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Abstract The bipolar ( defocusing nonlinear) Schrodinger-Poisson system and quasi-linear Schrodinger-
Poisson equations are studied. The wellposedness, large time behavior and modified scattering theory is
established for the Cauchy problem to the bipolar( defocusing nonlinear) Schridinger-Poisson systems. The
initial-( Dirichlet) boundary problem for a high field version of the Schrodinger-Poisson equations, quasi-
linear Schrédinger-Poisson equations, which include a nonlinear term in the Poisson equation
corresponding to a field-dependent dielectric constant ‘and an effective potential in the Schrodinger
equations on the unit cube are also discussed.
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1 Introduction

The Schrodinger-Poisson system is used to simulate the transport of charged particles in semiconductor science

and plasma physics. We mainly discuss the following(pure)bipolar defocusing nonlinear Schridinger-Poisson system

(BDNLSP)

2
e, = - FAg + (gV+ b1 ¢ 1))y, j=12 (1)
XAV =1 17 -1 g, 17, (2)
with the initial data
Sbj(Oy ') = @ ] = 192, (3)

where A denotes the Laplacian on R? and ¢, = d¢;/3t,the wave functions ¢; = ¢; (¢, x): R""—C,j=1,2,
describe the state of the particle in the position space under the action of the electrostatic potential V= V(t,x) at
every instant ¢ .The nonlinear self-interacting potential h;(s) is assumed to be given by

hj(s) = aisyf Jfors =0

and some
2
a; > 0,—‘? < )Ij < a(d)’

where a(d) =2/(d -2) if d=3 and a(d) = ® if d =1,2. The charges of the particles described by the wave
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functions ¢, are defined by g, =1 and ¢, = — 1, respectively. € is the scaled Planck constant and A is the scaled
Debye length.

(-1 and time-

A large amount of interesting work has been devoted to the study of the time-dependent
independent[m ) Schridinger-Poisson systems . By applying the estimates of a modulated energy functional and the
Wigner measure method, Jiingel and Wang'” discussed the combined semi-classical and quasineutral limit of the
(BDNLSP) with the initial data (3) in the whole space where a, = a, and ¥, = 7, provided the solution of (1) ~
(3) exists.And Castella'’ proved the global existence and the asymptotic behavior of solutions in the function space

L? for the mixed-state unipolar Schrodinger-Poisson systems without the defocusing nonlinearity .

2 Initial value problem without nonlinearity

We first study the global existence and uniqueness of solutions for the initial value problem to the following

(pure state) bipolar Schrodinger-Poisson equations (BSP) without the defocusing nonlinearity

¢ =-A0¢ + Vo, (4)
0,9 =- A$ - VB, (5)
—AV =1 ¢ 1P =117, (6)
$(0,2) = ¢y, 9(0,x) = &, (7)

By using the dual space-time estimates, Strichartz’ estimates and the properties of the Besov space, etc. , we can
obtain the following wellposedness theorem.
Theorem 2.1(Ref.[18]) Let sER,s=0. Let a € [2,18/7]. Assume that ¢, ,$, € H' (R’). Then, there exists
a unique solution of the IVP (4) ~ (7) for which it holds
¢,$ € C(RH(R)) N L. (R; B, ,(R'))
where 2/7(a) =3(1/2-1/a).

Moreover, when s is an integer, the result also holds with the Besov space B, , replaced by H,.

3 Wellposedness to the BDNLSP system

Now we turn to the initial value problem in d-dimensional spatial space for ( BDNLSP) system with assuming
A =1 for simplicity .
We assume that the initial data
gi(x) € DI(RY) := {u€ H(R*): Izl u€ L'(RD} (j = 1,2),
with the norm
Tolls = Tglly+l1xrgl,e.
We can get the following conservation laws.
Theorem 3.1 (Conservation laws Ref.[19]) Let d € N, { ¢;| be a solution to (BDNLSP) with the initial value
¢;(x) € Z (R?). Then,we have the following conservation laws for all € R
(i) L’-norm law:
(), = lgll, for j=1,2;

(ii) Energy conservation law:

2 2 2
2 2 2 2 aj 2()},[) '
e l_}ﬂ Ivgolz+21vvii+ 22 71 (AON iy = CORSLS

(iii) Pseudo-conformal conservation law

2
. 41
j 2(7]4)

2 2

. a
_Z:|Ix¢,+letv¢,~lli+/\2tzllVV||§+2t227 (7
iz

=, + 1 23+1)


http://www.cqvip.com

E5H HAO Cheng-Chun, HSIAO Ling: Studies on Schrodinger-Poisson Systems 641

2 2
(d =2 t 2(7,+1)
+2>) %JOTH ACN I ,dr
j=1 j

2(y +1
f

2 t
=S ixtg s (G- DR ol v V(o) lide.
j=1 0

By the above conservation laws,the L” — L? dual estimates and using the properties of the Galilei-type operator

J(t) = x +iet V ,we are able to prove the global existence of the smooth solutions.
Theorem 3.2 (Existence and uniqueness Ref.[19]) Let ¢, € 2 (R’) . Assume that o € [2,6). Then, there
exists a unique solution to the (BDNLSP) system (1) = (2) with the initial data (3) for which it holds
¢, € C(R; DR N LT (R;H'(R)) N LS (R HL(R')) for j = 1,2,
Moreover, we have the following large time behavior for the solution constructed in Theorem 3.2.
Theorem 3.3 (Large time behavior Ref. [19]) Let (¢, ¢, V) and p be as in Theorem 3.2. Then, there exist

constants C depending only on || ¢, || ;» and || 1x1¢, || ; such that
1
Tgll, < Clel7@,yp€[2,6),V 1tlz=1,

2
I vV, < Cler™ % vp€ (3,0 1 1ix1,

SLal3y

[vil,sClel’™™% , yp€ 3,0),¥ [ t1x=1.

4 Modified scattering theory

To study the asymptotic behavior in time and the existence of the modified scattering operator of the solutions to

the (BDNLSP) system in the spatial space R’ ,we rewrite it as the following:

i = - %A% + (gV(godn) + aj | ¢ 17) ¢ for j = 1,2, (8)
1 2 2

V:m*(|([l|| -1 ¢, 17), (9)

$,(0,x) = ,(x),x € R. (10)

We also assume that 4/3 < p <4 in the nonlinear self-interacting potential a’ | ¢;1* where a; € R.
We consider the Cauchy problem under the following condition on initial data
$. € H° N H7,
with
Yy >3/2,; =1,2
and the norm EJ_H.Z 81,0 + | 8 |y, is sufficiently small, where the space H™"* is the usual weighted

Sobolev space defined by
H> = fu€ L lull,, = 1Q+12)"0-28)"ull, < @}, v,v €R.
We can get the following theorems on the existence and scattering theory .

Theorem 4.1 (Global existence Ref.[20]) We assume that 95]- €EH°NH"" and Z[ | ¢j I yo + [ ¢j [ 0.r]

j=1.2
=:g, € ,where ¢ is sufficiently small and 3/2 < ¥ <5/3. Then there exists a unique global solution (¢, , ¢, , V)

to the above Cauchy problem such that for j = 1,2
()bj e C(R;HY.O n HO.Y)’
g ()l e < Cey (1416 1)77,

2. p 3 2
” V(L) ” . < Csl(l ¢ |-a+C(cl+e’) it |l-—22+C(sl+s’;))’t € R.
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where Ce < 0 <1,4/3<p<4.

Theorem 4.2 ( Asymptotic behavior Ref.[20]) Let (¢, , ¢, ) be the solution obtained in Theorem 4.1. Then for
any $,€ H"°N H*”,j=1,2,there exist a unique pair of functions (%, %) with #E€L”,j=1,2,and a real-
valued function A € L® such that for all 1¢1=1

R A I NN [
| 7 (S(= 1) g () e i hdfs gy

1 —3+ 52+5P
< Ce (¢ |_“C(Ef+s') +le ! 7oty l))a
and
VD . . l
I V(b 11 e - VI, 20Im c1- AL
< Coy(1 g 170 Ceed g Eesae e
l,t=1 tt=1
where /\(t):{ I,V(t)z{ : 1a0<3<2/3,C€<a<1and7>3/2+201-Werecallthatel
tt< - i< -

is defined in Theorem 4.1. Furthermore, we have the estimate for |¢| =1 that

“ 7(5(— t)S[;j) _ Wje"qj(v(glﬂyplnltuzx) ” 3

2 p 3p 2 p
—a+ C( 1- Clel+e )\ 8
< Ce (1 ¢ |7 %ars) g m2rctara)ye

5 Initial-boundary value problems for quasi-linear Schrodinger-Poisson
equations

In this section, we consider the self-consistent quasi-linear Schrodinger-Poisson system (QSP) on the unit cube

N :=(0,1)¢

0.9 =~ 8g, + Vpu,m € N (11)
—V'((50+€1|VV|2)VV)="'""'" (12)

n(x,t) = DA, | ¢ (x,1) 17, (13)

m=1
with the following initial and boundary conditions

$u(x,0) = ¢,(x), (14)

dn(x,t) = 0, on 30, (15)

V(x,t) = 0, on3dQ, (16)

where dEN,d<3,t€R and 5,6, >0. {¢,(x,1)}, ¢y is a sequence of complex valued wave functions. The
electrostatic potential V(x,t) is a real valued function. { A, }|,.cy is a specified sequence of probabilities, with
2 wenAn = 1. n’ is a given time-independent dopant density which may be represented as

n’ = np, - ny,
where nj is the density of donors and n is the density of acceptors. We always look forward to seeking a solution

satisfying the following charge neutrality :
J (n-n")dx = 0.
a

We introduce the following spaces

X: {‘I’=(¢,,.),,.GN3¢,,.EL2(Q),

Ty = (X020 ¢ 120" < o},

mEN
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X' = 1 = (0)nen © ¥n € Ho(Q),
Twlle = (O 0 ¢ 1@)" < =i,

mEN

and

X iz A = (P )men * ¥ € H(Q) N Ho(Q),
Fwle = (a0 ¢ l32@)" < =i,

meN

Resorting to the techniques of quasi-linear elliptic PDE (cf.Ref.[21,22]),the Sobolev embedding theorem
and the Schauder fixed point theorem, we obtain the following existence theorem.
Theorem 5.1 (Ref.[23]) Let ®=($,),cn€ X and n* € C'(2). Then there is a unique solution (¥, V)

such that

¥ € C(R;X) N C(R; X7),
VeE CR:X),
with the conserved quantities

D et olly = 1T@C) 1y,

3
(ll) ” V‘I’(',l) ||2x + €y H vV(.yt) || ZLZ(()) + ‘2“51 ” v V(',l) ” ‘;“(n) = constant.
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