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1. Introduction

In the present paper, we consider the Cauchy problem of the following multidimensional (d � 2) chemo-
taxis model

⎧
⎪⎨

⎪⎩

p̃t − div(p̃q) = Δp̃, x ∈ R
d, t > 0

qt − ∇p̃ = 0

(p̃(0, x),q(0, x) = (p̃0(x),q0(x))

(1.1)

where p̃(t, x) denotes the cell density, q(t, x) = −∇v/v, and v(t, x) is the chemical concentration.
Chemotaxis is a biological phenomenon in which somatic cells, bacteria, and other single-cell or mul-

ticellular organisms direct their movements according to certain chemicals in the environment where the
cells reside. This is important for bacteria to find food by swimming toward the highest concentration
of food molecules, or to flee from poisons. Many diverse disciplines involve chemotaxis models whose
aspects include not only the mechanistic basis and biological foundations but also the modeling of spe-
cific systems and the mathematical analysis of the governing nonlinear equations. The Keller-Segel model
of chemotaxis [11–13] has provided, as the authors of [19] wrote, a cornerstone for much of these works,
its success being a consequence of its intuitive simplicity, analytical tractability, and capability to model
the basic dynamics of chemotactic populations.

The following canonical formulation of the Keller-Segel type chemotaxis model has been extensively
studied

{
ut = div(D∇u− χu∇Φ(v))

τvt = D1Δv + g(u, v)
(1.2)

where u(t, x) and v(t, x) denote the cell density and the chemical concentration, respectively. D > 0 is
the diffusion rate of the cells, and D1 � 0 is the diffusion rate of the chemical substance. The constant χ,
often referred as chemosensitivity, is a measure of the strength of chemical signals, and χ > 0 (< 0)
corresponds to attractive (repulsive) chemotaxis. The function Φ(v) is called the chemotactic potential
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function describing the mechanism of signal detection. τ � 0 is a relaxation time scale such that 1/τ is
the rate toward the equilibrium. The function g(u, v) describes the chemical kinetics.

For the Keller–Segel model (1.2), there are two limiting cases as follows. One is when the chemical
substance relaxes so fast that it reaches its equilibrium instantaneously, that is, τ → 0 and (1.2) is
reduced to a parabolic-elliptic system [10]. The other one is when the diffusion of the chemical substance
is so small that it is negligible, that is, D1 → 0. In the current paper, we consider the latter case. If we
take D1 = 0,D = 1, τ = 1,Φ(v) = ln v, g(u, v) = −uv, and χ > 0 which corresponds to the attractive
chemotaxis, then the model (1.2) becomes

{
ut = div(D∇u− χu∇ ln v)
vt = −uv (1.3)

The system (1.1) is derived from (1.3) under transformations u = p̃,q = −∇v/v, which was used in
[22] for one-dimensional case and was extended to multidimensional cases in [19], and under scalings
t̃ = χt, x̃ =

√
χx, and q̃ =

√
χq where tildes have been dropped from last three expressions. The model

(1.3) has been studied in a lot of articles, for instance, in [18,20].
The one-dimensional version of the system (1.1) has been studied for both Cauchy problems and ini-

tial-boundary value problems, for instance, in [19,23] for bounded domains and in [15–17] for nonlinear
stabilities of traveling waves. But there are few results for the multidimensional cases of the system (1.1).
The initial-boundary value problems are studied in [5,6]. Recently, in [14], the local and global existence
of the solution to the Cauchy problem is studied for the initial data (p0,q0) ∈ Hs with s > d/2 + 1.

In this paper, we are concerned the well-posedness of the solution to the Cauchy problem for initial
data suitably close to a constant equilibrium state (p̄,0) in a functional space with minimal regularity
order with the constant p̄ > 0. For this reason, we are going to use scaling considerations for (1.1) to
guess which spaces may be critical. We observe that (1.1) is invariant by the transformation

(p̃0(x),q0(x)) → (�2p̃0(�x), �q0(�x)),

(p̃(t, x),q(t, x)) → (�2p̃(�2t, �x), �q(�2t, �x)).

Definition 1.1. A functional space E ⊂ S ′(Rd) × (S ′(Rd))d is called a critical space if the associated
norm is invariant under the transformation (p̃(·),q(·)) → (�2p̃(�·), �q(�·)) up to a constant independent
of �, where S ′(Rd) denotes the tempered distributions space on R

d.

Obviously, the homogeneous Sobolev spaces Ḣd/2−2 × (Ḣd/2−1)d and the homogeneous Besov spaces
Bd/2−2 × (Bd/2−1)d (which will be defined in next section) are critical spaces for initial data. We shall
decrease the regularity of the space Hs, provided s > d/2+1 in [14], and generalize the results to critical
Besov spaces, that is, Bd/2−2 × (Bd/2−1)d or its subspaces, for initial data.

Now, we state the main result of this paper as follows.

Theorem 1.1. Let d � 2. Then there exist two positive constants α and M such that for all (p̃0 − p̄,q0) ∈
Bd/2−2 × (Bd/2−2,d/2−1)d with some equilibrium state p̄ > 0 and ‖p̃0 − p̄‖Bd/2−2 + ‖q0‖Bd/2−2,d/2−1 � α,
there exists a unique solution (p,q) to the system (1.1) such that

(p̃− p̄,q) ∈ C(R+;Bd/2−2 × (Bd/2−2,d/2−1)d) ∩ L1(R+;Bd/2 × (Bd/2,d/2−1)d)

and

‖p̃− p̄‖L̃∞(R+;Bd/2−2) + ‖q‖L̃∞(R+;Bd/2−2,d/2−1)

+ ‖p̃− p̄‖L1(R+;Bd/2) + ‖q‖L1(R+;Bd/2,d/2−1)

� M(‖p̃0 − p̄‖Bd/2−2 + ‖q0‖Bd/2−2,d/2−1),

where the mixed time-spatial space L̃∞(R+;Bs1,s2) will be defined in the next section.
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The rest of the paper is organized as follows. In the second section, we recall some properties of the
Littlewood–Paley decomposition and Besov spaces which we will use in this paper. In the third section,
we reformulate the system and then derive a priori estimates for the linear system. The fourth section
involves the proof of the existence of the solutions. And in the last section, we prove the uniqueness of
the solution.

2. Littlewood–Paley theory and hybrid Besov spaces

This section is devoted to recall some properties of Littlewood–Paley theory and Besov spaces which will
be used in this paper. For more details, one can see [8,9] and references therein.

Let ψ : R
d → [0, 1] be a radial smooth cutoff function valued in [0, 1] such that

ψ(ξ) =

⎧
⎨

⎩

1, |ξ| � 3/4
smooth, 3/4 < |ξ| < 4/3
0, |ξ| � 4/3

Let ϕ(ξ) be the function

ϕ(ξ) := ψ(ξ/2) − ψ(ξ).

Thus, ψ is supported in the ball {ξ ∈ R
d : |ξ| � 4/3}, and ϕ is also a smooth cutoff function valued in

[0, 1] and supported in the annulus {ξ ∈ R
d : 3/4 � |ξ| � 8/3}. By construction, we have

∑

k∈Z

ϕ(2−kξ) = 1, ∀ξ 
= 0.

One can define the dyadic blocks as follows. For k ∈ Z, let

�kf := F−1ϕ(2−kξ)Ff,

where F (F−1) denotes the Fourier (inverse) transformation.
The formal decomposition

f =
∑

k∈Z

�kf (2.1)

is called homogeneous Littlewood–Paley decomposition. (2.1) is true modulo polynomials, in other words
(cf. [21]), if f ∈ S ′(Rd), then

∑
k∈Z

�kf converges modulo P[Rd] and (2.1) holds in S ′(Rd)/P[Rd],
where P[Rd] denotes the space of all polynomials on R

d.

Definition 2.1. Let s ∈ R. For f ∈ S ′(Rd), we write

‖f‖Bs =
∑

k∈Z

2ks‖�kf‖L2 .

A difficulty comes from the choice of homogeneous spaces at this point. Indeed, ‖ · ‖Bs cannot be a
norm on {f ∈ S ′(Rd) : ‖f‖Bs < ∞} because ‖f‖Bs = 0 means that f is a polynomial. This enforces us
to adopt the following definition for homogeneous Besov spaces (cf. [8]).

Definition 2.2. Let s ∈ R and m = −[d/2 + 1 − s]. If m < 0, then we define Bs(Rd) as

Bs =
{
f ∈ S ′(Rd) : ‖f‖Bs < ∞ and f =

∑

k∈Z

�kf in S ′(Rd)
}
.

If m � 0, we denote by Pm the set of d-variable polynomials of degree less than or equal to m and define

Bs =
{
f ∈ S ′(Rd)/Pm : ‖f‖Bs < ∞ and f =

∑

k∈Z

�kf in S ′(Rd)/Pm

}
.
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We also need hybrid Besov spaces for which regularity assumptions are different in low frequencies
and high frequencies [8]. We are going to recall the definition of these new spaces and some of their main
properties.

Definition 2.3. Let s, t ∈ R. We define

‖f‖Bs,t =
∑

k�0

2ks‖�kf‖L2 +
∑

k>0

2kt‖�kf‖L2 .

Let m = −[d/2 + 1 − s], we then define

Bs,t(Rd) ={f ∈ S ′(Rd) : ‖f‖Bs,t < ∞}, if m < 0,

Bs,t(Rd) ={f ∈ S ′(Rd)/Pm : ‖f‖Bs,t < ∞}, if m � 0.

Lemma 2.1. We have the following inclusions for hybrid Besov spaces.

(i) We have Bs,s = Bs.
(ii) If s � t then Bs,t = Bs ∩Bt. Otherwise, Bs,t = Bs +Bt.
(iii) The space B0,s coincides with the usual inhomogeneous Besov space Bs

2,1.
(iv) If s1 � s2 and t1 � t2, then Bs1,t1 ↪→ Bs2,t2 .

Let us now recall some useful estimates for the product in hybrid Besov spaces.

Lemma 2.2. Let s1, s2, t1, andt2 � d/2 such that min(s1 + s2, t1 + t2) > 0, f ∈ Bs1,t1 and g ∈ Bs2,t2 .
Then, fg ∈ Bs1+s2−1,t1+t2−1 and

‖fg‖Bs1+s2−d/2,t1+t2−d/2 � ‖f‖Bs1,t1 ‖g‖Bs2,t2 ,

where (and throughout the paper) “�” denotes “� C” for a universal constant C which may be different
from each other in different arguments.

In the context of this paper, we also need to use the interpolation spaces of hybrid Besov spaces
together with a time space such as Lρ([0, T );Bs,t). Thus, we have to introduce the mixed type time-spa-
tial space (cf. [1,4]) which is a refinement of the space Lρ([0, T );Bs,t).

Definition 2.4. Let ρ ∈ [1,∞], T ∈ (0,∞] and s, t ∈ R. Then, we define

‖f‖L̃ρ([0,T );Bs,t) =
∑

k�0

2ks‖�kf‖Lρ([0,T );L2) +
∑

k>0

2kt‖�kf‖Lρ([0,T );L2).

Noting that Minkowski’s inequality yields ‖f‖Lρ([0,T );Bs,t) � ‖f‖L̃ρ([0,T );Bs,t), we define spaces
L̃ρ([0, T );Bs,t) as follows

L̃ρ([0, T );Bs,t) = {f ∈ Lρ([0, T );Bs,t) : ‖f‖L̃ρ([0,T );Bs,t) < ∞}.

If T = ∞, then we omit the subscript T from the notation L̃ρ([0, T );Bs,t), that is, L̃ρ(Bs,t) for sim-
plicity. Let us observe that L1([0, T );Bs,t) = L̃1([0, T );Bs,t), but the embedding L̃ρ([0, T );Bs,t) ⊂
Lρ([0, T );Bs,t) is strict if ρ > 1.

We will use the following interpolation property which can be verified easily (cf. [1,2]).

Lemma 2.3. Let s, t, s1, t1, s2, andt2 ∈ R and ρ, ρ1, ρ2 ∈ [1,∞]. We have

‖f‖L̃ρ([0,T );Bs,t) � ‖f‖θ
L̃ρ1 ([0,T );Bs1,t1 )

‖f‖1−θ

L̃ρ2 ([0,T );Bs2,t2 )
,

where 1
ρ = θ

ρ1
+ 1−θ

ρ2
, s = θs1 + (1 − θ)s2, and t = θt1 + (1 − θ)t2.
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3. Reformulation and a priori estimates

Let p = p̃− p̄, then the system (1.1) can be rewritten as
⎧
⎪⎨

⎪⎩

pt − p̄divq − Δp = div(pq)
qt − ∇p = 0

(p,q|t=0) = (p0,q0) := (p̃0 − p̄,q0)
(3.1)

We investigate some a priori estimates for the linear system with a general function F
⎧
⎪⎨

⎪⎩

pt − p̄divq − Δp = F

qt − ∇p = 0

(p,q)|t=0 = (p0,q0)
(3.2)

First, we note that the solution of (3.2) behaves differently for low and high frequencies in view of
the eigenvalues of the symbol for the evolution semigroup of (3.2). In fact, the solution of (3.2) can be
written as the following integral form:

(
p(t)
q(t)

)

= eU(∂)t

(
p0

q0

)

+

t∫

0

eU(∂)(t−τ)

(
F (τ)

0

)

dτ, (3.3)

where U(∂) = F−1U(ξ)F with

U(ξ) =
(−|ξ|2 p̄iξ

iξ 0

)

.

We compute the eigenvalue equation det(λI − U(ξ)) = λd−1(λ2 + |ξ|2λ+ p̄|ξ|2) = 0 to obtain d− 1 zero
eigenvalues corresponding to the irrotational parts of q and two non-zero eigenvalues λ± corresponding
to p and the divergence part of q.

For low frequencies, that is, |ξ| < 2
√
p̄, we have

λ± = −|ξ|2
2

(

1 ± i

√
4p̄
|ξ|2 − 1

)

,

so that we can expect a parabolic damping for low frequencies of p and q.
For high frequencies, that is, |ξ| � 2

√
p̄, the situation is quite different. We have now

λ± = −|ξ|2
2

(

1 ±
√

1 − 4p̄
|ξ|2

)

,

and λ+ ∼ −|ξ|2 and λ− ∼ −p̄ as |ξ| → ∞.
According to the above considerations, we may expect that the system (3.2) has a parabolic smoothing

effect on p and on the low frequencies of q, and a damping effect on the high frequencies of q. In fact,
we can prove the following proposition:

Proposition 3.1. Let s ∈ R, T ∈ (0,∞] and (p,q) be a solution of (3.2) on [0, T ), then the following
estimates hold

‖p‖L̃∞([0,T );Bs−2) + ‖q‖L̃∞([0,T );Bs−2,s−1) + ‖p‖L1([0,T );Bs) + ‖q‖L1([0,T );Bs,s−1)

� C(‖p0‖Bs−2 + ‖q0‖Bs−2,s−1 + ‖F‖L1([0,T );Bs−2)),

where C � 1 depends only on d.
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Proof. Applying the Littlewood–Paley operator �k to the linear system (3.2) and denoting pk =
�kp,qk = �kq and Fk = �kF , we get

⎧
⎪⎨

⎪⎩

∂tpk − p̄divqk − Δpk = Fk

∂tqk − ∇pk = 0

(pk(0, x),qk(0, x)) = (�kp0(x),�kq0(x))
(3.4)

Taking the inner products of the first equation of (3.4) with pk, and the second one with qk, we have

1
2

d
dt

‖pk‖2
2 +

p̄

2
d
dt

‖qk‖2
2 + ‖∇pk‖2

2 = (Fk, pk).

From the inner products of the first equation of (3.4) with −divqk, and the second one with ∇pk and
Δqk, we obtain

d
dt

(qk,∇pk) +
1
2

d
dt

‖∇qk‖2
2 + p̄‖divqk‖2

2 − ‖∇pk‖2
2 = −(Fk,divqk).

Denote for k ∈ Z and 0 < A < 1

α2
k := ‖pk‖2

2 + p̄‖qk‖2
2 +A‖∇qk‖2

2 + 2A(qk,∇pk).

Since 2|(qk,∇pk)| = 2|(divqk, pk)| � (A+ 1)‖divqk‖2
2/2 + 2‖pk‖2

2/(A+ 1), we have

αk ∼ ‖pk‖2 + ‖qk‖2 + ‖∇qk‖2. (3.5)

Thus, there exists a constant c such that

1
2

d
dt
α2

k + cmin(22k, 1)α2
k � ‖Fk‖2αk,

which yields, by eliminating the term αk from both sides, that

d
dt
αk + cmin(22k, 1)αk � ‖Fk‖2.

Integrating with respect to the time t, it follows that

αk(t) + cmin(22k, 1)

t∫

0

αk(τ)dτ � αk(0) + C

t∫

0

‖Fk(τ)‖2dτ,

which implies, in view of (3.5), that

‖pk(t)‖2 + ‖qk(t)‖2 + ‖∇qk(t)‖2

+ min(22k, 1)

t∫

0

(‖pk(τ)‖2 + ‖qk(τ)‖2 + ‖∇qk(τ)‖2)dτ

� ‖pk(0)‖2 + ‖qk(0)‖2 + ‖∇qk(0)‖2 +
∫ t

0

‖Fk(τ)‖2dτ.
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Multiplying both sides by 2k(s−2) and summing over k ∈ Z, we get
∑

k∈Z

2k(s−2)‖pk‖L∞([0,T );L2) +
∑

k∈Z

2k(s−2)‖qk(t)‖L∞([0,T );L2)

+
∑

k∈Z

2k(s−2)‖∇qk(t)‖L∞([0,T );L2)

+
∫ T

0

∑

k∈Z

2k(s−2) min(22k, 1) (‖pk(τ)‖2 + ‖qk(τ)‖2 + ‖∇qk(τ)‖2) dτ

�
∑

k∈Z

2k(s−2)‖pk(0)‖2 +
∑

k∈Z

2k(s−2)‖qk(0)‖2 +
∑

k∈Z

2k(s−2)‖∇qk(0)‖2

+
∫ T

0

∑

k∈Z

2k(s−2)‖Fk(τ)‖2dτ. (3.6)

We also need the smoothing effect for high frequencies of p. From the inner product of the first equation
of (3.4) with pk, we also have

1
2

d
dt

‖pk‖2
2 + ‖∇pk‖2

2 � p̄‖divqk‖2‖pk‖2 + ‖Fk‖2‖pk‖2,

which follows, as a similar argument as the above, that
∑

k∈N

2k(s−2)‖pk‖L∞([0,T );L2) +
∫ T

0

∑

k∈N

2ks‖pk(τ)‖2dτ

�
∑

k∈N

2k(s−2)‖pk(0)‖2 + p̄

∫ T

0

∑

k∈N

2ks‖qk(τ)‖2 +
∫ T

0

∑

k∈N

2k(s−2)‖Fk(τ)‖2dτ. (3.7)

Combining (3.6) with (3.7), we have the desired results. �

4. Existence of the solution

This section is devoted to the proof of the existence part in Theorem 1.1. The principle of the proof
is very classical. We shall use the classical Friedrichs’ regularization method (e.g. [3]) to construct the
approximate solutions (p�,q�)�∈N to (3.1), and then we will use Proposition 3.1 to get some uniform
bounds on (p�,q�)�∈N in order to get the strong convergence of the approximate solutions.

Step 1: The Friedrichs’ approximation.
In order to construct the classical Friedrichs’ approximation, we first define the frequency truncation

operator (F�)�∈N by

F�f := F−11B(1/�,�)(ξ)Ff,

for any f ∈ L2(Rd) where B(1/�, �) := {ξ ∈ R
d : 1/� � |ξ| � �}. Then, we can define the following

approximate system
⎧
⎪⎪⎨

⎪⎪⎩

p�
t − p̄divq� − Δp� = F �

q�
t − ∇p� = 0

(p�,q�)|t=0 = (p�,q�)

(4.1)

where

p� = F�p0, q� = F�q0, F � = F�(div(p�q�)).
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It is easy to check that it is an ordinary differential equation in L2
� × (L2

�)
d for every � ∈ N, where

L2
� = {f ∈ L2(Rd) : F�f = f}. By the usual Cauchy-Lipschitz theorem, there is a strictly positive maxi-

mal time T ∗
� such that a unique solution (p�,q�) exists in [0, T ∗

� ) which is continuous in time with value
in L2

� × (L2
�)

d.
Step 2: Uniform estimates.
Denote

E0 = ‖p0‖Bd/2−2 + ‖q0‖Bd/2−2,d/2−1 ,

and

‖(p,q)‖Ss
T

:= ‖p‖L̃∞([0,T );Bs−2) + ‖q‖L̃∞([0,T );Bs−2,s−1) + ‖p‖L1([0,T );Bs) + ‖q‖L1([0,T );Bs,s−1),

where we will omit the subscripts T if T = ∞, and let

T� := sup{T ∈ [0, T ∗
� ) : ‖(p�,q�)‖

S
d/2
T

� BC̄E0},
where C̄ � 1 corresponds to the constant in Proposition 3.1, and the constant B = 1/(2CC̄2E0). Thus,
by the continuity, we have T� > 0.

From Lemma 2.2 and noticing that d � 2, we get

‖F �‖L1([0,T );Bd/2−2) � ‖p�q�‖L1([0,T );Bd/2−1) � ‖p�‖L1([0,T );Bd/2)‖q�‖L̃∞([0,T );Bd/2−1) � ‖(p�,q�)‖2

S
d/2
T

.

Thus,

‖(p�,q�)‖
S

d/2
T

� C̄
(
E0 + C‖(p�,q�)‖2

S
d/2
T

)
� C̄(1 + C(BC̄)2E0)E0,

where C � 1. Hence, we can choose E0 < 1/4CC̄2, and then, we have 1 +CB2C̄2E0 < B. Therefore, for
any T < T�, we have ‖(p�,q�)‖

S
d/2
T

� BC̄E0 � 1/2. We claim that T� = T ∗
� . In fact, we have shown that

‖(p�,q�)‖
S

d/2
T

< BC̄E0 for T� < T ∗
� . Thus, by continuity, for a sufficiently small constant a > 0, we can

obtain ‖(p�,q�)‖
S

d/2
T+a

� BC̄E0 which contradicts with the definition of T�.
Now, we show the approximate solution is a global one, that is, T ∗

� = ∞. We assume T ∗
� < ∞,

then we have shown that ‖(p�,q�)‖
S

d/2
T

� BC̄E0. In view of p� ∈ L̃∞([0, T ∗
� );Bd/2−2) and q� ∈

L̃∞[0, (T ∗
� );Bd/2−2,d/2−1), it follows that ‖(p�,q�)‖L∞([0,T ∗

� );L2
�) < ∞. Thus, we may continue the solution

beyond T ∗
� by the Cauchy-Lipschitz theorem. This contradicts the definition of T ∗

� . Therefore, (p�,q�)�∈N

is global in time.
Step 3: Compactness and convergence.
From (4.1), we can easily obtain that ∂tp

� ∈ (L∞ + L4/3)(Bd/2−5/2) and ∂tq� ∈ L4(Bd/2−5/2) since
d � 2. Applying the Morrey embedding with respect to the time variable, we obtain that (p�,q�) is
uniformly bounded in C1/4(R+;Bd/2−5/2) × (C3/4(R+;Bd/2−5/2))d.

Now we can use the Arzelà-Ascoli theorem to get the strong convergence of the approximate solu-
tions. We need to localize the spatial space in order to utilize some compactness results of local Besov
spaces. Let (χm)m∈N be a sequence of D(Rd) cutoff functions supported in the ball B(0,m + 1) of R

d

and equal to 1 in a neighborhood of B(0,m). Then, by the uniform estimates we have obtained, we see
that (χmp

�, χmq�)�∈N is bounded in Sd/2 and uniformly equi-continuous in

(C([0, T );Bd/2−5/2))1+d

for any m ∈ N and T > 0. Moreover, the mapping f �→ χmf is compact from Bd/2−2 into Bd/2−5/2 and
from Bd/2−2,d/2−1 into Bd/2−5/2.

Applying the Arzelà-Ascoli theorem to the family (χmp
�, χmq�)�∈N on the time interval [0,m], then

we use the Cantor diagonal process. This finally provides us with a distribution (p,q) continuous in time
with values in (Bd/2−5/2)1+d and a subsequence (which we still denote by the same notation) such that
we have, for all m ∈ N, that (χmp

�, χmq�) → (χmp, χmq) in (C([0,m];Bd/2−5/2))1+d as � → ∞. This
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obviously implies that (p�,q�) tends to (p,q) in D ′(R+ × R
d). Coming back to the uniform estimates,

we moreover obtain that (p,q) belongs to Sd/2 and C1/4(R+;Bd/2−5/2) × (C3/4(R+;Bd/2−5/2))d. The
convergence results stemming from this last result and interpolation argument enable us to pass to the
limit in D ′(R+ × R

d) in the system (4.1) and to prove, in a standard way, that (p,q) is indeed a solution
of (3.1) with the initial data. In addition, the continuity in time of the solution is straightforward, and
we omit the details.

5. Uniqueness

Finally, we prove the uniqueness of solutions. Let (p1,q1) and (p2,q2) be two solutions of (3.1) in ST

with the same initial data. Denote (δp, δq) = (p2 − p1,q2 − q1). Then they satisfy
⎧
⎪⎨

⎪⎩

∂tδp− p̄divδq − Δδp = div(p2δq) + div(q1δp)
∂tδq − ∇δp = 0

(δp, δq)|t=0 = (0,0)
(5.1)

By Proposition 3.1, we have

‖(δp, δq)‖
S

d/2
T

�‖div(p2δq)‖L1([0,T );Bd/2−2) + ‖div(q1δp)‖L1([0,T );Bd/2−2)

�‖p2‖L1([0,T );Bd/2)‖δq‖L̃∞([0,T );Bd/2−1) + ‖q1‖L̃∞([0,T );Bd/2−1)‖δp‖L1([0,T );Bd/2)

�C(‖p2‖L1([0,T );Bd/2) + ‖q1‖L̃∞([0,T );Bd/2−1))‖(δp, δq)‖
S

d/2
T
.

Now, plugging this constant C to the definition of B, we have C‖q1‖L̃∞([0,T );Bd/2−1) � 1/2. On the other
hand, taking T small enough, we have C‖p2‖L1([0,T );Bd/2) � 1/3. Then, it follows that ‖(δp, δq)‖

S
d/2
T

≡
0. Hence, (p1,q1)(t) = (p2,q2)(t) on [0, T ). By a standard argument (e.g. [7]), we can conclude that
(p1,q1)(t) = (p2,q2)(t) on R

+.
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