to a C*° function which, together with all its derivatives,
is slowly increasing.
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Now, we give a characterization of operators commuting with translations in
LY(R").

Theorem 1.61. Let T be a bounded linear operator mapping L*(R™) to itself. Then a neces-
sary and sufficient condition that T' commutes with translations is that there exists a measure
win B(R™) such that Tf = px f, forall f € LY(R™). One has then | T|| = ||p]|.

Proof. We first prove the sufficiency. Suppose that T'f = ux* f for a measure p € Z(R")
and all f € L'(R"™). Since Z C .#”, by Theorem 1.57, we have
Th(Tf) (@) =(Tf)(@ = h) = (p, Te—nRf) = (u(y), f(—y — 2 + h))
=(p, TR f) = px T f = T f,
ie., T = T7,. On the other hand, we have | Tf|1 = ||x* fl1 < [|u]/]|f]l1 which
implies || T[] = |-

Now, we prove the necessariness. Suppose that 7' commutes with translations
and | Tf|lx < |T|If|1 for all f € L*(R™). Then, by Theorem 1.59, there exists a
unique tempered distribution p such that T'f = p* f for all f € .. The remainder is
to prove € ZA(R").

We consider the family of L! functions p. = pux W(-,e) = TW(-,¢), € > 0. Then
by assumption and Lemma 1.14, we get

lpelly < (I TTIW )l = N7
That is, the family {y.} is uniformly bounded in the L! norm. Let us consider L' (R")
as embedded in the Banach space Z(R"). #(R") can be identified with the dual of
Co(R™) by making each v € 2 corresponding to the linear functional assigning to
¢ € C) the value [, ¢(x)dv(z). Thus, the unit sphere of # is compact in the weak*
topology. In particular, we can find a v € # and a null sequence {¢;} such that
fte,, — v as k — oo in this topology. That is, for each ¢ € C,

hrn / x) e, (x)dx = / o(z)dv(z). (1.17)
R
We now claim that v, con51der asa dlstrlbution equals ,u
Therefore, we must show that ( fRn ) forall ¢ € .7. Let . =

W(-,e) x 1. Then, for all a € N", we have 0%, = W( g) x 0%. It follows from
Theorem 1.15 that 0“1, (z) converges to 0“¢(x) uniformly in . Thus, . — ¢ in .
as ¢ — 0 and this implies that (11, 9.) — (1, v). But, since W (-, &) = RW (-, ¢),

(002 = (W8 2 9) = s W20 0) = [ pe(ohio)de

Thus, putting ¢ = ¢y, letting k —> 00 and applying (1.17) with ¢ = 1), we obtain the
desired equality (11, %) = [pn ¥( ). Hence, ;1 € #. This completes the proof. W

For L?, we can also give a very 51mp1e characterization of these operators.

Theorem 1.62. Let T be a bounded linear transformation mapping L?(R™) to itself. Then
a necessary and sufficient condition that T' commutes with translation is that there exists
an m € L®°(R") such that Tf = u  f with & = m, for all f € L*(R™). One has then
171 = lmlloo-

Proof. If v € ." and ¢ € ., we define their product, v1), to be the element of .’ such
that (vy), p) = (v, ¥) for all ¢ € .. With the product of a distribution with a testing
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function so defined we first observe that whenever u € .’ and ¢ € .7, then

F(u* ) =up. (1.18)
To see this, we must show that (% (u * @), ) = (4p, ) for all v € .. It follows im-
mediately, from (1.15), part (vi) in Proposition 1.3 and the Fourier inversion formula,
that

(F(ux ), v) =(ux g, ) = (u, R ) = (4, 7 (R 1))
~ (o (&) e ineo)
- (& (&) Fran-o@i-e) - aeeue)
(i)

Thus, (1.18) is established.

Now, we prove the necessariness. Suppose that 7' commutes with translations
and [T f|l2 < ||T|||f]|2 for all f € L?(R™). Then, by Theorem 1.59, there exists a
unique tempered distribution u such that 7 f = u * f for all f € .. The remainder is
to prove & € L>*(R").

w —n/2
Let @9 = e*%mQ then, we have ¢y € . and ¢y = (M) ¢o by Theorem

1.10 with a = 1/2|w|. Thus, Ty = u * ¢y € L? and therefore ®q := .F (u * o) =
ipo € L? by (1.18) and the Plancherel theorem. Let m(¢) = (%) "2 Iw‘|’5|2<1>0(£) =
Do (£)/P0(8)-
We claim that

F(ux*@)=me (1.19)

for all ¢ € .. By (1.18), it suffices to show that (i@, ¥) = (me, ) for all ¢ € Z since
n/2 w
2 is dense in .. But, ifw € 9,then (¢/0)(§) = (%) / zp(g)@%\éﬁ € 9; thus,
(U@, ¥) =(t, pvb) = (@, ppop/Po) = (Upo, 1/ Po)

w\"? Ll jg2
90 (52) v Fe e

_ /R m(E)FEV(EE = (mp,v).

It follows immediately that & = m: We have just shown that (i, ) = (mp, ) =
(m, ) for all ¢ € ¥ and ¢ € 2. Selecting ¢ such that ¢(&) = 1 for £ € supp ), this
shows that (4, 1) = (m,v) forall ¢ € 2. Thus, &« = m

Due to

R |w| —n/2
gl =1l = (52)  huxols

|w’ —n/2
<(3) " irhiell = it

for all ¢ € .7, it follows that
L = ) e >

for all ¢ € .. This implies that ||T||?> — |m|?> > 0 for almost all z € R™. Hence,
m € L®(R") and ||m|loc < [|T|-
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Finally, we can show the sufficiency easily. If &2 = m € L*>(R"), the Plancherel
theorem and (1.18) immediately imply that

wl

n/2 R
1T fll2 = flux flla = () [mfll2 < llmllooll £12

2m
which yields || 7] < ||m]|co-
Thus, if m = @ € L*°, then ||T|| = [|m||co- [ |

For further results, one can see [SW71, p.30] and [Gra04, p.137-140].
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2.1 Riesz-Thorin’s and Stein’s interpolation theorems

We first present a notion that is central to complex analysis, that is, the holomor-
phic or analytic function.
Let Q2 be an open set in C and f a complex-valued function on Q2. The function f
is holomorphic at the point zy € Q) if the quotient
f(z0+h) — f(20)

h
converges to a limit when h — 0. Here h € C and h # 0 with 2y + h € (, so that

the quotient is well defined. The limit of the quotient, when it exists, is denoted by
f'(20), and is called the derivative of f at zy:

h—0 h

It should be emphasized that in the above limit, & is a complex number that may

approach 0 from any directions.

The function f is said to be holomorphic on Q2 if f is holomorphic at every point of
Q1. If C'is a closed subset of C, we say that f is holomorphic on C'if f is holomorphic
in some open set containing C. Finally, if f is holomorphic in all of C we say that f is
entire.

Every holomorphic function is analytic, in the sense that it has a power series
expansion near every point, and for this reason we also use the term analytic as a
synonym for holomorphic. For more details, one can see [SS03, pp.8-10].

Ex. 2.1. The function f(z) = =z is holomorphic on any open set in C, and f'(z) = 1. The
function f(z) = z is not holomorphic. Indeed, we have
flzo+h) = f(z0) _ R

h
which has no limit as h — 0, as one can see by first taking h real and then h purely imaginary.

>

Ex. 2.2. The function 1/z is holomorphic on any open set in C that does not contain the
origin, and f'(z) = —1/22
29
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One can prove easily the following properties of holomorphic functions.

Proposition 2.3. If f and g are holomorphic in ), then
i) f + g is holomorphic in Qand (f +g9) = f' + ¢
ii) fg is holomorphic in Q and (fg) = f'g+ fg'.
iii) If g(z0) # O, then f /g is holomorphic at zy and
<f>' _fla—fdg
g 9
Moreover, if f : Q@ — U and g : U — C are holomorphic, the chain rule holds

(go )'(z) =4 (f(2)f'(z), forallze Q.
The next result pertains to the size of a holomorphic function.

Theorem 2.4 (Maximum modulus principle). Suppose that 2 is a region with compact
closure Q. If f is holomorphic on Q and continuous on (, then

sup |f(2)] < sup |f(z)].
z€Q)

z€Q\Q

Proof. See [SS03, p.92]. [ ]

For convenience, let S = {z € C : 0 < Rz < 1} be the closed strip, S° = {z € C:
0 < Rz < 1} be the open strip, and 9S = {z € C: Rz € {0,1}}.

Theorem 2.5 (Phragmen-Lindel6f theorem/Maximum principle). Assume that f(z)
is analytic on S° and bounded and continuous on S. Then

sup|(2)| < max (sup|f<zt>| sup\f(1+zt)|>

Proof. Assume that f(z) — 0 as |Jz| — oo. Consider the mapping h : S — C defined
by
eiwz —

Then £ is a bijective mapping from S onto U = {z € C : |z| < 1} \ {%1}, thatis
analytic in S° and maps 9S onto {|z| = 1} \ {£1}. Therefore, g(z) := f(h™1(z)) is
bounded and continuous on U and analytic in the interior U°. Moreover, because of
im0 f (z) =0, lim,_,17 g(z) = 0 and we can extend g to a continuous function
on {z € C: |z| < 1}. Hence, by the maximum modulus principle (Theorem 2.4), we
have

9661 < a9 ()] = mave (sup £ i), sup (1 +i0)]).
|ew|= teR teR
which implies the statement in this case.
Next, if f is a general function as in the assumption, then we consider
f5.20(2) = e5<z_z°)2f(z), d>0, z € S°.
Since |65(Z_ZO)2] < @) with » — zo=x+1iy, —1 <z <landy € R, we have
f5.20(2) = 0 as |Jz| — oco. Therefore

ol =1 Gl < e (s G0, 300 1+ )
teR teR
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<e® max (sup |f(it)|, sup|f(1+ zt)|> .
teR teR
Passing to the limit 6 — 0, we obtain the desired result since zy € S is arbitrary. W

As a corollary we obtain the following three lines theorem, which is the basis for
the proof of the Riesz-Thorin interpolation theorem and the complex interpolation
method.

Theorem 2.6 (Hadamard three lines theorem). Assume that f(z) is analytic on S° and

bounded and continuous on S. Then .

1-6
sup |£(8 + )| < (sup!f(it)l) (sup!f<1+it)\> |
teR teR teR
for every 6 € [0, 1].

Proof. Denote
Ap :=sup |f(it)], A;:= suﬂlg |f (14 dt)].
te

teR
Let A € R and define
F\(z) = e f(2).
Then by Theorem 2.5, it follows that
|F)\(2)| < max(Ag, e Ay).
Hence,
]f(& + ’Lt)| < 6_)\9 maX(Ao, 6)‘141>
for all t € R. Choosing A = In fT? such that e*A; = Ay, we complete the proof. |

In order to state the Riesz-Thorin theorem in a general version, we will state and
prove it in measurable spaces instead of R" only.

Let (X, ;1) be a measure space, i always being a positive measure. We adopt the
usual convention that two functions are considered equal if they agree except on a set
of p-measure zero. Then we denote by LP(X, du) (or simply LP(du), LP(X) or even
LP) the Lebesgue-space of (all equivalence classes of) scalar-valued p-measurable

functions f on X, such that
1/p
151 = ([ 1rran)
X

is finite. Here we have 1 < p < oco. In the limiting case, p = oo, L” consists of all
p-measurable and bounded functions. Then we write

[flloo = sup [f()].
X

In this section, scalars are supposed to be complex numbers.
Let T be a linear mapping from L = LP(X,du) to L9(Y,dv). This means that
T(af + Bg) =T (f)+ BT (g). We shall write
T:LP— LY
if in addition T is bounded, i.e., if

A — o 17l

0 1 fll
is finite. The number A is called the norm of the mapping 7T'.
It will also be necessary to treat operators 7" defined on several LP spaces simul-
taneously.
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Definition 2.7. We define LP' 4+ LP? to be the space of all functions f, such that f =
f1+ fo, with f; € LP* and fo € LP2.

Suppose now p; < pa. Then we observe that
LP C LPr + LP? Vp € [p1,pa).
In fact, let f € L? and let -y be a fixed positive constant. Set
@), [f(@)] >,
€Tr) =
aw={ 17 ol
and fa(z) = f(z) — fi(z). Then

/ (@) Pde = / (@) P (@) PP < AP / ()P,

since p; — p < 0. Similarly,

[18@pds = [1p@P R prde <7 [ 7@,
so f1 € LP' and fy € LP?2, with f = f1 + fo.
Now, we have the following well-known theorem.

Theorem 2.8 (The Riesz-Thorin interpolation theorem). Let T be a linear operator
with domain (LP° + LP*)(X,du), po, 1,40, q1 € [1,00|. Assume that

1T f 9o (viavy < Aollflloro(x,any, if f € LP(X, dp),
and

ITfllzar (v,ay < Aallfllzen (x,ap), o f € LPY(X, dp),
for some py # p1 and qy # q1. Suppose that for a certain 0 < 6 < 1
1 1-6 6 1 1-6 ¢
= e = e (2.3)
p Po p1 q q0 a1

Then
ITfllacv.av) < Aol fllee(x,any, i f € LP(X,dp),
with
Ag < ATOAY. (2.4)

Remark 2.9. 1) (2.4) means that Ay is logarithmically
convex, i.e., In Ay is convex.

2) The geometrical meaning of (2.3) is that the points
(1/p,1/q) are the points on the line segment between
(1/po,1/qo) and (1/p1,1/qu).

3) The original proof of this theorem, published in
1926 by Marcel Riesz, was a long and difficult calcu-
lation. Riesz’ student G. Olof Thorin subsequently dis-
covered a far more elegant proof and published it in )
1939, which contains the idea behind the complex in-
terpolation method.

g

—
[
—

=

SIEA |

Proof. Denote

(h,g) = /Y h(y)g(y)dv(y)
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and 1/¢' =1 — 1/q. Then we have, by Holder inequality,
IPllg = sup [(h,g)l, and Ag = sup  [{T'f,g)l.
llgllgr=1 I lp=llgllgr=1

Noticing that C.(X) is dense in LP(X, i) for 1 < p < oo, we can assume that f and
g are bounded with compact supports since p, ¢ < co.! Thus, we have |f(z)] < M <
oo forall z € X, and supp f = {z € X : f(z) # 0} is compact, i.e.,, u(supp f) < oo
which implies [, |f(z)[*du(z) = Jsupp £ |f(2)|fdu(x) < M*u(supp f) < oo for any
£ > 0. So g does.

For 0 < Rz < 1, we put

RN e I N
p(z)  po  m Iz 4 4
and (@)
X
n(z) =n(e,2) = |f @) 500 v e X
0(e) =€) = a1 £y e v
Now, we prove n(z), n/(z) € LPs for j = 0, 1. Indeed, we have
2 =[17@17 | = [If@)P 50| = [P )
=|f ()P0 ) = | ()|
Thus,
In(2) / [n(z, 2)[” dp(z / (@) [ dpu(z) <
We have )
p(z L
7(2) =l '{m] In /()
11 ()
(o p) Nmmn

On one hand, we have lim|f(,)|—o, |f(7 |°‘ln|f )\ —Ofor any o > 0, that is, Ve > 0,
36 > 0s.t. ||f()|“In|f(z)|| < eif |f(z)| < §. On the other hand, if |f(x)| > 0, then
we have

I[f(2)|* In[f(z)|] < M [In[f(z)|] < M* max(|In M|, [Ind]) < oo
Thus, ||f(x )|0‘1n|f( )H C. Hence,

r—ﬂ—wf )75 £ 1@

= O ()|,

gcym oo

which yields

17" (2)1lp; < /!f w0 P gy (2) < oc.

Therefore, n(z), 7 (z) € LPi for j = 0,1. So ((2), ¢'(z) € L% for j = 0,1 in the same
way. By the linearity of T, it holds (7'p)'(z) = T'n/(z) in view of (2.1). It follows that
Tn(z) € L%, and (Tn)'(z) € LY with 0 < Rz < 1, for j = 0,1. This implies the
existence of

F(z) = (Tn(2).((2)), 0 <Rz<1

1-1/q0 YV
1/q1—1/q0 > 1ifg" = oo.

!Otherwise, it will be po = p1 = oo if p = o0, or § =
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Since JF d d
) =L, ) = 1 [ T2 avty)

—/(Tn)z(y, Z)C(w)dV(y)+/(Tn)(y72)cz(y,z)d1/(y)
Y Y
=((Tn)'(2),¢(2)) + (Tn(2),¢'(2)),

F(z) is analytic on the open strip 0 < Rz < 1. Moreover it is easy to see that F'(z) is
bounded and continuous on the closed strip 0 < Rz < 1.
Next, we note that for j = 0,1

In(j + it)lp, = Hpr] =
Similarly, we also have ||¢(j + z't)||q/ =1forj=0,1. Thus forj=0,1
[E(G + i) =[(Tn(g +t), (G +it)| < |1 Tn(G +it)llg €6 +it)llg;
<A;lIn( + i)l 1€ + it g, = Ay

Using Hadamard three line theorem, reproduced as Theorem 2.6, we get the conclu-
sion

|F(0+it) < AYPAY, vteR.
Taking t = 0, we have |F(0)| < Aj~ 9 A% We also note that 5(f) = f and ¢(0) = g,
thus F(0) = (Tf,g). Thatis, |(Tf, g>| < A1 % A9. Therefore, Ag < A7 AS. [ |

Now, we shall give two rather simple applications of the Riesz-Thorin interpola-
tion theorem.

Theorem 2.10 (Hausdorff-Young inequality). Let 1 < p < 2and 1/p+1/p’ = 1. Then
the Fourier transform defined as in (1.1) satisfies

—n/p’
w
15l < (52) " 15l

Proof. 1t follows by interpolation between the L!-L*° result ||.Z f||o < | f||1 (cf. Theo-
—n/2
rem 1.5) and Plancherel’s theorem ||.% f||2 = <M> / | fll2 (cf. Theorem 1.26). W

2w

Theorem 2.11 (Young’s inequality for convolutions). If f € LP(R") and g € L4(R"),
1<p,q,r ooandlzl%—i-%—l,then

I1f * gllr < [ llpllgllg-

Proof. We fix f € LP, p € [1,00] and then will apply the Riesz-Thorin interpolation
theorem to the mapping g — f * g. Our endpoints are Holder’s inequality which
gives

17 % 9@ < [ 7lplally
and thus g — f * g maps L? (R") to L>*(R") and the simpler version of Young's
inequality (proved by Minkowski’s inequality) which tells us that if g € L', then

1F* glly < [ fllpllgll1-

Thus g — f * g also maps L' to LP. Thus, this map also takes L? to L" where
1 1-6 0 1 1-6 4
- =——+—,and - = —— + —.
q 1 P T P 00
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Eliminating 6, we have % = % +1_1.

The condition ¢ > 1 is equivalent with § > 0 and r > 1 is equivalent with the
condition 6 < 1. Thus, we obtain the stated inequality for precisely the exponents p,
g and r in the hypothesis. |

Remark 2.12. The sharp form of Young’s inequality for convolutions can be found in
[Bec75, Theorem 3], we just state it as follows. Under the assumption of Theorem
2.11, we have

I1f * gllr < (ApAgAr)™[| fllpllglla;
where A, = (mY™/m/"™)1/2 for m € (1,00), Ay = As = 1 and primes always
denote dual exponents, 1/m + 1/m/ = 1.

The Riesz-Thorin interpolation theorem can be extended to the case where the
interpolated operators allowed to vary. In particular, if a family of operators depends
analytically on a parameter z, then the proof of this theorem can be adapted to work
in this setting.

We now describe the setup for this theorem. Suppose that for every z in the closed
strip S there is an associated linear operator 7', defined on the space of simple func-
tions on X and taking values in the space of measurable functions on Y such that

(/mUMW<w (2.5)
Y

whenever f and g are simple functions on X and Y/, respectively. The family {7}, is
said to be analytic if the function

z—>/YTz(f)gd1/ (2.6)

is analytic in the open strip S° and continuous on its closure S. Finally, the analytic
family is of admissible growth if there is a constant 0 < a < 7 and a constant C ; such
that

. Cx
e alSz| In

< Cpy < 2.7)

/Y T.(f)gdv

for all z € S. The extension of the Riesz-Thorin interpolation theorem is now stated.

Theorem 2.13 (Stein interpolation theorem). Let T, be an analytic family of linear op-
erators of admissible growth. Let 1 < po,p1,qo0,q1 < oo and suppose that My and M, are
real-valued functions such that

supe bl M;(t) < oo (2.8)
teR
for j =0,1and some0 < b < . Let 0 < 0 < 1 satisfy
1 1-60 0 1 1-6 6
- = +—, and - = + —. (2.9)
p Po b1 q qo0 q
Suppose that
1 Tit(F)llag < Mo(®) | Fllpos 1T+l < Mr()] fllpn (2.10)
for all simple functions f on X. Then
ITo(Nllq < M@ fllp, when0 <6 <1 (2.11)

for all simple functions f on X, where

sin 76 In My(t) In My (t)
e :
(0) = exp { 9 / [cosh 7wt — cos Tl + cosh 7t + cos w0 dt
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By density, Ty has a unique extension as a bounded operator from LP(X, p) into L(Y, v) for
all p and q as in (2.9).

The proof of the Stein interpolation theorem can be obtained from that of the
Riesz-Thorin theorem simply “by adding a single letter of the alphabet”. Indeed, the
way the Riesz-Thorin theorem is proven is to study an expression of the form

F(z) = (Tn(2),(2)),
the Stein interpolation theorem proceeds by instead studying the expression

F(2) = (Tun(2),C(2)).
One can then repeat the proof of the Riesz-Thorin theorem more or less verbatim to
obtain the Stein interpolation theorem. Of course, the explicit expression of M (9)
need an extension of the three lines theorem. For the detailed proof, one can see
[SW71, p. 205-209] or [Gra04, p.38-42].

2.2 The distribution function and weak L? spaces

We shall now be interested in giving a concise expression for the relative size of a
function. Thus we give the following concept.

Definition 2.14. Let f(z) be a measurable function on R™. Then the function f, :
[0, 00) > [0, 0] defined by
fe(a) =m({z : [f(z)] > a})

is called to be the distribution function of f.

The distribution function f, provides information about the size of f but not
about the behavior of f itself near any given point. For instance, a function on R"
and each of its translates have the same distribution function.

In particular, the decrease of f,(«) as a grows describes the relative largeness of
the function; this is the main concern locally. The increase of f.(«) as « tends to zero
describes the relative smallness of the function “at infinity”; this is its importance
globally, and is of no interest if, for example, the function is supported on a bounded
set.

Now, we give some properties of distribution functions.

Proposition 2.15. For the distribution function, we have following fundamental properties.

(i) f«(«) is decreasing and continuous on the right.

(i) If | £(2)] < lg(@)], then £.(a) < g (a),

(i) If | f(x)| < liminfy_oo | fx(x)| for a.e. x, then f,(o) < iminfy_, o0 (fr)«(x) for any
a > 0.

V) If | f(z)| < |g(x)|+ |h(z)], then fi(a1+a2) < go(or) + hi(ag) for any aq, ag > 0.

(V) (fg)s(araz) < fi(an) + g«(az) for any ar, a2 = 0.

(vi) For any p € (0,00) and a > 0, it holds f.(a) < P f{x:|f(z)‘>a} |f(z)|Pda.

(vil) If f € LP, p € [1,00), then limq—y 4+ o0 0P fu(ar) = 0 = limgy—0 o fi ().

(vii) If [;° o~ fu(a)do < oo, p € [1,00), then P f, (o) — 0 as o — 400 and a — 0,
respectively.
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Proof. For simplicity, denote E¢(a) = {z : |f(x)| > a} for a > 0.

(i) Let {ax} is a decreasing positive sequence which tends to «, then we have
E¢(a) = U Ef(a). Since {E¢(ay)} is a increasing sequence of sets, it follows
limy_,o0 fe(ar) = fi(). This implies the continuity of f,(«) on the right.

(iii) Let £ = {z : |f(z)] > a} and Ey = {x : |fx(x)] > a}, & € N. By the
assumption and the definition of inferior limit, i.e.,

|f(2)] < liminf [fi(z)| = sup inf | fi(z)],
k—o0 ¢eN k>4

for x € E, there exists an integer M such that for all £ > M, |fx(x)] > «. Thus,
E c U1 Nizy Ex,and forany £ > 1,

(ﬂ Ek> < 1nf m(Ey) < sup ugf m(Fy) = hm 1nf m(FEy).

Since {(,= s Ex}37_ is an increasing sequence of sets, we obtain

fo(a) =m(E) <m < U N Ek> = lim m ( N Ek> < lim inf (fi). (o).
M=1k=M
(v) Noticing that {z : |f(z)g(x)| > c1a} C {z : |f(z)| > aa} U {z : |g(x)| > a2},

we have the desired result.
Wi) fu(@) = m({z 1 [f@)] > o) = [rirepa @ < Supr@sa (L2)Pd
=7 [ @) >ap | (@72,

(vii) From (vi), it follows o f.(a) < |, (ol () [ >0} |f(x)[Pdx < [gu |f(z)Pdz. Thus,
m({z: |f(x)| > a}) —>0asa—>+ooand
lim |f(z)[Pdx = 0.

AH S | f (@) >}
Hence, of f, (o) — 0 as o — 400 since of f.(a)) = 0.
For any 0 < o < 3, we have, by noticing that 1 < p < oo, that

lim o?£.(0) = lim o”(£.(a) = £.(8)) = lim o"m({z : @ < |f(x)| < B})

a—
< / () Pda.
{z:[f(z)|<B}

By the arbitrariness of §, it follows o f. (o) — 0 as a — 0.
(viii) Since f (tP)dt = o — (a/2)P and fi(a) < fi(t) for t < a, we have

«

fe(@)aP(1 —27P) < p/ P (b)dt

a/2
which implies the desired result.
For other ones, they are easy to verify. u

From this proposition, we can prove the following equivalent norm of L? spaces.

Theorem 2.16 (The equivalent norm of LP). Let f(x) be a measurable function in R",
then

) £l = (0 5% 0 ful@)da) 7, if1<p < oo,
ii) [| flloo = inf {e : fiu(a) = 0}.

Proof. In order to prove i), we first prove the following conclusion: If f(z) is finite and
f«(a) < oo for any o > 0, then

/ f@)Pdz = - /0 ~ ardf(a). 2.12)



-38- 2. Interpolation of Operators

Indeed, the r.h.s. of the equality is well-defined from the conditions. For the integral
in the Lh.s., we can split it into Lebesgue integral summation. Let 0 < ¢ < 2e < --- <
ke <--- and

Ej={eeR":(j-Ve<|f(z)] <je}t, j=12,--,
then, m(E}) = £u((j - 1)¢) - fu(j<), and

/n|<>|pdx—hm§j]eme :—hmzys £ (Ge) = £2((G — D)

- _ /OOO aPdf, (o).

Now we return to prove i). If the values of both sides are infinite, then it is clearly
true. If one of the integral is finite, then it is clear that f.(a) < +oo and f(z) is finite
almost everywhere. Thus (2.12) is valid.

If either f € LP(R™) or [, a?~! fi(a)der < oo for 1 < p < oo, then we always have
a? fi(a) = 0as o — +oo and o — 0 from the property (vii) and (viii) in Proposition
2.15.

Therefore, integrating by part, we have

_/Ooapdf*(a) :p/oo ap_lf*(a)da_apf*( )+oo _p/oo ap_lf*(a)da‘
0 0

Thus, i) is true.
For ii), we have

inf {a: fi(a) =0} =inf {a: m({z : [f(2)| > a}) = 0}
=inf{a:|f(2)] < a, a.e.}

=ess supgepn |f ()] = || £l 2o
We complete the proofs. [

Using the distribution function f., we now introduce the weak LP-spaces denoted
by L¥.

Definition 2.17. The space LY, 1 < p < o0, consists of all f such that
1£1l2 = sup afi’? (@) < oo.
«

In the limiting case p = oo, we put L° = L.

By the part (iv) in Proposition 2.15 and the triangle inequality of LP? norms, we
have
1+ gllzz < 2( ).
Thus, one can verify that L is a quasi- “normed vector space. The weak LP spaces are
larger than the usual L spaces. We have the following:

Theorem 2.18. For any 1 < p < oo, and any f € LP, we have ||f||;» < | f|lp, hence
P c LY.

Proof. From the part (vi) in Proposition 2.15, we have

1/p
af7(a) < ( / \f(rc)\”d:v>
{z:|f(z)|>a}
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which yields the desired result. u

The inclusion LP C L% is strict for 1 < p < oo. For example, let h(z) = |z| /7.
Obviously, h is not in LP(R"™) but A is in Lp (R™) and we may check easily that

IAllz =sup ahi/? () = sup a(m({w : [#[ "7 > a}))!/"
=supa(m({z : |z| < aP/")VP = sup a(a"PV,)"/P

:an/p7

where V,, = 7™/2/T'(1 + n/2) is the volume of the unit ball in R” and I'-function
= [ t* e tdt for Rz > 0.
It is not immediate from their definition that the weak LP spaces are complete
with respect to the quasi-norm || - [ ;». For the completeness, we will state it later as a
special case of Lorentz spaces.

2.3 The decreasing rearrangement and Lorentz spaces

The spaces L% are special cases of the more general Lorentz spaces LP%. In their
definition, we use yet another concept, i.e., the decreasing rearrangement of func-
tions.

Definition 2.19. If f is a measurable function on R", the decreasing rearrangement of f
is the function f* : [0, 00) +— [0, co] defined by

f @) =inf{a > 0: fi(a) < t},

where we use the convention that inf @ = oco.

Now, we first give some examples of distribution function and decreasing rear-
rangement. The first example establish some important relations between a simple
function, its distribution function and decreasing rearrangement.

Ex. 2.20 (Decreasing rearrangement of a simple function). Let f be a simple function of the
following form

!
T) = Z ajxa; ()

where a1 > az > --- > ap >0, Aj = {x € R: f(x) = a;} and x4 is the characteristic
function of the set A (see Figure (a)). Then

k
fula) = m({a : |f(2)] > a}) = m({e : Zam )>a}) = bixs, (@)
j=1

where b; = S_ m(A;), Bj = [aj+1,aj)f07’j =1,2,---  kand ap41 = 0 which shows
that the distrzbutzon function of a simple function is a simple function (see Figure (b)). We
can also find the decreasing rearrangement (by denoting by = 0)

k
Frt) =inf{a>0: fu(e) <t} =inf{a >0: ) bixs, () <t}

Jj=1

k
- Z @jX[bj—1,b) (t)
j=1
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which is also a simple function (see Figure (c)).

f(@A Fe(@A f (@)
air ™ ai [
I |
dz A az |
as ™ [ | | b5 as | ]
at ! Ly L AT af
BRI L by | ===~ —— o
I R - I h
I I
SRR SN S IR
As A4 A1 As As Tz as a4 aszaz a1 o b1 b2 by babs t
(a) (b) ()

Ex. 2.21. Let f : [0,00) — [0, 00) be

1—(zx—1)%, 0<z<2,

f(””):{o, ( ) T > 2.
It is clear that f.(a) = 0 for a > 1since |f(x)| < 1. For o € [0, 1], we have
fo(@) =m({z € [0,00) : 1 — (z — 1)? > a})
=m({zr €[0,00):1-VI—a<z<1l++V1-a})=2V1—a.
That is,
{ 2y1—a, 0<a<l,
0,

fula) = a>1.

The decreasing rearrangement f*(t) = 0 for t > 2 since f.(co) < 2 forany o > 0. Fort < 2,
we have

ff(t) =inf{la > 0:2v1 —a < t}
=infla>0:a>1-1t*/4} =1—t*/4.
Thus,

e [ 1—t34,  0<t<2,
;) { 0, t>2.

fAL f*AL f*AL

2+ 9] 21

1 1 1__\

T2 5 I

(a) (b) (©)

Observe that the integral over f, f. and f* are all the same, i.e.,

/ooo f(x)dx = /02[1 — (z—1)%)dz = /1 2v1 - ada = /2(1 — #/4)dt = 4/3.

0 0
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Ex. 2.22. We define an extended function f : [0, 00) — [0, 00| as

0, z =0,
In({1), O<z <1,

flz)=4¢ oo, 1<z <2,
In(-15), 2<z<3,
0, T > 3.

Even if f is infinite over some interval the distribution function and the decreasing rearrange-
ment are still defined and can be calculated, for any o > 0

1
fe(la) =m({z € [1,2] : 00 > a} U{x € (0,1): ln(1 —a;) > o}
U 2,3):1
fr€(2.3): () > a})
=l+m((1-e"%1)) +m((2,e*+2))
=1+ 2e™ %,
and
0, 0<t<1,
fft)=1< In(%), 1<t<s3,
0, t>3.
- f*A; .
Jg__ 5+ g »
A Ju s Ju s
4 3 st
T 2_¥ T
" B B
| A N } } } 4 } } . )
T 7 4 1 2 3« 1 2 3t

(a) (b) (c)

Ex. 2.23. Consider the function f(x) = x for all x € [0,00). Then f.(a) = m({z €
[0,00) : & > a}) = oo for all « > 0, which implies that f*(t) = inf{a > 0: 00 < t} = 0
forallt > 0.

Ex. 2.24. Consider f(z) = {7 for x > 0. It is clear

that f.(a) = 0 for o« > 1since |f(z)| < 1. Foraa € 4
[0, 1), we have
x
fi(a) =m({z €[0,00) : ;= > a}) 1 £
:m({JJE[O,OO)::E>1_a}):OO. 7
That is, | N
00, 0<axl, v 7
f*(Oé)—{ 0’ 0421. 1 2

Thus, f*(t) = inf{a > 0: fi(a) <t} =1.

Proposition 2.25. The decreasing rearrangement f* of the measurable function f on R™ has
the following properties:

(i) f*(¢) is a non-negative and non-increasing function on [0, co).

(ii) f*(t) is right continuous on [0, 00).

(iii) (kf)* = |k|f* for k € C.
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* *

@iv) | f] < |g| a.e. implies that f
V) (f +9)"(t1 + t2) < f*(t1) +
(vi) (fg)*(t1 +t2) < [*(t1)g" (t2).

(vii) | f| < liminfy_,o | fx| a.e. implies that f* < liminfy_, f7.

(viii) | fx| T | f| a.e. implies that f;; 1 f*.

(ix) f*(f«(a)) < o whenever f.(a) < oc.

) £ (/*(6) = m({|f| > (D)) <t <m({{f] > FFON F () < 00
(xi) f*(t) > aif and only if fi(a) >t

(xii) f* is equimeasurable with f, that is, (f*)«(a) = f«(a) for any o > 0.
(xiii) (| fP)(8) = (f*(®)P for 1 < p < oo.

6dv) | F*llp = [l£llp for 1< p < oo

(xv) [ lloo = £*(0).

(xvi) SUPy £° F(£) = Supaso a(fu(@))* for 0 < s < oo,

<9
g

*(t2).

Proof. (v) Assume that f*(¢;) 4+ g*(t2) < oo, otherwise, there is nothing to prove. Then
for a1 = f*(t1) and ap = g*(t2), by (x), we have f.(cq) < t; and g«(a2) < t2. From
(iv) in Proposition 2.15, it holds

(f + 9)(a1 + az2) < fulon) + gi(az) <1+ 1o
Using the definition of the decreasing rearrangement, we have

(f+9)"(t1+t2) =inf{a: (f +g)(a) <t + 2} <ar+az = f7(t1) + g (t2).

(vi) Similar to (v), by (v) in Proposition 2.15, it holds that (fg¢).(1a2) < fi(aq) +
g«(a2) < t1 + to. Then, we have

(f9)"(t1 +t2) = inf{or: (fg)(a) < t1+t2} <arag = f7(t1)g" (t2).

(xi) If fi(a) > t, then by the decreasing of f., we have o« < inf{3 : f.(8) < t} =
1*(t). Conversely, if f*(t) > «, i.e., inf{8 : fi(8) < t} > a, we get f.(a) > ¢ by the
decreasing of f, again.

(xii) By the definition and (xi), we have

(f)s(a) =m({t = 0: f5(t) > a}) = m({t > 0: fu(a) > t}) = fi(a).

(xiii) For a € [0, 00), we have

(LFP)"(t) =inf{e 2 0: m({z : | f(x)]" > a}) <t}
=inf{o” > 0: m({z : [f(2)] > o}) <t} = (f*(1))",
where o = o!/P.
(xiv) From Theorem 2.16, we have

1F Ol = / PPt = p / a1 (f*).(a)da
— / "o fu()da =[£I,

We remain the proofs of others to interested readers. [

Having disposed of the basic properties of the decreasing rearrangement of func-
tions, we proceed with the definition of the Lorentz spaces.

Definition 2.26. Given f a measurable function on R and 1 < p, ¢ < oo, define

I fllzea = (/0 <tpf*(t))qc7ltt>q’ q < oo,

suptr f*(t), q = oo.
t>0
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The set of all f with || f||zr.« < 0o is denoted by LP4(R™) and is called the Lorentz space
with indices p and q.

Asin LP and in weak LP, two functions in LP¢ will be considered equal if they are
equal almost everywhere. Observe that the previous definition implies that LP> =
L in view of (xvi) in Proposition 2.25 and LP? = LP in view of (xiv) in Proposi-
tion 2.25 for 1 < p < oco. By (i) and (xv) in Proposition 2.25, we have || f||fec.cc =
sup;so f*(t) = f*(0) = || f||oc which implies that L>**>® = L*° = L{°. Thus, we have

Theorem 2.27. Let 1 < p < oo. Then it holds, with equality of norms, that
LPP =IP, L[P™=IP

Remark 2.28. For the Lorentz space L9, the case when p = oo and 1 < ¢ < oo is not
of any interest. The reason is that || f|| L.« < oo implies that f = 0 a.e. on R". In fact,
assume that L°°¢ is a non-trivial space, there exists a nonzero function f € L>%on a
nonzero measurable set, that is, there exists a constant ¢ > 0 and a set E of positive
measure such that |f(z)| > cfor all z € E. Then, by (iv) in Proposition 2.25, we have

o2 d o0 d m(E) g
1% e = /0 (F ) > /O (X @) > /O alt _ o

t
since (fxg)*(t) = 0 for t > m(F). Hence, we have a contradiction. Thus, f = 0 a.e.
on R™.

The next result shows that for any fixed p, the Lorentz spaces LP? increase as the
exponent ¢ increases.

Theorem 2.29. [et 1 < p < ccand 1 < q < r < oo. Then, there exists some constant
Ch.q,r sSuch that

1fllzer < Cpgprll flLea, (2.13)
where Cpq.r = (q/p)"/ 9=V, In other words, LP1 C L.

Proof. We may assume p < oo since the case p = oo is trivial. Since f* is non-creasing,
we have

VP (1) = [q /Ot Sq/p—lds] l/qf*(t) _ {;/0 WP (1)) ds}l/q

P S

1/q 1/q
<{p/0[ rEs <) Ml

Hence, taking the supremum over all t > 0, we obtain

1/q
q
e < (2) U7l 14
This establishes (2.13) in the case = co. Finally, when r < oo, we have by (2.14)

o d 1/r
”fHLPvT = {/0 [tl/il’f*( )]r q+q t}

t

< Sup[tl/Pf*(t)](r—q)/r {/OO [tl/pf*(t)]qcit}
0

t>0

.9
r

Q=
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r—q
_ q q
12 1A% < (2) ™ Wl
This completes the proof. [
In general, LP? is a quasi-normed space, since the functional || - ||z».¢ satisfies the

conditions of normed spaces except the triangle inequality. In fact, by (v) in Proposi-
tion 2.25, it holds

If + gllzra < 2P(£llzva + llgllzra)- (2.15)
However, is this space complete with respect to its quasi-norm? The next theorem
answers this question.

Theorem 2.30. Let 1 < p,q < oo. Then the spaces LP4(R™) are complete with respect to
their quasi-norms and they are therefore quasi-Banach spaces.

Proof. See [Gra04, p. 50, Theorem 1.4.11]. [

For the duals of Lorentz spaces, we have

Theorem 2.31. Let 1 < p,g<oo,1/p+1/p'=1and1/q+ 1/q = 1. Then we have
(Ll’l)/ _ (Ll)l =L, (LLq)’ — {0}’ (LP#])’ = Lplvq/_

Proof. See [Gra04, p. 52-55, Theorem 1.4.17]. [ ]

For more results, one can see [Gra04, Kri02].

2.4 Marcinkiewicz’ interpolation theorem

We first introduce the definition of quasi-linear operators.

Definition 2.32. An operator 7" mapping functions on a measure space into functions
on another measure space is called quasi-linear if T(f + g) is defined whenever T f
and T'g are defined and if |T'(\f)(x)| < &|A||Tf(z)| and |T(f + g)(z)| < K(|Tf(x)| +
|T'g(x)|) for a.e. z, where x and K is a positive constant independent of f and g.

The idea we have used, in Definition 2.7, of splitting f into two parts according
to their respective size, is the main idea of the proof of the theorem that follows.
There, we will also use two easily proved inequalities, which are well-known results
of Hardy’s (see [HLPS8S, p. 245-246]):

Lemma 2.33 (Hardy inequalities). If ¢ > 1, r > 0 and g is a measurable, non-negative
function on (0, c0), then

(/0“’ </otg (y)dy>qt_rit>l/q % < /0 m(yg(y))qy‘T?>1/q, (2.16)
</ooo </t K (y)dy>qtrcfet>l/q < < /Ooo@uff(y))qy’"iy)l/q- 217)

N
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Proof. To prove (2.16), we use Jensen’s inequality? with the convex function ¢(z) = 2
on (0,00). Then

t q 1 t el et q t . q
gydy>= /gyy”y’”qdy </y’°qdy)
</0 () foty”/q—ldy 0 (@) 0
t qg—1 .t q .
g(/ y’”/"_ldy) / (g(y)yl_’”/q> y" 1 dy
0 0

4q.,r -1 [t r/q—1—r
— (/) /(yg(y))qy/q Tdy.
r 0

By integrating both sides over (0, c0) and use the Fubini theorem, we get that

/OOO (/Otg(y)dy)qt"”—ldt
. (i>q—1/0"° —1-1/q </Ot (wg())" yr/q—l—rdy> it
B (%)H /OOO (yg(y)) "y (/yoo fl_r/th) dy

= (g)(, /OOO (yg(w)y~ " dy,

”
which yields (2.16) immediately.

To prove (2.17), we denote f(z) = g(1/x) /2% Then by takingt = 1/sand y = 1/x,
and then applying (2.16) and changing variable again by = 1/y, we obtain

(o)) = ([ (o) )
) (/Ow </os9(1/90)/:c2dx>q8r1 ds>1/q

(/ooo ( /0 f (x)dx> ! ds) 1/

(/ow@“f <x>>q$mdx> Vi
=2 ([T ttwmra)

Thus, we complete the proofs. u

N
RELS

(/ooo(g(l/x)/x)qxrldx> 1/q

RS

Now, we give the Marcinkiewicz® interpolation theorem* and its proof due to
Hunt and Weiss in [HW64].

Jensen’s inequality: If f is any real-valued measurable function on a set €2 and ¢ is convex over

the range of f, then
o (& [ @ataan) < & [ otnsters

where g(x) > 0 satisfies G = [, g(z)dz > 0.

%J6zef Marcinkiewicz (1910-1940) was a Polish mathematician. He was a student of Antoni Zyg-
mund; and later worked with Juliusz Schauder, and Stefan Kaczmarz.

“The theorem was first announced by Marcinkiewicz (1939), who showed this result to Antoni
Zygmund shortly before he died in World War II. The theorem was almost forgotten by Zygmund, and
was absent from his original works on the theory of singular integral operators. Later Zygmund (1956)
realized that Marcinkiewicz’s result could greatly simplify his work, at which time he published his
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Theorem 2.34 (Marcinkiewicz interpolation theorem). Assume that 1 < p; < ¢; <
00, po < p1, Qo # q1 and T is a quasi-linear mapping, defined on LP° + LP', which is
simultaneously of weak types (po, qo) and (p1,q1), i.e.,
1T fllzaoee < Aoll fllos T fllzaree < AxllFllp:- (2.18)
If0<60<1,and
1-6 6 1 1-6 0
= -

1
I e
then T is of type (p, q), namely

il

ITfllqg < Allfllp,  f € LP.
Here A = A(A;,pi, i, 0), but it does not otherwise depend on either T or f.

Proof. Let o be the slope of the line segment in R? joining (1/po, 1/q0) with (1/p1,1/q1).
Since (1/p, 1/q) lies on this segment, we can denote the slope of this segment by
_VYae-1/¢g _1/¢g=1/a
1/po—=1/p  1/p—=1/p1’
which may be positive or negative, but is not either 0 or co since ¢o # ¢1 and pg < p;.
For any ¢t > 0, we split an arbitrary function f € LP as follows:

f=r+r
where
ft(l'): { f(x)v ‘f(dj)‘ >f*(t0)7
0, otherwise,
and f; = f — f*.

Then we can verify that

(ft)*(y){ ig*(y)v Oiyét";

; y > 7,
(2.19)
* to’) 0 < y < tU,

* f ( Y ~
(ft) (y) <{ f>k(y)7 y>t0.

In fact, by (iv) in Proposition 2.25, |ft| < |f| implies (f!)*(y) < f*(y) forally > 0.
Moreover, by the definition of f* and (x) in Proposition 2.25, we have (f!).(a) <
F)(F (7)) = £(f5(t7)) < 7 for any a > 0, since (f).(a) = m({z : |f!(z)| >
o) = m({z : [f(2) > £(7),and |f(2)] > a}) = m({z : [f(2)] > F(t°)}) = m({z -
Ifi (@) > ()} = (fH%(f (7)) for 0 < a < f*(t7). Thus, for y > t7, we get
(f1)*(y) = 0. Similarly, by (iv) in Proposition 2.25, we have (f;)*(y) < f*(y) for any
y = 0 since |fy| < |f|. On the other hand, for y > 0, we have (f;)*(y) < (f:)*(0) =
| filloo < f*(t7) with the help of the non-increasing of (f;)*(y) and (xv) in Proposition
2.25. Thus, (f1)*(y) < min(f*(y), f*(t?)) for any y > 0 which implies (2.19).

Suppose p; < co. Notice that p < ¢, because p; < ¢;. By Theorems 2.27 and 2.29,
(iv) and (v) in Proposition 2.25, (2.18), and then by a change of variables and Hardy’s
inequalities (2.16) and (2.17), we get

Tl = 1T Flzs < (0/a) P 1T s
< (? 1/p—1/q 0o PV VI(T o T pdi\ P
< ()7 ([ e rnyen]F)

t

former student’s theorem together with a generalization of his own.
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i
~I5

1/p—1/q 0o 1/p
P P
i (o) (] ol )
o dt\ /P
+(/ [”q(Tft) ()}ptt> }
otag <p> 1/p1/q{ </ tl/q oo £, } dt>1/p
1 t
1/p
( G ”qluftum}pf) }
—1/po p 1/p
<21/‘1K< l/p Uq{ (/ [tl/q 1/q0 <1>1 e HftHLval] cit)
9 Po

1/p
1\ 1"/p pdt
+A1 (/0 [tl/q_l/ql <I)1> HftHLpl’ll ?
1/p—1/q 1-1/po
() ()
q Po
0 P 1/p
(L b (oot s
0 0 Y t
1-1/ oo ~ y
) (e (L))
b1 0 to y n
1-1/ oo 1/p
+ A <1) " / [tl/q—l/ql </t 1/p1f (tg)d )] dt
b1 0 0 y n
1/p—1/q 1-1/po
o (2) " a 2)
q Do
. </ s~ P(1/po—1/p) </ 1/p0f (y )dy)f” ds) P
0 0 Y s
1-1 oo U
LA (1) /p1 (/ sP(1/p=1/p1) (/ 1/p1f (y )dy)P ds>
b1 0 s y s
1-1 o Y
LA, <1> o (/ P(1/p—1/p1) (/ S (s )dy>pds> P
b1 0 0 y s
Ve 1\ VA = p dy\
<oV <p> 3l A <}7 (/ 1/p ¢ y)
7 o] N\ oo 7m0 =170 U, (y f (?D) ”
1 1—1/p1 1 0 de 1/p
3 5 (2
! b1 (1/29 - 1/]91) 0 (y f (y)> y
1_1/191 ') 1/p
+A1 i </ Sl—p/p1 (plsl/pl f*(S))pdS>
D1 0 s
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1 1_1/p0 1 1—1/])1
vage (P ) A (Fo> A (pT 1/p1
= () o7 § P+ P+ A b
1 bo p P P1

=A[l -
For the case p1 = oo the proof is the same except for the use of the estimate

[ filloo < f*(t7), we can get

1-1/
D 1/p—1/q Ap (p%) "
A= 21/qK () ‘U‘fl/p e + Ay
q —_— =

po P
Thus, we complete the proof. [

From the proof given above it is easy to see that the theorem can be extended
to the following situation: The underlying measure space R" of the LP(R") can be
replaced by a general measurable space (and the measurable space occurring in the
domain of 7" need not be the same as the one entering in the range of T'). A less
superficial generalization of the theorem can be given in terms of the notation of
Lorentz spaces, which unify and generalize the usual L? spaces and the weak-type
spaces. For a discussion of this more general form of the Marcinkiewicz interpolation
theorem see [SW71, Chapter V] and [BL76, Chapter 5].

As an application of this powerful tool, we present a generalization of the Hausdorff-
Young inequality due to Paley. The main difference between the theorems being that
Paley introduced a weight function into his inequality and resorted to the theorem
of Marcinkiewicz. In what follows, we consider the measure space (R", ;1) where p
denotes the Lebesgue measure. Let w be a weihgt function on R", i.e., a positive and
measurable function on R”. Then we denote by LP(w) the LP-space with respect to
wdz. The norm on LP(w) is

o = ([ 1@ puia)”

With this notation we have the following theorem.

Theorem 2.35 (Hardy-Littlewood-Paley theorem on R"). Assume that 1 < p < 2.
Then

17 fll Lo (ej-ne-2)) < Cpllfllp-

Proof. We considering the mapping (T'f)(£) = |£|*f(£). By Plancherel theorem, we
have

1T fll2qei-2n) < T fllz2g)-2n) = [1fll2 < Cll fll2,
which implies that 7" is of weak type (2,2). We now work towards showing that T’
is of weak type (1,1). Thus, the Marcinkiewicz interpolation theorem implies the
theorem.
Now, consider the set E, = {¢ : [¢]"f(€) > a}. For simplicity, we let v denote
the measure |£|72d¢ and assume that ||f||; = 1. Then, |f(¢)| < 1. For ¢ € E,, we
therefore have a < [¢]™. Consequently,

(T1).(0) = v(Ea) = /E €2 < /ﬁ €]-2de < Ca~L,

g™ >a
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Thus, we proves that

a-(Tf)s(a) < Cllfl1,
which implies T is of weak type (1, 1). Therefore, we complete the proof. |
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3.1 Two covering lemmas

Lemma 3.1 (Finite version of Vitali covering lemma). Suppose B =
{B1,Bs,--- ,Bn} is a finite collection of open balls in R™. Then, there exists a dis-
joint sub-collection Bj,, Bj,, - - -, Bj, of B such that

N k
m <U Bg) < B”Zﬂn(Bji).
/=1 i=1

Proof. The argument we give is constructive and relies on the following simple obser-
vation: Suppose B and B’ are a pair of balls that intersect, with the radius of B’ being not
greater than that of B. Then B’ is contained in the ball B that is concentric with B but with
3 times its radius. (See Fig 3.1.)

As a first step, we pick a ball B;, in B with maximal (i.e.,
largest) radius, and then delete from B the ball B;, as well as
any balls that intersect B;,. Thus all the balls that are deleted are
contained in the ball B;, concentric with B;,, but with 3 times its
radius.

The remaining balls yield a new collection ', for which we
repeat the procedure. We pick B, and any ball that intersects B;,.
Continuing this way, we find, after at most IV steps, a collection
of disjoint balls B;,, Bj,, - - -, Bj,.

Finally, to prove that this disjoint collection of balls satisfies
the inequality in the lemma, we use the observation made at the beginning of the
proof. Let Bji denote the ball concentric with B;;, but with 3 times its radius. Since
any ball B in B must intersect a ball B;, and have equal or smaller radius than B;,,
we must have UBmBjiigB C Bju thus

N ko k i k
m (U Bg) <m < le.) < Zm(Bji) = 3”Zm(Bji).

/=1 i=1

Figure 3.1: ~The
balls B and B
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In the last step, we have used the fact that in R" a dilation of a set by § > 0 results in
the multiplication by 6" of the Lebesgue measure of this set. [

For the infinite version of Vitali covering lemma, one can see the textbook [Ste70,
the lemma on p.9].

The decomposition of a given set into a disjoint union of cubes (or balls) is a
fundamental tool in the theory described in this chapter. By cubes we mean closed
cubes; by disjoint we mean that their interiors are disjoint. We have in mind the idea
first introduced by Whitney and formulated as follows.

Theorem 3.2 (Whitney covering lemma). Let F' be a non-empty closed set in R™ and
be its complement. Then there exists a collection of cubes .# = {Qy} whose sides are parallel
to the axes, such that

MU, Qv =0 = F°,

(i) Q; N Qy = @ if j # k, where Q° denotes the interior of Q,

(iii) there exist two constants ci,ca > 0 independent of F' (In fact we may take c; = 1
and ¢y = 4.), such that

c1 diam (Qg) < dist (Qk, F) < co diam (Qy).

Proof.
Consider the lattice of points in R™ whose
coordinates are integers. This lattice de-
termines a mesh .#;, which is a collection
of cubes: namely all cubes of unit length,
whose vertices are points of the above lat-
tice. The mesh .#j leads to a two-way in- = 000
finite chain of such meshes {.#}}>,, with i i
My, = 27F 1. Figure 3.2: Meshes and layers: .#

Thus each cube in the mesh .7}, gives with dashed (green) lines; .#; with
rise to 2" cubes in the mesh .#}.; by bisect- dotted lines; .#_; with solid (blue)
ing the sides. The cubes in the mesh .#} lines
each have sides of length 27 and are thus
of diameter \/n27*.

In addition to the meshes .#};, we consider the layers 2, defined by

Q= {x e27F < dist (x, F) < c2_k+1}

where c is a positive constant which we shall fix momentarily. Obviously, 2 =
Uzozfoo Qk

Now we make an initial choice of cubes, and denote the resulting collection by
Zy. Our choice is made as follows. We consider the cubes of the mesh .#}, (each
such cube is of size approximately 27%), and include a cube of this mesh in .7 if it
intersects 4, (the points of the latter are all approximately at a distance 2% from F).
Namely,

Fo=|J{Q e M : QN +# 2}
k

We then have

U e=2

QeFq
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For appropriate choice of ¢, we claim that
diam (Q) < dist (Q, F) < 4diam (Q), Q € . (3.1)
Let us prove (3.1) first. Suppose Q € .#; then diam (Q) = /n27%. Since Q € F,
there exists an € QN €. Thus dist (Q, F) < dist (z, F) < c27%*, and dist (Q, F) >
dist (z, F) — diam (Q) > ¢27% — /n27". If we choose ¢ = 2\/n we get (3.1).

Then by (3.1) the cubes Q € % are disjoint from F and clearly cover 2. Therefore,
(i) is also proved.

Notice that the collection %y has all our required properties, except that the cubes
in it are not necessarily disjoint. To finish the proof of the theorem, we need to refine
our choice leading to .%y, eliminating those cubes which were really unnecessary.

We require the following simple observation. Suppose @)1 and )2 are two cubes
(taken respectively from the mesh .#}, and .#};,). Then if Q1 and Q3 are not disjoint,
one of the two must be contained in the other. (In particular, Q1 C Q2, if k1 > k2.)

Start now with any cube Q € %, and consider the maximal cube in .#; which
contains it. In view of the inequality (3.1), for any cube @’ € .%; which contains
Q € %y, we have diam (Q') < dist (Q', F) < dist (Q, F) < 4diam (Q)). Moreover,
any two cubes Q" and Q" which contain @ have obviously a non-trivial intersection.
Thus by the observation made above each cube ) € .%( has a unique maximal cube
in .%#( which contains it. By the same taken these maximal cubes are also disjoint. We
let .# denote the collection of maximal cubes of .%,. Then obviously

(ii) The cubes of .# are disjoint,

(i) diam (Q) < dist (Q, F) < 4diam (Q), Q € .Z.

Therefore, we complete the proof. |

3.2 Hardy-Littlewood maximal function

Maximal functions appear in many forms in harmonic analysis. One of the most
important of these is the Hardy-Littlewood maximal function. They play an impor-
tant role in understanding, for example, the differentiability properties of functions,
singular integrals and partial differential equations. They often provide a deeper
and more simplified approach to understanding problems in these areas than other
methods.

First, we consider the differentiation of the integral for one-dimensional func-
tions. If f is given on [a, b] and integrable on that interval, we let

F(r) = /x fy)dy, =€ la,b].

To deal with F’(x), we recall the definition of the derivative as the limit of the quotient

w when h tends to 0, i.e.,

F(x) = }Lli% F(x+ h})b - F(a:)

We note that this quotient takes the form (say in the case h > 0)

1 x+h 1
[ =g [ 1w,

where we use the notation / = (z,z + h) and || for the length of this interval.
At this point, we pause to observe that the above expression in the “average”
value of f over I, and that in the limit as |I| — 0, we might expect that these averages
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tend to f(x). Reformulating the question slightly, we may ask whether
) 1
tim - [ )y = @
o [I] Jy
holds for suitable points z. In higher dimensions we can pose a similar question,
where the averages of f are taken over appropriate sets that generalize the intervals
in one dimension.
In particular, we can take the sets involved as the ball B(z, ) of radius r, centered

at z, and denote its measure by m(B(z,r)). It follows

1
lim / fy)dy = f(x), fora.e. z? (3.2)
P B 0) Sy W I
Let us first consider a simple case, when f is continuous at x, the limit does converge
to f(z). Indeed, given ¢ > 0, there exists a & > 0 such that | f(z) — f(y)| < e whenever

|z —y| < . Since
1

1
f(z) - m(B(z. 1)) /B(:B’T) fly)dy = m(B(z.7) /B(m)(f(ﬂf) — f(y))dy,

we find that whenever B(z,r) is a ball of radius r < ¢, then

1 1
f(z) — m(B 1) /B(m) f(y)dy m(B@. ) /B(m’r) |f(z) = f(y)ldy < e,
as desired.

In general, for this “averaging problem” (3.2), we shall have an affirmative an-
swer. In order to study the limit (3.2), we consider its quantitative analogue, where
“lim,_,¢” is replaced by “sup,.”, this is the (centered) maximal function. Since the
properties of this maximal function are expressed in term of relative size and do not
involve any cancelation of positive and negative values, we replace f by | f|.

<

Definition 3.3. If f is locally integrable! on R", we define its maximal function M f
R™ — [0, o0] by

1 n
Mf(z) = ililgm(B(W/B(W) |f(y)ldy, = eR™ (3.3)

Moreover, M is also called as the Hardy-Littlewood maximal operator.

The maximal function that we consider arose first in the one-dimensional situa-
tion treated by Hardy and Littlewood.? It is to be noticed that nothing excludes the
possibility that M f(z) is infinite for any given .

It is immediate from the definition that

Theorem 3.4. If f € L>(R"), then M f € L*°(R"™) and
IM flloo < [1.flloc-

By the previous statements, if f is continuous at x, then we have

. 1
el =tim ey [y

’The Hardy-Littlewood maximal operator appears in many places but some of its most notable
uses are in the proofs of the Lebesgue differentiation theorem and Fatou’s theorem and in the theory of
singular integral operators.
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< sup

1
) o, T = M)

Thus, we have proved

Theorem 3.5. If f € C(R"), then

|f(z)] < M f(x)
forall x € R™.

Sometimes, we will define the maximal function with cubes in place of balls. If
Q(zx,r) is the cube [z; — r, x; + r]", define
Mfa) =swp o [ (fwldy, @ e R 64
r>0 (QT) Q(z,r)
When n = 1, M and M’ coincide. If n > 1, then there exist constants ¢, and C,,
depending only on n, such that
enM' f(z) < M f(z) < C, M’ f(z). (3.5)
Thus, the two operators M and M’ are essentially interchangeable, and we will use
whichever is more appropriate, depending on the circumstances. In addition, we can
define a more general maximal function

M"f(x) = sup

/ |f(y)|dy, (3.6)

where the supremum is taken over all Cubes containing z. Again, M" is pointwise
equivalent to M. One sometimes distinguishes between M’ and M" by referring
to the former as the centered and the latter as the non-centered maximal operator.
Alternatively, we could define the non-centered maximal function with balls instead

of cubes:
/ | f(y)|dy

at each z € R". Here, the supremum is taken over balls B in R"™ which contain the
point x and m(B) denotes the measure of B (in this case a multiple of the radius of
the ball raised to the power n).

M f(x) —Sup

Ex. 3.6. Let f : R — R, f(z) = x(0,1)(x). Then

2x
Mf(z)=M'f(x) =< 1, 0<z«<1,
2(11_93), <0
%, z>1
Mf(x)=M"f(z)=¢ 1, 0<z<1
1:7:7 x <0
In fact, for x > 1, we get
1 z+h
Mf(z) = M'f(x) =sup o X(0,1)(¥)dy
h>0 xz—h

l—xz+h 1 1
=max | sup ———, sup — | = —
:c—hr>)0 2h - hI<)0 2h

_ 1 x+ho
Mf(x)=M"f(zx) = su / d
f(x) f(z) W e X(0,1)(y)dy
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l—x2+M 1 1
=max sup ———, sup — | = —.
O<az—hi <1 h1 a—h1<0 1 x

1 x+h

Mf(x) = M'f(x) =sup o X(0,1)(¥)dy
h>0 rz—h

2h l—x+h
= max sup —, sup _—
O<z—h<z+h<l 2N 0<co—h<i<e+n 2R

r+h 1
sup , sup —
e—h<0<a+h<1 2h " n<o<i<aetn 2h

1 . /1 1
=max | 1,1,1, —min | —, =1,
2 z 1l—=x

x+ho
Mf(zx)=M"f(z) = sup / d
f(z) f(z) poho B+ b Jon, X(o,l)(y) Y

( h1 + ho T + ho
=max u

For 0 < x < 1, it follows

sup ) p s
O<z—hy<zt+ha<l M1+ N2 2 pco<othy<1 N1+ ha

1*$+h1 1 >

sup

s sup
O<z—hi<l<az+hy N1+ ho

w—h1<0<1<z+hy M1 + h2
=1.
For x < 0, we have

Mf($):M'f(:E):max< sup z+h su 1): 1

a7 P = PYZEERY,
O<ath<lh>0 20 apn>12h 2(1 —x)
~ x + hQ 1
Mf(x) = M" f(x) = max sup ,  sup
hi,he>0,0<a+ha<1 N1+ 12 hi>024ho>1 1 + D2
_ 1
11—z

Observe that f € L'(R), but M f,M'f,M" f,Mf ¢ L'(R).

Remark 3.7. (i) M f is defined at every point x € R" and if f = g a.e., then M f(z) =
Mg(z) atevery x € R™.

(ii) It may be well that M f = oo for every z € R". For example, let n = 1 and
f(z) =2

(iii) There are several definitions in the literature which are often equivalent.

Next, we state some immediate properties of the maximal function. The proofs
are left to interested readers.

Proposition 3.8. Let f,g € L} _(R™). Then
(i) Positivity: M f(x) > 0 for all x € R™.
(ii) Sub-linearity: M (f + g)(x) < M f(x) + Mg(x).
(iii) Homogeneity: M(af)(xz) = |a|M f(x), a € R.
(iv) Translation invariance: M (7 f) = (,M f)(z) = M f(z — y).
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With the Vitali covering lemma, we can state and prove the main results for the
maximal function.

Theorem 3.9 (The maximal function theorem). Let f be a given function defined on R™.
() If f € LP(R™), p € [1, 00|, then the function M f is finite almost everywhere.
(i) If f € L' (R™), then for every o > 0, M is of weak type (1,1), i.e.,

m({z: Mf(@) > a}) < >l
(iii) If f € LP(R™), p € (1, 0], then M f € LP(R™) and

IMfllp < Apll £llps
where Ay =3"p/(p—1) + 1 forp € (1,00) and A, = 1.

Proof. We first prove the second one, i.e., (ii). Denote
Eo={z: Mf(z) > a},
then from the definitions of M f and the supremum, for each z € E, and 0 < ¢ <

M f(z) — «, there exists a r > 0 such that

1
m(B(z,1)) /B(:r,r) [f(y)ldy > Mf(z) —e > a.

We denote that ball B(x,r) by B, that contains z. Therefore, for each B,, we have

m(B:) < o [ 1fGdy 7)

Fix a compact subset K of E,. Since K is covered by U,cg, B,, by Heine-Borel theo-
rem,’ we may select a finite subcover of K, say K C |J évzl By. Lemma 3.1 guarantees
the existence of a sub-collection Bj,, - - -, B;, of disjoint balls with

N k
m(| J By) 3" m(B;,). (3.8)
/=1 =1

Since the balls B;,, - - -, B;, are disjoint and sa_tisfy (3.7) as well as (3.8), we find that

N k an
(k) <l B) <33 m(B;) <Y [ (rwlay
=1 i=1 i=1 7 Bj;

= Oy I
a Uf:l By, @ Jrn

Since this inequality is true for all compact subsets K of E,, the proof of the weak
type inequality (ii) for the maximal operator is complete.

The above proof also gives the proof of (i) for the case when p = 1. For the case
p = oo, by Theorem 3.4, (i) and (iii) is true with A, = 1.

Now, by using the Marcinkiewicz interpolation theorem between L' = LY and
L*>* — L*°, we can obtain simultaneously (i) and (iii) for the case p € (1, o). |

Now, we make some clarifying comments.

® The Heine-Borel theorem reads as follows: A set K C R" is closed and bounded if and only if
K is a compact set (i.e., every open cover of K has a finite subcover). In words, any covering of a
compact set by a collection of open sets contains a finite sub-covering. For the proof, one can see the
wiki: http://en.wikipedia.org/wiki/Heine%E2%80%93Borel_theorem.
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Remark 3.10. (1) The weak type estimate (ii) is the best possible for the distribution
function of M f, where f is an arbitrary function in L!(R™).

Indeed, we replace | f(y)|dy in the definition of (3.3) by a Dirac measure di whose
total measure of one is concentrated at the origin. The integral | B(a,r) A = 1 only if
the ball B(z, ) contains the origin; otherwise, it will be zeros. Thus,

1 ny—1
MAEY= B oy m(Bl ) — )
i.e., it reaches the supremum when r = |z|. Hence, the distribution function of M (du)
is
(M(dp))s (o) =m({z : |M(dp)(@)] > o}) = m({z : (Valz|") ™" > a})

=m({z: Vy|z[" < a™'}) = m(B(0, (Voa) /™)

=V, (Vha) ™t =1/a.
But we can always find a sequence { f,,,(z)} of positive integrable functions, whose
L' norm is each 1, and which converges weakly to the measure du. So we cannot
expect an estimate essentially stronger than the estimate (ii) in Theorem 3.9, since, in
the limit, a similar stronger version would have to hold for M (du)(x).

(2) It is useful, for certain applications, to observe that

1
Ap_O(p—l)’ asp — 1.

In contrast with the case p > 1, when p = 1 the mapping f — M f is not bounded
on LY(R™). So the proof of the weak bound (ii) for M f requires a less elementary
arguments of geometric measure theory, like the Vitali covering lemma. In fact, we
have

Theorem 3.11. If f € L'(R") is not identically zero, then M f is never integrable on the
whole of R™, i.e., M f ¢ L'(R™).

Proof. We can choose an N large enough such that

/ F@)lde> L]
B(O,N

)

Then, we take an x € R” such that |x| N. Letr =2(|z| + N), we have

1 1

1 1
ZEERRE /B > ol

W (RalE®
It follows that for sufficiently large |z|, we have
Mf(z) > ca|™, = 2Vad™) I f]
This implies that M f ¢ LY(R"). [ |
Moreover, even if we limit our consideration to any bounded subset of R", then
the integrability of M f holds only if stronger conditions than the integrability of f
are required. In fact, we have
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Theorem 3.12. Let E be a bounded subset of R"™. If fIn™ |f| € LY(R™) and supp f C E,
then

/ M ()dz < 2m(E) + C /E (@) In* |£()d,

where In™ t = max(Int,0).

Proof. By Theorem 2.16, it follows that
/ M f(x)dx —2/ m({z € E: Mf(x)> 2a})da
E

_2</ /) ({z € E: Mf(z) > 20})da

<om(E) + 2/1 m({z € E: Mf(z) > 2a})da.

Decompose f as f1+ f2, where f1 = fX{u:|f(2)|>a} @and fo = f — f1. Then, by Theorem
3.4, it follows that
M fo(z) < [M falloo < [l f2lloo < o,
which yields
{reE:Mf(x)>2a} C{xeE:Mfi(x)>a}.
Hence, by Theorem 3.9, we have

/loo m({z € E: Mf(z) > 20})da < /IOO m({z € E: Mfy(z) > a})da

1 max(Lf(@)) gy,
< / 1 / | (@)|deda < C / (@) / da
1 @ J{zeE:|f(z)|>a} E 1

=C [ Ir@)* | (@)l
This completes the proof. |

As a corollary of Theorem 3.9, we have the differentiability almost everywhere of
the integral, expressed in (3.2).

Theorem 3.13 (Lebesgue differentiation theorem). If f € LP(R"), p € [1, co], or more
generally if f is locally integrable (i.e., f € L}, (R™)), then

. 1
PL%W /B(w) fy)dy = f(x), forae. x. (3.9)

Proof. We first consider the case p = 1. It suffices to show that for each a > 0, the set

1
>2a}

ST /B 0 1)

has measure zero, because this assertion then guarantees that the set £ = (J;2| Ey
has measure zero, and the limit in (3.9) holds at all points of £°.

Fix o, since the continuous functions of compact support are dense in L*(R"), for
each ¢ > 0 we may select a continuous function g of compact support with || f —g||; <

e. As we remarked earlier, the continuity of g implies that

1

Iim/ g(y)dy = g(x), forall x.
P (B ) o 7Y I

r—0

E, = {a: : lim sup
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Since we may write the difference m J Blar) S (y)dy — f(x) as

1
m(B(z,7) /B (m(f (v) —9(y))dy
1
T nB@ ) /B (xyr)g(y)dy —g(@) + g(z) — f(2),
we find that
. 1
i s ‘mw()) /BW) Fy)dy — ()] < M(f = g)(x) + |g(x) — f(=)].
Consequently, if

Fo={x:M(f—9g)(z)>a} and G, ={z:|f(z)—g(z)| > a},
then £, C F,, UG,, because if u; and us are positive, then u; +ug > 2a only if u; > «
for at least one u;.
On the one hand, Tchebychev’s inequality* yields

1
n(Ga) < —f —gll,

and on the other hand, the weak type estimate for the maximal function gives

3n
m(Fa) < —If =gl
Since the function g was selected so that || f glli < e, we get

3" 1 3" + 1
m(FE,) < =€ + — .

Since ¢ is arbitrary, we must have IIn( o) = O and the proof for p = 1is completed.
Indeed, the limit in the theorem is taken over balls that shrink to the point z, so
the behavior of f far from x is irrelevant. Thus, we expect the result to remain valid
if we simply assume integrability of f on every ball. Clearly, the conclusion holds
under the weaker assumption that f is locally integrable.
For the remained cases p € (1, oo, we have by Holder inequality, for any ball B,

/B F@)ldz < /1oLl () < (B [ 1]

Thus, f € L}, (R") and then the conclusion is valid for p € (1,oc]. Therefore, we
complete the proof of the theorem. [ |

By the Lebesgue differentiation theorem, we have

Theorem 3.14. Let f € Li (R"). Then
|f(@)] < Mf(z), ae xR

Combining with the maximal function theorem (i.e., Theorem 3.9), we get

Corollary 3.15. If f € LP(R"), p € (1, 0], then we have
1fllp < 1M fllp < Apll£llp-

*Tchebychev inequality (also spelled as Chebyshev’s inequality): Suppose f > 0, and f is integrable.
Ifa>0and E, = {z € R": f(z) > a}, then

Ea) < é / fdz.
R’IL
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As an application, we prove the (Gagliardo-Nirenberg-) Sobolev inequality by us-
ing the maximal function theorem for the case 1 < p < n. We note that the inequality
also holds for the case p = 1 and one can see [Eva98, p.263-264] for the proof.

Theorem 3.16 ((Gagliardo-Nirenberg-) Sobolev inequality). Let p € (1,n) and its
Sobolev conjugate p* = np/(n — p). Then for f € Z(R™), we have
p < CHVfHP:

where C depends only on n and p.

Proof. Since f € Z(R"), we have
0
f@) == [ gttt rain

where 2z € S"!. Integrating this over the whole unit sphere surface 5"~ yields

wn—1f(x) :/Snl f(z)do(z) = — /Snl /OOO ;f(x + rz)drdo(z)

= /Sn_l /0 Vf(x+rz)-zdrdo(z)
- / Vi(x+rz)- zdo(z)dr.
0 Jgn-1

Changing variables y = z + rz, do(z) = 1~ Vdo(y), 2 = (y — z)/|ly — x| and
r=|y — x|, we get

- 1f / /8er ny |y_x|n ()
Yy —x
= — . d
| v =

@) < — / Viwl

Wno1 Jgn [y — x’n_l
We split this integral into two parts as [, = [, Bar) T fRn\ B(a.r)- FOT the first part,

we have
L v,
Wn—1 JB(,r) |z —y|*

[e.9]

1 \V4
_ Z/ | f(?i)_'ldy
Wn—1 B(a,2-*r)\B(z,2-+1r) 1T — Y|

k=0
1 V()]

o
wn—1 £ O/B(;U,Zkr)\B(:c,leT) (27k=typ)n—t

- 1 V)
Z nV nV,2=Fr /B(M_m @1

—k+n— 1 1 \V/ d
22 e /B(xm| 7 ()ldy

which implies that

<

n—1

2n rM(Vf)( 22— M (V) @)
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For the second part, by Holder inequality, we getfor 1 <p <n

\Y%
/ | f(i)lldy
Re\B(a,r) 1T — Y

1/p /v
< (/ \Vf(y)\pdy> (/ | — | dy)
R7\B(z,r) R7\B(z,r)

> 1 / 1 1/17/
<(wn_1 e dp) 1971,

_ ((p ;1_)0;:_1

(=10 (Ol P
("7;;(1771)/"%1/,"12? (M(vf)(i)) Satlsfymg

1/’ )
)l

Choose r =

/

e\
2 M (V) () = —" ((p D) ”‘1) T A

Wn—1 n—p
then we get
()] < CIVFIE™(M(V f) () P/
Thus, by part (iii) in Theorem 3.9, we obtain for 1 < p <n

1l <CIT AR M ILE"

=CIIVFI ™MV F)ll ™ < OV £l
This completes the proof. [

3.3 Calderén-Zygmund decomposition

Applying Lebesgue differentiation theorem, we give a decomposition of R™, called
Calderén-Zygmund decomposition, which is extremely useful in harmonic analysis.

Theorem 3.17 (Calder6n-Zygmund decomposition of R"). Let f € L*(R") and o >
0. Then there exists a decomposition of R™ such that

OR"=FUQ FNQ=0.

(i) | f(z)| < aforae x € F.

(iii) €2 is the union of cubes, 2 = | J,, Qr, whose interiors are disjoint and edges parallel
to the coordinate axes, and such that for each Qy,

1 n
a<m<Qk>/Qk\f(:L‘)]dx<2 a. (3.10)

Proof. We decompose R" into a mesh of equal cubes Q,io) (k =1,2,---), whose in-
teriors are disjoint and edges parallel to the coordinate axes, and whose common
diameter is so large that

1
S dr < a, 3.11
el / o @l < (3.11)

since f € L'.
Split each Q}(€0) into 2" congruent cubes. These we denote by Q,&l), k=1,2---.
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There are two possibilities:

1 1
either / |f(z)|dz < o, or / |f(z)|dx > «a.
m(@Q}) o m(@;”) Jef”

In the first case, we split Q,(j) again into 2" congruent cubes to get Q,(f) (k=1,2,---).
In the second case, we have

f@lde < o | i@l <2

1 / B S
m(Q}) ol 2-rm(QY) Jo

in view of (3.11) where Q,(Cl) is split from Q’%O), and then we take Q,(fl) as one of the
cubes Q.

A repetition of this argument shows that if z ¢ Q =: [J,2, Q; then = € Q,(j] )
(j=0,1,2,--) for which

j 1
zrn(Ql(gj))—>0asj—>oo, and./@(j) If(z)|lde <a (j=0,1,---).
k.

m(Q})
Thus |f(z)| < v a.e. z € F = Q° by a variation of the Lebesgue differentiation
theorem. Thus, we complete the proof. |

We now state an immediate corollary.

Corollary 3.18. Suppose f, o, F, Q and Qj, have the same meaning as in Theorem 3.17.
Then there exists two constants A and B (depending only on the dimension n), such that (i)
and (ii) of Theorem 3.17 hold and

@m(®) < 217l

1
®) o /Qk \f|dz < Ba.

Proof. In fact, by (3.10) we can take B = 2", and also because of (3.10)
1 1
(@) = F (@) < [ 1@ < 21

This proves the corollary with A = 1and B = 2". |

It is possible however to give another proof of this corollary without using The-
orem 3.17 from which it was deduced, but by using the maximal function theorem
(Theorem 3.9) and also the theorem about the decomposition of an arbitrary open set
as a union of disjoint cubes. This more indirect method of proof has the advantage of
clarifying the roles of the sets F' and ) into which R™ was divided.

Another proof of the corollary. We know that in F, |f(z)| < «, but this fact does not
determine F'. The set F' is however determined, in effect, by the fact that the maximal
function satisfies M f(r) < « onit. So we choose F' = {z: M f(z) < a} and Q =
E, = {x: M f(z) > a}. Then by Theorem 3.9, part (ii) we know that m(Q) < 2| f||;.
Thus, we can take A = 3™.

Since by definition F is closed, we can choose cubes ()}, according to Theorem 3.2,
such that Q@ = |, Qk, and whose diameters are approximately proportional to their
distances from F'. Let @}, then be one of these cubes, and py, a point of F such that

dist (F, Qx) = dist (pg, Qr,)-
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Let By, be the smallest ball whose center is p, and which contains the interior of
Q. Let us set

= m(By,)
m(Qk)
We have, because py, € {z : M f(z) < o}, that
0> Mip) > s [ W@lde > - [ @)
m(By) Jp, Tm(Qk) Jo,

Thus, we can take a upper bound of v;, as the value of B.
The elementary geometry and the inequality (iii) of Theorem 3.2 then show that

radius(By) < dist (px, Qx) + diam (Qr) = dist (F, Q) + diam (Q)

<(ez + 1) diam (Qx),
and so
m(By) =V, (radius(By))" < Vi(c2 + 1) (diam (Qx))"

=Va(ez + 1)"n"*m(Qy),
since m(Qy) = (diam (Q)/v/n)". Thus, v < Vi(cz + 1)"n™? for all k. Thus, we
complete the proof with A = 3" and B = V;,(cz + 1)"n"/2. [ |

Remark 3.19. Theorem 3.17 may be used to give another proof of the fundamental
inequality for the maximal function in part (ii) of Theorem 3.9. (See [Ste70, §5.1, p.22-
23] for more details.)

The Calderén-Zygmund decomposition is a key step in the real-variable analysis
of singular integrals. The idea behind this decomposition is that it is often useful to
split an arbitrary integrable function into its “small” and “large” parts, and then use
different techniques to analyze each part.

The scheme is roughly as follows. Given a function f and an altitude «, we write
f = g + b, where g is called the good function of the decomposition since it is both
integrable and bounded; hence the letter g. The function b is called the bad function
since it contains the singular part of f (hence the letter b), but it is carefully chosen to
have mean value zero. To obtain the decomposition f = g + b, one might be tempted
to “cut” f at the height «; however, this is not what works. Instead, one bases the
decomposition on the set where the maximal function of f has height .

Indeed, the Calderén-Zygmund decomposition on R” may be used to deduce the
Calderén-Zygmund decomposition on functions. The later is a very important tool
in harmonic analysis.

Theorem 3.20 (Calderén-Zygmund decomposition for functions). Let f € L'(R"?)
and o > 0. Then there exist functions g and b on R™ such that f = g + band

(@) llglly < [fllxand [|g]lo < 2"cv.

(ii) b = > bj, where each b; is supported in a dyadic cube Q; satisfying | g, biz)dr =0
and ||bj|l; < 2" am(Q;). Furthermore, the cubes Q; and Qy, have disjoint interiors when
J# k.

(iif) 3-; m(Q5) < oM f

Proof. Applying Corollary 3.18 (with A =1 and B = 2"), we have
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DR*"=FUQFNQ=g;
2) |f(x)| < a,ae.x €F;
3) Q=2 =1 @, with the interiors of the Q; mutually disjoint;

4m(Q) <ot [z |f(@)|de, and o < —L~ fQ |f(z)|dz < 2"

Now define
1
b; = — d .
J (f m(Q]) /ij ‘/Ij) XQ]7

b=3_;bjand g = f — b. Consequently,

/|b \d:c</ @)lde +m(Q;)

f (z)dx

(Qn
<2 / |f (2)|dz < 2" am(Q;),

Qj
which proves [|b;]l1 < 2" am(Q;).
Next, we need to obtain the estimates on g. Write R" = U;Q; U F, where F is the

closed set obtained by Corollary 3.18. Since b = 0 on F'and f —b; = — (Q f Q; x)dz,
we have
f7 on F’
g= 1 (3.12)
f x)dx, onQ,;.
(@) Jo, " :

On the cube @)}, g is equal to the constant m(Q f Q; x)dz, and this is bounded by

2"a by 4). Then by 2), we can get ||g|l < 2" Fmally, it follows from (3.12) that
llglli < [|f]l1- This completes the proof. [ |

As an application of Calderén-Zygmund decomposition and Marcinkiewicz in-
terpolation theorem, we now prove the weighted estimates for the Hardy-Littlewood
maximal function.

Theorem 3.21 (Weighted inequality for Hardy-Littlewood maximal function). For
p € (1,00), there exists a constant C' = C,,p, such that, for any nonnegtive measurable
function p(z) on R™, we have the inequality

/ (MF(z)Po(z)dz < C / )P Mo(z)dz. (3.13)
R~

Proof. Except when My(x) = oo a.e., in which case (3.13) holds trivially, M ¢ is the
density of a positive measure ;. Thus, we may assume that Mp(z) < oo a.e. x € R”
and My(x) > 0. If we denote
du(x) = Mp(z)de and dv(z) = p(z)dz,
then by the Marcinkiewicz interpolation theorem in order to get (3.13), it suffices to
prove that M is both of type (L>(u), L*°(v)) and of weak type (L!(u), L*(v)).
Let us first show that M is of type (L*°(u), L>°(v)). In fact, if || f|| oo (u) < @, then

/ Me(w)de = p({z € R : |{(x)] > a}) = 0.
{zeR™:|f(z)|>a}

Since M¢(z) > Oforany x € R", wehavem({z € R" : |f(z)| > a}) = 0, equivalently,
|f(z)] < cvae. z € R". Thus, M f(z) < a a.e. ¥ € R" and this follows || M f|[ () <
a. Therefore, HMfHLoo(V) < HfHLoo(Iu)
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Before proving that M is also of weak type (L*(u), L'(v)), we give the following
lemma.

Lemma 3.22. Let f € LY(R™) and o > 0. If the sequence {Qy.} of cubes is chosen from the
Calderén-Zygmund decomposition of R™ for f and o > 0, then

{z eR": M'f(x) > T} | JQr,
where Q. = 2Qy. Then we have ’
m({z € R": M'f(z) > T"a}) < 2" ) m(Qy).
k

Proof. Suppose that = ¢ J, Q;. Then there are two cases for any cube () with the
center z. If Q C F:=R" \ |J, Qk, then

1
nl(@)/Q\f(fU)’dfC <a

If Q N Qr # @ for some k, then it is easy to check that @, C 3Q, and
Qi QenQ # 2} C 3Q.
k

Hence, we have
/|f(x)|dx </ D+ Y / 2)|dz
@ QnE QrNQ#D
<om(Q)+ Y 2'om(Qk)
QrNQ#L

<am(Q) + 2"om(3Q)

<7"am(Q).
Thus we know that M’ f(z) < 7« for any z ¢ | J,, Qj, and it yields that

m({z € R" : M'f(x) > Ta}) < <UQk> —2”21111 Qk)-
We complete the proof of the lemma. [

Let us return to the proof of weak type (L' (), L' (). We need to prove that there
exists a constant C such that for any o« > 0 and f € L!(u)

/ o(x)dr =v({x e R" : M f(x) > a})
{zeR™:M f(z)>a}

o (3.14)

<< [ U@Me)ds.
We may assume that f € L'(R"). In fact, if we take f; = |fIxB(0,0), then f, € LY(R™),
0< fi(z) < fop1(z) forz € R"and £ = 1,2, - --. Moreover, limy_,, f¢(z) = |f(z)] and

{xER”:Mf(a;)>a}:U{a:€]R":Mfg(x)>a}.

¢
By the pointwise equivalence of M and M, there exists ¢, > 0 such that M f(z) <
cnM' f(x) for all z € R". Applying the Calderén-Zygmund decomposition on R" for
fand o/ = a/(c, "), we get a sequence {Qy} of cubes satisfying

/ka 2)lde < 2.

o <

1
m(Qy)
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By Lemma 3.22 and the pointwise equivalence of M and M”, we have that

/ o(z)dx
{zeR™:M f(z)>a}

é/ o(z)dx
{2€R™ M f(2)>Tra’}
g/ o(z)dr < / o(z)dx
U @k zk: Q%
<
> (s

o, so(sc)dx) (3 [ 17w

ZCncj"z A !f(y)!<m2nz) L,
cn14"Z / DM o)y

C

ga(x)dx) dy

N

|f ()| Mp(y)dy.
Rn

Thus, M is of weak type (L'(u), L*(v)), and the inequality can be obtained by apply-

ing the Marcinkiewicz interpolation theorem.
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4.1 Harmonic functions and Poisson equation

Among the most important of all PDEs are undoubtedly Laplace equation
Au =0 4.1)
and Poisson equation
—Au = f. (4.2)
In both (4.1) and (4.2), z € Q and the unknown is u : Q@ — R, u = u(z), where

(1 C R™is a given open set. In (4.2), the function f : Q@ — R is also given. Remember
that the Laplacian of u is Au = Y"}_, 92, u.

Definition 4.1. A C? function u satisfying (4.1) is called a harmonic function.

Now, we derive a fundamental solution of Laplace’s equation. One good strat-
egy for investigating any PDEs is first to identify some explicit solutions and then,
provided the PDE is linear, to assemble more complicated solutions out of the spe-
cific ones previously noted. Furthermore, in looking for explicit solutions it is often
wise to restrict attention to classes of functions with certain symmetry properties.
Since Laplace equation is invariant under rotations, it consequently seems advisable
to search first for radial solutions, that is, functions of r = |z|. Let us therefore attempt
to find a solution u of Laplace equation (4.1) in © = R", having the form

u(z) = v(r),
where r = |z| and v is to be selected (if possible) so that Au = 0 holds. First note for
k=1,---,nthat
or  xp
T x # 0.
69
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We thus have
2 2
T T 1 =z
= ()%, Fu=v' 0%+ 00 (1 - %)
fork=1,---,n,and so
" n—1,
Au =v"(r) . v'(r).
Hence Au = 0 if and only if
-1
"y ”Tz/ —0. (4.3)
If o' # 0, we deduce
" 1-n
Ino') — v _
(nv) 'U, r 9y

and hence v'(r) = —-1 for some constant a. Consequently, if r > 0, we have

blnr+c¢, n=2,

v(r) =9 b
7“”7_2—’_07 Tl>3,

where b and c are constants.
These considerations motivate the following

Definition 4.2. The function .
= In |z, n=2,
™
O(x) := 1 1 (4.4)

>
nn =2V a2 "2
defined for z € R", x # 0, is the fundamental solution of Laplace equation.

The reason for the particular choices of the constants in (4.4) will be apparent in a
moment.

We will sometimes slightly abuse notation and write ®(x) = ®(|z|) to emphasize
that the fundamental solution is radial. Observe also that we have the estimates

C C
(Ve ()] < Ea V2e(z)| < EE (z #0) (4.5)

for some constant C' > 0.

By construction, the function z +— ®(x) is harmonic for x # 0. If we shift the
origin to a new point y, the PDE (4.1) is unchanged; and so z — ®(x — y) is also
harmonic as a function of = for z # y. Let us now take f : R” — R and note that the
mapping = — ®(z — y) f(y) (x # y) is harmonic for each point y € R”, and thus so is
the sum of finitely many such expression built for different points y. This reasoning
might suggest that the convolution

-5 [l =ahswds. n=2,

u(x) = O(x — dy =
@) = [ ea-)swi D,
n(n—2)Vy Jgo [z -yl 77
would solve Laplace equation (4.1). However, this is wrong: we cannot just compute

Au(z) = /R A ) f(y)dy = 0. 47)

(4.6)
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Indeed, as intimated by estimate (4.5), A®(x —y) is not summable near the singularity
at y = x, and so the differentiation under the integral sign above is unjustified (and
incorrect). We must proceed more carefully in calculating Aw.

Let us for simplicity now assume f € C2(R"™), that is, f is twice continuously
differentiable, with compact support.

Theorem 4.3 (Solving Poisson equation). Let f € C2?(R"), define u by (4.6). Then
u € C?(R") and —Au = f in R™.

We consequently see that (4.6) provides us with a formula for a solution of Pois-
son’s equation (4.2) in R™.

Proof. Step 1: To show u € C%(R™). We have
uw)= [ @ -p)iwidy= [ 2wy,

hence
h n h
where h # 0and e, = (0,---,1,---,0), the 1 in the k*"-slot. But
flathe,—y) —fw—y)  Of
Y ~ B (z—y)

uniformly on R" as h — 0, and thus

a“(x)_/ o( )ﬁ(m_ Yy, k=1,---.,n

aﬂ?k - R y 8.’1:k y y? - 5 g 1.
Similarly,

0%u 0% f
e @)= [P0y, k=1 @8)

As the expression on the rh.s. of (4.8) is continuous in the variable =, we see that
u € C*(R"™).

Step 2: To prove the second part. Since ® blows up at 0, we will need for subsequent
calculations to isolate this singularity inside a small ball. So fix ¢ > 0. Then

Au(z) = / B(y)Auf (@ — y)dy + / B(y)Auf(z — y)dy = L + J.. (49)
B(0,¢) R7\B(0,e)
Now
LI<c1afl [y < | O R g
el X o0 (076) y y\ 0627 n>37 .

since

€ €
/ | In|y||dy = — 27r/ rinrdr = —m <r2 Inr|g— / Tdr>
B(O E) 0 0

= — (% Ine — £2/2)
—re?|Ine| + gsz,

for e € (0,1] and n = 2 by an integration by parts.
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An integration by parts yields

J. = / B(y) Auf (@ — y)dy
Rm\B(0,¢)

[ e @-pit) - [ Vo) Vs -pay @D
0B(0,e) 4 R\ B(0,¢)

=:K; + Le,
where v denotes the inward pointing unit normal along 0B(0, ). We readily check

| K| <|Vf||oo/ [@(y)|do(y) < CIQ(S)I/ do(y) = C|@ ()"~

0B(0,e) 0B(0,e) 410
Ce|lne|, n=2, (412)
= Ce, n =3,
since ®(y) = ®(|y|) = ®(¢) on 9B(0,¢) ={y € R : |y| = ¢}.
We continue by integrating by parts once again in the term L., to discover
oP
L= [ Dwie-ndow+ [ AB) -y
dB(0,e) OV R7\B(0,e
o®
=- - W) f(x —y)da(y),
Lo, @ =)o)
since ® is harmonic away from the origin. Now, V®(y) = nV |y‘n for y # 0 and

v = ﬁ = —%on 0B(0,¢). Consequently, g—f(y) =v-Vo(y) = nVne"*l on 0B(0,¢).

Since nV,,e" ! is the surface area of the sphere dB(0, ¢), we have
1

L.=— 7] /aB(O , flxz —y)do(y)
— wwBe D L @) 1) ase -0
m(aB(x7€)) OB(z,¢) '

by Lebesgue differentiation theorem.
Combining now (4.9)-(4.13) and letting ¢ — 0, we find that —Au(z) = f(x), as
asserted. ]

(4.13)

Remark 4.4. We sometimes write

—AD = 50 in Rn,
where §p denotes the Dirac measure on R" giving unit mass to the point 0. Adopting
this notation, we may formally compute

~u(e) = [ A=)y = [ &)y =fa), @ eR"

in accordance with Theorem 4.3. This corrects the erroneous calculation (4.7).

Consider now an open set {2 C R" and suppose u is a harmonic function within €2.
We next derive the important mean-value formulas, which declare that u(z) equals
both the average of u over the sphere 0B(x,r) and the average of u over the entire
ball B(x,r), provided B(z,r) C Q.

Theorem 4.5 (Mean-value formula for harmonic functions). If u € C?(Q) is har-
monic, then for each ball B(z,r) C Q,
1 1

%) = @B, ) /m,r) W)doW) = B @) /B(x,r) uy)dy.
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Proof. Denote

1 1
r)= ——— u(y)do(y) = u(x +rz)do(z).
10) = =550 /BBW) o) = == [ (e +r2)do()
Obviously,
, 1 - 1 ou
fr=—— /S n_lj;(?xju(a:—i-rz)zjda(z) - — /S St r2)do(z),

where -2 denotes the differentiation w.r.t. the outward normal. Thus, by changes of

variable
1 ou

fi(r)= wn—l?”"_l/aB( )a(y)dff(y)'

By Stokes theorem, we get
fi(r) = 171_1/ Au(y)dy = 0.
Wp—1T B(z,r)
Thus f(r) = const. Since lim, o f(r) = u(x), hence, f(r) = u(x).
Next, observe that our employing polar coordinates gives, by the first identity
proved just now, that

/B(:r,r) u(y)dy :/07‘ </83(m) u(?J)da(y)) ds = /OT m(9B(z, s))u(x)ds

:u(x)/ nVps" tds = Vyru(z).
0
This completes the proof. u

Theorem 4.6 (Converse to mean-value property). If u € C?(Q) satisfies
1

uwr) = ———r—— u(y)do(y
) = ST o P
for each ball B(x,r) C 2, then u is harmonic.

Proof. If Au # 0, then there exists some ball B(z, ) C € such that, say, Au > 0 within
B(x,r). But then for f as above,
1

0=f'(r)= T P /B(m ) Au(y)dy > 0,

is a contradiction. [

4.2 Poisson kernel and Hilbert transform

We shall now introduce a notation that will be indispensable in much of our fur-
ther work. Indeed, we have shown some properties of Poisson kernel in Chapter 1.
The setting for the application of this theory will be as follows. We shall think of R"
as the boundary hyperplane of the (n + 1) dimensional upper-half space R*"!. In
coordinate notation,

R = {(z,y) : 2 € R",y > 0}.

We shall consider the Poisson integral of a function f given on R". This Poisson

integral is effectively the solution to the Dirichlet Problem for R;**: find a harmonic
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unction u(z,y) on R, whose boundary values on R” (in the appropriate sense) are
Yy + y pprop

f(x), thatis
Aggu(z,y) =0, (z,y)€ R, (414
u(z,0)=f, zeR"™ '

The formal solution of this problem can be given neatly in the context of the L?

theory.
In fact, let f € L?(R"), and consider
u(z,y) = (;') / et el f(€)dg, y > 0. (415)
7T n

This integral converges absolutely (cf. Theorem 1.15), because f € L*(R"), and
e~1“¢ly is rapidly decreasing in || for y > 0. For the same reason, the integral above
may be differentiated w.r.t. x and y any number of times by carrying out the opera-
tion under the sign of integration. This gives

Ay yu = 82+Zaaﬁk

because the factor e~ %¢~1“¢l satisfies this property for each fixed &. Thus, u(x,y) is
a harmonic function on R’/

By Theorem 1.15, we get that u(z,y) — f(z) in L?(R™) norm, as y — 0. That is,
u(z,y) satisfies the boundary condition and so u(x, y) structured above is a solution
for the above Dirichlet problem.

This solution of the problem can also be written without explicit use of the Fourier
transform. For this purpose, we define the Poisson kernel P,(x) := P(x,y) by

Py(z) = (’;') / e lwtlyge — (Fle W) (1), y > 0. (4.16)
s Rn
Then the function u(z, y) obtained above can be written as a convolution
u(z,y) = / Py(2)f(z — 2)dz, (4.17)
R

as the same as in Theorem 1.15. We shall say that v is the Poisson integral of f.
For convenience, we recall (1.12) and (1.10) as follows.

Proposition 4.7. The Poisson kernel has the following explicit expression:

Pa)=—¥ . D+ D/2) 418
W e CT T R 9

Remark 4.8. We list the properties of the Poisson kernel that are now more or less
evident:

(i) Py(x )>0fory>0

(ii) [pn Py(z)dx = A(O) = 1, y > 0; more generally, l/D;(f) = ¢~ 1“¢W by Lemma
1.14 and Corollary 1.23, respectively.

(iii) P,(z) is homogeneous of degree —n: P, (x) =y "Pi(z/y), y > 0.

(iv) Py(x) is a decreasing function of |z, and P, € LP(R"), 1 < p < oc. Indeed, by
changes of variables, we have for 1 < p < oo

P
p _,.p y
12yllp =< /R <<r:c|2 T y2><n+1>/2> e
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= 1
T=Yz p _p(p—1
nY rn (11 [z2)ptD2 %

7 00 1
2L Py P nl
chy wn—l/o (L4 2y prewa oL dr

iV ([ o [T )

2V (14 ) .
& p(n+ 1) —-n
For p = oo, it is clear that ||Py(x)||oo =cpy "

(v) Suppose f € LP(R™), 1 < p < oo, then its Poisson integral u, given by (4.17), is
harmonic in ]Ri“. This is a simple consequence of the fact that P,(x) is harmonic in
R; the latter is immediately derived from (4.16).

(vi) We have the “semi-group property” Py, * Py, = Py, +y, if y1,y2 > 01in view of
Corollary 1.24.

N

The boundary behavior of Poisson integrals is already described to a significant
extension by the following theorem.

Theorem 4.9. Suppose f € LP(R™), 1 < p < oo, and let u(z,y) be its Poisson integral.
Then

() supy~ |u(z,y)| < M f(x), where M f is the maximal function.

(b) limy o u(x,y) = f(x), for almost every x.

(c) If p < o0, u(x, y) converges to f(x) in LP(R™) norm, as y — 0.

The theorem will now be proved in a more general setting, valid for a large class
of approximations to the identity.
Let ¢ be an integrable function on R", and set p.(z) = ¢ "p(x/¢€), € > 0.

Theorem 4.10. Suppose that the least decreasing radial majorant of ¢ is integrable; i.e., let
P(x) = supjy 4| le(y)|, and we suppose [5, ¢(x)dx = A < co. Then with the same A,
(2) supos | (f * 2 (& >| < AMf(z), f € LP(R"), 1< p < oo
(b) If in addition [, ¢(x)dx =1, then lim._o(f * ¢.)(x) = f(x) almost everywhere.
(©) If p < oo, then Hf*goE fllp = 0,as¢ = 0.

Proof. For the part (c), we have shown in Theorem 1.15.

Next, we prove assertion (a). We have already considered a special case of (a) in
Chapter 3, with ¢ = #B) xB. The point of the theorem is to reduce matters to this
fundamental special case.

With a slight abuse of notation, let us write ¢(r) = (), if || = r; it should
cause no confusion since () is anyway radial. Now observe that ¢ (r) is decreasing
and then fr/2<|z|<r P(x)de = P(r) fr/2<\x|<r dx = cp(r)r™. Therefore the assumption
¢ € L' proves that r")(r) — 0 as r — 0 or r — oo. To prove (a), we need to show
that

(f *¢e)(2) < AMf( ); (4.19)
where f >0, f € LP(R"),e > 0and A = [, ¥(x)dz.
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Since (4.19) is clearly translation invariant w.r.t f and also dilation invariant w.r.t.
1) and the maximal function, it suffices to show that

(f *)(0) < AM f(0). (4.20)
In proving (4.20), we may clearly assume that M f(0) < oco. Let us write A(r) =
fsn  fra)do(2'), and A(r) = flw\<rf( x)dz, so

/ / F(ta)do (2 )t dt = / MOt Lo, N (r) = A(r)r L.
Sn— 1
We have

(F=0)0) = | da:—/ 1/5 (ra Yo (r)do ()i

:/OOO "IN()Y(r)dr = lim /\(r)w(r) "Ly

e—=0
N—oo Y&

e—0 e—0
€

N N
= lim N (r)(r)dr = lim {[A(r)d}(r)]év—/ A(r)d¢(r)}.

N —o0 N —o0
Since A(r) = f|x|<r f(z)dz < V,r"M £(0), and the fact 7" (r) — 0asr — 0 or r — oo,
we have
0< lim A(N)Y(N) <V, Mf(0) lim N")(N) =0,
N—oo

N—o0
which implies limy_o A(N)9(N) = 0 and similarly lim._,g A(¢)y(¢) = 0. Thus, by
integration by parts, we have

o0

(f % )(0) = /0 A0 < Vg ) [ ()

0
VM F0) [ oty dr = 21£0) [ vy,
0 R”
since 1 (r) is decreasing which implies ¢’(r) < 0, and nV,, = w,,—1. This proves (4.20)
and then (4.19).

Finally, we prove (b) in a familiar way as follows. First, we can verify that if
fi € Ce, then (f1 * ¢-)(x) — fi(z) uniformly as ¢ — 0 (cf. Theorem 1.15). Next
we can deal with the case f € LP(R"), 1 < p < oo, by writing f = f1 + f2 with f;
as described and with || f2||, small. The argument then follows closely that given in
the proof of Theorem 3.13 (the Lebesgue differentiation theorem). Thus we get that
lim._,o f * p-(x) exists almost everywhere and equals f(z).

To deal with the remaining case, that of bounded f, we fix any ball B = B(zg, ),
and set ourselves the task of showing that

gig%(f * @:)(x) = f(x), for almost every z € B.

Let B; be any other ball which strictly contains B and the origin {0} satisfying
d > |zo| + r where § = dist (B, BY) is the distance from B to the complement of B;.
Let fi(x) = { g(x), i ; gl’ ; f(x) = fi(z) + fa(x). Then, f; € LY(R"), and so the
) 1’
appropriate conclusion holds for it. However, for z € B,

/ Ja(z — y)pe(y)dy| < / |f2(z = y)|lw=(y)|dy
R™ |lz—y|>6>0

<||f||oo/ lo(y)|dy — 0, as e — 0.
ly|=(0—Iz[)/e>0

Thus, we complete the proof. [

|(f2* ) (2)| =
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Proof of Theorem 4.9. Theorem 4.10 then applies directly to prove Theorem 4.9, be-
cause of properties (i)-(iv) of the Poisson kernel in the case p(z) = ¥ (z) = Pi(x).
|

There are also some variants of the result of Theorem 4.10, which apply equally
well to Poisson integrals. The first is an easy adaptation of the argument already
given, and is stated without proof.

Corollary 4.11. Suppose f is continuous and bounded on R™. Then (f * ¢.)(z) — f(z)
uniformly on compact subsets of R".

The second variant is somewhat more difficult. It is the analogue for finite Borel
measures in place of integrable functions, and is outlined in further result of [Ste70,
4.1, p.77-78].

Now, we give the definition of harmonic conjugate functions as follows.

Definition 4.12. The harmonic conjugate to a given function u(z, y) is a function v(z, y)
such that
f(.iL‘, y) = u(:):, y) + i’l)(l', y)
is analytic, i.e., satisfies the Cauchy-Riemann equations
Wy = Uy Wy = gy
where u, = du/0z, u, = 0u/0y. Itis given by

(z,y)

v(z,y) = / Uz dy — uyder + C,
(z0,90)

along any path connecting (zo,y0) and (z,y) in the domain, where C' is a constant of

integration.

Given a function f in .(R), its harmonic extension to the upper half-plane is
given by u(x,y) = P, * f(x), where P, is the Poisson kernel. We can also write, in
view of (4.15),

u(z) =uly) = b [ eene o fepig
_|2°;‘ { /0 16— lwlEw f£)de + / s f(g)dg]

0o 0
:WWA WWM@Wf@%f/ it o isan i f@%}

2w PN
where z = x + iy. If we now define

isgn ()u(z) = S [ [T etetosismonm fgyag

0
- [ estemimen fg)ag],

—0o0
then v is also harmonic in Ri and both v and v are real if f is. Furthermore, u + iv
is analytic since it satisfies the Cauchy-Riemann equations u, = v, = wifu(z) and
uy = —v, = —wifv(z), so v is the harmonic conjugate of .



-78- 4. Singular Integrals

Clearly, v can also be written as, by Theorem 1.12, Proposition 1.3 and Theorem
1.28,

v(z) |;7)T| . —isgn (w)sgn (€)e e W f (&) de
b [ s @) Felsn (e ) ()
‘;J A —isgn (w).Z¢[sgn (5)6—|w£|y] (n — ) f(n)dn

- /R —isgn (@) Z [sgn (€)™ )z — ) f(n)dn,
which is equivalent to

v(z,y) = Qy * f(x), (4.21)

where

Qy(§) = —isgn (w) sgn (e . (4.22)
Now we invert the Fourier transform, we get, by a change of variables and integra-
tion by parts,

Qy(z) = —isgn (w ’ | / witt sgn (€)e” W dg

=—7 Sgn i |: UJ’LJ) 13 _‘w|£yd§ / UJ’LJ? 3 w£yd§:|
27T

=—7 Sgn i |: "‘”x 13 *‘W|§yd€ / *"-”55 E |W|§yd§:|
271'
‘ ’ . 8&6 |w|§y

S sgn Lhad} / wzx £ —wzxf) df
Yom —|wly

1 wiz-§ —wzx-{) —\w\&y‘oo
=i n —_— e
& 2 [ ( 0

— / wiT (ewm'£ + e_wm'g) e_lwlgydf}
0
:|w|x /oo (ewix-£ + efwiw{) ef\w\fydé-
0

2y
:’W|$\/ewix~§e|w§yd§:x9 ‘ | f|w§\y
21y Y 27r
T ay az
_*p — ,
Yy v(w) = yy?+2?  y?+a?
where ¢; =T'(1)/m = 1/7. That s,
1 =z
Wle) = T

One can immediately verify that Q(z,y) = Qy(x) is a harmonic function in the upper
half-plane and the conjugate of the Poisson kernel Py(x) = P(z,y). More precisely,
they satisfy Cauchy-Riemann equations
1 2xy 1 22— g2
Ol =00 = W)

In Theorem 4.9, we studied the limit of u(x,t) as y — 0 using the fact that {P,}
is an approximation of the identity. We would like to do the same for v(x, y), but we
immediately run into an obstacle: {Q,} is not an approximation of the identity and,

0,P = —0,Q =
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in fact, ), is not integrable for any y > 0. Formally,

lim Qy(z) = i,

y—0 T
this is not even locally integrable, so we cannot define its convolution with smooth
functions.
We define a tempered distribution called the principal value of 1/x, abbreviated

p.v.1l/z, by
<p.v.1,qb>:1im/ @dl‘, NSINZ
X e—0 x| >e X

To see that this expression defines a tempered distribution, we rewrite it as

<P.v. %, <b> = /|I<1 (@) —9(0) ; ¢(0) dx + /x|>1 qﬁf)dw,

this holds since the integral of 1/z on ¢ < |z| < 1is zero. It is now immediate that

1
(b 2.6 < CU I + o6l

Proposition 4.13. In ./ (R), we have lir% Qy(z) = Lp.v.
Y—

] |=

Proof. For each € > 0, the functions . (z) = z ™1 X|z|>¢ are bounded and define tem-

pered distributions. It follows at once from the definition that in .#”,

1
li = pv. -
613%%(96) DV

Therefore, it will suffice to prove that in .7’

. 1
i (Qy B Tr%) =0
Fix ¢ € ., then by a change of variables, we have

(TQy — Yy, @) :/R z¢(2) dr — /|I>y @dx

Y2 + 22 x

/|x<y y? +a? o /|x|>y y?+a? ¢(x)d

_ zp(yz) _ olyx)
_/|x<1 1+ 22 e /|z>1 z(1+ UCQ)dx'

If we take the limit as y — 0 and apply the dominated convergence theorem, we get
two integrals of odd functions on symmetric domains. Hence, the limit equals 0. W

As a consequence of this proposition, we get that

1 -1
lim Qy * f(z) = — lim flz=t)
y—0 T e—0 |t|>e t

dt,
and by the continuity of the Fourier transform on ./ and by (4.22), we get
1 1 .
F (3.1 © = ~isen (@) sen 6)
™ x

Given a function f € .7, we can define its Hilbert transform by any one of the
following equivalent expressions:

Hf=1im Qy+ /.

1 1
Hf =—pv.—x f,
m x
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Hf =7 (~isgn (w)sgn (€)f(€)).
The third expression also allows us to define the Hilbert transform of functions in
L*(R), which satisfies, with the help of Theorem 1.26,

sl = (52) " 1Fent = (5) 1= a2
that is, H is an isometry on L?(R). Moreover, H satisfies
H?f = H(H[) =7 " ((—isgn (w) sgn (§))*£(€)) = — 1, (4.24)

By Theorem 1.28, we have
(Hf.9) = [ Hf-gde = [ 77 (isen ()30 (©F(6) - ada

/ —isgn (w)sgn (€)F(€) - 5()de

= [ @) Flmisen (@) sen (i) w)da
— [ 1) Flisgn @) s (©) 2ol
= [ @) 7 fisen ) sen (i) ) da
- /R f - Hode = (f,~Hg), (425)
namely, the dual/conjugate operator of H is H' = —H. Similarly, the adjoint operator

H* of H is uniquely defined via the identity

(f. Hg) = /R ;- Hgde = — /]R Hfgde = (~Hf.g) = (H'f.g),

thatis, H* = —H.
Note that for given € R, H f(x) is defined for all integrable functions f on R
that satisfy a Holder condition near the point z, that is,

|f(z) — f)] < Cylz —t|*™
for some C; > 0 and ¢, > 0 whenever |t — z| < 0,. Indeed, suppose that this is the
case, then

NS 0, L[ 0
) Qy f( ) /<x—t<5 e 7T/|:c—t|>5 a

y—0 7ra—>0 x—t r—t
xT xT

1 )~ f@), 1 S(0)
G i—)O e<|z—t|<bq r—t dy + /| dt.

T—t| =204 x—t

Both integrals converge absolutely, and hence the limit of @), * f(x) exists as ¢ — 0.
Therefore, the Hilbert transform of a piecewise smooth integrable function is well
defined at all points of Holder-Lipschitz continuity of the function. On the other
hand, observe that Q, * f is well defined for all f € L?, 1 < p < o0, as it follows from

the Holder inequality, since Q, () is in L?'.

Ex. 4.14. Consider the characteristic function x|, of an interval [a, b]. It is a simple calcu-
lation to show that

|z —af
[z —b|

Huwmmzim (4.26)
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Let us verify this identity. By the definition, we have
1 a - L. 1
H(X[a,b])(x) = — lim Wdy =~ lim *dy

- — >
T e—0 ly|>e Yy T e—0 ;c—blélyésx—a Yy

Thus, we only need to consider three cases: x —b >0,z —a < 0and x —b < 0 < = — a.

For the first two cases, we have
Tr—a 1

1 1
H(Xap)(2) = 7r/ —dy=—1In

z—b Y ™ |$ - b| .
For the third case we get (without loss of generality, we can assume ¢ < min(|x —al, |z —b|))

L. <1 r—a q
H(X[a,5)(2) =—lim (/x_b &dy +/€ ydy>

:llim <ln [ — al +ln )
T e—0 € |z — b
1. |z —a
T e
where it is crucial to observe how the cancellation of the odd kernel 1/x is manifested. Note
that H (x[a))(x) blows up logarithmically for x near the points a and b and decays like =
as x — Foo. See the following graph with a = 1 and b = 3:

|z — al

¥

It is obvious, for the dilation operator J. with ¢ > 0, by changes of variables
(ey — y), that

1 flex — ey)
Hé. = lim — —d
HOf @ =lm > | S
=lm | fez 2y) (”y_ Doy = (6.5 f(x).
y|Zeo

so Hé. = 6.H; and it is equally obvious that Hé. = —6.H, if ¢ < 0.
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These simple considerations of dilation “invariance” and the obvious translation
invariance in fact characterize the Hilbert transform.

Proposition 4.15 (Characterization of Hilbert transform). Suppose 1" is a bounded lin-
ear operator on L?(R) which satisfies the following properties:

(a) T commutes with translations;

(b) T' commutes with positive dilations;

(c) T anticommutes with the reflection f(x) — f(—x).
Then, T is a constant multiple of the Hilbert transform.

Proof. Since T commutes with translations and maps L?(R) to itself, according to

Theorem 1.62, there is a bounded function m(&) such that 1/“} (&) = m(&)f(€). The
assumptions (b) and (c) may be written as T6. f = sgn (¢)0.Tf for all f € L?(R). By
part (iv) in Proposition 1.3, we have
F(T6-£)(§) =m(&)F (5-£) (&) = m(&)[e| ' f(¢/e),
sgn (e).7 (0:T£)(€) =sen (e)[e| 'Tf(&/2) = sgn (e)|e] 'm(¢/e) f(/e),
which means m(c§) = sgn ()m(€), if € # 0. This shows that m(§) = c¢sgn (£), and the
proposition is proved. [

The next theorem shows that the Hilbert transform, now defined for functions in
.Z or L?, can be extended to functions in L?, 1 < p < 0.

Theorem 4.16. For f € .7 (R), the following assertions are true:
(i) (Kolmogorov) H is of weak type (1,1):

C
m({z € R: [Hf(z)] > a}) < —||fll-
(ii) (M. Riesz) H is of type (p,p), 1 < p < oo:
1H fllp < Cpllfllp-

Proof. (i) Fix @ > 0. From the Calderéon-Zygmund decomposition of f at height «
(Theorem 3.20), there exist two functions g and b such that f = g+ band

() llgll < [[£1lr and [|glloc <

(2)b=_; bj, whereeach b; is supported in a dyadic interval J; satisfying [, b I x)dxr =

0 and ||b;]1 < 4aan(I;). Furthermore, the intervals I; and I} have disjoint 1nter1ors
when j # k.

(3) >, m(Z;) < | fh-

Let 2/; be the interval with the same center as I; and twice the length, and let
Q= UjIj and Q* = U]’QI]'. Then IIH(Q*) < QIID(Q) < 2a_1||f||1.

Since H f = Hg + Hb, from parts (iv) and (vi) of Proposition 2.15, (4.23) and (1),
we have

(Hf)e(a) < (Hg)«(a/2) + (Hb)«(ar/2)
<(a/2)"2 /]R Hg(z)Pdz + m(Q) + m({z ¢ O : |Hb(z)| > a/2})

4
<2/g(w)lzdw+2a‘1||f||1+2a‘1/ [Hb(z)|dx
a” Jr R\Q*
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8/ 2 2

<— g(x)|dx + —|| f +/ Hb:(z)|dx
a J s S+ £ S )
8 2 2

<=\Ifli+—=IIfll +— / Hb;(z)|dz.
A S 3 [ )

For z ¢ 21;, we have

Hbj(x) = lp.v. /I Mdy = 1/1 Mdy,

7 -y ™) x—y

J J
since suppb; C I; and |z — y| > m(/;)/2 for y € I;. Denote the center of I; by ¢,
then, since b; is mean zero, we have

1 b;

™) T Y

[ im@lds = [
R\21; R\21;
1 1 1
:W/ /bj(y)< — = — ,>dy
R\2I; |JI; T—Y TG

1 —cj
< [l [ ) ay
T JI; R\21; [z — yllz — ¢
1/ m(I;)
<— bi(y / —— P _dz | dy.
T 1j| i )’( R\2I; |z — ¢ )

The last inequality follows from the fact that |y —c;| < m(/;)/2and |z —y| > |z —¢;|/2.
Since |z — ¢;| > m(I;), the inner integral equals

21m(1rj)/oo idrzzm(f-) L _,

dx

m(L;) " m([;)
Thus, by (2) and (3) ’
() <A+ 23 [l < QS+ 23 ety
161 10+ 16/7
<O+ 2 g = 2T g

(ii) Since H is of weak type (1 1) and of type (2,2), by the Marcinkiewicz in-
terpolation theorem, we have the strong (p,p) inequality for 1 < p < 2. If p > 2,
we apply the dual estimate with the help of (4.25) and the result for p’ < 2 (where
1/p+1/p =1):

IHfllp= sup [(Hf g)l= sup [(f, Hg)|

llgll,r <1 llglly <1
<l sup (1Hglly < Cpllfllp-
llgllyr <1
This completes the proof. |

Remark 4.17. i) Recall from the proof of the Marcinkiewicz interpolation theorem that
the coefficient

10+16/7  (1/2)'/2
1/p 1/2
2 (1_1/p+1/p_1/2+2 , 1<p<?2,
C

p:

1/2
1yl 727" i
2 ((10+16/7T)p+1/21/p+2 , p> 2.
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So the constant ), tends to infinity as p tends to 1 or co. More precisely,
Cp,=0(p)asp — o0, and C, = O((p—1) 1) asp — 1.
ii) The strong (p,p) inequality is false if p = 1 or p = oo, this can easily be

|z—al
|z—0]

seen from the previous example H =1n which is neither integrable nor
p p X [arb} s g

bounded. See the following figure.

The integra

iii) By using the inequalities in Theorem 4.16, we can extend the Hilbert transform
to functions in L?, 1 < p < oo. If f € L' and {f,} is a sequence of functions in .7
that converges to f in L!, then by the weak (1, 1) inequality the sequence {H f,,} is a
Cauchy sequence in measure: for any € > 0,

lim m({z € R [(Hfo— Hfn)@)| > }) = 0.

m,
Therefore, it converges in measure to a measurable function which we define to be
the Hilbert transform of f.

If feLP,1 < p < oo, and {f,} is a sequence of functions in . that converges
to f in LP, by the strong (p,p) inequality, {H f,,} is a Cauchy sequence in L?, so it
converges to a function in L? which we call the Hilbert transform of f.

In either case, a subsequence of {H f,,}, depending on f, converges pointwise
almost everywhere to H f as defined.
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4.3 The Calder6n-Zygmund theorem

From this section on, we are going to consider singular integrals whose kernels
have the same essential properties as the kernel of the Hilbert transform. We can
generalize Theorem 4.16 to get the following result.

Theorem 4.18 (Calderén-Zygmund Theorem). Let K be a tempered distribution in R"
which coincides with a locally integrable function on R™ \ {0} and satisfies

K| < B, (4.27)
/ |K(x —y) — K(x)|de < B, yeR" (4.28)
|| >2ly]

Then we have the strong (p, p) estimate for 1 < p < oo

1K = fllp < Cpll fllps (4.29)
and the weak (1, 1) estimate
C

(K * f)e(@) < SISl (430

We will show that these inequalities are true for f € ., but they can be extended
to arbitrary f € L? as we did for the Hilbert transform. Condition (4.28) is usually
referred to as the Hormander condition; in practice it is often deduced from another
stronger condition called the gradient condition (i.e., (4.31) as below).

Proposition 4.19. The Hormander condition (4.28) holds if for every x # 0
C

Proof. By the integral mean value theorem and (4.31), we have
1
/ |K@y>zamwx</' | 1K= o)lgidoas
|=[>2]y] |z[>2]y]
_Clyl / / Cly|
= dxdf
/ /x|>2|y |z — gy‘n+1 \x|>2|y\ (|z[/2)+1
<2”+1C\y|wn_1/ —dr = 2”+1C’\ylwn 1— =2"Cwy_1.
20yl 7 2ly!
This completes the proof. |

Proof of Theorem 4.18. Since the proof is (essentially) a repetition of the proof of The-
orem 4.16, we will omit the details.
Let f € Land Tf = K * f. From (4.27), it follows that

|w‘ n/2 - |w| n/2 .
sl = (50) 177 = () 1R 71

ZARET T I\ 7 (4.32)
< | — < —
<(5) 1R <5 (52) 1

=Bl fll2,
by the Plancherel theorem (Theorem 1.26) and part (vi) in Proposition 1.3.
It will suffice to prove that 7' is of weak type (1, 1) since the strong (p, p) inequality,
1 < p < 2, follows from the interpolation, and for p > 2 it follows from the duality
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since the conjugate operator 7" has kernel K'(x) = K(—z) which also satisfies (4.27)
and (4.28). In fact,

(Tf,¢) = /R Tfaple)ds = [ [ K@) f)dyp(a)s

[ [ K- ae@distod = [ [ & <oy

=(£,T"¢).
To show that f is of weak type (1, 1), fix @ > 0 and from the Calderén-Zygmund
decomposition of f at height «, then as in Theorem 4.16, we can write f = g + b,
where

@) [lgllt < [[f]lr and [[g]l < 2"
(i) b = >, bj, where each b, is supported in a dyadic cube Q) satisfying [, b Q z)dr =

0and ||b;][1 < 2""'am(Q;). Furthermore, the cubes Q; and @}, have disjoint mterlors
when j # k.

(i) 3o, m(Q;) < M| f]1.

The argument now proceeds as before, and the proof reduces to showing that
[yl <c [ i, (433)
R™M\Q7 Qj

where Q7 is the cube with the same center as @; and whose sides are 2y/n times
longer. Denote their common center by c;. Inequality (4.33) follows from the Hérmander
condition (4.28): since each b; has zero average, if v ¢ Q]

Thia) = [ Kz —y)b;(y)dy = / K(z —y) — K(z — c;)Jb;(y)dy:
Q; Qj
hence,

/Rn\Q;f il / </Rn\c9; K —y) - Kz - Cj)’dl'> 1b;(y)|dy.

However, by changing variables z — ¢; = 2/ and y — ¢; = ¥/, and the fact that
|z —¢j| =2 2|y —¢j| forall z ¢ QF and y € Q; as an obvious geometric consideration
shows, and (4.28), we get

[ K-y -Ke-clde< [ K@ —y) - K@)l < B
R™\Q% |z’ | =2ly’|

This completes the proof. [

J

4.4 Truncated integrals

There is still an element which may be considered unsatisfactory in our formula-
tion, and this is because of the following related points:

1) The L? boundedness of the operator has been assumed via the hypothesis that
K € L™ and not obtained as a consequence of some condition on the kernel K;

2) An extraneous condition such as K € L? subsists in the hypothesis; and for this
reason our results do not directly treat the “principal-value” singular integrals, those
which exist because of the cancelation of positive and negative values. However,
from what we have done, it is now a relatively simple matter to obtain a theorem
which covers the cases of interest.
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Definition 4.20. Suppose that K € L{ (R"\ {0}) and satisfies the following condi-

loc
tions:
|K(2)| < Blz|™, Vz #0,

/ |K(z —y) — K(z)|de < B, Vy#0, (4.34)
|z >2]y|

and
/ K(x)dx =0, VY0< R; < Ry < 0. (4.35)
Ri<|z|<R2

Then K is called the Calderén-Zygmund kernel, where B is a constant independent of
z and y.

Theorem 4.21. Suppose that K is a Calderén-Zygmund kernel. For e > Oand f € LP(R"),
1<p<oo,let

T.f(z) = / @Ky (4.36)

Then the following conclusions hold.
(1) We have

7= fllp < Apll fllp (4.37)
where A, is independent of f and e.
(ii) For any f € LP(R™), lim._,o T.(f) exists in the sense of LP norm. That is, there
exists an operator T such that

Tf(z) = p.v. . K(y)f(z — y)dy.

(iid) |7 fllp < Apl|fllp for f € LP(R™).

Remark 4.22. 1) The linear operator 1" defined by (ii) of Theorem 4.21 is called the
Calderén-Zygmund singular integral operator. T is also called the truncated operator of
T.

2) The cancelation property alluded to is contained in condition (4.35). This hy-
pothesis, together with (4.34), allows us to prove the L? boundedness and from this
the LP convergence of the truncated integrals (4.37).

3) We should point out that the kernel K (z) = L, z € R, clearly satisfies the hy-
potheses of Theorem 4.21. Therefore, we have the existence of the Hilbert transform
in the sense that if f € LP(R), 1 < p < oo, then

T B A Gl )

e—=0 T ly|>e Yy
exists in the L” norm and the resulting operator is bounded in L?, as has shown in
Theorem 4.16.

For L2 boundedness, we have the following lemma.

Lemma 4.23. Suppose K satisfies the conditions (4.34) and (4.35) of the above theorem with

bound B. Let
K(z), |=|=c¢,

Ke(z) = { 0, |z| < e.
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Then, we have the estimate
sup ’Ks(f)’ < CBa €> 05 (438)
3

where C' depends only on the dimension n.

Proof. First, we prove the inequality (4.38) for the special case ¢ = 1. Since K;(0) = 0,
thus we can assume £ # 0 and have

K1(¢) = lim e YK () dx

—/ e WK (2)dx + lim e WK (x)dx
|z[<27/(|w[€]) R=00 Jom/(|wllg)<lz|<R

=11 + I.
By the condition (4.35), [, _ |, <oz /(e K (#)dz = 0 which implies

Ki(x)dx = 0.

|z[<2m/(|wll€)
Thus, f‘x|<2ﬂ/(|w”€|) e VTS K (x)dr = f‘x|<27r/(|w”§|)[e_“””‘5 — 1] K (z)dz. Hence, from

the fact [e?? — 1| < || (see Section 1.1) and the first condition in (4.34), we get

L) < / w2/ ]| K ()| dz: < Jw] Bl 2| da
|z|<27/(Jw]|[€]) || <27 /(Jwl||€])

2m/(|wll€])
=wn—1B|wl[¢] / dr = 27w, _1B.
0

To estimate I, choose z = z(£) such that e~wi&z — _1. This choice can be realized
if z = m€/(w|€|?), with |z| = /(|w||£]). Since, by changing variables z + z = y, we get

e—wix-§K1 (l‘)dm _ / 6—wi(x+z)'5K1 ($)dx — _/ e—wiy'5K1 (y — z)dy
R” R™

Rn
which implies [p, e 4K (z)dx = § [, e ¢[K(z) — K1(z — 2)]dz, then we have

(hm / / ) e WK (x)da
R=oo Jiz|l<R  Jla|<2n/(|wll€])

— lim e WK (x) — Kl(x—z)]da:—/ e UK (2)dx
|z[<2m/(|w][€])

E 4
L e K (z) — Ki(x — 2)]dz
2 850 Jor/(ulleh<lei<h

1 . 1 4
- / e VK (2)da — / e WK (1 — 2)d.
2 Jiw<2n/(wllEl) 2 Jjzl<2m/(wlle))

The last two integrals are equal to, in view of the integration by parts,
1

. 1 .
- 2/ TR (2)d — / e LK (y)dy
|z[<2m/ (Jwl]€]) ly+z|<2m/(|wl[€])

1 . 1 .
=— / e UK (2)dx + / e VK (x)dx
2 Jwl<2m/(wll€]) 2 Jjwtzl<2n/(wll€))

1 i 1 i
=—= e WK (2)dx + = e WK (x)d.
2 ] lzI<2n/(wllE]) 2 Jlatzl<2n/(lw|l€])
lw+z[>2m/(Jw]|€]) lz|>27/(|w||€])

n
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For the first integral, we have 27/(|wl|[{|) > |z| > |z + 2| —
121 > 2/ (Jwl €]) — /(] [€]) = 7/(w][€]), and for the second
one, 27/ (wl|¢]) < |z] < |z+z|+|2] < 37/(|w|[]). These two
integrals are taken over a region contained in the spherical
shell, 7/(|w||¢]) < |z| < 37/(Jw||£]) (see the figure), and is
bounded by 1 Bw,_11n3 since |K;(z)| < Blz|™". By |z| =
7/(Jw||¢|) and the condition (4.34), the first integral of I5 is
majorized by

1
2/ |Ki(x — 2z) — Ky (z)|dzx
|z 227/ (|w][€])

1 1

:2/ |K1(x—z)—K1(a:)|da:<§
|z]>2]2|

Thus, we have obtained

- 11
|[K1(6)] < 2mwn1 B+ 5B + 5 Bun 103 < CB,

where C' depends only on n. We finish the proof for K.

To pass to the case of general K., we use a simple observation (dilation argument)
whose significance carries over to the whole theory presented in this chapter.

Let 6. be the dilation by the factor ¢ > 0, i.e,, (6.f)(z) = f(ex). Thusif T is a
convolution operator

B.

Tf(z)=¢x f(r)= / o —y)f(y)dy,

Rn

then
5. T6-f(z) = / oz — ) f(ey)dy

n

e / CeleT = ) () = e+ .

where ¢ () = e "p(c71x). In our case, if T corresponds to the kernel K (z), then
8.-1T6. corresponds to the kernel e " K (¢ ~1x). Notice that if K satisfies the assumptions
of our theorem, then e ="K (e ~1x) also satisfies these assumptions with the same bounds. (A
similar remark holds for the assumptions of all the theorems in this chapter.) Now,
with our K given, let K’ = ¢"K (ex). Then K’ satisfies the conditions of our lemma
with the same bound B, and so if we denote
/ K'(z), || =1,
o= { 0, 2l <1,
then we know that |K}(¢)| < CB. The Fourier transform of e " K/ (¢~ 'z) is K/ (£¢)
which is again bounded by C B; however e " K| (¢ 'z) = K.(x), therefore the lemma
is completely proved. |

n

We can now prove Theorem 4.21.

Proof of Theorem 4.21. Since K satisfies the conditions (4.34) and (4.35), then K.(z)
satisfies the same conditions with bounds not greater than C'B. By Lemma 4.23 and
Theorem 4.18, we have that the L” boundedness of the operators { K. }.~0, are uni-
formly bounded.

Next, we prove that {7 f, }.~0 is a Cauchy sequence in L? provided f; € C(R").
In fact, we have

I: fi(z) = T fr(z) = K(y) fi(r —y)dy — K(y) fi(r — y)dy
ly|>e ly|>n
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e [ K@lAG -y - @
min(e,n

<Jy|<max(e,n)
because of the cancelation condition (4.35). For p € (1, c0), we get, by the mean value
theorem with some 6 € [0, 1], Minkowski’s inequality and (4.34), that

IT=fr = Ty fully < [K(W)IIV filz = 0y)llyldy

/min(am) <lyl<max(e,n)

p

</' K@)V f1(x — 0y)ll,lyldy
min(e,n) < |y| <max(e,n)

<C K (y)lyldy

min(e,n) <[y|<max(e,n)

<CB / ly| 7" dy
min(e,n) < |y|<max(e,n)

max(e,n)
=CBuwp_1 / dr

min(e,n)
=CBwy,—1|n — €
which tends to 0 as ¢, — 0. Thus, we obtain 7} f; converges in L” as ¢ — 0 by the
completeness of L”.

Finally, an arbitrary f € LP can be written as f = f; + fo where f; is of the type
described above and || f2||,, is small. We apply the basic inequality (4.37) for f> to get
| T:f2llp < C|lf2llp, then we see that lim._,o T; f exists in LP norm; that the limiting
operator T also satisfies the inequality (4.37) is then obvious. Thus, we complete the
proof of the theorem. [ |

4.5 Singular integral operators commuted with dilations

In this section, we shall consider those operators which not only commute with
translations but also with dilations. Among these we shall study the class of singular
integral operators, falling under the scope of Theorem 4.21.

If T corresponds to the kernel K (x), then as we have already pointed out, §.-17'6,
corresponds to the kernel e " K (¢~ 1x). So if §,-1T3. = T we are back to the require-
ment K(z) = e "K(¢ '), ie., K(ex) = e "K (), ¢ > 0; that is K is homogeneous
of degree —n. Put another way

EE
with 2 homogeneous of degree 0, i.e.,, Q(cz) = Q(z), ¢ > 0. This condition on
is equivalent with the fact that it is constant on rays emanating from the origin; in
particular, 2 is completely determined by its restriction to the unit sphere S~ .

(4.39)

Let us try to reinterpret the conditions of Theorem 4.21 in terms of 2.

1) By (4.34), Q(z) must be bounded and consequently integrable on S"~!; and an-
Uz—y) _ Uz)| 4.

1Z2ly| | fe—yl*  [a]
in terms of 2. However, what is evident is that it requires a certain continuity of Q.
Here we shall content ourselves in treating the case where (2 satisfies the following

other condition f|z

< C which is not easily restated precisely
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“Dini-type” condition suggested by (4.34):

; — ' ! w(n)

ifw(n):= sup [|Qx)—Qz")|, then ; dn < oo. (4.40)
|lo—a!|<n 0
|zl =]’ =1

Of course, any 2 which is of class C L or even merely Lipschitz continuous, satis-
fies the condition (4.40).
2) The cancelation condition (4.35) is then the same as the condition

/ Q(x)do(x) =0 (4.41)
Sn—l

where do(7) is the induced Euclidean measure on S"~!. In fact, this equation implies

that n
2 9] /
/ K(z)dx :/ / 7(7;6 )da(x')T”_IdT
Ri<|z|<R2 Ry Jsn—1 T

—In (gj) /S Q)do(a).

Theorem 4.24. Let Q € L°°(S™~1) be homogeneous of degree 0, and suppose that Q) satisfies
the smoothness property (4.40), and the cancelation property (4.41) above. For 1 < p < oo,
and f € LP(R™), let

T.f(z) = /| VO 5 — it

|>e |y’n
(a) Then there exists a bound A, (independent of f and e) such that

1T fllp < Apllflp-
(b) limg_,o T.f = T f exists in LP norm, and

1T Fllp < Apllflp-

(If f € L?(R™), then the Fourier transforms of f and Tf are related by f\f & =
m(§) f(&), where m is a homogeneous function of degree 0. Explicitly,

m© = [ |- s @) €-a) + (/o) Q@)dota), I61=1. @

Proof. The conclusions (a) and (b) are immediately consequences of Theorem 4.21,
once we have shown that any K (x) of the form A) satisfies

|z]™
/ K(z—y) — K(2)|dz < B, (4.43)
|| >2]y|
if 2 is as in condition (4.40). Indeed,
Qz —y) — Q) [ 1 1 ]
K(z—y) — K(z) = ) | —— — — |
(e my) = K@) == S PRI

The second group of terms is bounded since (2 is bounded and

/ 1 1 _/ |lz[" — |z — y["
|| >2]y| || >2]y|

I .
_/ || — |z —yl| 52 Je[* o =yl
2] >2ly| |z — y[*]z|"

jz =yl [z |z —y[" |2

dx

n—1
< / 1yl S o7 — g "da
|z|>2]y|

J=0
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n—1
</||>2| |Iylz: |7 (|| /2) " da (since @ — y| > |x| - |y| > |2]/2)
T|=22ly

=0
n—1 '
:/ yl > 2" |z e = 2(2" — 1)y |7
|z >2y] j=0 |z >2[y]
1
=2(2" — Dlylwn-157 = (2" — Dwn-1.

2ly]

Now, we estimate the first group of terms. Let 6
be the angle with sides  and = — y whose opposite
side is y in the triangle formed by vectors z, y and
x —y. Since |y| < |z|/2 < |z|, we have 6 < § and so

cos > 0 and then cos § = /2258 > 1/1/2. More-

over, by the sine theorem, we have sinf < MI On

the other hand, in the triangle formed by OP = 2l

00 = =

and ﬁ) ‘x y| |m|, it is clear that # = Z(POQ) and %g _ ﬁ by

\x yl
the sine theorem. Then, we have
x— sin 6 sm@ Y Y
_ _’75’_ _ \[‘ | | |
|z — Z/‘ \w! sin(§ — 5) cos 2 |z | ’ h

Thus, the integral corresponding to the first group of terms is dominated by

d
2"/ w <2|y|) din - 2"/ w(2/|2])
lz|>2y| z| ) || |2[>2 2|

o0 d ! d
:2”wn1/ w(2/7")—r = Z”wnl/ w < 00
2 r 0 n

in view of changes of variables = = |y|z and the Dini-type condition (4.40).

Now, we prove (c). Since T is a bounded linear operator on L? which commutes
with translations, we know, by Theorem 1.62 and Proposition 1.3, that 7" can be re-

alized in terms of a multiplier m such that f\f (€) = m(&)f(€). For such operators,
the fact that they commute with dilations is equivalent with the property that the
multiplier is homogeneous of degree 0.

For our particular operators we have not only the existence of m but also an ex-
plicit expression of the multiplier in terms of the kernel. This formula is deduced as
follows.

Since K (z) is not integrable, we first consider its truncated function. Let 0 < ¢ <
n < oo, and
Q(z)
K. p(z) = ||’
0, otherwise.
Clearly, K., € L'(R™). If f € L*(R") then K_, x f(£) = K. ,(€) f(€).
We shall prove two facts about I?;(g ).
(i) supg ]I/(:n(g )| < A, with A independent of € and #;
(i) if € # 0, lim c—o0 K. ,(€) = m(€), see (4.42).
n—00

For this purpose, it is convenient to introduce polar coordinates. Let z = ra/,

e< |z| <n
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r=lz], 2" = z/|z| € S"!, and € = R, R = [¢|, ¢ = ¢/|¢] € S"~'. Then we have
I?;?(é) _/ e_wm{Ks,n(l')diU —/ e_wmfg(x)dx

e<|z|<n

77 . 1. !
_/ Q(l‘/) </ e—szrx £ T_n’f’n_ld’r’> dO’(.ﬁL‘/)
Sn—1 €
77 . ' !
:/ Q(2)) </ e witra™g dr) do(z').
Snfl £ T

/ Q(2")do(2") = 0,

Sn—1

we can introduce the factor cos(|w|Rr) (which does not depend on z’) in the integral
defining K. ,(£). We shall also need the auxiliary integral

n R d
L(&a) = / e cos(folRr) T, R >0
£

Thus, it follows

Since

@(f) = Is,n(£a$/)9($l)da($/)-
gn—1

Now, we first consider I, , (&, 2’). For its imaginary part, we have, by changing
variable wRr(z' - &) = t, that

" sinwRr(a - € wRn(z"-&') gip ¢
S, (& a') = - / sinwRr(2"- &) / sint .
€ r wRe(x'-&") t
|wIRnl2"-¢'] g ¢
=~ s (w)sen (' - &) o
|| Rel-¢'|
is uniformly bounded! and converges to
;oo [0 sint 0 P
—sgn (w)sgn (2" - &) Tdt:—gsgn(w)sgn(x &),
0

ase — 0 and n — oo.
For its real part, since cosr is an even function, we have

K d
R (¢,a') = [ leos((wlRrla’ - €1) = cos(lwlRr))

If o’ - & = £1, then RI, ;,({,2') = 0. Now we assume 0 < ¢ < 1 < 7. For the case
z' - # +1, we get the absolute value of its real part

‘%Ie,n<£7xl)‘ g |w’ @

1
/ —2sin MRr(yac’ &' +1)sin—Rr(|]z"- &) - 1)
£ 2 2 "

K d n d
+ ‘/ Cos |w\Rr|w’-£'|—T —/ cos|w|RrT‘
1 r 1 r
2

|w 2 2 !
<—R(1— |2’ - ¢ )/ rdr
2 15

'Forany 0 < a < 1 < b < oo, by the fact sint < ¢ for any ¢ > 0 and integration by parts, we have

b - 1 . b L)/
Mtht _ 51ntdt_ (cost) datl <1+
a t Ja t 1 t

b b
5t
iy
1 St

_cost
t
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(I Rnl€'-2'| s ¢ T -
/ cos dt—/ cos &t
iR 2| wir ¢
2
<|W4|R2+Il.
If n|¢’ - 2’| > 1, then we have

lw|R cost lw|Bn cost
/ cost oy — / o8t
w|Rle | T w|Rnle'a’| t

A lwlBn gt
B Ty -
wiRlga!| ' Jw|Rylgar|

<2n(1/[¢’ - 2')).

If 0 < nlg - 2’| <1, then
wIR/IE"2'| gy
/ <2In(1/|¢ - 2']).
wiRlgra|

+

I =

N

I
Thus,
/ w 2 A
[RL (& 2")| < =R+ 2In(1/]¢ - ")),

and so the real part converges as ¢ — 0 and 7 — oo. By the fundamental theorem of
calculus, we can write

n _
/ COS()‘T) €0 'M / / sin(tr)dtdr = — / / sin(tr)drdt
n —
/ / dy cos(tr) d Ui — / cos(tn) t cos(te)dt

/)"7 cos(s)d /A cos(te) gt sin s ‘M N /)"7 smsd /)‘ cos(te)dt
= —aSs — = S —
pn S w1 s i Juy 8 poot

A
1
—>0—/ St = —In(\/p) = In(/), as 7 — 00, £ = 0.
I

Take A = |w|R|2’ - |, and p = |w|R. So
ity R(Ley(6,5)) = [ loos wlRr(e' ) = coswlr] T = ln(1/la’ - €]).
e— 0

n—>r00

By the properties of I. ,, just proved, we have

Ko< [ [ B o e o] 0ot

<Cl4+ ’j‘R%wn_l e / In(1/l¢’ - o|)do ('),
Sn—l

For n = 1, we have S° = {—1,1} and then [y, . In(1/[¢' - 2/|)do(a’) = 2In1 = 0.
For n > 2, we can pick an orthogonal matrix A such that Ae; = &', and so by changes
of variables and using the notation § = (y2,¥3, ..., yn),

/ In(1/|¢' - /) do (') = / In(1/|Aes - 2'|)do (')
Snfl Snfl
:/ In(1/]ey - Ailx/|)da(:c/) i:i::y/ In(1/|ey - y|)do(y)
Snfl Snfl
1
= [ mmhdot) = [ wnl) [ 0= sB (@
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1
- / In(1/lya)(1 — g2) " 2dy,
=200y 2/ (1/|lyi) (1 — y2) =324y,

=2Wy,_ / n(1/cosf)(sinf)"~ 2d0 = 2w, oI5, (lety; = cosb),
0

since if for ¢; € [0, 7] (j =1,--- ,n —2) and ¢,,—1 € [0, 27, let
Y1 =cos ¢1
Y2 = sin @1 cos P

Y3 = sin ¢y sin ¢ cos @3

Yn—1 =SiN @7 - - - 8N @2 COS Y1
Yn =SiN @1 - - - sin ¢, 9 sin ¢y, 1,
then the volume element dgn-10(y) of the (n — 1)-sphere is given by
dgn-10(y) =sin""*(¢1) sin">(¢) - - - sin(¢_2) dp1 dpy - - - dpp 1
=sin" "% (¢1) sin" (o) - - - sin(¢p-—2) dy1 dg - - - dp—1
=(1 = 1) "2 dy dga-—20(y),
due to dy; = rsin(¢1)de; and sin ¢y = /1 — y7.

For n > 3, we have, by integration by parts,
w/2 /2
I < / In(1/ cosf) sin 0df = / sin 0df = 1.
0 0

For n = 2, we have, by the formula fow/ 2 In(cos#)dd = —%51n2 (see [GR, 4.225.3,
p-531]),

w/2 /2 T
I, = / In(1/ cos0)dl = —/ In(cos 0)df = 5 In 2.
0 0
Hence, [q,—1 In(1/]¢" - 2/|)do(2’) < C forany & € 5™ 1.
Thus, we have proved the uniform boundedness of K. ,(&), i.e., (i). In view of

the limit of I, ,,(§,2") as € — 0, 7 — oo just proved, and the dominated convergence
theorem, we get

lim K, (€) = m(),

=0
n— oo

if £ # 0, that is (ii).

By the Plancherel theorem, if f € L*(R"), K, < * f converges in L?normase — 0
and 17 — oo, and the Fourier transform of this limit is m(&) f (€).

However, if we keep ¢ fixed and let n — oo, then clearly [ K.,(y)f(z — y)dy
converges everywhere to f‘y|>€ K(y)f(x —y)dy, which is T, f.

Letting now ¢ — 0, we obtain the conclusion (c) and our theorem is completely
proved. [

Remark 4.25. 1) In the theorem, the condition that (2 is mean zero on S" ! is necessary
and cannot be neglected. Since in the estimate

/Rn \y(rn) Y dy‘[/y<1 /|] T T 9w
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the main difficulty lies in the first integral.

2) From the formula of the symbol m(§), it is homogeneous of degree 0 in view of
the mean zero property of ).

3) The proof of part (c) holds under very general conditions on 2. Write Q =
Qe + Q, where €. is the even part of (2, Q.(z) = Q.(—x), and Q,(x) is the odd part,
Qo(—z) = —Q4(z). Then, because of the uniform boundedness of the sine integral,
ie., SI. (& '), we required only [g._: [Q(2')|do(z") < oo, i.e., the integrability of
the odd part. For the even part, the proof requires the uniform boundedness of

[ 19 m /g o do(a),

This observation is suggestive of certain generalizations of Theorem 4.21, see
[Ste70, §6.5, p.49-50].

4.6 The maximal singular integral operator

Theorem 4.24 guaranteed the existence of the singular integral transformation
lim 20) F(x — y)dy (4.44)
=0 Jjyze |y

in the sense of convergence in the L? norm. The natural counterpart of this result is
that of convergence almost everywhere. For the questions involving almost every-
where convergence, it is best to consider also the corresponding maximal function.

Theorem 4.26. Suppose that ) satisfies the conditions of the previous theorem. For f €
LP(R™), 1 < p < oo, consider
i@ = [ TWia-piy e>o
e (Yl

(The integral converges absolutely for every x.)

(a) lim._, T f () exists for almost every x.

(b) Let T* f(x) = sup.sq [T-f(z)]. If f € LY(R™), then the mapping f — T*f is of
weak type (1,1).

(@) IF1 < p < oo, then [ T* fll, < Apll Iy

Proof. The argument for the theorem presents itself in three stages.

The first one is the proof of inequality (c) which can be obtained as a relatively
easy consequence of the L” norm existence of lim._,( 7%, already proved, and certain
general properties of “approximations to the identity”.

Let Tf(x) = lim._o 7% f(z), where the limit is taken in the LP norm. Its existence
is guaranteed by Theorem 4.24. We shall prove this part by showing the following
Cotlar inequality

T f(z) < M(Tf)(x) + CMf(2).
Let ¢ be a smooth non-negative function on R”, which is supported in the unit

ball, has integral equal to one, and which is also radial and decreasing in |z|. Consider

Ka(x> = { |zl

0, |z| < e.
This leads us to another function ® defined by
d=pxK— K, (4.45)

|z > e,
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where ¢ * K = lim._,0 ¢ * K. = lim._, flxiy‘% K(z —y)e(y)dy.
We shall need to prove that the smallest decreasing radial majorant ¥ of & is
integrable (so as to apply Theorem 4.10). In fact, if |z| < 1, then

ol =l K1 = | [ Kot~ nian| = | [ K)ot~ )~ oty
< [ 1K@ —) —polay < ¢ [ EEZDZE0ly, <
R Rn

ly[™
since (4.41) implies [, K (y)dy = 0 and by the smoothness of .
If 1 < |z| <2, then ® = ¢ *x K — K is again bounded by the same reason and K is
bounded in this case.
Finally if |z| >

/ K=oy~ K@) = [ K@=y~ K@lewdy
y
Similar to (4.43), we can get the bound for |y| < 1 and so |z| > 2]y|,

|K<a:—y>—f<<x>|<2"w< ,‘y">| " 422" — 1) olyl 2D

<" <| |)rx| "y 22— 1)]|Qole] ),

as in the proof of Theorem 4.24, since w is increasing. Thus, due to ||¢|i = 1, we
obtain for |z| > 2

()] <2 <| |)rx|—"+2< 1) | acla] .

Therefore, we get |V| < C for |z| < 2, and

()] <2Mw (| |) 2] 4 2(2 — 1)@l Y,

for |z| > 2, and then we can proved that ¥ € L!(R") with the help of the Dini-type
condition.

From (4.45), it follows, because the singular integral operator ¢ — ¢ * K com-
mutes with dilations, that

e x K — K. =®., with®.(x) =c"®(z/e). (4.46)
Now, we claim that for any f € LP(R"), 1 < p < oo,
(e x K) * f(z) =Tf * (), (4.47)
where the identity holds for every x. In fact, we notice first that
(pe * K5) * f(z) =T5f * ¢(x), foreveryd >0 (4.48)

because both sides of (4.48) are equal for each z to the absolutely convergent double
integral [, g, f|y‘>5 K(y)f(z—y)pe(x — 2z)dydz. Moreover, p. € LI(R™), with1 < ¢ <
ocoand 1/p+1/q¢=1,30 pe x K5 — ¢. * K in LY norm, and Ts f — T'f in LP norm, as
0 — 0, by Theorem 4.24. This proves (4.47), and so by (4.46)
T.f=Kcxf=pexs K f—P.x f=Tfxp. — fx*,.
Passing to the supremum over ¢ and applying Theorem 4.10, part (a), Theorem
3.9 for maximal funtions and Theorem 4.24, we get

1T fllp <[Isup [T f * ¢elllp + | sup [ f * e[|,
e>0 e>0

SCIM(Tf)llp+ ClIM fllp < CITFllp + Clifllp < Clifllp-
Thus, we have proved (c).
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The second and most difficult stage of the proof is the conclusion (b). Here the
argument proceeds in the main as in the proof of the weak type (1, 1) result for sin-
gular integrals in Theorem 4.18. We review it with deliberate brevity so as to avoid a
repetition of details already examined.

For a given a > 0, we split f = g + b as in the proof of Theorem 4.18. We also
consider for each cube Q; its mate )}, which has the same center ¢; but whose side
length is expanded 2,/n times. The following geometric remarks concerning these
cubes are nearly obvious (The first one has given in the proof of Theorem 4.18).

() Ifz ¢ QF, then |z — ¢j| > 2|y — ¢j| for all y € Q;, as an obvious geometric
consideration shows.

(ii) Suppose z € R"\ @} and assume that for some
y € Qj, |x — y| = €. Then the closed ball centered at
z, of radius 7,¢, contains Q;, i.e.,, B(z,r) D Q;, if
T = YpE.

(iif) Under the same hypotheses as (ii), we have
that |z — y| > ¢, for every y € Q.

Here ~,, and ~,, depend only on the dimension n,
and not the particular cube Q);.

With these observations, and following the devel-
opment in the proof of Theorem 4.18, we shall prove
thatif z € R" \ U;Q7,
sup 1) <3 [ 1K —9) = Kz =)y

7 J

e>0

Figure 4.1: Observation for
(ii) and (iii)

+ C'sup

1
p s /B L by

(4.49)

with K (z) = 2.

The addition of the maximal function to the r.h.s of (4.49) is the main new element
of the proof.

To prove (4.49), fix v € R™ \ U;Qj, and € > 0. Now the cubes @, fall into three
classes:

1) forally € Q;, |z —y| <e;

2)forally € Qj, |z —y| > &

3) thereisay € @), such that |z — y| = €.

We now examine

Tbw) = 3 /Q K y)b(y)dy. (4.50)

Case 1). K.(x —y) = 01if |z — y| < ¢, and so the integral over the cube @); in (4.50)
is zero.

Case 2). K.(x —y) = K(x —y), if |[x — y| > ¢, and therefore this integral over Q;
equals

[ K=oy = [ (KG9~ Kby
i i

This term is majorized in absolute value by
| 1K@ y) = K= el

Q@
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which expression appears in the r.h.s. of (4.49).
Case 3). We write simply

K. (z —y)b(y)dy
Qj

< /Q el =)o)y

=[ R — el
Q;NB(x,r)
by (ii), with r = 7,c. However, by (iii) and the fact that ©(x) is bounded, we have

oy Rz —y) c
IRelo =9l = z —y* |~ (e

Thus, in this case,

C
[ Ko bty < e [ by

If we add over all cubes @), we finally obtain, for r = v,¢,

@I <Y [ 1K =)~ Ko = ey

C
BT ey MO

Taking the supremum over ¢ gives (4.49).

This inequality can be written in the form

[T*b(z)| < X(x) + CMb(x), =€ R"\U;Q7,
and so
m({z € R" \ U;Qj : [T"b(z)| > a/2})
<m({r € R"\ U;Q; : ¥(z) > a/4}) + m({z € R" \ U;Q] : CMb(x) > a/4}).
The first term in the r.h.s. is similar to (4.33), and we can get

/ S(e)dz < C|lbll:
R™M\U; Q5

which implies m({z € R" \ U;Qj : ¥(z) > a/4}) < AC0))5.

For the second one, by Theorem 3.9, i.e., the weak type estimate for the maximal
function M, we get m({z € R" \ U;Q} : CMb(z) > a/4}) < g||b||1.

The weak type (1, 1) property of 7 then follows as in the proof of the same prop-
erty for 7', in Theorem 4.18 for more details.

The final stage of the proof, the passage from the inequalities of 7* to the existence
of the limits almost everywhere, follows the familiar pattern described in the proof
of the Lebesgue differential theorem (i.e., Theorem 3.13).

More precisely, for any f € LP(R"), 1 < p < oo, let

Af(z) = [limsup T; f(x) — lim iélf T.f(z)].
e—0 E—

Clearly, A f(z) < 2T* f(z). Now write f = fi + f> where f; € Cl, and || f2|, < 6.

We have already proved in the proof of Theorem 4.21 that 7 f; converges uni-
formly as ¢ — 0, so Afi(z) = 0. By (4.37), we have ||Afa|, < 24, fallp < 24,01if 1 <
p < oco. This shows A fa = 0, almost everywhere, thus by Af(z) < Afi(z) + Afa(x),
we have Af = 0 almost everywhere. So lim._,o 7. f exists almost everywhere if
1 <p<oo.
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In the case p = 1, we get similarly

m({z: Af(z) >a}) < *Hfz\ll

and so again Af(z) = 0 almost everywhere, wh1ch 1mphes that lim._,0 7. f (z) exists
almost everywhere. [ |

A5

4.7 *Vector-valued analogues

It is interesting to point out that the results of this chapter, where our functions
were assumes to take real or complex values, can be extended to the case of functions
taking their values in a Hilbert space. We present this generalization because it can
be put to good use in several problems. An indication of this usefulness is given in
the Littlewood-Paley theory.

We begin by reviewing quickly certain aspects of integration theory in this con-
text.

Let 2 be a separable Hilbert space. Then a function f(z), from R" to J¢ is mea-
surable if the scalar valued functions (f(z), ¢) are measurable, where (-, -) denotes the
inner product of .7, and ¢ denotes an arbitrary vector of JZ.

If f(z) is such a measurable function, then |f(x)]| is also measurable (as a function
with non-negative values), where | - | denotes the norm of 7.

Thus, LP(R", ) is defined as the equivalent classes of measurable functions f(z)
from R" to ., with the property that the norm | f||, = (fgn [f(2) Pdx)'/P is finite,
when p < oo; when p = oo there is a similar definition, except || f||oc = esssup|f(z)|.

Next, let 74 and % be two separable Hilbert spaces, and let L(.7#, .#3) denote
the Banach space of bounded linear operators from J# to /%3, with the usual operator
norm.

We say that a function f(x), from R" to L(J4, 7) is measurable if f(x)y is an /-
valued measurable function for every ¢ € J#. In this case |f(z)| is also measurable
and we can define the space LP(R", L(.74, 7)), as before; here again | - | denotes the
norm, this time in L(74, 745).

The usual facts about convolution hold in this setting. For example, suppose
K(x) € LYR", L(/4, #3)) and f(x) € LP(R", /), then g(z) = [p. K (2 — y)f(y)dy
converges in the norm of 7% for almost every x, and

9(@)] < /R K (z - y)f@)ldy < /R K (z — )| ()\dy.

Also ||g]lr < | K|lgllfllp,if1/r=1/p+1/q—1, with1 < r < oo. A
Suppose that f(z) € L'(R", 7). Then we can deflne its Fourier transform f(&) =
Jgn €7 f(x)dz which is an element of L>(R", ). If f € L*(R", #)NL*(R", /),

o o —n/2
then f(¢) € L2(R™, #) with ||f|]2 = (%') || fll2- The Fourier transform can then

be extended by continuity to a unitary mapping of the Hilbert space L*(R", ) to
itself, up to a constant multiplication.
These facts can be obtained easily from the scalar-valued case by introducing an
arbitrary orthonormal basis in .77’
Now suppose that .7 and 7% are two given Hilbert spaces. Assume that f(z)
takes values in .74, and K (z) takes values in L(74, 7). Then
7fa) = [ K)o vy

Rn
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whenever defined, takes values in .7%.

Theorem 4.27. The results in this chapter, in particular Theorem 4.18, Proposition 4.19,
Theorems 4.21, 4.24 and 4.26 are valid in the more general context where f takes its value
in 74, K takes its values in L(4, 75) and T f and T, f take their value in ¢, and where
throughout the absolute value | - | is replaced by the appropriate norm in 41, L(4, 753) or
5 respectively.

This theorem is not a corollary of the scalar-valued case treated in any obvious
way. However, its proof consists of nothing but a identical repetition of the argu-
ments given for the scalar-valued case, if we take into account the remarks made in
the above paragraphs. So, we leave the proof to the interested reader.

Remark 4.28. 1) The final bounds obtained do not depend on the Hilbert spaces 4
or %, but only on B, p, and n, as in the scalar-valued case.

2) Most of the argument goes through in the even greater generality of Banach
space-valued functions, appropriately defined. The Hilbert space structure is used
only in the L? theory when applying the variant of Plancherel’s formula.

The Hilbert space structure also enters in the following corollary.

Corollary 4.29. With the same assumptions as in Theorem 4.27, if in addition
ITfll2 = cllfllz, >0, feL*R",4),
then | ll, < ALITFllp, if £ € LP(R", 54), if 1 < p < oo.

Proof. We remark that the L*(R™, %) are Hilbert spaces. In fact, let (-,-); denote the
inner product of 7%, j = 1,2, and let (-, -); denote the corresponding inner product
in L2(R", ¢;); that is

(f,9); = /Rn(f(:c),g(:r))jdx.

Now T is a bounded linear transformation from the Hilbert space L?(R"™, 54) to
the Hilbert space L?(R"™, /%), and so by the general theory of inner products there
exists a unique adjoint transformation T, from L2 (R™, 24) to L*(R™, 54 ), which sat-
isfies the characterizing property

(Tf1, f2)2 = (f1,Tfa)1, with f; € L*(R", ).
But our assumption is equivalent with the identity (see the theory of Hilbert spaces,
e.g. [Din07, Chapter 6])

(Tf,Tg)2 =c*(f.g), forall f,g € L*(R",J4).
Thus using the definition of the adjoint, (T'T'f, g)1 = ¢*(f, g)1, and so the assumption
can be restated as

TTf=cf, feL*R"A4). (4.51)
T is again an operator of the same kind as 7" but it takes function with values in %
to functions with values in .74, and its kernel K (z) = K*(—x), where * denotes the
adjoint of an element in L(74, 763).
This is obvious on the formal level since

T = [ [ (K= h(). fole)adyda
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:/R” /Rn(fl(y)’K*(_(y — ) folx))1dedy = (f1,Tf2)1.

The rigorous justification of this identity is achieved by a simple limiting argument.
We will not tire the reader with the routine details.

This being said we have only to add the remark that K*(—x) satisfies the same
conditions as K (z), and so we have, for it, similar conclusions as for K (with the
same bounds). Thus by (4.51),

Ellfllp = ITTfllp < AplITfllp.
This proves the corollary with A) = A, /c?. [

Remark 4.30. This corollary applies in particular to the singular integrals commuted
with dilations, then the condition required is that the multiplier m (&) have constant
absolute value. This is the case, for example, when 7' is the Hilbert transform, K (x) =

W—lx, and m(§) = —isgn (w) sgn ().



RIESZ TRANSFORMS AND SPHERICAL
HARMONICS

5.1 The Riesz transforms

We look for the operators in R” which have the analogous structural character-
ization as the Hilbert transform. We begin by making a few remarks about the in-
teraction of rotations with the n-dimensional Fourier transform. We shall need the
following elementary observation.

Let p denote any rotation about the origin in R". Denote also by p its induced
action on functions, p(f)(z) = f(pzx). Then

(F0f© = [ e plpmdn = [ e sy
Rn

n

= [ e )y = 7 106) =07 £(6),

that is,
Fp=pF.

Let {(x) = (41(x),l2(x), ..., €y (x)) be an n-tuple of functions defined on R". For
any rotation p about the origin, write p = (p;) for its matrix realization. Suppose
that ¢ transforms like a vector. Symbolically this can be written as

U(px) = p(£(z)),
or more explicitly

li(px) = Z pikli(x), for every rotation p. (5.1)
k

Lemma 5.1. Suppose { is homogeneous of degree 0, i.e., {(ex) = {(x), for e > 0. If £
transforms according to (5.1) then {(z) = i for some constant c; that is

Yilla)y = e==. (5.2)

Proof. It suffices to consider z € S"~! due to the homogeneousness of degree 0 for /.
Now, let e, ey, ..., e, denote the usual unit vectors along the axes. Set ¢ = ¢;(e;). We
can see that £j(e;) = 0,if j # 1.

In fact, we take a rotation arbitrarily such that e; fixed under the acting of p, i.e.,
pe1 = eq. Thus, we also have e; = p~lpe; = p~le; = plei. From pe; = ple; = ey,

1 0). Because

weget pjg = land py, = pj1 =0fork #1landj # 1. Sop = (0 A

—1
<é 3) = <1 01) and p~' = p’, weobtain A7! = AT and det A = 1, ie, A

103
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is a rotation in R"~!. On the other hand, by (5.1), we get £j(e1) = > p_s pirli(er)
for j = 2,...,n. That is, the n — 1 dimensional vector (¢2(e1),l3(e1), - ,ln(e1)) is left
tixed by all the rotations on this n — 1 dimensional vector space. Thus, we have to
take 52(61) = 63(61) == En(el) =0.

Inserting again in (5.1) gives ¢;(pe1) = pji1¢1(e1) = cpji1. If we take a rotation such
that pe; = x, then we have pj1 = zj, so {j(z) = cz;, (Jx| = 1), which proves the
lemma. |

We now define the n Riesz transforms For f € LP(R™), 1 < p < oo, we set

R;f(x) = lim cn/ (x —y)dy, j=1,...,n, (5.3)
0 =lmen | /@)
with ¢, = % where 1/c¢, = % is half the surface area of the unit sphere

S™ of R"*L. Thus, R; is defined by the kernel K;(z) = Q‘;—ff), and Q;(x) = cn%.
Next, we derive the multipliers which correspond to the Riesz transforms, and
which in fact justify their definition. Denote

Q(;U) = (Ql(x)v QQ(])), SR Qn(l‘)), and m({) = (m1(§)7 m2(€)7 EE) mn(g))
Let us recall the formula (4.42), i.e.,

m©) = [ e 00@in). l6-1. 64)

with ®(¢) = —Z sgn (w) sgn (t) + In |1/¢|. For any rotation p, since 2 commutes with
any rotations, i. e Q(px) = p(2(z)), we have, by changes of variables,

(©
/ (& - 2)p( Q) do(x) = / B(¢ - )0 pr)do ()
Sn—1 gn—1
/ (& ply)Qy)do(y) = / Q(p€ - y)y)do(y)
gn—1 gn—1

=m(p§).
Thus, m commutes with rotations and so m satisfies (5.1). However, the m; are each
homogeneous of degree 0, so Lemma 5.1 shows that m;(§) = c%, with

c=mjy(e1) = /Sn_l ®(eg - ) (z)do(x)

:/ [—%isgn (w)sgn (z1) 4+ In |1/ |]cpz1do(x)
Sn—1

= — sgn (w)glcn/ |z1|do(x) (the 2nd is 0 since it is odd w.r.t. x1)
Sn—1
: (n-1)/2
— sen (w)ﬂf((n +1)/2) 27
2 R@iD2 T(n+1)/2)
Here we have used the fact [, |21|do(z) = 27("=Y/2/T((n + 1)/2). Therefore, we
obtain

—sgn (w)i.

RJ(€) = —sgn (w)z',%f(s), j=1,.un. (5.5)

This identity and Plancherel’s theorem also imply the following “unitary” character
of the Riesz transforms

YO IRfIE = 11
j=1
By m(p¢) = p(m(€)) proved above, we have m;(p§) = >, pjxmi(&) for any ro-
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tation p and then m;(p€)f(¢) = >k Pikmu(§) f(€). Taking the inverse Fourier trans-
form, it follows

F! ( f ! Zp]kmk
ZZijJ mi(§ = iRt
k k

But by changes of variables, we have

F 7 my(p€) £€)
_ (gﬁ) / €17 Em (p€) F(€)de

N (!;J)"/ P mi(n) f (p~"n)dn

=(Z (m;()f(p71E)(px) = pF " (m;(&) f(p 1) ()
=pRjp~" f,
since the Fourier transform commutes with rotations. Therefore, it reaches
pRip'f = pirRif, (5.6)

which is the statement that under rotations in R”, the Riesz operators transform in
the same manner as the components of a vector.
We have the following characterization of Riesz transforms.

Proposition 5.2. Let T' = (11,15, ..., T},,) be an n-tuple of bounded linear transforms on
L2(R™). Suppose

(a) Each T; commutes with translations of R™;

(b) Each T; commutes with dilations of R™;

(c) For every rotation p = (p;i) of R™, pTjp~ 1 f = >, pixTif
Then the T} is a constant multiple of the Riesz transforms, i.e., there exists a constant c such
that T; = cR;, j =1,...,n

Proof. All the elements of the proof have already been discussed. We bring them
together.

(i) Since the T is bounded linear on L?*(R™) and commutes with translations, by
Theorem 1.62 they can be each realized by bounded multipliers m;, i.e., Z (T} f) =
m; f

(i) Since the T; commutes with dilations, i.e., 7}d. f = 6.7} f, in view of Proposi-
tion 1.3, we see that

FTyo.f = my(©)F0.f = my(©)e"0.1 () = my(€)e ™ F(¢/2)
and

FOTif = 0,1 FTf = e 0.1 (myf) = e "my(€/e) f(E)e),
which imply m;(£) = m;(&/e) or equivalently mj(af) m; (&), e > 0; that is, each m;
is homogeneous of degree 0.

(iii) Finally, assumption (c) has a consequence by taking the Fourier transform,
i.e., the relation (5.1), and so by Lemma 5.1, we can obtain the desired conclusion. W

One of the important applications of the Riesz transforms is that they can be used
to mediate between various combinations of partial derivatives of a function.
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Proposition 5.3. Suppose f € C2(R™). Let Af = > i1 %. Then we have the a priori
J
bound

Proof. Since 7 (0., f)(§) = wi&;-F f(§), we have
ar 82f _ 24 ar
F <6xj6xk> (&) = —w & T f(§)
— (@) (-m@) ez
=—ZR;R;Af.

Thus, 5 25; = —R;jR,Af. By the LP boundedness of the Riesz transforms, we have
the desired result. [ |

&
aﬂijaxk

H S AlAfllp, 1<p<co. (5.7)
p

Proposition 5.4. Suppose f € C}(R?). Then we have the a priori bound
’ of of <A, of | .of

oz, ' ||0mall, da1 " ' ows
Proof. The proof is similar to the previous one. Indeed, we have

8$1 81’2 ’ 1< p < oo
2, ¢2
F O, [ =wik; T f(§ )=l je| Zf(e) = i ST &

7

p

F1(€)

€] €l 1€
% (&1 — &) (&1 + if2)3;
=Te] € 7
__ sgn (w)lgj —sgn (w)z(gl 162) ( f +id f)
[3 €] o -

= — ij (R1 — zRg)(&Elf + Zamf)
Thatis, 0;,f = —R;(R1 — iR2)(0x, f + 10z, f). Also by the LP boundedness of the
Riesz transforms, we can obtain the result. [ |
We shall now tie together the Riesz transforms and the theory of harmonic func-
tions, more particularly Poisson integrals. Since we are interested here mainly in the

formal aspects we shall restrict ourselves to the L? case. For L? case, one can see the
further results in [Ste70, §4.3 and §4.4, p.78].

Theorem 5.5. Let f and fi, ..., f, all belong to L*(R"), and let their respective Poisson
integrals be ug(x,y) = Py * f, ui(x,y) = Py * fi, ..., un(x,y) = Py * fn. Then a necessary
and sufficient condition of

is that the following genemlized Cauchy-Riemann equations hold:
Z 8u3 - 0’

835]
6“] _ Oug

| # k ith xo = y.
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Remark 5.6. At least locally, the system (5.9) is equwalent with the existence of a har-
monic function g of the n + 1 variables, such that u; = B j=0,1,2,.

Proof. Suppose f; = R, f, then E(f) = —sgn (w ) Il f(f) and so by (4.15)

wie) = s ) (51) [ Foetre g, j=1,n

The equation (5.9) can then be immediately verified by differentiation under the
integral sign, which is justified by the rapid convergence of the integrals in question.

Conversely, let u;(z,y) = (M> Jzn f] Jewirelwllyde = 0,1,...,n with fy =

f. Then the fact that 27"3 = g—;‘; = 8% ,j = 1,...,n, and Fourier inversion theorem,
show that

and

wit; fo(€)e W = —|we| fj(§)e W,
therefore fj(ﬁ) = —sgn (w)%fo(g), and so
fi=Rifo=R;f, j=1..n

|
5.2 Spherical harmonics and higher Riesz transforms
We return to the consideration of special transforms of the form
Q
1) =tim [ 29 g yyay, .10

e—0 ‘ |”

ly|>e
where ) is homogeneous of degree 0 and its integral over S"~! vanishes.

We have already considered the example, i.e., the case of Riesz transforms, Q;(y) =
c%‘, j=1,..,n. Forn =1, Q(y) = csgny, and this is the only possible case, i.e., the
Hilbert transform. To study the matter further for n > 1, we recall the expression

m© = [ My-92drly). Il =1

where m is the multiplier arising from the transform (5.10).

We have already remarked that the mapping 2 — m commutes with rotations.
We shall therefore consider the functions on the sphere S"~! (more particularly the
space L?(S™71)) from the point of view of its decomposition under the action of ro-
tations. As is well known, this decomposition is in terms of the spherical harmonics,
and it is with a brief review of their properties that we begin.

We fix our attention, as always, on R", and we shall consider polynomials in R"
which are also harmonic.

Definition 5.7. Denote a = (a1, ...,;an), |a] = 377 aj and 2% = 2f" - - a5, Let P
denote the linear space of all homogeneous polynomials of degree %, i.e.,

S, = {P(w) — Zaaxa ol = k}
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Each such polynomial corresponds its dual object, the differential operator P(0,) =
> aq0y, where 93 = 031 --- 03". On &, we define a positive inner product (P, Q) =
P(9,)Q. Note that two distinct monomials z* and z® in 3% are orthogonal w.r.t. it,
since there exists at least one i such that o; > o}, then 0%z = 0. (P, P) = }_ |aq|?a!
where a! = (a1!) - -+ (ap!).

Definition 5.8. We define .7, to be the linear space of homogeneous polynomials of
degree k which are harmonic: the solid spherical harmonics of degree k. That is,

M, :={P(x) € P : AP(x) =0}

It will be convenient to restrict these polynomials to S"~!, and there to define the
standard inner product,

(P.Q)= [ P@Q@s).
For a function f on S"~!, we define the spherical Laplacean Ag by
Asf(z) = Af(x/|z]),
where f(x/|z|) is the degree zero homogeneous extension of the function f to R™\{0},
and A is the Laplacian of the Euclidean space.!

Proposition 5.9. We have the following properties.

(1) The finite dimensional spaces {7}, are mutually orthogonal.

(2) Every homogeneous polynomial P € &y, can be written in the form P = Py +|z|? P,
where P, € 74, and Py € Z)._o.

(3) Let Hy, denote the linear space of restrictions of 54, to the unit sphere.? The elements
of Hy, are the surface spherical harmonics of degree k, i.e.,

Hy = {P(x) € . : |z] = 1}.

Then L*(S™~ 1) = >°32, Hy.. Here the L? space is taken w.r.t. usual measure, and the infinite
direct sum is taken in the sense of Hilbert space theory. That is, if f € L*(S"™1), then f has
the development

=Y Vi(a), Yie€H, (5.11)

where the convergence is in the LQ(S”_l) norm, and

[ e@rew=3 [ Wi

4) IfYk € Hy, then ASYk( ) = —/{Z(k +n — Q)Yk( )
(5) Suppose f has the development (5.11). Then f (after correction on a set of measure
zero, if necessary) is indefinitely differentiable on S"* (i.e., f € C>°(S™ 1)) if and only if

B Vi (x)]2do(z) = O(k™Y), ask — oo, for each fixed N. (5.12)

This is implied by the well-known formula for the Euclidean Laplacian in spherical polar coordi-

nates: 5 of
_ - Y n—1 -2
Af=r o (7’ ar ) +7r “Asgf.
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Proof. (1) It P € &y, i.e., P(z) =) agx® with |a| =k, then

n

_ a1*1 ron —
E xjﬁij— E xj E aaa]xl ey Tyt = E a; E o™
Jj=1 Jj=

j=1 1
On S™ 1, it follows kP = %—f where % denotes differentiation w.r.t. the outward
normal vector. Thus, for P € 7, and @ € /¢, then by Green’s theorem

-3 [ Patew = [ (@5~ P52} dote)

:/ QAP — PAQ)dz = 0,
lz|<1

where A is the Laplacean on R".

(2) Indeed, let |z|>Z;_5 be the subspace of & of all polynomials of the form
|z|> P> where Py € ). Then its orthogonal complement w.r.t. (-, ) is exactly /7. In
fact, Py is in this orthogonal complement if and only if (|z|? P, P;) = 0 for all P,. But
(]a:|2P2, P1> = (Pg(ax)A)?l = <P2, AP1>, SO APl = 0 and thus f@k = %g D |$’2,@k72,
which proves the conclusion. In addition, we have for P € &

Ple) = Pua) + P Pooate) +ooo o+ { [T
where P; € JZ; by noticing that &2; = J; for j = 0, 1.
(3) In fact, by the further result in (2), if |z| = 1, then we have
P(z) = Py() + Poa(@) + -+ .+ { ]]Z?Eg Zg‘(;zn

with P; € JZ;. That is, the restriction of any polynomial on the unit sphere is a finite
linear combination of spherical harmonics. Since the restriction of polynomials is
dense in L?(S™7!) in the norm (see [SW71, Corollary 2.3, p.141]) by the Weierstrass
approximation theorem,’ the conclusion is then established.

(4) In fact, for |x| = 1, we have

AgYi(x) =A(|2|*Yi(2)) = || *AY: + A(lx| )Yk + 2V (2| %) - VY5
=(k* + (2 — n)k)|z| %Yy — 2k7|2| Y,

=—k(k+n—-2)z/* %Y, = —k(k 4+ n — 2)Y},
since > 7 20, Yy = kY, for Yy, € .

(5) To prove this, we write (5.11) as f(z) = > re ar Y (z), where the Y0 are nor-
malized such that [, , |Y,)(2)|*do(x) = 1. Our assertion is then equivalent with
ar, = O(k~N/?),as k — oo. If f is of class C?, then an application of Green’s theorem
shows that

AgfYdo = / FAsYdo.

Sn—l Sn—l
Thus, if f € C*°, then by (4)
©Y0do — / FALYOdo = [—k(k+n—2)) / Z 0,Y Y0 do
Snfl Snfl Sn— 1

=[—k(k+n— 2)]Tak/ Y2 2do = ap[—k(k +n —2)]".
n—1
So ay = O(k~?") for every r and therefore (5.12) holds.

3If g is continuous on S" !, we can approximate it uniformly by polynomials restricted to S™*.
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To prove the converse, from (5. 12) we have for any reN

|A%FI3 =(A%S. ZA@Y ZASYk
=0 =il +n=2'Y;(x), > [k(k+n—2)]"Vi(2))
j=0 k=0

D [k(k 1 = 2)] (Yi(2), Yi(x)

i
o

[—k(k+n—2))0kN) < C,

M

el
o

if we take N large enough. Thus, f € C>®(S"™1). [ |

Theorem 5.10 (Hecke’s identity). It holds

|wl

—n/2
9<Pk<x)e3'x'2>=<%> (—isgn (w)FPu()e” 5 F, VP, € 4R, (5.13)

Proof. That is to prove

Pyla)e s 5P gy = ("”‘

—n/2 lwl |42
) cm@)R@e T 6

R
Applying the differential operator Pj(0¢) to both sides of the identity (cf. Theo-
rem 1.10)
e Lol 2 W\ T el g2
/ e—wm-{——kc\ dr = () 6_7‘& ,
n 2m
we obtain

—n/2
(_wi)k/n Pk(x)efwix.g Mlx‘de _ (’;ﬁl) Q({)ef%lglz.

Since Py (x) is polynomial, it is obvious analytic continuation Py (z) to all of C". Thus,
by a change of variable

n/2
Q) =” (‘M) [ Plmgeeins ety

2
(Wl 9l (o s (w)6)2
=(—wi) or Py(z)e™ 2 & dx
T n
N\ k ‘w’ n/2 . \W\ly‘2
=(-wi)" (5 Pr(y —isgn (w))e dy.

(kK M 2 e n—1, —Lly2 ’ ’
=(—wi) o r" e 2 - Py(&+ry)do(y')dr.
0 =

Since P, is harmonic, it satisfies the mean value property, i.e., Theorem 4.5, thus

/ Pu(é + ry)do(y) = wn 1 Po(€) = Py(€) / do (/).
gn-1 Sn-1
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Hence

Qi sgn (w)€) =(—wi)* (‘2“;’>/ P [t 5 [ dotyar

n—1
w2 ool | 12
i (52) A [ P = i Rige)
™ n
Thus, Q(&) = (—wi)*P(—isgn (w)€) = (—wi)*(—isgn (w))*Py(&), which proves the
theorem. |
The theorem implies the following generalization of itself, whose interest is that

it links the various components of the decomposition of L?(R"), for different n.
If f is a radial function, we write f = f(r), where r = |x|.

Corollary 5.11. Let Py(z) € 4, (R™). Suppose that f is radial and Py(z)f(r) € L*(R™).
Then the Fourier transform of Py (x) f (r) is also of the form Py(z)g(r), with g a radial func-
tion. Moreover, the induced transform f — g, T,, . f = g, depends essentially only on n+2k.
More precisely, we have Bochner’s relation

k
w .
Tot = <‘27r|> (—isgn (w)) Ty m.0- (5.15)

Proof. Consider the Hilbert space of radial functions

% = {f(r) AP = /0 C 1Py < oo} |

with the indicated norm. Fix now Py (x), and assume that P} is normalized, i.e.,

/ | Py () 2do(z) = 1.
Sn—l

Our goal is to show that

o\
Toan)r) = (52) (isen @) Tosana )0, 616

for each f € Z.

First, if f(r) = e~ 5

7"’2, then (5.16) is an immediate consequence of Theorem 5.10,

ie.,
w| 2 w —TL/Q " ,
(Tuie™ 77)(R) = ( |27r ) (—isgn (w))ke~ 57
~(5) (s ) Tpanoe F)(R),

k w
which implies T}, ;. f = (%) (—isgn (w))*Tiokof for f = e 5

Next, we consider e~ for a fixed ¢ > 0. By the homogeneity of P and the

interplay of dilations with the Fourier transform (cf. Proposition 1.3), i.e., #d. =
e "0.-1.#, and Hecke’s identity, we get

Q(Pk(x)e*%dxp) — E*k/QgZ(Pk(El/%,L.)ef%s\xF)

]

—e k225 o T (Pe(w)e 2 1)

=g k/2—n/2 M o (—is n(w))ké (Py( ~I5lep
= o g —1/2(Pr(§)e )
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W\, k—k/2—n/2 p [ —1/2¢\.—Lig)2)
=(— (—isgn (w))"e Pi(e™/%€)e™ 2 °

|w] o k_—k—n/2 —lelig2/e
() 7 st T

w 771/2 w
This shows that kae*%”2 = (%) (—isgn (w))ks_k_”/%*%ﬁ/s, and so

2T

jw|\ T2 ol 2
_ <) 6—k—n/2€—7r /s'
2

vl gp2 o] \ T2 0,.—0—(n+2k)/2 ,— 1172
Thiok0e 2°7 = () (—isgn (w))’e™ —(n+2k)/2 =517 /e

lwl

leo] k
Thus, Tn,ke_T‘E’"2 = ('2%') (—isgn (w))an+2k7oe_ 7 fore > 0.

lwl

To finish the proof, it suffices to see that the linear combination of {e¢~ 2 er? }o<e<oo
is dense in #Z. Suppose the contrary, then there exists a (almost everywhere) non-zero

. |w]
g € %, such that g is orthogonal to every e™ 2

2, .
€™ in the sense of %, i.e.,

/ e_%arzg(T)TQk—i_n_ldr =0, (5.17)
0

foralle > 0. Let ¢(s) = [, e " g(r)r"t2=1dr for s > 0. Then, putting ¢ = 2(m +
1)/|w|, where m is a positive integer, and by integration by parts, we have

0 :/ efm’"zq//(r)dr = 2m/ e*mﬂw(r)rdr,
0 0

since )(0) = 0 and 0 < e~ ™ ¢ (r) < Ce~ ™ pk+(n=1)/2 _; 0 as 1 — oo by the Holder
inequality. By the change of variable z = e, this equality is equivalent to

1
0:/ hp(Inl/2)dz, m=1,2,....
0

Since the polynomials are uniformly dense in the space of continuous functions on
the closed interval [0, 1], this can only be the case when ¢ (y/In1/z) = 0 for all z in
[0,1]. Thus, ¢/(r) = e " g(r)r"+2k=1 = 0 for almost every r € (0, 00), contradicting
the hypothesis that g(r) is not equal to 0 almost everywhere.

k
Since the operators 7, ;, and (%) (—isgn (w))*T+2k0 are bounded and agree

on the dense subspace, they must be equal. Thus, we have shown the desired result.
[ |

We come now to what has been our main goal in our discussion of spherical har-
monics.

Theorem 5.12. Let Py (z) € 54, k > 1. Then the multiplier corresponding to the transform

(5.10) with the kernel ;’flfﬂ is

Py ()
134

T ity = /2 isgn ()LD

(k/2+n/2)’

Remark 5.13. 1) If k > 1, then Py (x) is orthogonal to the constants on the sphere, and
so its mean value over any sphere centered at the origin is zero.
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2) The statement of the theorem can be interpreted as

> <Pk(x)> _ . b (5.18)

Tk
|[Fem €1

3) As such it will be derived from the following closely related fact,

F <Pk(x)> . Bl (5.19)

affine ) = ThefgfRees

where v, o, = 7"/2 (%) (—isgn (W»k%

Lemma 5.14. The identity (5.19) holds in the sense that
B(z) / B (8)

z)dr = V.o d¢, Ve 7. 5.20

/Rn |x‘k+n,a<p( ) Ve | |€|k+a<p(€) £, Ve (5-20)

It is valid for all non-negative integer k and for 0 < o < n.

Remark 5.15. For the complex number a with Ra € (0,n), the lemma and (5.19) are
also valid, see [SW71, Theorem 4.1, p.160-163].

Proof. From the proof of Corollary 5.11, we have already known that
@l

F(Pa)e 1) = (5

so we have by the multiplication formula,

Py(z)e 2 S o(2)d = / F(Py(@)e 2 <) (€)p(€)de

n

—n/2 ol toto
) (—isgn (w))Fe "2 Py (€)= e,

]Rn
W\, k_—k—n/2 _leligz /e
= (2] (isan ()t Pu(€)e TP p(e)de,
fore > 0.
We now integrate both sides of the above w.r.t. ¢, after having multiplied the
equation by a suitable power of ¢, (eP1, 8 = (k +n — «)/2, to be precise). That is

/ gh1 Pk(x)e*‘%‘slxpcﬁ(x)da:da
0 R7

—n/2 00 ol o2
—() 7 st [Tt [ nge S dede

By changing the order of the double integral and a change of variable, we get

(5.21)

|w]

Lhs. of (5.21) = / Py(z)@(x) / P e 2l dedy
R™ 0

—lwlelzl? —B oo
i llelal’/2 / Pil(x)@(x) (“”2|yg;\2> / t0= e tdtda
n 0

(¥ "ve) [ el
(2o @) 2.

S

Similarly,

—n/2
rh.s. of (5.21) = <> (—isgn (w))F Pr(§)e(&)

2 R”

/OO 5—(k/2+a/2+1)e—%If\z/adgdf
0
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2 () it [ e (i)

/OO tk/2+a/27167tdtd§
0

—n/2 —(k+a)/2
(5 cism@ () rwzar)
/Pk £)|g|~ ¢+
Thus, we get

‘w’ —(k+n—a)/
<2> D((k 41— a)/2) / Pu(2)(@))]| -y

:(W')"/z(—isgn( (%) T g2 a2

2

[ @l g

which leads to (5.20).
Observe that when 0 < a < n and ¢ € .7, then double integrals in the above
converge absolutely. Thus the formal argument just given establishes the lemma. W

Proof of Theorem 5.12. By the assumption that & > 1, we have that the integral of P,
over any sphere centered at the origin is zero. Thus for ¢ € .7, we get

P@) ongo— [ B0 o0~ a0
Anww(x)dﬁ—/xgl oerna [p(x) — (0)]d
_Be(@)
v/ )_4(a)

z|>1 ‘$|k+n @

Obviously, the second term tends to f‘ Lu@) 5(z)dw as o — 0 by the dominated

z|>1 \x|k+"
convergence theorem. As in the proof of part (c) of Theorem 4.26, % [p(x) — $(0)]
is locally integrable, thus we have, by the dominated convergence theorem, the limit
of the first term in the r.h.s. of the above

i [ o) - () = [

k —
a=0+ Jjg <1 [afFHnTe lel<1

P P
:/ k;gf) o(z)dr = lim k;gf) o(z)dx.
PESHE =0 Jeglol<a |2M"

d T,Efl ((z) — $(0))dz

Thus, we obtain

Py(x)

o(z)dr = lim o(z)dz. (5.22)

a—0+ Jpn |l’|k+n @ €20 Jiz|>e |x|k+n

. P(€) o Pr(§)
alg& /Rn RER p(§)dE = 213%) /|£|25 €|* P(E)dt.

Thus, by Lemma 5.11, we complete the proof with 7, = lima—0 Vi.qa- [ |

Py (y)
. . yl*
P, € 74, form a natural generalization of the Riesz transforms; the latter arise in

the special case k = 1. Those for £ > 1, we call the higher Riesz transforms, with k
as the degree of the higher Riesz transforms, they can also be characterized by their

Similarly,

For fixed k > 1, the linear space of operators in (5.10), where Q(y) = and
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invariance properties (see [Ste70, §4.8, p.79]).

5.3 Equivalence between two classes of transforms

We now consider two classes of transforms, defined on L?(R"). The first class
consists of all transforms of the form
Q(y)

Tf=c-f+lim ~f(x —y)dy, (5.23)
=0 hA}a‘y’

where c is a constant, 2 € C°°(S"~!) is a homogeneous function of degree 0, and the
integral [y, Q(z)do(x) = 0. The second class is given by those transforms 7" for
which

F(TF)(€) =m(&)f(€) (5.24)

where the multiplier m € C*°(S"!) is homogeneous of degree 0.

Theorem 5.16. The two classes of transforms, defined by (5.23) and (5.24) respectively, are
identical.

Proof. First, support that 7" is of the form (5.23). Then by Theorem 4.24, T  is of the
form (5.24) with m homogeneous of degree 0 and

m(§) =c+ /Sn[—gl sgn (w)sgn (£ - x) +In(1/[€ - l‘|)] Qx)do(x), |£| =1. (5.25)

Now, we need to show m € C*°(S""1). Write the spherical harmonic develop-
ments

00 00 N
Ow) =) Vi(w), m(x) =) Vi(x), Qn(z) =Y Yi(x), my(2) =D Vi(@),
k=1 k=0 k=0

(5.26)

where Y;,Y), € Hj, in view of part (3) in Proposition 5.9. k starts from 1 in the de-
velopment of (2, since |, gn-1 Q(z)dx = 0 implies that Q(x) is orthogonal to constants,
and Hj contains only constants.
Then, by Theorem 5.12, if Q = Qp;, then m(x) = my(z), with
Yi(z) = Yi(x), k>1.
But () — m (2) = [y 1 [~ % sen (@) sen (y - 2) + o ] [ (y) — O (9)]dor(y).
Moreover, by Holder’s inequality,

sup |mar(z) — my(z)|
resn—1

I

) 9 1/2
YW
< <sup /S | sen @) sen (y @)+ n(1/ly - 2)) da<y>>
1/2
< ([ 10wt - awPao)) o .27
as M, N — oo, since* forn =1, 5% = {-1,1},

. 2 2

T T
|5 s @y + w1/l - o) dot) =T

SO

*There the argument is similar with some part of the proof of Theorem 4.24.
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and for n > 2, we can pick a orthogonal matrix A satisfying Ae; = v and det A =1
for |z| = 1, and then by a change of variable,

sup /
x Sn—1

—sup [ % Gata/ly s dt

x

2
do(y)

iy’

-3 sgn (w)sgn (y - ) + In(1/|y - z|)

2

T
= s+ sp / (In]y - Aer])2do(y)
x Snfl

2

T _

:an—l + Sup/s 1(ln |A 1y . 61|)2d0(y)
x n—

z:A_ly 7T2

4 Sn—1

Here, we have used the boundedness of the integral in the rh.s., i.e., (with the nota-
tion Z = (22, ..., 2), as in the proof of Theorem 4.24,

1
/Snl(ln|zl\)2da(z) :/1(ln\z1|)2/sn2(1—z%)(”3)/2d0(z)d21

1
s / (In |21 )2(1 — 22)=3)/2¢.5,
1

Zzlicgszewn_g/ (In | cos 0])2(sin 6)"2df = w,,_o1.
0
If n > 3, then, by integration by parts,
I < / (In | cos 0])? sin 0dO = —2/ In| cosf|sin0df = 2/ sin 6df = 4.
0 0 0

If n = 2, then, by the formula [7/*(In(cos 0))2d0 = T[(In2)? + 72/12], cf. [GR, 4.225.8,
p-531], we get

s /2
L = / (In| cos 8])%df = 2/ (In(cos 8))2df = 7[(In2)? + =2/12].
0 0
Thus, (5.27) shows that

m(z) =c+ Z'kak(a;).
k=1

Since 2 € C*°, we have, in view of part (5) of Proposition 5.9, that

[ Mi@Pdota) = 06

as k — oo for every fixed N. However, by the explicit form of 7;, we see that
i ~ k72, s0 m(x) is also indefinitely differentiable on the unit sphere, i.e., m €
> ( gn—1 )

Conversely, suppose m(z) € C*°(S"" 1) and let its spherical harmonic develop-
ment be as in (5.26). Set ¢ = Y, and Y (z) = 'Yikf/k($) Then Q(z), given by (5.26), has
mean value zero in the sphere, and is again indefinitely differentiable there. But as
we have just seen the multiplier corresponding to this transform is m; so the theorem
is proved. [

As an application of this theorem and a final illustration of the singular integral
transforms we shall give the generalization of the estimates for partial derivatives
given in 5.1.
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Let P(xz) € Z,(R"™). We shall say that P is elliptic if P(x) vanishes only at the
origin. For any polynomial P, we consider also its corresponding differential poly-
nomial. Thus, if P(z) = > a,z®, we write P(a%) => aa(a%)a as in the previous
definition.

Corollary 5.17. Suppose P is a homogeneous elliptic polynomial of degree k. Let (6%)“ be
any differential monomial of degree k. Assume f € C¥, then we have the a priori estimate

o\“ 0

el pl L
(52) 1 (2)1
Proof. From the Fourier transform of ()" fand P (£) f,

7 (P(5) 1)@= [ eer (5) floro = @it P@fi6)

<4
p

, l<p<oo. (5.28)
P

and N
7 ((52) 1) ©=wireso.
we have the following relation

o7 ((5) 1)©-7(r(5) 1) ©

e

Since P(¢) is non-vanishing except at the origin, % is homogenous of degree 0 and
is indefinitely differentiable on the unit sphere. Thus

2\ 0
= —T7(p(|=
(52) 7=7(7(3) )
where T is one of the transforms of the type given by (5.24). By Theorem 5.16, T
is also given by (5.23) and hence by the result of Theorem 4.24, we get the estimate

(5.28). ]
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In harmonic analysis, Littlewood-Paley theory is a term used to describe a theo-
retical framework used to extend certain results about L? functions to L? functions
for 1 < p < oo. Itis typically used as a substitute for orthogonality arguments which
only apply to L? functions when p = 2. One implementation involves studying a
function by decomposing it in terms of functions with localized frequencies, and
using the Littlewood-Paley g-function to compare it with its Poisson integral. The
1-variable case was originated by J. E. Littlewood and R. Paley (1931, 1937, 1938) and
developed further by Zygmund and Marcinkiewicz in the 1930s using complex func-
tion theory (Zygmund 2002 [1935], chapters XIV, XV). E. M. Stein later extended the
theory to higher dimensions using real variable techniques.

6.1 The Littlewood-Paley g-function

The g-function is a nonlinear operator which allows one to give a useful charac-
terization of the LP norm of a function on R" in terms of the behavior of its Poisson
integral. This characterization will be used not only in this chapter, but also in the
succeeding chapter dealing with function spaces.

Let f € LP(R™) and write u(z, y) for its Poisson integral

wte) = (B) [ eereinjirie = [ s —a

as defined in (4.15) and (4.17). Let A denote the Laplace operator in ]R’}r“, thatis A =
86722 +270 %,‘ V is the corresponding gradient, |Vu(z,y)|? = |g—;‘|2 + |Veu(z, v)|?,
where [V u(z, ) = X, | 42

Definition 6.1. With the above notations, we define the Littlewood-Paley g-function
9(f)(z), by

o)) = ([ 9uto )Py " 61)

119
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We can also define two partial g-functions, one dealing with the y differentiation and
the other with the x differentiations,

91(f)(@) = ( s ]ggu,m dey) i) = ( s \vxum,y)\?ydy) e

Obviously, ¢* = g7 + g2.

The basic result for g is the following.

Theorem 6.2. Suppose f € LP(R"), 1 < p < oo. Then g(f)(x) € LP(R™), and
A1l < lg(Hllo < Apll flp- (63)

Proof. Step 1: We first consider the simple case p = 2. For f € L*(R"), we have

oG = [ [ IVuwaPudvds = [y [ Vata)Pdody
In view of the identity
wl\" i&x —|w £
u(e,y) = ('%) / et eIl f(g)dg,
du — |(.d| ! ¢ wié-x ,—|wély
o= () [ —elfgeere v,

ou o |OJ| " T wix  —|wé|y
o= (52) [ witsftepeeme s
Thus, by Plancherel’s formula,

JRCCREE !
n 2
= |17 (el fe)elo5) ||2+Z||J (wit )w%%]

we have

and

o

&x]

ou
6:5]-

@ 2
ay L2

j=1 L2

-(&) { el f©)e 3 + 3 wz'sjf@)ew&y%]

J=1

W2 [[1€1£ (€)™ e 3

;)
- /R 2 (';) w2|€2|£(&) P8,
o= v [ 2 <| ) P e ey
J

[ 2 (‘;’l) eI /O ye Sl dydg

and so
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_ Mn22”21 _IM 2112
-/ 2(%) PP e = 2(2) 1713

1 2
=S I7118

Hence,

lg(Pll2 =271 fl2- (64)
We have also obtained [|g1(f)[l2 = lgz(f)ll2 = 5[/ -

Step 2: We consider the case p # 2 and prove || g(f)|p, < Apllfllp- We define the
Hilbert spaces .71 and 7% which are to be consider now. .7 is the one-dimensional
Hilbert space of complex numbers. To define 7%, we define first 7% as the L? space
on (0, o0) with measure ydy, i.e.,

AP = {f i =/O F@)Pydy < oo}.

Let .7 be the direct sum of n + 1 copies of ,%”20; so the elements of .74 can be rep-
resented as (n + 1) component vectors whose entries belong to J%’. Since 4 is
the same as the complex numbers, then L(74, %) is of course identifiable with .7%.
Now let € > 0, and keep it temporarily fixed.

Define

OPyie(x) OPyie(w) OPy1e(x)
K — y+e y+e . Y .
5 (33) ( ay ) 6.’1)1 9 ) axn
Notice that for each fixed z, K.(x) € 7. This is the same as saying that
2

0P, ? = |0P,
/ OPyre(x) ydy<ooand/ OPyre(2) ydy < oo, forj =1,...,n
0 ay 0 8l'j
In fact, since Py(z) = Mw, we have that both aa—}} and g—% are bounded by

%. So the norm in 7% of K. (x),

(lzl+y . ;
K@) <A+ 1) [ o I

<A? 1 — < C.,
(n+ )/0 (y +€)2n+1 £

and in another way

& ydy A’2(n+1 n _on
]Ka(x)P S A2(n + 1)/ (Jz2 + y2)ntt = (2n )(MZ + 52) < Clz| .
Thus,
|Ke(2)] € Li,o(R™). (6.5)
Similarly,
OKc(z) ? /OO ydy —2n-2
<C —= L C n=
o . (el + gy < R
Therefore, K. satisfies the gradient condition, i.e.,
K.
J

with C independent of .
Now we consider the operator T; defined by

/ K.(8)f(z — )dt.
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The function f is complex-valued (take its value in J#), but T f () takes its value in
7%. Observe that

i@l = ([ 1Vatey+oPoy) < ([ utenPuin) < st 62

Hence, | T.f(z)|2 < 27Y2||f|l2, if f € L?*(R"), by (6.4). Therefore,
|Ko(z)| <2712, (6.8)
Because of (6.5), (6.6) and (6.8), by Theorem 4.27 (cf. Theorem 4.18), we get || f||, <
Apl| fllp, 1 < p < oo with A, independent of . By (6.7), for each z, |T; f(z)| increases
to g(f)(x), as € — 0, so we obtain finally

lg()llp < Apllfllp, 1 <p<oo. (6.9)
Step 3: To derive the converse inequalities,
Al fllp < Nlg(Hllp, 1 <p < oo (6.10)

In the first step, we have shown that ||gi(f)|2 = 3| f||2 for f € L*(R™). Let u1, us
are the Poisson integrals of fi, fo € L? respectively Then we have ||g1(f1 + f2)||3 =

1f1+ foll3 e, Jn I Mpydydx =1 [on [fi + fo|?dz. It leads to the identity

/n/ 8u1 2(;16 y)ydydr = . fi(2) fa(2)da

This identity, in turn, leads to the 1nequahty, by Holder’s inequality and the definition
of g1,

fi(2) Fa@)der| < / a1 (F1) (@)g1 (f2) (@) de
Rn R™

Suppose now in addition that f; € LP(R") and f, € L” (R™) with || fo||,y < 1 and
1/p+1/p’ = 1. Then by Holder inequality and the result (6.9).

- fi(z) fo(w)de) < 4llg1(f1)llpllgr(f2)lly < 44y llg1 (f)llp- (6.11)

Now we take the supremum in (6.11) as f> ranges over all function in L20LY , with
| f2|lpr < 1. Then, we obtain the desired result (6.10), with A}, = 1/4A,,, but where f is
restricted to be in L? N LP. The passage to the general case is provided by an easy lim-
iting argument. Let f,, be a sequence of functions in L? N L?, which converges in L?
norm to f Notice that |g(fm)( ) (fn)('r)‘ = ‘ Hvum||L2(O,oo;ydy) - ||VunHL2(O,oo;ydy) } <
[Vt — V|| 2o, soiydy) 9(fm — fn)(z) by the triangle inequality. Thus, {g(f.,)} isa
Cauchy sequence in L? and so converges to ¢g(f) in LP, and we obtain the inequality
(6.10) for f as a result of the corresponding inequalities for f,,. |

We have incidentally also proved the following, which we state as a corollary.

Corollary 6.3. Suppose f € L*(R"), and g1(f) € LP(R"), 1 < p < oo. Then f € LP(R"),
and Au[| fllp < llg1(f)llp-

Remark 6.4. There are some very simple variants of the above that should be pointed
out:

(i) The results hold also with g¢,(f) instead of g(f). The direct inequality
lg(f)llp < Apllfll, is of course a consequence of the one for g. The converse in-
equality is then proved in the same way as that for g;.
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2 1/2
y2k—1dy> _

Then the L? inequalities hold for g; as well. both (i) and (ii) are stated more system-
atically in [Ste70, Chapter 1V, §7.2, p.112-113].

(iii) For later purpose, it will be useful to note that for each z, gi(f)(xz) >
Argi1(f)(z) where the bound A, depends only on k.

It is easily verified from the Poisson integral formula that if f € LP(R™), 1 < p <
oo, then

(ii) For any integer k > 1, define
k

a(f)(@) = (/OOO o

W(x,y)

OFu(z,y)

Dk — 0 foreach z, asy — oo.
Y

Thus,
u(z,y) _/Oo OF+1luy(z, s) sk@
oyt sFt1 ok

By Schwarz’s inequality, therefore,
2 oo
szkds> (/ s_des> .
Yy

8ku(x,y) 2< </yoo

oyk
Hence, by Fubini’s theorem, we have

@ = [ 2|
([
wl ([
moif ([ %)
:2;_1Aw O

1 /
2]{3 -1 0

okt
prEl
= s G (@)

Thus, the assertion is proved by the induction on k.

OF+lu(x, s)
Dsk+1

okt
W(xv s)

OFtly
W(xv s)

2
s%ds> dy

2

8k+1u
s?kds

W(%S)

2
S2k+1ds

2
82(k+1)—1d8

x, 5)

The proof that was given for the L? inequalities for the g-function did not, in any
essential way, depend on the theory of harmonic functions, despite the fact that this
function was defined in terms of the Poisson integral. In effect, all that was really
used is the fact that the Poisson kernels are suitable approximations to the identity.

There is, however, another approach, which can be carried out without recourse
to the theory of singular integrals, but which leans heavily on characteristic proper-
ties of harmonic functions. We present it here (more precisely, we present that part
which deals with 1 < p < 2, for the inequality (6.9)), because its ideas can be adapted
to other situations where the methods of Chapter 4 are not applicable. Everything
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will be based on the following three observations.

Lemma 6.5. Suppose v is harmonic and strictly positive. Then
AuP = p(p — 1)uP~2|Vul?. (6.12)

Proof. The proof is straightforward. Indeed,
Ot = puP ™10, u, (")3]_ uP = p(p — DuP"?(9,,u)* + pup_lazju,
which implies by summation
AP = p(p — DuP | Vul® + pu? ' Au = p(p — DuP~?|Vul?,
since Au = 0. [

Lemma 6.6. Suppose F(z,y) € C(R'T)NC?*(RM), and suitably small at infinity. Then
/ yAF (z,y)dzdy = / F(z,0)dz. (6.13)
R1+1 Rn

Proof. We use Green'’s theorem

ov ou
/D(uAv — vAu)dzxdy = /6D <u8/\f - v@/\/'> do

where D = B, N R’}r“, with B, the ball of radius 7 in R"*! centered at the origin, A/
is the outward normal vector. We take v = F, and u = y. Then, we will obtain our
result (6.13) if

/ YyAF(z,y)dzdy — / yAF (z,y)dzdy,
D R

OF oy
—F—=1d 0
/aDO <yaN aN) 77

as r — oo. Here 0Dy is the spherical part of the boundary of D. This will certainly
be the case, if for example AF > 0, and |F| < O((Jz| +y) ™" %) and |VF| = O((|z| +
y)~"17¢), as |z| + y — oo, for some & > 0. [ ]

and

Lemma 6.7. If u(z,y) is the Poisson integral of f, then
sup [u(z, y)| < M f(z). (6.14)
y>0

Proof. This is the same as the part (a) of Theorem 4.9. It can be proved with a similar
argument as in the proof of part (a) for Theorem 4.10. [

Now we use these lemmas to give another proof for the inequality
lg(Hllp < Apllfllpy 1 <p<2

Another proof of ||g(f)|lp < Apl|fllp, 1 < p < 2. Suppose first 0 < f € Z(R") (and at
least f # 0 on a nonzero measurable set). Then the Poisson integral u of f, u(x,y) =
Jgn Py(t) f(z —t)dt > 0, since P, > 0 for any « € R™ and y > 0; and the majorizations
uP(x,y) = O((|z| + y)~™) and |VuP| = O((|z| + y)™™~ 1), as |z| + y — oo are valid.
We have, by Lemma 6.5, Lemma 6.7 and the hypothesis 1 < p < 2,

0o 1 B
@@ = [ Vale) Py =~ [T away
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2—p o)
JMF@)]P / JAUPdy.
pir—1) Jo
We can write this as
9(f)(@) < Cp(M f(2))FP/2(1(x)) "2, (6.15)
where I(z) = [;* yAuPdy. However, by Lemma 6.6,
/ I(x)dx = / yAuPdydr = / uP (z,0)dz = || f|}- (6.16)
n Ri+1 Rn

This immediately gives the desired result for p = 2.
Next, suppose 1 < p < 2. By (6.15), Holder’s inequality, Theorem 3.9 and (6.16),
we have, for 0 < f € Z(R"),

/ (G @)Pde < Cp [ (MF@)PE (1) do
R Rn

1/r' 1/r )
<cp ([ orrwypar) ([ i) <l = e

wherer =2/p € (1,2) and 1/r + 1/r' =1, then v’ = 2/(2 — p).

Thus, |[g(f)llp < Apllfllp, 1 < p <2, whenever 0 < f € Z(R").

For general f € LP(R") (which we assume for simplicity to be real-valued), write
f = fT — f asits decomposition into positive and negative part; then we need only
approximate in norm f* and f~, each by a sequences of positive functions in Z(R").
We omit the routine details that are needed to complete the proof. |

Unfortunately, the elegant argument just given is not valid for p > 2. There is,
however, a more intricate variant of the same idea which does work for the case
p > 2, but we do not intend to reproduce it here.

We shall, however, use the ideas above to obtain a significant generalization of
the inequality for the g-functions.

Definition 6.8. Define the positive function

[e%9) n
@ = [ [ () Wue - wpt e, 617

Before going any further, we shall make a few comments that will help to clarify
the meaning of the complicated expression (6.17).

First, g3 (f)(«) will turn out to be a pointwise majorant of g(f)(x). To understand
this situation better we have to introduce still another quantity, which is roughly
midway between g and g3. It is defined as follows.

Definition 6.9. Let I be a fixed proper cone in R! with vertex at the origin and
which contains (0, 1) in its interior. The exact form of I" will not really matter, but for
the sake of definiteness let us choose for I' the up circular cone:
I'={(t,y) eRY:|t| <y,y>0}.
For any z € R", let I'(x) be the cone I' translated such that its vertex is at 2. Now
define the positive Luzin’s S-function S(f)(x) by

[S(f)(@)]* = /F( )\W(t,y)Pyl’"dydt = /F IVu(z — t,y)*y" " dydt. (6.18)
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We assert, as we shall momentarily prove, that

Proposition 6.10.
9(f)(x) < CS(f)(z) < Crgx(f)(=). (6.19)

What interpretation can we put on the inequal-
ities relating these three quantities? A hint is y
afforded by considering three corresponding ap-
proaches to the boundary for harmonic functions.

(a) With u(z, y) the Poisson integral of f(z), the
simplest approach to the boundary point z € R"
is obtained by letting y — 0, (with z fixed). This 0 T
is the perpendicular approach, and for it the ap- Figure 6.1: I" and I'(x) forn = 1
propriate limit exists almost everywhere, as we al-
ready know.

(b) Wider scope is obtained by allowing the variable point (¢, y) to approach (z, 0)
through any cone I'(x), (where vertex is ). This is the non-tangential approach which
will be so important for us later. As the reader may have already realized, the rela-
tion of the S-function to the g-function is in some sense analogous to the relation
between the non-tangential and the perpendicular approaches; we should add that
the S-function is of decisive significance in its own right, but we shall not pursue that
matter now.

(c) Finally, the widest scope is obtained by allowing the variable point (¢,y) to
approach (z,0) in an arbitrary manner, i.e., the unrestricted approach. The function
g3 has the analogous role: it takes into account the unrestricted approach for Poisson
integrals.

Notice that ¢} (=) depends on A. For each z, the smaller A the greater g;(z), and
this behavior is such that that L” boundedness of g} depends critically on the correct
relation between p and \. This last point is probably the main interest in g3, and is
what makes its study more difficult than g or S.

After these various heuristic and imprecise indications, let us return to firm ground.
The only thing for us to prove here is the assertion (6.19).

Proof of Proposition 6.10. The inequality S(f)(xz) < Cigx(f)(x) is obvious, since the
integral (6.17) majorizes that part of the integral taken only over I', and

An
Y 1
< > -
(\t\ +y> 22

since |t| < y there. The non-trivial part of the assertion is:
9(f)(z) < CS(f)(=).

It suffices to prove this inequality for x = 0. Let us de-
note by B, the ball in R":"! centered at (0, y) and tangent to
the boundary of the cone I'; the radius of B, is then propor-
tional to y. Now the partial derivatives 2 o and ﬂ are, like
u, harmonic functions. Thus, by the mean Value theorem
of harmonic functions (i.e., Theorem 4.5 by noticing (0, )

is the center of By), Figure 6.2: I" and B,
ou(0,y) 1 / ou(z, s) dds
oy m(By) Jp Os

Y
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where m(B,) is the n + 1 dimensional measure of By, i.e., m(B,) = cy™*! for an
appropriate constant c¢. By Schwarz’s inequality

ou(0,y) |2 1 / ou(z, s)|? /
< dxds dxds
dy (m(By))?* Jp,| Os B,
1 / ou(z,s)|”
= dxds.
m(By) Jp, Os

If we integrate this inequality, we obtain

) 2 oo
/ ,|2u(0.9) dyg/ 1y (/ du(z, s)
0 0 By

2
ay 95 dwds) dy.

However, (z,s) € B, clearly implies that ¢;s < y < ¢gs, for two positive constants ¢;
and cy. Thus, apart from a multiplicative factor by changing the order of the double
integrals, the last integral is majorized by
cos o 2
/ (/ y‘"dy) e, 5) dxds < ¢ /
I c18 83 I
This is another way of saying that,
2 2
/Oo y 8u(0,y) dy g c/// 0u($, y)
0 dy r Jy
The same is true for the derivatives 8%, j =1,...,n,and adding the corresponding

ou(z, s) |?
0s

s' T dxds.

yt " dxdy.

estimates proves our assertion. [ |

We are now in a position to state the L” estimates concerning g3.

Theorem 6.11. Let A > 1 be a parameter. Suppose f € LP(R™). Then
(a) For every x € R™, g(f)(x) < Chgx(f)(x).
(b)If1 <p < oo, andp > 2/, then

HgK(f)Hp < Ap,AHpr- (6.20)

Proof. The part (a) has already been proved in Proposition 6.10. Now, we prove (b).
For the case p > 2, only the assumption A > 1 is relevant since 2/\ < 2 < p.
Let ) denote a positive function on R", we claim that

| @@ < [ @R @i (621)
The Lh.s. of (6.21) equals

> Y(z) An, —
y|Vul(t, y)|? [/ —————— "y x| dtdy,
AL e i

so to prove (6.21), we must show that

Y(x) An, —
sup/ — "y dr < A\My(t). 6.22
Wb foer Tt =l + ) M) ©22

However, we know by Theorem 4.10, that

igg(d) % e ) (t) < AMp(t)

for appropriate ¢, with ¢, (r) = e "p(z/¢). Here, we have in fact p(z) = (1+|z|)~",
e = y, and so with A > 1 the hypotheses of that theorem are satisfied. This proves
(6.22) and thus also (6.21).
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The case p = 2 follows immediately from (6.21) by inserting in this inequality the
function ¢ = 1 (or by the definitions of g%(f) and g(f) directly), and using the L?
result for g.

Suppose now p > 2; let us set 1/q + 2/p = 1, and take the supremum of the Lh.s.
of (6.21) over all ¢y > 0, such that ¢ € L9(R") and |||/, < 1. Then, it gives Hg}‘\(f)”%,
Holder’s inequality yields an estimate for the right side:

AlgOIFIML -

However, by the inequalities for the g-function, |[g(f)|l, < A, | fll,; and by the
theorem of the maximal function | M|, < Agll¢]lq < Ag, since g > 1,if p < oo. If we
substitute these in the above, we get the result:

193Nl < Apallfllp, 2 <p<oo, A>T

The inequalities for p < 2 will be proved by an adaptation of the reasoning used
for g. Lemmas 6.5 and 6.6 will be equally applicable in the present situation, but
we need more general version of Lemma 6.7, in order to majorize the unrestricted
approach to the boundary of a Poisson integral.

It is at this stage where results which depend critically on the L? class first make
their appearance. Matters will depend on a variant of the maximal function which
we define as follows. Let > 1, and write M,, f(x) for

1 1w
x)=|sup ———— H . .
M f (2) (3;(; TG Jor, 1O dy) 623)

Then M, f(z) = Mf(z), and M, f(z) = ((M|f|*)(x))"/*. From the theorem of the
maximal function, it immediately follows that, for p > p,
1M fllp = (ML f) @) = H((M!f\“)(x))H;%

<CIIFM1 = Cl £l (6.24)

This inequality fails for p < p, as in the special case p = 1.
The substitute for Lemma 6.7 is as follows.

Lemma 6.12. Let f € LP(R™), p > pu > 1, if u(x,y) is the Poisson integral of f, then

ju(e — t,3)] < A <1 T ’;’) Mf(z), (6.25)
and more generally
n/p
t
e =t < 4 (14 ) ar, 1), (626)

We shall now complete the proof of the inequality (6.20) for the case 1 < p < 2,
with the restriction p > 2/\.
2—p

Let us observe that we can always find a p € [1, p) such thatif weset \' = A — =5

then one still has \' > 1. In fact, if u = p, then \ — Z%p > 1 since A > 2/p; this
inequality can then be maintained by a small variation of ;.. With this choice of u, we
have by Lemma 6.12

y n/p
lu(z —t,y)| <y+ Itl) < AM, f(z). (6.27)

We now proceed the argument with which we treated the function g.

(92(f)(@))?
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1 / 1-n < Yy >>\n 2—p
= Yy u Pz —t,y)AuP(z — t,y)dtdy
p(p —1) Jro y+ [t ( A )

1
<
p(p —

) AP (M, f(2))* PT* (), (6.28)

where

A'n
_ y
I'*(z) = I=n AuP(x — t,y)dtdy.
(z) /Ri“y <y+|t|> uP(x —t,y)dtdy

It is clear that

An
*(x)dx = AuP(t, y)dzdtd
/R"I r = /Rn“/n <y+!t—x|> uP(t, y)dxdtdy

—Cy / yAUP (¢, y)dtdy.
Rn+1

¥
The last step follows from the fact thatif X > 1

y A'n y A'n
S N d:vz‘”/( ) dz
Y /Rn<y+rt—x\> V' e \y+ el

So, by Lemma 6.6

/ I (x)dx = CX/ uP (t,0)dt = Cy || fII5. (6.29)
n R
Therefore, by (6.28), Holder’s inequality, (6.24) and (6.29),
lg5(H)llp < CIMyf (@) =P/ @) 2], < CIMFIE P22 < Cl £

That is the desired result. u

Finally, we prove Lemma 6.12.
Proof of Lemma 6.12. One notices that (6.25) is unchanged by the dilation (z,t,y) —
(0x, 6t, dy), it is then clear that it suffices to prove (6.25) with y = 1.

Setting y = 1 in the Poisson kernel, we have P (z) = ¢, (1+]2[?)~"*1)/2, and u(z—
t,1) = f(z) x Py(x —t), for each t. Theorem 4.10 shows that |u(x — ¢,1)| < A:M f(z),

where A; = [ Q¢(z)dz, and Q4(x) is the smallest decreasing radial majorant of P (z —
t),ie.,

1
Qi(z) = ¢y \;ILET:E\ (L o Py
For Q:(z), we have the easy estimates, Q(z) < ¢, for |z| < 2t and Q;(z) < A'(1 +
|2[2)~(+1)/2, for || > 2|t|, from which it is obvious that A; < A(1 + |t|)" and hence
(6.25) is proved
Since u(x — t,y) = [gn Py(s)f(x —t — s)ds, and [, P,(s)ds = 1, by Holder in-
equality, we have

(e —t,y) I Ll By

1/n
<([ nlfa-i-aras) " —vie ),
where U is the Poisson integral of | f|**. Apply (6.25) to U, it gives
[u(z — ¢, )| SAYE(L+ [t /y)™ (M f17) (@) /*
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=Au(1+ [t|/y)"/* M, f(2),
and the Lemma is established. [ |

6.2 Fourier multipliers on L?

In this section, we introduce briefly the Fourier multipliers on L?, and we prove
three main multiplier theorems.

In the study of PDEs, we often investigate the estimates of semigroups. For ex-
ample, we consider the linear heat equation

up — Au=0, u(0)=wup.
It is clear that u = % ~le~!I*¢I" Zuy =: H(t)uy is the solution of the above heat equa-
tion. The natural question is: Is H(¢) a bounded semigroup from L to LP? In other
word, is the following inequality true?
|71 Fugl, S uollp, for 1 < p < oo.

Of course, we have known that this estimate is true due to Young’s inequality and
F et = (4mt)~n/2¢~12P/4 ¢ L1 From this example, we can give a general
concept.

Definition 6.13. Let p € .’. p s called a Fourier multiplier on L? if the convolution
(F1p)x f e LPforall f €.7,and if

lollag, = sup [(F 7 p) * fllp
I1£llp=1

is finite. The linear space of all such p is denoted by M,,.

Since .7 is dense in L? (1 < p < o0), the mapping from . to LP: f — (F 'p) x f
can be extended to a mapping from L? to LP with the same norm. We write (% ~1p)x f
also for the values of the extended mapping.

For p = oo (as well as for p = 2) we can characterize M,,. Considering the map:

f=(F )« f forfe.,

we have
pE Mo |F s f0) <Oflls, fe€-S (6.30)
Indeed, if p € M, we have
a—1
|ﬁ*wﬂw<wfﬁﬁmmmu<cwm.

On the other hand, if |7 ~1p x f(0)| < C||f||co, we can get
17 o flloo = Sup [ F o x f(z)| = sup [(F 1) = (f( +-))](0)]
z€R™ EASIING

<C[f (@ +)lloo = Cll flloos
which yields ||p||p,, < C,ie., p € Mx.

But (6.30) also means that .# ~1 pis a bounded measure on R™. Thus M, is equal to
the space of all Fourier transforms of bounded measures. Moreover, ||p|/ 7., is equal
to the total mass of .Z !p. In view of the inequality above and the Hahn-Banach
theorem, we may extend the mapping f — Z ~1p x f from .% to L* to a mapping
from L to L* without increasing its norm. We also write the extended mapping as
f—= Z o« ffor f € L.
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Theorem 6.14. Let 1 < p < ooand 1/p+ 1/p’ = 1, then we have

M, = M, (equal norms). (6.31)
Moreover,
My, = {p €. F1pisabounded measure}
. . (6.32)
ollas, —total mass of F~1p / \F L p(z)|dz
and .
My = L*>  (equal norm). (6.33)
For the norms (1 < pg, p1 < o0)
lollas, < o5z’ ol . o € My 0 My, (6.34)
if1/p=(1—-0)/po+0/p1 (0 <6< 1). Inparticular, the norm || - || p» decreases with p in

the interval 1 < p < 2, and
MyCM,CM;C M, (1<p<qg<x2). (6.35)

Proof. Let f € LP, g € L and p € M,,. Then, we have

Ipllag, = sup [(Fp)xgly = sup  [((Fp)*g(x), f(—x))]

lgll,r=1 1 llp=llgll, =1

= sup  |[(F'p)xgxf(0)= sup  |[(F'p)xfxg(0)
[l llp=llgll, =1 I fllp=llgll,=1

= s [ [ (F )« Nty
Ifllp=lgll, =1 Jrn

= sup [[(Z o) fllp = llplin,-
Ifllp=1

The assertion (6.32) has already been established because of M; = My. The
Plancherel theorem immediately gives (6.33). In fact,

B w n/2 R
lolae = sup 1Z 95 fllo= sup (D) 10Fll < llolle.
I flla=1 Iflle=1 \ 27

On the other hand, for any € > 0, we can choose a non-zero measurable set £ such
that [p(&)| = ||pllec — € for € € E. Then choose a function f € L? such that supp % f C
E, we can obtain ||p||as, = ||p|lcc — €.

Invoking the Riesz-Thorin theorem, (6.34) follows, since the mapping f — (F ~1p)x
f maps LP° — LP° with norm ||p| as,, and LP* — LP* with norm ||p||as,, -

Since 1/g = (1 —6)/p+ 0/p’ for some 6 and p < ¢ < 2 < P/, by using (6.34) with
po = p, p1 = p’, we see that

lollaz, < llplla,,

from which (6.35) follows. |

Proposition 6.15. Let 1 < p < oco. Then M, is a Banach algebra under pointwise multipli-
cation.

Proof. It is clear that || - ||5, is @ norm. Note also that M, is complete. Indeed, let
{pr} is a Cauchy sequence in M,. So does it in L> because of M, C L. Thus,
it is convergent in L> and we denote the limit by p. From L> C ./, we have
F Ao F f— F1pF f forany f € . in sense of the strong topology on .#”. On the
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other hand, {.# ~'p;.% f} is also a Cauchy sequence in L? C ./, and converges to a
function g € LP. By the uniqueness of limit in ., we know that g = .% ~1p.7 f. Thus,
ok — plla, — 0 as k — oo. Therefore, M), is a Banach space.

Let p1 € M), and p, € M, For any f € ., we have

I(Z " p1p2) % fllp =I(F " o1) * (F 7 p2) * fllp < lpnllag I(F " p2) * £l

<llp1llaz, lo2llaz, 1L fllp,
which implies p1p2 € M, and
lo1p2llaz, < [lp1llaz,llp2llaz,-
Thus, M), is a Banach algebra. n

In order to clarify the next theorem we write M, = M,(R") for Fourier multipli-
ers which are functions on R". The next theorem says that M, (R") is isometrically
invariant under affine transforms of R".

Theorem 6.16. Let a : R" — R™ be a surjective affine transform' with n > m, and
p € M,(R™). Then

lpCalD) Iz, @y = Nz, @m)-
If m = n, the mapping a* is bijective. In particular, we have

(e las,®ny =llo()llag ®n), Ve # 0, (6.36)
(@, Dlag,@ny =llpO)llar, @), V& 70, (6.37)
where (z,&) =Y iy &

Proof. It suffices to consider the case that a : R — R is a linear transform. Make the
coordinate transform

mi=ai(§), 1<i<m; nj=§&, m+1<j<n, (6.38)
which can be written as 7 = A7'¢ or & = An where det A # 0. Let AT be the
transposed matrix of A. It is easy to see, for any f € .(R"), that

Fa) 1w = () [ e platen i

et ] (52) [ e mptan, ) Ay

@l

et al (52) [ ) FAn)a
et ALZ (s, 1) (AR (AT2)

=7 [plm,- ) 7 (F(AT) 1) ()] (A7),
It follows from p € M,(R™) that for any f € ./(R")
17~ p(a(€))Z £l

=[det AP F (o, i) (FFATYTN)) ()

=| det A|7/P H(%‘@}...,nmp(m?--~ hm)) * f((AT)*l-)‘

Lp(R™) Lp(Rn—m)

<lloll g, @my 1 £ lp-
Thus, we have
[p(aC)) I ar, ey < llpllag, &m)- (6.39)
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Taking f((AT)™'z) = fi(z1, -+ ,2m) f2(Tm+1, -+, Tn), ONe can conclude that the in-
verse inequality (6.39) also holds. |

Now we give a simple but very useful theorem for Fourier multipliers.

Theorem 6.17 (Bernstein multiplier theorem). Assume that k > n/2 is an integer, and
that 95 p € L*R"),j=1,-- ,nand 0 < a < k. Then we have p € M,(R"), 1 < p < oo,

and
n/2k

n
1—-n/2k k
lollaz, < lells ™™ [ 1182 pll2
j=1

Proof. Lett > 0 and J(z) = 3°7_; |zj|*. By the Cauchy-Schwartz inequality and the
Plancherel theorem, we obtain

[ 17 @lde= [ 3@ @) plalde £ Y [0kl
|| >t |z|>t j=1

Similarly, we have

/| 1@ S 0l

Choosing ¢ such that [|p|2 = t7* > i1 ||6’;j pll2, we infer, with the help of Theo-
rem 6.14, that

n n/2k
_ 1—-n/2k
1ol <llpllan =/ |7 p(a)|dx < lplly ™ > 195 ol :
Rn

j=1
This completes the proof. n

The first application of the theory of the functions g and g} will be in the study of
multipliers. Our main tool when proving theorems for the Sobolev spaces, defined in
the following chapter, is the following theorem. Note that 1 < p < oo here in contrast
to the case in Theorem 6.17. We give the theorem as follows.

Theorem 6.18 (Mikhlin multiplier theorem). Suppose that p(¢) € CFR" \ {0})

where k > n/2 is an integer. Assume also that for every differential monomial <a%) .

a= (a1, ...,ap), With |a| = a1 + ag + ... + ay,, we have Mikhlin’s condition
‘ <§§>ap(£)‘ < Al¢|71 whenever o] < k. (6.40)
Then p € My, 1 < p < oo, and
lplla, < CpnA.

The proof of the theorem leads to a generalization of its statement which we for-
mulate as a corollary.

Corollary 6.19 (Héormander multiplier theorem). The assumption (6.40) can be replaced
by the weaker assumptions, i.e., Hormander’s condition

1p(&)] <4,

(;;) (©) (641

2
d¢ <A, ol <k.

sup R2|a—n/
0<R<oo R<|€|<2R
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The theorem and its corollary will be consequences of the following lemma. Its
statement illuminates at the same time the nature of the multiplier transforms con-
sidered here, and the role played by the g-functions and their variants.

Lemma 6.20. Under the assumptions of Theorem 6.18 or Corollary 6.19, let us set for f &
L2(R")
F(z) = Tpf(z) = (F 7 (p(€)) * ) (x).
Then
g1(F)(z) < Axgx(f)(z), where X = 2k/n. (6.42)

Thus in view of the lemma, the g-functions and their variants are the characteriz-
ing expressions which deal at once with all the multipliers considered. On the other
hand, the fact that the relation (6.42) is pointwise shows that to a large extent the
mapping T, is “semi-local”.

Proof of Theorem 6.18 and Corollary 6.19. The conclusion is deduced from the lemma as
follows. Our assumption on k is such that A = 2k/n > 1. Thus, Theorem 6.11 shows
us that

g3 (N)@)lp < Axpllfllp, 2 < p < oo, if f € L2NLP.
However, by Corollary 6.3, Ay || F'[|, < [lg1(F)(z)]|,, therefore by Lemma 6.20,
I1Tpfllp = IF 1l < AXIGA () (@)llp < Apllfllp, if2<p<ocoand fe L*NLP.

That is, p € M,, 2 < p < oo. By duality, i.e., (6.31) of Theorem 6.14, we have also
p € My, 1 < p <2, which gives the assertion of the theorem. |

Now we shall prove Lemma 6.20.

Proof of Lemma 6.20. Let u(x,y) denote the Poisson integral of f, and U(z,y) the
Poisson integral of I. Then with"denoting the Fourier transform w.r.t. the = variable,
we have

W(&,y) = e W f(€), and U (€, y) = e V() = el p() £(6).
Define M (z,y) = (%) Jn €21 Se™ I8 p(€)d¢. Then clearly

M(&,y) = e”“Wp(g),
and so

U,y +y2) = M(Ey)a(€, y2), y=v1+v2, y1,42 > 0.
This can be written as
Uz, y1 +y2) = / M(t, y1)u(x —t,y2)dt.
Rn

We differentiate this relation &k times w.r.t. y; and once w.r.t. y2, and set y; = y2 = y/2.
This gives us the identity

U* D (@,y) = [ MB(t,y/2)u0 (@ — t,y/2)dt. (6.43)
Rn

Here the superscripts denote the differentiation w.r.t. y.
Next, we translates the assumptions (6.40) (or (6.41)) on p in terms of M (z,y). The
result is
MOt y)| <Ay~ F, (6-44)

/ 2B (1, )Pt <Ay, (6.45)
Rn
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where A’ depends only on n and k.
In fact, by the definition of M and the condition [p()| < A4, it follows that

MOl < (52) [ et blpe

|w‘ " k > k _—|wlry,.n—1
SAwp—1 [ — | |w] rte” WYyt dr
27 0

1\" &
:Awnfl () y—n—k / e—RRk-‘rn—ldR
27 0

1 n
=Aw,—1 (27T> L(k+n)y "k,
which is (6.44).
To prove (6.45), let us show more particularly that
[ e ar® g Pas < 4ty
where |o| = k.

By Plancherel’s theorem and Proposition 1.3

el = () (2) getoteretem

So we need to evaluate, by using Leibniz’ rule,

(5) tetoeron = 5 o, (2 ) o (2) e 6

Btr=a
Case I: (6.40) = (6.45). By the hypothesis (6.40) and Leibniz’ rule again, we have

‘(i)ﬁ (P (&)

8 «
\(85) (I¢l* pe)eletv)
<C > T wlyPle e <o ST el (fwly)e e,

1B]+yI=k 0<r<k
Since forr > 0

(|w’y)2r/R |€|2r672|w§\yd€ an_1(!w|y)2T/0 R2r672|w|RanfldR

[}
:wn_12 (2r+n) (’w‘y) / z2r+nflefzdz
0

w1 (wly) "2 I 4 ),

(6.46)

2

< A'|¢|F181 with 8] < k.

Thus,

we get for |a| = k

«a k) 2 M 2r+n
o3l < () wnalol™ ¥ 2 mrer )
o<r<k
gck,ny_n7
which proves the assertion (6.45).
Case II: (6.41) = (6.45). From (6.46) and (6.47), we have, by Leibniz’ rule again
and (6.41),
lz*M®) (2, )2
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|w| n/2
s\ 5 >, Cosry

18’ 1+18" 1+ |v|=k
1"

(L1 |8 o]

< (';’jj)n/éz (joly)" (

1/2
€2w£y(wy)2vd§)

5 1/2
eQwéydf)

1

( i)i)(i)

n/2 . ) i
<C (|2°~7’r|) Y (el {Z(gﬁrl)?(/’fﬁ ) g-lwl2itiy

18’ |-+18" 1+ 7=k JEL
" 2 1/2
P a\"
(29) 218" |+ (QJ)QIB\ / | (> p(€)| de
2iglel<2i+t | \ 9§

Z/ €[ 206=18D

‘ez J<|5|<2f+1

1871 +18" |+1vI=k

1/2
n/2

<C (|w|> AL/29k Z (|lwly)" 22] 2] 2r4+n—1 —|w\23+1

T o<r<k JEZ

o] n/2 0o 1/2
<C <> A1/22k Z (‘w|y)r (/ R2T+nle|w|RydR>

T 0<r<k 0

o] n/2 00 1/2
-C <2> A1/22k Z (‘w’y)—n/2 (/ Z2r+n—le—zdz)

T 0<r<k 0

n/2

<C <27r1y> Al/29k Z TY2(2r +n) = Cpny™ ™2,

0<r<k
which yields (6.45).

Now, we return to the identity (6.43), and for each y divide the range of integra-
tion into two parts, |t| < y/2 and [t| > y/2. In the first range, use the estimate (6.44)
on M) and in the second range, use the estimate (6.45). This together with Schwarz’
inequality gives immediately

U@ <oy [ e ty/2)Pdr
ltI<y/2
oy [ ety
It >y/2 |t[2k

=:I1(y) + I2(y).

Now
2 [e.e]
(P = [0y <3 [T L
j=1
However, by a change of variable y/2 — y,

/ L(y)y™dy <C/ / ™ (2 — t,y/2)|2y~ " dtdy
0 0 tI<y/2

<C / V(e — t, )2y didy = C(S(f)(x))?
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<CA(gA(f)(2))%.

Similarly, with nA = 2k,
/ L(y)y?*dy <C / / YL 2R (0 — 1, y) Pty
0 0 [t|>y

<C(g5(f)(2))*.
This shows that g1 (F)(z) < Cagi(f)(z). However by Remark 6.4 (iii) of g-functions
after Corollary 6.3, we know that g;(F)(z) < Cigi+1(F)(z). Thus, the proof of the
lemma is concluded. |

6.3 The partial sums operators

We shall now develop the second main tool in the Littlewood-Paley theory, (the
first being the usage of the functions g and g*).

Let p denote an arbitrary rectangle in R". By rectangle we shall mean, in the rest
of this chapter, a possibly infinite rectangle with sides parallel to the axes, i.e., the
Cartesian product of n intervals.

Definition 6.21. For each rectangle p denote by S, the partial sum operator, that is the
multiplier operator with m = x, = characteristic function of the rectangle p. So

F(Sp(f) = xpofs f€LXR™)NLP(R™). (6.48)

For this operator, we immediately have the following theorem.

Theorem 6.22.

1Sp(Dllp < Apllfllp, £ € L2NLP,
if1 < p < oo. The constant Ay, does not depend on the rectangle p.

However, we shall need a more extended version of the theorem which arises
when we replace complex-valued functions by functions taking their value in a Hilbert
space.

Let .27 be the sequence Hilbert space,

H = {(cj)in (Z e %)/ = |ef < oo}

Then we can represent a function f € LP(R", %), as sequences

f(@) = (fi(z), - ,fj(l’), ),
where each f; is complex-valued and | f ()| = (3252, | f(z)[*)"/2. Let R be a sequence
of rectangle, ® = {p; };’il Then we can define the operator Sy, mapping L*(R", )
to itself, by the rule

Sw(f) = (Spr(f1)s--+ 3 Sp; (fj)s -+ ), where f = (fi,---, fj,---). (6-49)

We first give a lemma, which will be used in the proof of the theorem or its gen-

eralization. Recall the Hilbert transform f — H(f), which corresponds to the multi-
plier —isgn (w) sgn (§) in one dimension.
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Lemma 6.23. Let f(z) = (fi(z), -, fj(z),--) € L*(R", 3¢) N LP(R", ). Denote
Hf(e) = (HA(), - Hfy(w),- ). Then

[Hfllp < Apllfllp, 1<p<oo,
where A, is the same constant as in the scalar case, i.e., when ¢ is one-dimensional.

Proof. We use the vector-valued version of the Hilbert transform, as is described more
generally in Sec. 4.7. Let the Hilbert spaces /7 and % be both identical with JZ.
Take in R, K(x) = I - 1/mx, where I is the identity mapping on .7#. Then the kernel
K (z) satisfies all the assumptions of Theorem 4.27 and Theorem 4.24. Moreover,

lim K(y)f(z —y)dy = Hf(z),

=70 Sly|>e
and so our lemma is proved. [

The generalization of Theorem 6.22 is then as follows.

Theorem 6.24. Let f € L*(R", 5#) N LP(R™, 5#). Then

ISR(Hllp < Apllfllps 1 <p < o0, (6.50)
where A, does not depend on the family R of rectangles.

Proof. The theorem will be proved in four steps, the first two of which already contain
the essence of the matter.

Step 1: n = 1, and the rectangles p1, p2, - - -, pj, - - - are the semi-infinite intervals
(—00,0).

Itis clear that S(_ . 0)f = F X (Coo)Z f =-F ! 1= sen © zf,s0

Sty = I zsgzn (w)H’ 651)

where [ is the identity, and S(_ ¢ is the partial sum operator corresponding to the
interval (—o0, 0).

Now if all the rectangles are the intervals (—o0, 0), then by (6.51),
I —isgn(w)H

Sy =

and so by Lemma 6.23, we have the desired result.
Step 2: n = 1, and the rectangles are the intervals (—oc0, a1), (=00, a2), - - -, (=00, a;),

“.'Notice that 7 (f(z)e %) = f(& + a), therefore )

F(H(e """ f(x))) = —isgn (w)sgn (§) f(§ + a),
and hence .7 (e H (e~ f(z))) = —isgn (w)sgn (£ — a)f(¢). From this, we see
that

i — s ()i H (e £)

(S(foo,aj)fj)(x) = B . (6.52)

If we now write symbolically e+ f for
(7 e
with f = (f1,---, fj,--+), then (6.52) may be written as
— ison (w ewimaﬁ e—wiz-a
o = LT H )
and so the result again follows in this case by Lemma 6.23.

(6.53)
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Step 3: General n, but the rectangles p; are the half-spaces 1 < aj, ie., p; = {z :

1 < aj}.
Let S((i)oo o) denote the operator defined on L?(R™), which acts only on the x;
variable, by the action given by S(_ 4;). We claim that
_ o®
Sp; = S(—oo,aj)' (6.54)

This identity is obvious for L? functions of the product form
fl@)f" (@, a),
since their linear span is dense in L?, the identity (6.54) is established.

We now use the L? inequality, which is the result of the previous step for each
fixed x9, z3, - - -, x,. We raise this inequality to the pth power and integrate w.r.t. x,
.-+, zn. This gives the desired result for the present case. Notice that the result holds
as well if the half-space {z : 1 < a;}2,, is replaced by the half-space {z : 21 >
a; };“;1, or if the role of the z; axis is taken by the x5 axis, etc.

Step 4: Observe that every general finite rectangle of the type considered is the
intersection of 2n half-spaces, each half-space having its boundary hyperplane per-
pendicular to one of the axes of R™. Thus a 2n-fold application of the result of the
third step proves the theorem, where the family # is made up of finite rectangles.
Since the bounds obtained do not depend on the family i, we can pass to the general
case where R contains possibly infinite rectangles by an obvious limiting argument.
|

We state here the continuous analogue of Theorem 6.24. Let (I', dv) be a o-finite
measure space,” and consider the Hilbert space ./ of square integrable functions on
I,ie., s = L*(T,dy). The elements

feLP(R",2)
are the complex-valued functions f(x,7) = fy(x) on R" x I', which are jointly mea-
suable, and for which ([g. ([p [f(2,7)|2dy)P/2dz)YP = ||f|l, < oo, if p < oo. Let
R = {py},er, and suppose that the mapping v — p, is a measurable function from
I' to rectangles; that is, the numerical-valued functions which assign to each v the
components of the vertices of p are all measurable.

Suppose f € L?(R", 7). Then we define F' = Sy f by the rule

F(x,y) = Sp,(f)(x),  (f(z) = f(z,7)).

Theorem 6.25.
[1S%fllp < Apllfllp, 1 <p<oo, (6.55)
or f € L2(R™, )N LP(R™, 5¢), where the bound A,, does not depend on the measure space
P p P
(T, dv), or on the function v — p-.

Proof. The proof of this theorem is an exact repetition of the argument given for The-
orem 6.24. The reader may also obtain it from Theorem 6.24 by a limiting argument.
n

*If ;1 is measure on a ring R, a set E is said to have o-finite measure if there exists a sequence {F,, }
of sets in R such that E C U521 Eyp, and p(E,) < 0o, n=1,2,--- . If the measure of every set E in R
is o-finite, the measure p is called o-finite on R.
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6.4 The dyadic decomposition

|

I

|

We shall now consider a decomposition of R™ into !

rectangles. \
First, in the case of R, we decompose it as the L
union of the “disjoint” intervals (i.e., whose inte- ====+-H[¢

\

x

|

|

riors are disjoint) [2%,28%1], —00 < k < oo, and
[-2k+1 —2K], —co0 < k < oo. This double collection
of intervals, one collection for the positive half-line,
the other for the negative half-line, will be the dyadic
decomppsﬁmn O‘f R’ ) . Figure 6.3: The dyadic de-

Having obtained this decomposition of R, we composition
take the corresponding product decomposition for
R™. Thus we write R" as the union of “disjoint” rect-
angles, which rectangles are products of the intervals which occur for the dyadic
decomposition of each of the axes. This is the dyadic decomposition of R".

The family of resulting rectangles will be denoted by A. We recall the partial sum
operator S,, defined in (6.48) for each rectangle. Now in an obvious sense, (e.g. L?
convergence)

|
|

|

|

I

|

|

. :
L
?

|

|

|

|

I

Z S, = Identity.
pEA
Also in the L? case, the different blocks, S,f, p € A, behave as if they were inde-
pendent; they are of course mutually orthogonal. To put the matter precisely: The L?
norm of f can be given exactly in terms of the L? norms of S,f,ie.,

Y UISof I3 = 11115, (6.56)

pEA
(and this is true for any decomposition of R™). For the general L? case not as much can
be hoped for, but the following important theorem can nevertheless be established.

Theorem 6.26 (Littlewood-Paley square function theorem). Suppose f € LP(R"),
1 < p<oo. Then

1 156 £ @)1 2 lp ~ 11 £1lp-

pEA

The Rademacher functions provide a very useful

device in the study of LP norms in terms of quadratic PO BN S
expressions.
These functions, ro(t), r1(t), - -+, rm(t), - - - are de- B
fined on the interval (0, 1) as follows: “ 2 t
ro(t
rot) = { 1,1 ?; t<<t i/? - e _T0(®)
’ ’ Figure 6.4: r(t) and 71 (t)

ro is extended outside the unit interval by periodicity,
ie, ro(t +1) = ro(t). In general, r,,(t) = ro(2™t). The sequences of Rademacher
functions are orthonormal (and in fact mutually independent) over [0, 1]. In fact, for

3Strictly speaking, the origin is left out; but for the sake of simplicity of terminology, we still refer
to it as the decomposition of R.
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m < k, the integral

1 1 gm
/ rm(B)ri(£)dt = / ro(2"t)ro(2")dt = 27 / ro(s)ro(28™s)ds
0 0 0
! 1/2 1
- / ro(s)ro(2" " s)ds = / ro(2""s)ds — / ro(28"s)ds
0 0 1/2
2k7m

=om—k [ /O o ro(t)dt — /2 o ro(t)dt]
=271 [/Olro(t)dt— /Olro(t)dt} =0,

so0, they are orthogonal. It is clear that they are normal since fol (1 (t))%dt = 1.

For our purposes, their importance arises from the following fact.

Suppose Yo7 lam|? < coand set F(t) = >_o0_ amrm(t). Then forevery 1 < p <
oo, F(t) € LP[0,1] and

o
Al Flp < 1F)e = (3 lam)Y2 < ByIFl,, (6.57)
m=0
for two positive constants A, and B,,.
Thus, for functions which can be expanded in terms of the Rademacher functions,
all the L” norms, 1 < p < oo, are comparable.
We shall also need the n-dimensional form of (6.57). We consider the unit cube
Q CR™", Q= {t=(t1,t2,--- ,ty) : 0 < t; < 1}. Let m be an n-tuple of non-negative
integers m = (my,mg, -+ ,my). Define ry,(t) = 7, (t1)rm,(t2) - - T, (tn). Write

F(t) = > amrm(t). With
1/p
11, = < /Q |F<t>|f’dt) ,

we also have (6.57), whenever > |a,,|? < co. That is

Lemma 6.27. Suppose > |a,|? < oo. Then it holds

o0

1/2
[1Ellp ~ 1 F]l2 = (Z Iam\2> , l<p<oo (6.58)

m=0

Proof. We split the proof into four steps.
Step 1: Let p, ao, a1, -+, an, be real numbers. Then because the Rademacher
functions are mutually independent variables, we have, in view of their definition,

1 1 2m 1
/ euamrm(t)dt :/ euamro(zmt)dt _ 2m/ 6ﬂamT0(3) ds — / e,uamro(s)ds
0 0 0 0

I eham 4 ¢Hum) — cosh o,
and form < k

1 1
/ euamrm(t) euakrk(t)dt _ / el“lmTo(?mt) euakro(th)dt
0 0

2m 1
—9—m / euamro(s)euakro(Zk*ms)ds _ / euamro(s)euakro(Zk*ms)ds
0 0

1/2 1
k—m _ k—m
:/ eHam oharTo(2 S)d8+/ e Ham ppagro(28s) g
0 1/2
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=l

1 1 1
RO L T
0 0 0

Thus, by induction, we can verify

1 N N o1
/ e'u zm:O aAmTm (t) dt — H / eMaWLT’"L (t) dt
0 m=0"0

If we now make use of this simple inequality cosh z < ¢*” (since cosh z = 372 k=0

2k—m—1 2k—m

eham ghakto(t) gp 4 /

2k—m—1

e Ham gpagro(t) dt]

Yoreo ,:k = ¢*” for |z| < oo by Taylor expansion), we obtain

1 N
2.2 2 N 2
/ el F®) | | cosh pay, < I | et Im = et Zm:O“m,
0 m=0 m=0

with F(t) = N amrm(t).
Step 2: Let us make the normalizing assumption that "V
eMFl L et 4 e~k we have

n=0 m = 1. Then, since

1
/ POl gy < 2o,
0

Recall the distribution function Fi(a) = m{t € [0,1] : |F(t)| > «a}. If we take

i = «/2 in the above inequality, we have
2 2 2

C!2 [e3 [e]3 [e3 [e3
Fi(a) = / dt <e 2z / e2FOlgr < e 72T =2e7 7.
|F(t)|>a |F(t)|>a

From Theorem 2.16, the above and changes of variables, it follows immediately that

o 1/p o0 o2 1/p
£l = (P/ OéplF*(a)da> < (2]3/ aPle~ T da>
0 0

00 1/p
= <2pp/ Sp/2_16_8d8> (set s = o /4)
0

=2(pL'(p/2))"/7,
for 1 < p < oo, and so in general
o0 1/2
1Flp < Cp (Z |am|2> , 1<p<oo. (6.59)
m=0

Step 3: We shall now extend the last inequality to several variables. The case of
two variables is entirely of the inductive procedure used in the proof of the general
case.

We can also limit ourselves to the situation when p > 2, since for the case p < 2
the desired inequality is a simple consequence of Holder’s inequality. (Indeed, for
p < 2 and some g > 2, we have

1 F N ze0.1) < N1 F Lo, parsarr0,1) < 1F | Laco,1)
by Holder’s inequality.)
We have
N N

tlatQ Z Z AmimoTmy tl)ng t2 Z le t2>rm1 (tl)

m1=0m2=0 m1=0
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By(6.59), it follows

1 p/2
/0 |F'(t1, t2)[Pdty < Cp (Z | Fimy (tz)\2> :
m

Integrating this w.r.t. o, and using Minkowski’s inequlaity with p/2 > 1, we have

1 p/2 p/2 p/2
/ (ZIle(h)IQ) dty = | |Fa ()] < <Z|||Fm1(t2)|2”p/2>
0 my my p/2 m1
p/2
= (Z \Ile(tz)\lf,) :
my

However, Fi, (t2) = )., GmymsTm,(t2), and therefore the case already proved
shows that

Hle t2 C Z Amymsy-

Inserting this in the above gives

1 1 p/2
AQAIFwJﬂWﬁMW<¥%<§:§:¢%m> !

mi mso
which leads to the desired inequality
IFll, < GyllFlle, 2<p< oo
Step 4: The converse inequality
1]l < CpllFllp, p>1
is a simple consequence of the direct inequality.
In fact, for any p > 1, (here we may assume p < 2) by Holder inequality
1/2
IF |l < I FIY2IE]L?.
We already know that || F'||,; < A; NI F |2, p' > 2. We therefore get
[El2 < Cpr[[ ],
which is the required converse inequality. |

Now, let us return to the proof of the Littlewood-Paley square function theorem.

Proof of Theorem 6.26. It will be presented in five steps.
Step 1: We show here that it suffices to prove the inequality

/
(S 1507 @R) 7| < Al 1<p <o, (6.60)

A
pE »

for f € L?(R")NLP(R™). To see this sufficiency, let g € L?(R*)NL¥ (R"), and consider

the identity
Z/ SpfSpgdx—/ fgdx

pEA
which follows from (6.56) by polarization. By Schwarz’s inequality and then Holder’s

inequality
3 2
/ fgdx g/R <Z|Spf|2> <Z|Sp9|2> dx
P p
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() | |(er)

Taking the supremum over all such g with the additional restriction that || g||,y < 1,
gives || f||, for the Lh.s. of the above inequality. The r.h.s. is majorized by

(S 1s,s)"

since we assume (6.60) for all p. Thus, we have also

1/2
<Z ISpf|2> : (6.61)
i’ P
To dispose of the additional assumption that f € L?, for f € L? take f; € L* N L
such that || f; — f||, — 0; use the inequality (6.60) and (6.61) for f; and f; — fj:; after
a simple limiting argument, we get (6.60) and (6.61) for f as well.

Step 2: Here we shall prove the inequality (6.60) for n = 1.

We shall need first to introduce a little more notations. We let A; be the family
of dyadic intervals in R, we can enumerate them as Iy, I1, - - -, Ip,, - -- (the order is
here immaterial). For each I € A;, we consider the partial sum operator S7, and
a modification of it that we now define. Let ¢ € C! be a fixed function with the
following properties:

<

p/

Ay

)
p

Byl fllp <

|1 1<€<2,
(10(5) - { 0’ &- < 1/27 Org > 4. 1 w(&)
Suppose [ is any dyadic interval, and as-

sume that it is of the form [2, 25+1]. Define S; } : ; ] - ;

by
F(S11)(€) = (275 () = @1(¢) fBigure 6.5: (&) (6.62)
That is, S, like Sy, is a multiplier transform V{here the multiplier is equal to one on
the interval I; but unlike S7, the multiplier of St is smooth.
A similar definition is made for S; when I = [—2*+1, —2¥]. We observe that
SrSr = S, (6.63)
since S has multiplier as the characteristic function of I.
Now for each ¢ € [0, 1], consider the multiplier transform

[e.9]

ﬂ = Z Tm(t)glm'
m=0
That is, for each t, T} is the multiplier transform whose multiplier is m; (), with
mi(€) = Y rm()¢r,, (). (6.64)
m=0

By the definition of ¢y,,, it is clear that for any £ at most five terms in the sum
(6.64) can be non-zero. Moreover, we also see easily that

im(§)] < B, d;ng(f)) < E, (6.65)

where B is independent of ¢. Thus, by the Mikhlin multiplier theorem (Theorem 6.18)
IT:fllp < Apll fllp, for f e L>NLP, (6.66)
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and with A, independent of ¢. From this, it follows obviously that

1 1/p
( /0 Hthllﬁdt> < A1l

However, by Lemma 6.27 about the Rademacher functions,

[ st = [ [ [0S0 drat
p/2
o4, | (Z |Sfmf<x>12> dz.

m
Thus, we have

1/2
(Z ‘gl'm(f)’2> < Bp”f”p- (6.67)

m
p

Now using (6.63), applying the general theorem about partial sums, Theorem
6.24, with ® = A; here and (6.67), we get, for F' = (S, f,Sr, f.-- ., St [, ),

1/2 1/2
(Z |51m(f)|2) (Z |51m51m(f)|2>

= ”SAlFHP

p p

<A}DHFHP = Ap < ApoHpr = Cp”f”p, (6.68)

1/2
(Z |51m(f)!2>

which is the one-dimensional case of the inequality (6.60), and this is what we had
set out to prove.
Step 3: We are still in the one-dimensional case, and we write T; for the operator

Ty = rm(t)Sr,.

m

Our claim is that
ITeflly, < Apllfllps 1 <p < oo, (6.69)
with A, independent of t, and f € L? N LP.
Write TN = Z%:o 7m(t)S1,,, and it suffices to show that (6.69) holds, with T} in
place of T; (and A, independent of N and t). Since each Sj,, is a bounded operator
on L? and L, we have that T}V f € L? N L? and so we can apply Lemma 6.27 to it for

n =1.50
N 1/2
(Z Slmf|2>

m=0

N
BTN fllup . < <Gl 1l

P
by using (6.68). Letting N — oo, we get (6.69).

Step 4: We now turn to the n-dimensional case and define Tt(ll), as the operator 7},
acting only on the z; variable. Then, by the inequality (6.69), we get

1
| [P s apindn < 47 [ fan a)Pdn, 670
0 R R

for almost every fixed xg, 23, -, xy, since z1 — f(x1,22, -+ ,2,) € L*(R) N LP(R)
for almost every fixed xa, - - - , z,, if f € L*(R™) N LP(R™). If we integrate (6.70) w.r.t.
To, -+ , Ty, We obtain

1T f ey, < Apllfllp fer?nrr, (671)
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with A, independent of ¢;. The same inequality of course holds with z replaced by
x9, OF T3, etc.

Step 5: We first describe the additional notation we shall need. With A rep-
resenting the collection of dyadic rectangles in R", we write any p € A, as p =
Iy, X Iy X -+ x I, wWhere Iy, In,--- , I, - represents the arbitrary enumeration
of the dyadic intervals used above. Thus if m = (m,ma, - ,m,), with each m; > 0,
we write pp, = Iy X Iy X -+ X Iy, .

We now apply the operator Tt(ll) for the x; variable, and successively its analogues
for x9, x3, etc. The result is

ITefllp, < AZIFl 6.72)
Here
Ty = Z m () Sp,,
pPmEA
with 7, (t) = 7, (t1) - - - 7, (tn) as described in the previous. The inequality holds
uniformly for each (¢;,t, - - ,t,) in the unit cube Q.

We raise this inequality to the p power and integrate it w.r.t. ¢, making use of
the properties of the Rademacher functions, i.e., Lemma 6.27. We then get, as in the
analogous proof of (6.67), that

1/2
> 1S fI? < Aplflp,
pmEA
P
if f € L?(R") N LP(R"). This together with the first step concludes the proof of
Theorem 6.26. u

6.5 The Marcinkiewicz multiplier theorem

We now present another multiplier theorem which is one of the most important
results of the whole theory. For the sake of clarity, we state first the one-dimensional
case.

Theorem 6.28. Let m be a bounded function on R, which is of bounded variation on every
finite interval not containing the origin. Suppose
(@) Im(§)| < B, —00 < € < o0,
(b) [, Im(§)|d¢ < B, for every dyadic interval I.
Then m € M,, 1 < p < oo; and more precisely, if f € L’nrr,
1T fllp < Apll flp:
where A,, depends only on B and p.

To present general theorem, we consider R as divided into its two half-lines, R?
as divided into its four quadrants, and generally R" as divided into its 2" “octants”.
Thus, the first octants in R" will be the open “rectangle” of those ¢ all of whose coor-
dinates are strictly positive. We shall assume that m (&) is defined on each such octant
and is there continuous together with its partial derivatives up to and including order
n. Thus m may be left undefined on the set of points where one or more coordinate
variables vanishes.
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For every k < n, we regard R¥ embedded in R" in the following obvious way: RF
is the subspace of all points of the form (&1, &2, -+, &, 0,---,0).

Theorem 6.29 (Marcinkiewicz’ multiplier theorem). Let m be a bounded function on
R™ that is C™ in all 2" “octant”. Suppose also

(@) [m(§)| < B,

(b) for each 0 < k < n,

su 8
Ek+1, > “én 851852 - O,

as p ranges over dyadic rectangles of RF. (If k = n, the “sup” sign is omitted.)

(c) The condition analogous to (b) is valid for every one of the n! permutations of the
variables £1,&2, -+, &n.

Then m € My, 1 < p < oo; and more precisely, if f € L*> N LP, || T fllp < Apll fllp,
where A,, depends only on B, p and n.

d§y---dé, < B

Proof. It will be best to prove Theorem 6.29 in the case n = 2. This case is already
completely typical of the general situation, and in doing only it we can avoid some
notational complications.

Let f € L2(R?) N LP(R?), and write F = T}, f, that is .Z (F(z)) = m(€) f(€).

Let A denote the dyadic rectangles, and for each p € A, write f, = S, f, F, = S, F,
thus F, = T}, f,.

In view of Theorem 6.26, it suffices to show that

(S mr)", <al(Sme) ™, 673

The rectangles in A come in four sets, those in the first, the second, the third,
and fourth quadrants, respectively. In estimating the L.h.s. of (6.73), consider the
rectangles of each quadrant separately, and assume from now on that our rectangles
belong to the first quadrant.

We will express F), in terms of an integral involving f, and the partial sum oper-
ators. That this is possible is the essential idea of the proof.

Fix p and assume p = {(&,&) @ 28 < & < 28120 < & < 241}, Then, for
(&1,&2) € p, itis easy to verify the identity

2 (81 02m(t, ta) &9
m(&,&) / " Wdtldt2 + - 8—1m(t1, )dtl

/ —m (28, to)dty + m(2F,21).
2l

Now let S; denote the multiplier transform corresponding to the rectangle {(&1,&2) :
2kl > 6 > 1y, 2L > & > 1y} Similarly, let St(ll) denote the multiplier correspond-
ing to the interval 2**! > ¢ > ¢, similarly for St(f ). Thus in fact, S; = St(ll) . Sg).
Multiplying both sides of the above equation by the function x, f and taking inverse
Fourier transforms yields, by changing the order of integrals in view of Fubini’s the-
orem and the fact that S,T;,, f = F},, and St(ll)Sp = St(ll), Sg)Sp = Sg), SiS, = S, we
have
F, =TS, f = F \mx,f
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| \" e @ Pmit,ty) i
< R2 /2 /2 0t10ty dtldtQXp(é)f(g)] “
v flo)]ae

i wix-& i
(27T) /RQe [ " 81m(1€1, Ddt1x,(€)
w

2w

+<u> [ ] 5 862 (28, t2)dtax, (€) f(€)| de

+ F (2%, 21))@(5) f

2k+1

|w| wzz t ’t
< /RQ g/2 / 3151811522 X2k 1) (P1) X (21 ¢ (P2) dt1 dto

2k+1

( ) /R wiat /2 aTlm (t1, 2 X e ) (F1)dt1 X (6) F(€)dE

2l+1

+ m(2k

<|W|> /z /2k /wamfxm,ww(&1)X[t2,2l+11(52)Xp(5)f(5)d§

(=) [,

0t10t9
ol+1 . R o
<‘W’> /2 /R , 7 Xt (€)%, (€)F (€ 5 -m(2¥, o)l

dtidty

2k+1

, R 0
[ e e @O F O 5t 2
R2 1

+m(2¥,2) f,
8*m(ty, to) 2y, 9 !
/ ety g ey + /2 S (s, 2t

2l+1

+/21 s fp—m(Z o)ty + m(28,2)f,.

We apply the Cauchy—Schwarz inequality in the first three terms of the above w.r.t.
the measures |9y, O, m(t1, t2)|dt1dtz, |0y, m(t1, 2Y)|dt1, |0, m(2F, £2)|dta, respectively, and
we use the assumptions of the theorem to deduce

|Fp|2§(/p|stfp’2 a&:g; dtldtz)( 6t128t2 dt1dt2>
+( /22 SE AP |1, 2 d ) /22 (i, 2) du)
(L 150n [ Zmet |an) ([ ] 2zt ) )
+ m(2*, 2971, |2
<B’{/p|5tfp 6?22”‘ dtldt2+/ Ak W dt,
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/ SO 1,2 dts + rpr}

=3} + 7+ 3% + 97, withp = 11 x Io.
To estimate || (Z p ]Fp] ) 2| | p, we estimate separately the contributions of each of the

four terms on the r.h.s. of the above inequality by the use of Theorem 6.25. To

apply that theorem in the case of ¥} we take for T' the first quadrant, and dy =

]%]c{tl dto, the functions v — p, are constant on the dyadic rectangles. Since

/0 dfy N /{)

1/2 1/2
(Z I%,£> <Gy (Z |fp|2>
p p

p p
Similarly, for %z, %2 and %‘p", which concludes the proof. [ |

am(z o)

0’m(ty, o)

dt,dty < B,
Ot10ts 180

then
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7.1 Riesz potentials and fractional integrals

Let f be a sufficiently smooth function which is small at infinity, then the Fourier

transform of its Laplacean A f is

F(=Af) () = €7 f (&)

(7.1)

From this, we replace the exponent 2 in |w¢|? by a general exponent s, and thus to

define (at least formally) the fractional power of the Laplacean by

(=2 f = Z7H(WIIED F(€))-

(7.2)

Of special significance will be the negative powers s in the range —n < s < 0. In

general, with a slight change of notation, we can define

Definition 7.1. Let s > 0. The Riesz potential of order s is the operator
I, = (—A)"%/2,
For 0 < s < n, I, is actually given in the form

L@ = = [ le=sl " s,

with
7"/225T(s/2)

") = N/

The formal manipulations have a precise meaning.

Lemma 7.2. Let0 < s < n.

(7.3)

(7.4)

(a) The Fourier transform of the function |x|~""* is the function v(s)(|w||£])~%, in the

sense that

[ telme@ie = ()" [ s elieh 7@

whenever p € ..
151

(7.5)
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(b) The identity .F (I,f) = (lwl||€])~*f(€) holds in the sense that

[ nsap@ia = ()" [ feule-aeae

whenever f,g € .&.

Proof. Part (a) is merely a restatement of Lemma 5.14 since y(s) = |w|*y0.s.
Part (b) follows immediately from part (a) by writing

L) == [ sl = (B[ (olie) T e
=<‘;‘;') [ wlieh=sfeeemas = (B) [ (e

[ @i = () [ [ e foeT it
(&) [ detiehsera@ae

This completes the proof. [

Now, we state two further identities which can be obtained from (7.2) or (7.3) and
which reflect essential properties of the potentials I;.
I(Lif) =Isf, f€S, 8t>0,s+t<n. (7.6)
A(Lf) =Is(Af) =—1Is—of, fe€, n>3 2<s<n. (7.7)
The deduction of these two identities have no real difficulties, and these are best
left to the interested reader to work out.
A simple consequence of (7.6) is the n-dimensional variant of the Beta function,’
/ ‘I o ‘ n+3| ‘ n+td 7(8)’7( ) | ‘ n+(s+t) (78)
R™ v(s+1)
with s, > 0and s+t < n. Indeed, for any ¢ € ., we have, by the definition of Riesz
potentials and (7.6), that

//R . lz —y| 7"y T dyp(z — x)da
n>< n
= [ 1y /R @~y oz —y — (2 — y))dady

:/Rn ly| 7"y (s) Lep(z — y)dy = ()7 () I (Ts0) (2) = Y(8)V(t) Lerep(2)

_'7(5)7(75) 2|7 o — PV da
(s +t) /Rn| (e —a)da.

By the arbitrariness of ¢, we have the desired result.

We have considered the Riesz potentials formally and the operation for Schwartz
functions. But since the Riesz potentials are integral operators, it is natural to inquire
about their actions on the spaces LP(R").

For this reason, we formulate the following problem. Given s € (0,n), for what
pairs p and ¢, is the operator f — I f bounded from L”(R") to LI(R"™)? That is, when

! The Beta functlon also called the Euler integral of the first kind, is a special function defined by
fo T )¢~ dt for Rx > 0and Ry > 0. It has the relation with I-function: B(z,y) =

F( ) ( )/F(l‘+y)
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do we have the inequality

125 fllq < AllF1lp? (7.9)
There is a simple necessary condition, which is merely a reflection of the homo-
geneity of the kernel (y(s)) ~!|y|~"**. In fact, we have

Proposition 7.3. If the inequality (7.9) holds for all f € . and a finite constant A, then
1/g=1/p—s/n.

Proof. Let us consider the dilation operator J., defined by 6. f(z) = f(ex) for e > 0.
Then clearly, for e > 0

L e nts
(6.1 1) (@) =1 /ra g f(ey)dy
S / 2" (2)d
(). (7.10)
Also
16 F o = €21 flps 161 Lufllg = €9 Luf g (7.11)
Thus, by (7.9)

s f g =€*[16--1 1562 fllg = €57/ L6 £l
SATA 8 f|, = A>T £ .
If || Is f||4 # O, then the above inequality implies

1/g=1/p—s/n. (7.12)
If f # 0is non-negative, then I f > 0 everywhere and hence || I, f||; > 0, and we can
conclude the desired relations. [ |

Next, we observe that the inequality must fail at the endpoints p = 1 (then ¢ =
n/(n —s))and ¢ = oo (then p = n/s).

Let us consider the case p = 1. It is not hard to see that the presumed inequality

I s f llnsn—s) < AllfII1, (7.13)
cannot hold. In fact, we can choose a nice positive function ¢ € L' with [ ¢ = 1 and
a compact support. Then, with p.(x) = e "p(z /), we have thatase — 07,
L{po)(2) - (4(s)) "ol "+,

If || Ispe|ln/(n—s) < Allgell1 = A were valid uniformly as ¢, then Fatou’s lemma?® will

imply that
/ |z| " dr < oo,
and this is a contradiction.

The second atypical case occurs when ¢ = co. Again the inequality of the type
(7.9) cannot hold, and one immediate reason is that this case is dual to the case p = 1
just considered. The failure at ¢ = co may also be seen directly as follows. Let f(z) =
lz|~*(In 1/|z])~(+&)s/m for |z| < 1/2,and f(x) = 0, for |z| > 1/2, where ¢ is positive

*Fatou’s lemma: If { f; } is a sequence of nonnegative measurable functions, then

/likm inf frdp < likm inf/fkd,u.
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but small. Then f € L/*(R"), since HfH"/s = flzKl/Q|a:|_”(1n1/|x|)_1_5d1: < 0.

n/s
However, I, f is essentially unbounded near the origin since
1
LIO) = = [ el a0 o,
Y(8) Jiel<1/2 |

aslongas (1+¢)s/n <1

After these observations, we can formulate the following Hardy-Littlewood-Sobolev
theorem of fractional integration. The result was first considered in one dimension
on the circle by Hardy and Littlewood. The n-dimensional result was considered by
Sobolev.

Theorem 7.4 (Hardy-Littlewood-Sobolev theorem of fractional integrations). Let
0<s<nl<p<qg<ool/g=1/p—s/n.

(@) If f € LP(R™), then the integral (7.4), defining I, f, converges absolutely for almost
every .

(b) If, in addition, p > 1, then || I, fll, < Apqll £y

(©) If f € LY(R™), then m{x : |Isf(z)| > o} < (Aa™Y||f]1)Y, for all o > 0. That is,
the mapping f — I, f is of weak type (1,q), with1/q =1 — s/n.

Proof. We first prove parts (a) and (b). Let us write

V()L f (@) =/ |z —y| 7" fy)dy + / |z — 7" fy)dy
B(z,0) "\B(z,5)
=:Ls(z) + Hs(x).
Divide the ball B(z, §) into the shells E; := B(x,2776) \ B(x,270*1¢),j =0,1,2, ...,

thus

|L6 —n+5f

-y

2/ & — 7| £ (y) dy
<Z / ~UH) 5) 7| ()| dy

DY B R
B(z,2794)

N

( J+1)5) n+s ( ( 2_j5))
m(B(z,2799)) /B(M_j(s) |f(y)ldy
(2_(j+1)5)—n+svn(2—j5)n
m(B(z,295)) /B<x,2—j5) |f(y)ldy

Mww

<.
Il
o

Mg

Il
o

J

<V, 0523 Z 27 M f(x) =
7=0
Now, we derive an estimate for H;(z). By Holder’s inequality and the condition
1/p > s/n (ie., g < o0), we obtain

1/p
|Hs ()| <I[fllp (/ | — y| P dy)
R"\ B(z,5)

V (552”

T Mf(@).
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o) , 1/p'
~|1£ll, ( || r“drdo)
sn=1Js

1/p (—n+s)p'+n—1 v
=1l ([t tar)

/

1/p
Wn— n/p’ —(n—s s
:(() 5 £y = O, ,0)6 | £

n—s)p—n

By the above two inequalities, we have
V(s) I f ()] < C(n,$)8°M f(x) + C(n, 5,p)5° 2| ||, =: F(5).
Choose § = C(n, s,p)]||f|lp,/M fP/™, such that the two terms of the r.h.s. of the above
are equal, i.e., the minimizer of F'(¢), to get
V(s) I f ()] < C(M f) 7P| f[Bo/"

Therefore, by part (i) of Theorem 3.9 for maximal functions, i.e., M f is finite al-
most everywhere if f € LP (1 < p < o0), it follows that |I;f(z)| is finite almost
everywhere, which proves part (a) of the theorem.

By part (iii) of Theorem 3.9, we know || M f||, < A4,/ f]l, (1 < p < o0), thus

ITsfllg < CIMFl P 115" = O f .
This gives the proof of part (b).
Finally, we prove (c). Since we also have |Hs(x)| < || f[l167 "%, taking o =
I fl267"F5, 1e., 6 = (|| fl 1/04)1/(”*3), by part (ii) of Theorem 3.9, we get
m{z : |Lf(2)] > 2(v(s) " a}
<m{x ¢ |Ls(x)| > a} +m{z : |Hs(x)| > a}
<m{z : |[C°M f(x)] > at+0

C n/(n—s
<o I = Cllf I /a2 = Cll Il /o).
This completes the proof of part (c). |

7.2 Bessel potentials

While the behavior of the kernel (y(s)) ~!|x|~""* as |z| — 0 is well suited for their
smoothing properties, their decay as || — oo gets worse as s increases.

We can slightly adjust the Riesz potentials such that we maintain their essential
behavior near zero but achieve exponential decay at infinity. The simplest way to
achieve this is by replacing the “nonnegative” operator —A by the “strictly positive”
operator I — A, where I = identity. Here the terms nonnegative and strictly positive,
as one may have surmised, refer to the Fourier transforms of these expressions.

Definition 7.5. Let s > 0. The Bessel potential of order s is the operator
Jo = (I —A)=/?
whose action on functions is given by
Juf = FTICFf = Cux f,
where
Gs(z) = FH (L +?|E) ) ().
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Now we give some properties of Gs(z) and show why this adjustment yields
exponential decay for G at infinity.

Proposition 7.6. Let s > 0.

(a) Gs( ) (47r n/QF(S/Q) foo - _T
(b) Gs(z) > Vz € R"; and G € LI(R”), precisely, [pn Gs(x)dx = 1.
(c) There exz'st two constants 0 < C(s,n), c(s,n) < oo such that

Gy(x) < C(s,n)e” 12 when |z| > 2

and such that
1 Gs(x)

<
c(s,n) ~ Hs(z)
where H, is a function that satisfies
|z~ + 1+ O(|z|*~"F2), 0<s<n,
Hy(z) = ln%—{—l—i—O(\xF), s=mn,
1+ O(|z|*~™), 5>,

< c(s,n), when |x| <2

as |x| — 0.
(d) Gs ELP(R”)foranyl p < ooands>n/p.

Proof. (a) For A, s > 0, we have the I'-function identity
A—s/2 _ 1 /OO e—tAts/Q@
I'(s/2) t’
which we use to obtain

1 > 2 dt
1o 2e12)-5/2 — / —t —tlwe|2ys/2 0
(1 4+ w?[€]7) /2 /s e ‘e t n

Note that the above integral converges at both ends (as |£| — 0, or co). Now take the
inverse Fourier transform in £ and use Theorem 1.10 to obtain

1 1 [T w22 dt
Gs(z) —7“5/2){?5 /0 e e t .

1 F b1 —tlwe)? dt
_ 7 Jwe| )ts/L
T(s/2) /0 € e (e ¢

1 © P sadt
:—(47()”/21—‘(3/2) / e ‘e 4t t 2 7
(b) We have easily® [;, Gs(z)dz = #G4(0) = 1. Thus, G, € Ll(R”)
(c) First, we suppose |z| > 2 Then ¢ + \:vl > t+ 1 andalsot + Ll > |z|. This

*Or use (a) to show it. From part (a), we know G (z) > 0. Since [, e~ tgy — /2, by Fubini’s

theorem, we have
1 o0 _ 7\1 7n dt
Gsmdz:/ 7/ e teT At 2
R" ( ) Rn (47r)n/2r(5/2) 0

1 <, _l=? s—n dt
— 1t 2 —
(47r>n/2r<s/2>/o ¢ / "

1 < n/2.s=n dt
T, ¢

1 /°° —t 51
= e dt =1.
[(s/2) Jo
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implies that

from which it follows that when |z| > 2

1 Ot 1 sendt _al _lal
GS(m)gWF(s/Q)/O e 2e 2ttt 2 76 2 SC(S,n)e 2,

ls=nl/2D(|s—n
where C(s,n) — %W for s # n, and C(S, n) = m

o] 1 00 00
/ e_%e_%@ g/ e_2ltdt—|—/ e_édt:/ e_yd—y+26_1/2
0 t 0 t 1 1/2 y

o0
§2/ e Ydy+2<4.
1/2

Next, suppose that |z| < 2. Write G(z) = GL(z) + G2(x) + G2(x), where

1 jf? o2 sondt
) =Gy T

for s = n since

1 4 02 son dt
s(w) (471')"/2F(3/2)7 |x|26 e 4t 2 "
1 ° 212 s—n dit
PRI R LW
) = Jy CC T

Since t|z|2 < 16 in GL, we have e~t1?I = 1 4+ O(t|x[2) as || — 0; thus after changing
variables, we can write

1 1 2 1 sf’ndt
) et [ thel? gy O
Gsl2) =lal (471')”/2F(s/2)/o co ety

(47‘(’)71/2F(5/2) 0 t (477)"/2F(5/2) 0
nS g > n—s—4 s—n+2 00

2 |z| / efnyEn@ 2 O(|z| )/ e*yysg"dfy
/4

~ (4m)n/?T(s/2) y (4m)"/?T(s/2) %
:c;’n|x\sfn + O(|z|*""%), as |z| — 0.
2
Since 0 < % < land 0 <t < 4inG? wehave e 17/4 L e7™ % < 1, thus as
|x| — 0, we obtain
| |s—n 9s—n+1
4 dt % s SSh
G%(z) ~ te=m/222 = 0 2n 2, s=n,
s ) n ]
‘CEl 95— n+1
—, s > n.
2
Finally, we have e~ /4 < e < 1in G3, which yields that G () is bounded

above and below by fixed positive constants. Combining the estimates for G%(x), we
obtain the desired conclusion.

(d) For p = 1 and so p’ = oo, by part (c), we have ||Gs||oc < C for s > n.

Next, we assume that 1 < p < co and so 1 < p’ < co. Again by part (c), we have,
for |z| > 2, that G? < Ce?121/2, and then the integration over this range |z| > 2 is
clearly finite.

On the range |z| < 2, it is clear that f‘ <2 (IL‘)dl‘ < C for s > n. For the case
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s =mnand n # 1, we also have flx\@ Gé’/ (z)dz < C by noticing that

9 q 2 2 q
/ <ln ) dr = C’/ <ln ) rldr <C
|z|<2 || 0 r

forany ¢ > 0since lim,_,o 7 In(2/r) = 0. For the case s = n = 1, we have me(ln %)qda: =

2f02(1n 2/r)ldr = 4[01(111 1/r)idr = 4 [ t%e~tdt = 4I'(q + 1) for ¢ > 0 by changing
the variable » = e~t. For the final case s < n, we have f02 ps—n pn=lg,. < ' if
(s—n)p'+n>01ie.,s>n/p.
Thus, we obtain |G|,y < C forany 1 < p < oo and s > n/p, which implies the
desired result. [
We also have a result analogues to that of Riesz potentials for the operator J;.

Theorem 7.7. (a) For all 0 < s < oo, the operator Js maps L™ (R"™) into itself with norm 1
forall1 < r < oo.
(b)Let 0 < s <mand 1 < p < q < oo satisfy 1/q = 1/p — s/n. Then there exists a
constant Cy, s, > 0 such that for all f € LP(R™), we have
19efllg < Crsiol £l
(© If f € LY(R™), then m{x : |Jsf(x)| > a} < (Cpsa | fll1)4, for all o > 0. That is,
the mapping f — Jsf is of weak type (1,q), with1/q =1 — s/n.

Proof. By Young's inequality, we have ||Js f||, = ||Gs * f|l» < [|Gs|l1]| fll» = || f]l»- This
proves the result (a).
In the special case 0 < s < n, we have, from the above proposition, that the kernel
G, of J, satisfies
|77, 2] <2,
Gs(x) ~ { elel/2, | > 2.

Then, we can write

JSf(x) gcn,s / ’f(-f — y)||y‘_n+sdy + / |f(l' — y)|e_‘y|/2dy
ly|<2 ly|>2

<o 1)) + [ 1o =l ).

We now use that the function e 1¥/2 € " forall 1 < r < oo, Young's inequality and
Theorem 7.4 to complete the proofs of (b) and (c). |

The affinity between the two potentials is given precisely in the following lemma.

Lemma 7.8. Let s > 0.
(i) There exists a finite measure ps on R™ such that its Fourier transform s is given by
ey |t
)UJS(&.) - (1 i ’w€‘2)s/2 :
(ii) There exist a pair of finite measures vy and \g on R™ such that

(1+ |we|?)*/? = 73(€) + |wE|* X (£).

Remark 7.9. 1) The first part states in effect that the following formal quotient operator
is bounded on every LP(R"), 1 < p < oo,
(-)7

A >0 (7.14)
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2) The second part states also to what extent the same thing is true of the operator
inverse to (7.14).

Proof. To prove (i), we use the Taylor expansion
o0

L=ty P =1+ Apat™ [t <1, (7.15)
m=1
where Am,s — ( )mCsn}Z _ (_Um%(i 1) WE'*—m-‘rl) _ (_%)(1—%’)1'!@1_%—1)' All the Am,s

are of same sign for m > § +1,50 > | Ay, 5| < oo, since (1 — t)*/2 remains bounded as
t—1,ifs > 0. Lett = (1 + |w&|?)~L. Then

g2 N\ 1+ i Ao (1 [w€[H) ™ (7.16)
T+ [weP = 2 m.s w : :
However, Gop, (%) > 0and [, Gom(2z)e ™ 4dz = (1 4 |wé|?)™™.

We noticed already that [ G, (z)dz = 1 and so ||Ganmlj1 = 1.
Thus from the convergence of > ]Ams |, it follows that if 1, is defined by

Hs = 50 + <Z Am,sG2m($)> dx (7'17)

m=1
with §y the Dirac measure at the origin, then ;1 represents a finite measure. Moreover,
by (7.16),

ey |wE?
/‘Ls(g) - (1 + |w£|2)3/2‘

For (ii), we now invoke the n-dimensional version of Wiener’s theorem, to wit: If
®; € LY(R") and @1 (&) + 1 is nowhere zero, then there exists a ®» € L!(R") such that

(B1(€) +1)7" = D5(6) + 1

For our purposes, we then write

ZAmsGQm +G( )

(7.18)

Then, by (7.18), we see that
wel* +1
(1 + [w]?)*/?
which vanishes nowhere. Thus, for an appropriate ®; € L!, by Wiener’s theorem,
we have

1) +1=

(14 |we?)¥? = (1 + |wé]*)[@a(€) + 1],
and so we obtain the desired conclusion with vy = Ay = dg + P2(z)dzx. |

7.3 Sobolev spaces

We start by weakening the notation of partial derivatives by the theory of distri-
butions. The appropriate definition is stated in terms of the space Z(R").

Let 0% be a differential monomial, whose total order is |a|. Suppose we are given
two locally integrable functions on R”, f and g. Then we say that 0% f = g (in the
weak sense), if

f@)0%(x)dz = (~1)l°1 | g(z)p(z)dz, Vo€ 2. (7.19)
Rn R™
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Integration by parts shows us that this is indeed the relation that we would expect
if f had continuous partial derivatives up to order |a|, and 0“f = g had the usual
meaning.

Of course, it is not true that every locally integrable function has partial deriva-
tives in this sense: consider, for example, f(z) = ¢/II". However, when the partial
derivatives exist, they are determined almost everywhere by the defining relation
(7.19).

In this section, we study a quantitative way of measuring smoothness of func-
tions. Sobolev spaces serve exactly this purpose. They measure the smoothness of
a given function in terms of the integrability of its derivatives. We begin with the
classical definition of Sobolev spaces.

Definition 7.10. Let k£ be a nonnegative integer and let 1 < p < oo. The Sobolev space
WHP(R™) is defined as the space of functions f in LP(R") all of whose distributional
derivatives 0% f are also in LP(R") for all multi-indices « that satisfies || < k. This
space is normed by the expression
1w = > 10% llps (7.20)
ol <k

where 900 f = f.

The index k indicates the “degree” of smoothness of a given function in W¥».
As k increases, the functions become smoother. Equivalently, these spaces form a
decreasing sequence

LPOWY S W 5.
meaning that each W**1P(R") is a subspace of W*?(R") in view of the Sobolev
norms.

We next observe that the space WP (R") is complete. Indeed, if {f,} is a Cauchy
sequence in Wk, then for each o, {0°f,,} is a Cauchy sequence in L?, |a| < k. By
the completeness of L?, there exist functions f (@) such that f(® = lim,, 0*f,, in L?,
then clearly

(—1)lel fm0%pdx = 0% frpdx — F@oda,
R" R" R"
for each ¢ € 2. Since the first expression converges to

(el [ jorps,

it follows that the distributional derivative 8 f is f(®). This implies that f; — f in
WkP(R™) and proves the completeness of this space.
First, we generalize Riesz and Bessel potentials to any s € R by
Irf=7"we*Ff, fe. S (R"),0¢ suppf,
Jf =F 1+ weP)PFf, fe s RY.
Itis clear that I~ = I, and J % = J, for s > 0 are exactly Riesz and Bessel potentials,
respectively. we also note that J* - J* = J**! for any s, ¢ € R from the definition.
Next, we shall extend the spaces W’“’p(R") to the case where the number £ is real.
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Definition 7.11. Let s € Rand 1 < p < oco. We write
1 g = W Fllps N F g = 117 Fllp-
Then, the homogeneous Sobolev space H; (R™) is defined by

HyR") = {f € #(R"): f € L}®), and |fllg, <00},  (721)
The nonhomogeneous Sobolev space H,;(R") is defined by
Hy(R") = {f € "R : |flu < oo} (7.22)

If p = 2, we denote H3(R") by H*(R") and H3(R") by H*(R") for simplicity.

It is clear that the space H,;(R") is a normed linear space with the above norm.
Moreover, it is complete and therefore Banach space. To prove the completeness, let
{fm} be a Cauchy sequence in H;. Then, by the completeness of L”, there exists a
g € LP such that

| frm — J_SQHH; = [|J°fm — gllp = 0, asm — oo.
Clearly, J=°g € ./’ and thus Hj, is complete.
We give some elementary results about Sobolev spaces.

Theorem 7.12. Let s € Rand 1 < p < oo, then we have

(a) S isdensein Hy, 1 < p < oo.

(b) Hste C Hy, Ve > 0.

(c) Hy C L™, Vs > n/p.

(d) Suppose 1 <p<ooands> 1. Then f € H5(R") ifand only if f € H5~'(R") and
foreach j, 5 8f € H3~'(R™). Moreover, the two norms are equzvalent.

11|z ~

Hs 1 '
(e) HY(R™) = WrP(R™), 1 < p < oo, Vk € N.

Proof. (a) Take f € Hy,i.e., J°f € LP. Since . is dense in L? (1 < p < o0), there exists
a g € % such that
If = %gllag = 17°F = gllp

is smaller than any given positive number. Since J~%g € .7, therefore .” is dense in
Hs.

P

(b) Suppose that f € Hy**. By part (a) in Theorem 7.7, we see that J. maps L?

into LP with norm 1 for € > 0. Form this, we get the result since

1fllezg = 17" fllp = 1T 72T fllp = e Fllp < 1T Fllp = 1f | gz

(c) By Young's inequality, the definition of the kernel G(x) and part (d) of Propo-
sition 7.6, we get for s > 0

1fllso =117
|7
F
G

LA €)1+ |we?) P F flloo
T+ W) T f o

T €)1 £l

s@)lp 1l < ClI M-

N
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(d) From the Mikhlin multiplier theorem, we can get (w&;)(1 + |wé[?)~1/2 € M,
for 1 < p < oo (or use part (i) of Lemma 7.8 and properties of Riesz transforms), and
= (|7 (1 + we?) T2 (W) (1 + [wE) P E £

thus

of
851,‘]'

=177 (1 + [weP) T2 (W) * T fllp < CIIfllp = Cllf -

Combining with Hf”H;‘l < SNl g, we get

< Cl|f ;.

HfHHS*l + E
! = O HE !

j
Now, we prove the converse inequality. We use the Mikhlin multiplier theorem
once more and an auxiliary function x on R, infinitely differentiable, non-negative
and with x(x) = 1 for |z| > 2 and x(z) = 0 for |z| < 1. We obtain
n

(14 w21+ XN € My, x(§)165" € My, 1 <p < o0.
j=1

=.F 711 + w2 (wigy) F £l
Hy 1

Thus,
s =T Fllp = [1F (1 + [wg )22 T3 f ]

<SOIF7H A+ Y X(EIENF T fllp

j=1
- a—1 —1 g 1s—1 af

<O\ fllgs— +C Y NF X&) le FT op P
j=1 J

of
ox;

J

<l +C 3
j=1

Hy™?
Thus, we have obtained the desired result.

(e) It is obvious that W% = HY = L” for k = 0. However, from part (d), if k > 1,
then f € H]’j if and only if f and 597]; € H],f_l,j = 1,...,n. Thus, we can extends the
identity of W*» = Hllf fromk=0tok=1,2,... |

We continue with the Sobolev embedding theorem.

Theorem 7.13 (Sobolev embedding theorem). Let 1 < p < p; < coand s,s51 € R.
Assume that s — 3 = s1 — .. Then the following conclusions hold
H: C HS', HScCH.

Proof. 1t is trivial for the case p = p; since we also have s = s; in this case. Now, we

assume that p < p;. Since p% = % — =51, by part (b) of Theorem 7.7, we get

I gy = 1% Fllo = 1572 fllpy = [[s—s1 S Fllpy < CINIFllp = CllF .-
Similarly, we can show the homogeneous case. Therefore, we complete the proof. W

Theorem 7.14. Let s,0 € Rand 1 < p < oo. Then J? is an isomorphism between H; and
H3 o,
p
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Proof. 1t is clear from the definition. n

Corollary 7.15. Let s € Rand 1 < p < oo. Then
(Hy) = H,".

Proof. It follows from the above theorem and the fact that (L?)’ = L¥,if 1 < p < oco.
|

Finally, we give the connection between the homogeneous and the nonhomoge-
neous spaces, one can see [BL76, Theorem 6.3.2] for the proofs.

Theorem 7.16. Suppose that f € . '(R™) and 0 ¢ supp f. Then
feH, & feH, VseR, 1<p<oo.
Moreover, for 1 < p < oo, we have .
H,=IL*NH,, Vs>0,
H, =L+ H,, Vs<O0,
H) =L = H).

7.4 More topics on Sobolev spaces with p = 2

In this section, we focus on the Sobolev spaces with p = 2. We first consider the
homogeneous cases.

From the previous section, we know that if s € N, then H? is the subset of tem-
pered distributions with locally integrable Fourier transforms and such that 0* f be-
longs to L? for all o € N" of length s.

In the case where s is a negative integer, the Sobolev space H* is described by the
following theorem.

Theorem 7.17. Let k € N. The space H—*(R") consists of distributions which are the sums
of derivatives of order k of L?(R™) functions.

Proof. Let f € H _k(R”). Using the fact that for some integer constants a,, we have
PP = Y 88 = adlif)* (i), (7.23)
1<t k< o=k

we get that

(&) = ) “Ga ith o = Qg

f© %(zw&) 9a(€) with  ga (&) = aa—
As f € H F(R"), the functions f, := Z lg, € L2(R") in view of the Plancherel
theorem. We then obtain

f=> 0o

|ee|=k
This concludes the proof. |
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Theorem 7.18. H*(R") is a Hilbert space if and only if s < 5.

Proof. We first assume that s < n/2. We only need to prove the completeness. Let
{fx}ren be a Cauchy sequence in H*(R™). Then, {f;}rey is a Cauchy sequence
in L2(R";|£]?*d€). Because |¢|%d¢ is a measure on R, there exists a function g €
L2(R™; |€[?%d¢) such that { f; }ren converges to g in L2(R"; |€]2°d€). Because s < n/2,
we have

[ @l < ([ e istopac) " < L,

1/2
\{]28d§> < 00.
This ensures that .7 ~!(x B(0,1)9) is a bounded function. Now, xgn\ p(0,1)g clearly be-
longs to L*(R™; (1 + [¢[*)*d¢) and thus to ./(R"), so g is a tempered distribution.
Define f :=.% 1g. It is then obvious that f € H® and that klim fi = fin H".
— 00

If s > n/2, observe that the function
p(f) = If 1oy + I1f 1l
is a norm over H*(R") and that (H*(R"), p) is a Banach space.
Now, if H*(R") endowed with || - || ;s were also complete, then, according to
Banach’s theorem, there would exist a constant C' such that p(f) < C| f]|z.. Of
course, this would imply that

1 1B ©,1) < Clfllgs- (7.24)
This inequality is violated by the following example. Let A be an annulus included
in the unit ball B(0, 1) and such that AN2A = (), say, A ={{ e R" : 1/8 < [¢] < 1/6}.
Define
2k(s+n/2

- Z T X2-kA-

We have
lawl / de }Nj 2 / ds
g = g =
NlL1(B(0,1)) B(OJ) N : -

k=1
—CZ

lan Py, =117l Fgu |3 = (

2k s+n/2 N 9k(s—n/2)

=0 =
k=1

|w

o

n N ok(s+n/2) 2
w s 2
(2 L (B

k=1

w\ ™ i 9k(2s+n)
= (|271|> /R” \W§|2 ZTXZ kpdg

k=1

n N

|w| 2’“(25+N)/ )
—( sd
(M) S5 [ e

N 5k(2s+n
— 2 ( ) k(2s+n) _
k2
k=1 k=1

) lwel Zon2

1

3 <C, VNEN,

Mz
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where the constants C' are independent of N. Since s > n/2, we deduce that ||gn || 11 (5
tends to infinity when NV goes to infinity. Hence, the inequality (7.24) is false. I

Theorem 7.19. If s < n/2, then the space /o(R") of functions of ./ (R"), the Fourier
transform of which vanishes near the origin, is dense in H®.

Proof. Consider f € H* such that
(10 = [ Wt F(O3EdE =0, Vo € AR,

This implies that the L., function f vanishes on R” \ {0}. Thus, f = 0. From the
Plancherel theorem, we infer that f = 0. As we are considering the case where H* is
a Hilbert space, we deduce that .#;(R") is dense in H*. [ |

In view of Theorem 7.13, we can not obtain the Sobolev embedding in L>°(R").
In fact, the space H"/%(R") is not included in L>(R"). We give an explicit counterex-
ample in dimension two. Let
f(2) = ¢(x) In(~ Ina])
for some smooth function ¢ supported in B(0,1) with value 1 near 0. On the one
hand, f is not bounded. On the other hand, we have, near the origin,
C
10if (@) € =
| al[Tn o]’
so that f belongs to H!(R?).
This motivates the following definition.

Definition 7.20. The space BM O(R") of bounded mean oscillations is the set of lo-
cally integrable functions f such that

1llma0 :=sgpm(13)/3|f—fs|dx<oo with  fp :zm(lB)/dex-

The above supremum is take over the set of Euclidean balls.

We point out that the seminorm || - || gaso vanishes on constant functions. There-
fore, this is not a norm. We now state the critical theorem for Sobolev embedding.

Theorem 7.21. The space L}, (R™) N H™/?(R") is included in BMO(R™). Moreover, there
exists a constant C such that

IfllBrao < ClIfll s
for all functions f € L}, (R™) N H™?(R").

Proof. We split f into low and high frequencies. Let § be a function in .#(R") such that
0 is compactly supported in {¢ € R” : |¢| < 2)}, has value 1in {¢ € R™ : |¢| < A}, and
satisfies 0 < § < 1. Denote fex = fx0and fy x = f — for. Then, for any Euclidean
ball B with radius r, we have by Holder inequalities, the mean value theorem and
the Plancherel theorem,

1
Hn(B)/B|f_fB|dx

0,1))
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<m(13) (/B [fen — (fep)Bldr + /B | oy — (fh,A)B|d$>

1/2 9
<m(;)1/2 </B | fer — (fe,A)BPdm) + W\\ﬁm\b

1/2
1f(1 - é)l2d£>

<7V forlloo + Cr/2 /
€] =X

1/2
<Cr / €[22 o (€)|de + Cr 2 / e we || f2de
R" BB

£z

1/2
<Cr </ 15\2_”615) 1l zgnra + COENT 2 F e
el<2)

SOA+ N F | oo
Choosing A = 1/r, we complete the proof. [

Now, we turn to the nonhomogeneous Sobolev spaces H*(R").
The Sobolev spaces are not stable under multiplication by C'*° functions; never-
theless, they are local. This is a consequence of the following result.

Theorem 7.22. Multiplication by a function of . (R") is a continuous map from H*®(R")
into itself.

Proof. As we know that of = ¢ = f, the proof is reduced to the estimate of the L*(R")
norm of the function F; defined by

P = (L) [ 196 = mllFenlan

We will temporarily assume that

(14 |wgl?)*/2 < 28121 4 Jw(€ — )22 (1 + Jwn?)*/2. (7.25)
We then infer that
|Fo(€)] < 21172 /Rn(l +w(& = P2 168 — )1 + [wnl?)*/2] f (n)]dn.

Using Young's inequality, we get
loflls < 2BV2) 0+ Jw - 22 G0 f e,
and the desired result follows.
For the sake of completeness, we now prove the inequality (7.25). Interchanging
¢ and 7, we see that it suffices to consider the case s > 0. We have

(14 wEP)*/? <1+ 2(|w(€ = m) + |wnl*)*?
<221+ (€ — m)P)V2(0+ wnf?)*.
This completes the proof of the theorem. [
As stated before, the space H*(R") is included in H*(R") whenever ¢ < s. If the

inequality is strict, then the following statement ensures that the embedding is locally
compact.

Theorem 7.23. For t < s, multiplication by a function in . (R"™) is a compact operator
from H*(R™) in H'(R™).
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Proof. Let ¢ be a function in .(R™). We have to prove that for any sequence {f;}
in H*(R") satisfying sup; || f;[|zs < 1, we can extract a subsequence {f;, } such that
{¢fj.} converges in H'(R™).

As H*(R"™) is a Hilbert space, the weak compactness theorem® ensures that the
sequence { f;} jen converges weakly, up to extraction, to an element f of H*(R") with
| fllms < 1. We continue to denote this subsequence by {f;};en and set g; = f; — f.
By Theorem 7.22, sup; [[¢g;|lgzs < C. Our task is thus reduced to proving that the
sequence {pg; }jen tends to 0 in H*(R™). We now have, for any positive real number
R,

4

/R (1 [wE) 12 (g (&) P
< / (1 + [wé2).F (0g;) (€)[2de
[€]<R

4 / (14 €2 (14 [we )| Z (0g;)(6)2de
EIZR

lpg; 17
(1 + WQRZ)s—t'
As {©g;}jen is uniformly bounded in H*(R"), for a given positive real number ¢, we
can choose R such that

< / (1 + [wE ). (0g;)(€) [2de +

EISR

()

; I .H2 < 2
(1 + w2R2)s— 1P = 0
On the other hand, as the function )¢ defined by

ve(n) == F 7 (1 + |wnl*)~*@(€ - n))
belongs to .#’(R"™), we can write

Fle)©) = | ele = nan)dn
= [ Ll deln)as (in = (e, )

As {g;}jen converges weakly to 0 in H*(R"™), we can thus conclude that
lim 7 (pg;)(€) =0, VEeR™
Jj—o0

Let us temporarily assume that

sup [ (0g;) ()] < M < oo (7.26)
jEN
Lebesgue’s dominated convergence theorem then implies that
lim (1 + |wg*)' .7 (0g;)(§)[Pdg = 0,
I JIgIR

which leads to the convergence of the sequence {g; }jen to 0 in H*(R").
To complete the proof of the theorem, let us prove (7.26). It is clear that

7 (2g;)(&)] </Rn |2(& = m1g;(n)ldn

1/2
Sl ([ 0+ lonf)liete = an)

“Theorem (Weak compactness in Hilbert spaces, cf. [GT01, Theorem 5.12, p. 85]). A bounded
sequence in a Hilbert space contains a weakly convergent subsequence. In other word, every bounded
point set in Hilbert space is weakly compact.
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Now, as ¢ € . (R"™), there exists a constant C' such that

Ch, ) n
(€ —n)| < 0 th Ny=— 1.
(& —n)l T —npm W 0= +ls|+
We thus obtain
/R (1+ [wnf?)*|5(€ - n)Pdn
</ (1+\wnl2)‘s|¢(€—n)\2dn+/ (1+ wn]*)~*|@(& — n)|dn
[n|<2R |n|>2R
<[ () Oy [ ()l — )Y,
Inl<2R In|>2R

Finally, since || < R, we always have [{—n| > @ in the last integral, so we eventually
get

d
/‘@+*Wﬁfﬂ¢@—ﬁﬂwﬁ<CU+J¥WHW2+C n

ni>2r (1 + |wn|?)1+n/2
<C(1 + R?)lsHn/2 L oR72,
This yields (7.26) and completes the proof of the theorem. [

From the above theorem, we can deduce the following compactness result.

Theorem 7.24. For any compact subset K of R™ and t < s, the embedding of H}-(R"™) into
H! (R™) is a compact linear operator, where Hj,(R™) denote the space of those distributions
of H*(R™) which are supported in K.

Proof. 1t suffices to consider a function ¢ € .(R™) which is identically equal to 1 in a
neighborhood of the compact K and then to apply Theorem 7.23. [
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distribution function, 36

dyadic decomposition of R", 142

elliptic homogeneous polynomial of de-
gree k, 119

entire function, 29

Fatou’s lemma, 155
Fourier inversion theorem, 11
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Gauss-Weierstrass integral, 9
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Green theorem, 126
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heat equation, 13
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Hilbert transform, 80

Hilbert transform
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partial sum operator, 139
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Poisson equation, 69
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