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ABSTRACT. In this paper, we establish a priori estimates for three-dimensional
compressible Euler equations with the moving physical vacuum boundary, the
~-gas law equation of state for v = 2 and the general initial density pg € H°.
Because of the degeneracy of the initial density, we investigate the estimates
of the horizontal spatial and time derivatives and then obtain the estimates of
the normal or full derivatives through the elliptic-type estimates. We derive a
mixed space-time interpolation inequality which plays a vital role in our energy
estimates and obtain some extra estimates for the space-time derivatives of the
velocity in L3.

1. Introduction. In recent years, the motion of physical vacuum in compressible
fluids has been received much attention due to its great physical importance and
mathematical challenges (cf. [14-18,21]). Some significant progresses have been
made particularly on the Euler equations (cf. [4,6,7,9,10]). Physical vacuum prob-
lems arise in many physical situations naturally, for example, in the study of the
evolution and structure of gaseous stars (cf. [1,8]) for which vacuum boundaries are
natural boundaries.
In the present paper, we consider the following compressible Euler equations

Op + div (pu) =0 in Q(¢) x (0,77, (1.1a)
O¢(pu) + div (pu ® u) + Vp =0 in Q(t) x (0,77, (1.1b)
p=0 on I'1(¢t) x (0,77, (1.1c)
uz =0 on 'y x (0,77, (1.1d)
ol (t) =V(ITi(t) =u-N in (0,77, (1.1e)
(p,u) = (po,uo) in Q x {t =0}, (1.1f)
0(0) = 0, T1(0) =T, (L1g)
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where p denotes the density, the vector field u = (uy,u2,u3) € R® denotes the
Eulerian velocity field, and p denotes the pressure function. V = (91,02, 03) and
div are the usual gradient operator and spatial divergence in the three-dimensional
space where 9; = 0/0x;. The open, bounded domain Q(t) C R3 denotes the
changing volume occupied by the fluid, IT'; (¢) denotes the moving vacuum boundary,
V(I'1(t)) denotes the normal velocity of I'1 (¢), N denotes the outward unit normal
vector to the boundary I'y(¢), and 'y is a fixed boundary. The equation of the
pressure p(p) is given by

p(a:,t) = CV p’y(xvt)7 (1'2)

where v is the adiabatic index, C, is the adiabatic constant which we set to unity,
ie., Cy=1; and

p>0 inQ(t) and p=0onT(t). (1.3)

For simplicity, we will only consider the case v = 2 in this paper, which can supply
some helpful information and a better understanding for the discussion of general
cases of v > 1 (e.g. Remark 2).

Equation (1.1a) is the conservation of the mass, (1.1b) is the conservation of the
momentum. The boundary condition (1.1c¢) states that the pressure (and hence
the density) vanishes along the vacuum boundary, (1.1d) describes that the normal
component of the velocity vanishes on the fixed boundary Ty, (1.1¢) indicates that
the vacuum boundary is moving with the normal component of the fluid velocity,
(1.1f) and (1.1g) are the initial conditions for the density, velocity, domain and
boundary.

To avoid the use of local coordinate charts necessary for arbitrary geometries,
for simplicity, we assume that the initial domain Q C R? at time ¢ = 0 is given by

Q= {(:vl,xg,xg) S RS : ($1,$2) € T2, xr3 € (0, 1)} s
where T? denotes the 2-torus, which can be thought of as the unit square with peri-

odic boundary conditions. This permits the use of one global Cartesian coordinate
system. At t = 0, the reference vacuum boundary is the top boundary

Fl = {(xl,(EQ,.’Eg) S R?) : ($1,$2) S T2, r3 = 1},
while the bottom boundary
Lo = {(z1,22,23) € R : (21, 22) € T?, 23 =0}

is fixed with the boundary condition (1.1d)

We set the unit normal vectors N = (0,0,1) on I'y and N = (0,0,—1) on T'y.
We use the standard basis on R3: e; = (1,0,0), ez = (0,1,0) and e3 = (0,0, 1).
Similarly, the unit tangent vectors on I' = I'y UT'; are given by

Ty =(1,0,0) and Tj=(0,1,0).

Throughout the paper, the repeated indices will stand for the summation with
respect to them in a monomial expression. The k*'-partial derivative of F will be
denoted by F;, = %. Then we have

(div (pu ® u))? :(puiuj)yi = div (pu)uw? + pu - Vu?
which yields that (1.1b) can be rewritten, in view of (1.1a), as
p(Ou+u - Vu) + Vp = 0.
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Thus, the system (1.1) can be rewritten as

Op + div (pu) =0 in Q(¢) x (0,7, (1.4a)
p(Oru+u-Vu)+Vp=0 in Q(t) x (0,77, (1.4Db)
p=0 on I'1(t) x (0,77, (1.4c)
uz =0 on Ty x (0,7, (1.4d)
ol(t) =u-N in (0,77, (1.4e)
(p,u) = (po,uo) in Q x {t =0}, (1.4f)
Q(0) =Q, I'1(0) =T. (1.4g)

With the sound speed given by ¢ := 1/9p/0p and N denoting the outward unit
normal to I'y, the satisfaction of the condition

2

Ocg
_ < - 1.
00 < oy €0 <0 (1.5)

in a small neighborhood of the boundary defines a physical vacuum boundary (cf.
[16]), where ¢y = c|i=o denotes the initial sound speed of the gas and 9 > 0 is
a constant. In other words, the pressure accelerates the boundary in the normal
direction. It is the physical vacuum that makes the study of free boundary problems
of compressible fluids challenging and very interesting, because standard methods
of symmetric hyperbolic systems (cf. [11]) can not be applied directly.
The physical vacuum condition (1.5) for v = 2 is equivalent to the requirement
%%g—%<o onT;. (1.6)
Since pg > 0 in Q, (1.6) implies that for some positive constant C' and z € €2 near
the vacuum boundary I'y,

po(x) = Cdist (z,T), (1.7)

where dist (z,T'1) denotes the distance of = away from T';.

The moving boundary is characteristic because of the evolution law (1.1e), and
the system of conservation laws is degenerate because of the appearance of the
density function as a coefficient in the nonlinear wave equation which governs the
dynamics of the divergence of the velocity of the gas. In turn, weighted estimates
show that this wave equation indeed loses derivatives with respect to the uniformly
hyperbolic non-degenerate case of a compressible liquid, wherein the density takes
the value of a strictly positive constant on the moving boundary [3]. The condi-
tion (1.7) violates the uniform Kreiss-Lopatinskii condition [11] because of resonant
wave speeds at the vacuum boundary for the linearized problem. The methods de-
veloped for symmetric hyperbolic conservation laws would be extremely difficult to
implement for this problem, wherein the degeneracy of the vacuum creates further
difficulties for the linearized estimates.

Now, we transform the system (1.4) in terms of Lagrangian variables. Let n(z, t)
denote the “position” of the gas particle x at time ¢. Thus,

On=wuon fort>0, and n(z,0) ==z, (1.8)

where o denotes the composition, i.e., (v on)(z,t) := u(n(x,t),t).
We let

V=1uonmn, f:POUa A:(VU)_la J = det Vn, a=JA,
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where A is the inverse of the deformation tensor
, 77;,1 77;2 77;,3
V772<7]1,j): 1 M2 N3 |,
773,1 773,2 773,3
J is the Jacobian determinant and a is the classical adjoint of V7, i.e., the transpose
of the cofactor matrix of V), explicitly,
772,2 773,3 - 772,3 773,2 771,3 773,2 - 771,2 773,3 771,2 77;,3 - 771,3 77;2
a=\|n ,3773,1 -1 ,1773,3 n ,1773,3 =N ,3773,1 s 1 —1mn 1M 3 |- (1-9)
772,1 773,2 - 772,2 773,1 771,2 773,1 - 771,1 773,2 771,1 772,2 - 771,2 772,1
Since ® = w3 = 0 on the fixed boundary Ty, according to (1.9), the components
a$ = a3 =0 on Iy, and v3 = 0 on I'y due to v - (0,0,—1) = 0 where (0,0, 1) is
the outward unit normal vector to I'g, then the Lagrangian version of (1.4) can be
written in the fixed reference domain 2 as

fi + fA ;=0 in Q x (0,77, (1.10a)
fui+Alf? =0 in Q x (0,T], (1.10Db)
f=0 onI'; x (0,77, (1.10c)
ay =a3 =0, v3=0 on Ty x (0,T], (1.10d)
(psv,m) = (po, uo, €) in Q x {t =0}, (1.10e)

where e(x) = z denotes the identity map on €.

From the derivative formula of determinants, we have
J :JA{UZJ :agvl,j. (1.11)
It follows from (1.10a) and (1.11) that

fo+ IV =0, or 9,(fJ) =0, ie., f=poJ L, (1.12)

thus, the initial density function pg can be viewed as a parameter in compressible
Euler equations. 4 ,
Using the identity 47 = J~'al, we write (1.10) as

povi +al (pgJ ) ; =0 in Q x (0,77, (1.13a)
po =10 on I'y, (1.13b)
ai =a3=0, v3=0 on I'g x (0,77, (1.13c)
(v,m) = (uo,e) in Q x {t =0}, (1.13d)

with po(z) > Cdist (z,T'1) for & € Q near T';.

To understand the behavior of vacuum states is an important problem in gas
and fluid dynamics. In particular, the physical vacuum, in which the boundary
moves with a nontrivial finite normal acceleration, naturally arises in the study of
the motion of gaseous stars or shallow water [10]. Despite its importance, there are
only few mathematical results available near vacuum. The main difficulty lies in the
fact that the physical systems become degenerate along the vacuum boundary. The
existence and uniqueness for the three-dimensional compressible Euler equations
modeling a liquid rather than a gas was established in [13] where the density is
positive on the vacuum boundary. Trakhinin provided an alternative proof for the
existence of a compressible liquid, employing a solution strategy based on symmetric
hyperbolic systems combined with the Nash-Moser iteration in [20].
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The local existence for the physical vacuum singularity can be found in the
recent papers by Jang and Masmoudi [9,10] and by Coutand and Shkoller [6,7] for
the one-dimensional and three-dimensional compressible gases. Coutand, Lindblad
and Shkoller [4] established a priori estimates based on time differentiated energy
estimates and elliptic estimates for normal derivatives for v = 2 with py € H*(2)
where the energy function was given by

4 4

_ —=4—/ —=4—

B(t) =Y 102®I5-¢ + Y [lo0d" 02 V@3 + Iv/md' o v(®)]
£=0

£=0

3
_ =4
+ Z (P00 T=2(t)13_y + |lcurl, v(t)||3 + || p0d curl, v(t)]|3,
=0

where the claimed interpolation estimate (cf. [4, Eq.(6.12)])

0
[l Z2 0, 7c35(0y) < CUlvlslnlla) 7 + Clloell e msmzap Inll 2o, rsma () (1.14)

had played a crucial role.

We will not attempt to address exhaustive references in this paper. For more
related references, we refer the interested reader to [7,10] and references therein for
a nice history of the analysis of compressible Euler equations.

In the present paper, we will use a similar argument as in [4] to consider the
cases of general initial densities. We will rigorously prove a new mixed space-time
interpolation inequality under the framework of Lebesgue spaces which will play a
vital role in our energy estimates, rather than the framework of Lebesgue spaces
for time but Sobolev spaces for spatial variables in bounded domain, namely (1.14),
used in [4], then we can obtain some extra estimates of space-time derivatives of
v(t) in L3(Q). In order to deal with some sub-higher order terms (e.g., (5.164)) in
the argument for the time derivatives, we have to investigate the fifth order energy
estimates which are closed with themselves.

We now derive the physical energy of the system (1.13). From (1.11), the Piola
identity (A.13) given in Section A.3, we get

%8t(po|v\2) =povivy = —alv’ (p%JfQ)’j = —(afv2 (ng*Q)) o+ Jipgd 2

s

= — 0t = (a]v'p3T )

Since pg = 0 on the boundary 'y and a3v® = 0 on 'y, integrating over 2 yields,
with the help of Gauss’ theorem, that

Eolt)i= [ (Gm(@lota )l + i) .0) do

1 _
=§||\/POU||% +|lpod 12|13 = Eo(0)

conserves for all ¢ > 0.

Although the physical energy is a conserved quantity, it is far too weak for the
purposes of constructing solutions. Instead, we introduce the following r*" order
energy function

- —r—0 —=r—4
B () =Y (10202 + oy 2029 v()l13 + 100029 Tn()]I3
£=0
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r—1
+ 37 (10 0Ol g2 + l0dZ T 2B
=0

+ [leurl, v(#)[|2_; + ||p05rcur1n v(t)|)3.
Now, we state our main result as follows.

Theorem 1.1. Let v = 2. Suppose that (n(t),v(t)) is a smooth solution of the sys-
tem (1.8) and (1.13) on a time interval [0, T'] satisfying the initial bounds E5(0) <
oo and that the initial density po > 0 in Q and py € H°(Q) satisfies the physical
vacuum condition (1.7). Then there exists a T = T(E5(0)) > 0 so small that the
energy function E5(t) constructed from the solution (n(t),v(t)) satisfies the a priori
estimate

sup Es5(t) < C(E5(0)).
[0,T]

Remark 1. The same arguments and the results hold true if the bottom boundary
Ty is also a moving vacuum boundary, i.e., by changing the boundary condition
(1.1d) into p = 0 on T'g(t) x (0,7, which will not cause any additional difficulties
except for the transformation of coordinates.

Remark 2. For the general cases v > 1 with general densities, we give some further
remarks. We think that they are much more different from the special case v = 2.
They need to reform the energy function in order to get a priori estimates. For the
cases 7 > 2, it seems to be similar to the case vy = 2 due to y—1 > /2 in view of the

exponent of the weight pg/ ? and pg_l and weighted Sobolev embedding relations

given in Section A.1, but it is not easy to deal with the weight pg/ % in energy

estimates in view of the higher order Hardy inequality. For the cases 1 < vy < 2,
one have to use the weight pg71 instead of pg/ % in constructing the energy function
according to the physical vacuum condition, the higher order Hardy inequality and
weighted Sobolev embedding relations, especially for the cases 3/2 < v < 2, however
one must deal with many extra, important and difficult remainder integrals in the
estimates of every horizontal, time or mixed derivatives. For the cases 1 < v < 3/2,

it might be different from and difficult than the above cases.

Throughout the paper, we will use the following notation: two-dimensional gra-
dient vector or horizontal derivative @ = (91, 9z), the HS(€2) interior norm ||| H:(9)
the H*(f) interior norm || - ||s when p = 2, and the H*(T") boundary norm | - |.
The component of a matrix M at the i*" row and the j* column will be denoted
by M; Sometimes, we will use “<” to stand for “< C” with a generic constant C.
For more notations, one can read the appendix.

The rest of this paper is organized as follows. We give a mixed space-time
interpolation inequality in Section 2, and derive the zero-th order energy estimates
in Section 3 and the curl estimates in Section 4. Since the standard energy method
is very problematic due to the degeneracy of pg, we first derive the estimates of the
horizontal and time derivatives in Sections 5.1-5.3 and then obtain the estimates of
normal or full derivatives through the elliptic-type estimates in Section 6. We will
complete the proof of the a priori estimates in Section 7. Finally, we will give some
preliminaries in Appendix A. Precisely, we introduce some notations and weighted
Sobolev spaces in Section A.1; we recall the higher-order Hardy-type inequality and
Hodge’s decomposition elliptic estimates in Section A.2; we give the properties of



FREE-BOUNDARY COMPRESSIBLE EULER IN VACUUM 2891

the determinant .J, the inverse of the deformation tensor A and the transpose of
the cofactor matrix a in Section A.3.

2. A mixed space-time interpolation inequality. In this section, we prove a
useful mixed space-time interpolation inequality which will play a vital role in our
energy estimates.

Proposition 1 (Mixed interpolation inequality). Let F(t,x) be a scalar or vector-
valued function fort € [0,T], T > 0 and z € Q C R3. Assume that F;(0,-) € L3(),
F € L*([0,T); L5(Q)) and Fy, € L*([0,T]; L*(2)), then we have

IF 1 Zs 0,11 x0) < TZ/S[IIFt( )Ilim)+[SOU%IIF(t)IILG(sz)IIFn(t)Ilwm7 (2.1)

where C' is a constant independent of T,  and F.

Proof. Notice that
2|Fy|(0:| Fi) Fy = 04(|Fi|*)Fy = 2(Fy - Fu)Fy < 2|Fy*|Fye

implies that |0:(|F¢|)F:| < |F¢||Fi|- Then, by the Fubini theorem, integration
by parts with respect to time, the fundamental theorem of calculus, the Holder
inequality and the Minkowski inequality, we have

||Ft||L3(OT]><Q //|Ft Bd.’L‘dt // |Ft|Ft Ftdtdl‘
T
Q 0
T
T
<2/ (/ Ftt|Ft|dt> \F(T \dm+/|Ft (/ |Ft|dt> do
Q 0
vz f / (|l | Fldadt
0JQ

T T
<C|F(T)| oo / Il Flll ooyt + CIF) 250 / | Full ooyt

+ CIFel s o, 71 [ Fetll 22 (0,71 <) | 'l o (fo, 71 % 2)

SCT*3|| Rl 1o o,y x)

[F:(0)]175 (62 + [SOU% |F|L6(Sl)||Ftt||L2(Sl)] ;

which implies the desired inequality by eliminating || F}||z3(j0,7)x) from both sides
of the inequality. O

3. A priori assumption and the zero-th order energy estimates. We assume
that we have smooth solutions n on a time interval [0,7], and that for all such
solutions, the time T > 0 is taken sufficiently small so that for ¢ € [0, 7],

S <J() < . (3.1)
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Once we establish the a priori bounds, we can ensure that our solution verifies the
assumption (3.1) by means of the fundamental theorem of calculus. Then, by (1.9)
and Sobolev’s embedding H?(2) C L>(12), we have for ¢ € [0, 77,

()l L= (@) <ClIn(@)ll2,

la(®)llz= (@) <CIVAO) 7= (o) < Clln(®)l3. (3.3)
It follows from @ = JA and (3.1) that
[A®) |~ ) <ITTH)a(t) ]| e () < Clln(t)]]3- (3.4)

Now, we prove the following zero-th order energy estimates.
Proposition 2. It holds for r > 4

sup [l08/0l13 + llp07 2 3] < My + CTP(sup E, (1).
[0,7] [0,7]

Proof. Since the proof is standard, we omit the details. O

4. The curl estimates. Taking the Lagrangian curl of (1.13a) yields that
EljiA;UZ’S =0, or curl,v =0. (4.1)
We can obtain the following proposition.

Proposition 3. For allt € (0,T], we have for r > 4
r—1

S lleurlO2n(t) 2y ¢+ 3 0~ eurl 92n(t) [ < My + CTP(sup E, (1)),
=0 =0 [0,T]
(4.2)

Proof. Since the proof is similar to those in [4], we omit the details. O

5. The estimates for the horizontal and time derivatives.

5.1. The estimates for the horizontal derivatives. We have the following es-
timates.

Proposition 4. Let r € {4,5}. For small 6 > 0 and the constant My depending on
1/4, it holds

1/2R7" A7 =7 5 o
sup [l T o015 + lpod IO + oD e (O + 0712
<M() + o sup Er(t) + CTP(sup Er(t))v
[0,7] [0,7]
where n* =n-T, fora=1,2.
Proof. Letting @ act on (1.13a), then we have
S T i+ Y 0l ald (%) =0,
=0 =0

where C! is the binomial coefficient. Taking the L2(Q)-inner product with 9’ v, we
obtain

1d — °L o
S5 Qp0|a vPdz+ Y T =Y Im. (5.1)
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Here,

Ty : /8a oaJ 8de Ty ::/af(a 27 )'grvidx
Q

r—1
Js ::/a{(pﬁéﬂ]‘) 9 v'd Ja ZC /8 poavtavd
Q

=

r—1
== |7 w0 () v
Jo 1= - cl/ 9201 2) 9 vida,
A

2893

Step 1. Analysis of the integral J;. We use the identity (A.13) to integrate by

parts with respect to z; to find that

J=— / gra{ng_Qérvi’j de+ | 9 a0 viptJ 2dxydx,
Q Lo

—/graggrvi,j paJ 2dz,
Q

due to the boundary conditions (1.13b) and (1.13c).
It follows from (A.14) that

—/5“1 (5771,1@ J Y (alaf — ! al))a v’ ped 2da
Q

—/grnl7k A;cgrvid» Al p2 g Ve (5.2)
/a 'y AFO W Al piJ " d (5.3)
Cffl/Qgrisnﬂkgs “alaf — ot al)) v piJ 2dx. (5.4)
Since v = 1, we get
]. d . =T _ =T =r 7 y _
(5,2):_5£/ \div,, @ n*p3J 1dx+/98 n' AT ;0 Al pyJ  da
/|d1v,70 0220y da
1 —=r =T 4 i
= _ 7—/ \dlvna n2p2Jtdx + f/ 0 nl,kﬁ n'; 5,5(A§“Af)pg(]*1d:c
2 dt 2 Jo
/|d1vn3 0|2 p2opJ tda.

For the integral (5.3), since v = 1, it holds
d Tll,k AFAID

=0,(0 ', A¥S' ' ; A]) "' AFD Al D ' O 9, (AFA]).

It follows from (A.2) that
't AFAJD
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— . lor | —=r )
=500 19,0 nf? — fewrl, @] - S0’ 3w’ ou(AFA)). (5.5)

Thus, we have

(5.3)

DN | =
&.‘&

l\')\»—l N —

/ [\Vngrnﬁ — |curl, grnﬂ P2 tdx

+

/ [|V,,5T77|2 — |curl, grnﬂ paJ ~div, vdx

/8 Ui ka 77 at(AkAJ)Po J " dz.
It follows that
T 1 7" ... 7" =7 _
/ J1dt :5/Q [|V,78 n(T)* — |div, @ n(T)|*> — |curl, 0 n(T)|2] peJ N (T)dx
0

2—1 (T — .
+— / [\vna nl? — |div, & n|* — |curl, 8 7| }po ~tdiv,, vdzdt
0Ja

1 T =T —=r : . T
—5// 3l ' 0 (AL AT —AgAf)ngfldde/ (5.4)dt.
0JQ 0

It is clear that

T
// [|V7,5T77|2 — |div, & [ — |curl, grnﬂ paJ 1t div, vdwdt
0/a

<CT sup [|pod VlZ[lv]lsllnlls < CTP(sup E,(t)),
[0,T7] (0,77
and

T . .
/ / ' O 0 (AFA] — ATAF)pR T dadt
0JQ

<CT sup lod” Vi3 llolls]InlI3

<CTP(sup E,(t)).
(0,77

Now, we analyze the integral foT (5.4)dt. We will use integration by parts in time
for the cases s = 1 and s = 2, while we have to use integration by parts with respect
to spatial variables for the case s =7 — 1.

Case 1. s = 1. From integration by parts with respect to time, we get

(r—1) // JAl —Afa{)érvi,jng*2dxdt (5.6)
(r_1)/ﬁ“”ka(ﬂAl— al) T b (5.7)
(r—1 //8 1l ]Ak AFq )87) paJ " 2dadt (5.8)
(r—1) //a Y 0,8 (al Al — Ata] ) 3o, g 2wt (5.9)

r—1//a nka JAl Akg )an 28, T 2dxdt. (5.10)
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It is clear that, by Holder’s inequality and the fundamental theorem of calculus
twice,

T
—r—1 —r
15.7)] <C | po / 5 0, ndt|| 11000 Vn(T)lloln(T)]
0
0
t—’r—l —r—1
<CT (sup Po/a Fvndt' ||+ [lpod 8N77(0)||o>

[0,T] 0 0

Nood V(1) lolln(T)I13

2
<CT? sup (Poarlatzvnﬂo +Y° ||P05r15évﬂ(0)||0>

[0,7] =

No0d V(1) lolln ()13

<My + CT?*P(sup E,(t)),
(0,7]

T
|(5.8)] <CT sup( ,00/ 9" o2Vt
0

(0,7]

—r—1 =T
+ [|po0 6W77(0)|o> 1000 Vnllol|nl|
0

2
—r—1 —=r—1 —=r
<CT? [SOU% (Hpoa 7 Vnllo + E llpo0 8£V77(0)||0> 1000 Vnllolinll3
; =1

<My + CT?*P(sup E,(t)),
(0,77

and
—r—1 —r
(5.10)] <CT|poll2 sup 12" Vnllo P(Inlla) I Vll2ll 000" Va0
<My + CT2P(Sup E.(t)).
[0,T7]

We can rewrite (5.9) as, for 5 € {1,2}

T
(5.9) :3//951_1#,5 0,0 (afAf - A?af’) .]725'“771',3 pedxdt (5.11)
0

T
+ 3// grflnl,k 0,0 (afAf - Afaf) J720' ' 4 pRdudt. (5.12)

0/
Obviously, we have from the Holder inequality and Sobolev’s embedding theorem

that
(5.11)] <CT [sou% 100 0|1 P(|[1llas [0]l5, 18V [|1) 008 Vllo

<CT sup <||pO||3||77||r + II/)05TV77||0) P([nllas [olls, 1090 [11)lp0d" Vnllo

<My + CTP(sup E.(t)).
[0,7]

By integration by parts, it yields

T
(5.12) = — 3// 87“_117[7,65 0:0 (afAf - Afalﬁ) ' n'J 2 pldxdt (5.13)
0Jo
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T
— 3// 5%1171 & 6@(@?14? — Afaf) ' n'J 2 pRdadt (5.14)
0JQ ' B

)

T
- 3// gr_lnlvk 0,0 (afAf - Afaf) grni(‘fﬁpg) g dadt. (5.15)
0JQ ’
It is easy to see that

(5-13)] <CT sup 1pod" Vnllo |0V ol P([|nll4)]lp0d 1l < Mo + CTP(E)H% E.(1)),
0, )

and
—=r—1 = =T =
(5.15) <CT EJHT% 18" Vnllol[oVull1P([[nll4)llpod nll1 (IlpollL= (o) + [10p0ll Lo ()
<My + CTP(sup E.(t)).
(0,77

In order to estimate (5.14), we first consider the estimate of || D"~ v]|s(j0,1)x0)
where D"~! denotes all the derivatives 8 for the multi-index § = (6y,69,63) and
0 < |0| < r—1. By Proposition 1 with FF = D"~ and the Sobolev embedding
theorem, we have

ID™ " 0l1 s 0,7y x) SCT?/? [”DT_IU(O)HLS(Q) * o) 1D 0| L2y |1l o o)
<Mo + CT"® sup |[vy|r—1 | n]l.
0,T7]
<My + CT?3P(sup E,(t)).
(0,7]
Thus, we obtain

ID" 0l o770 ) <Mo +CT2/3P([SUP]E r(t))- (5.16)
0,7

By the Holder inequality, the Sobolev embedding theorem, the Cauchy inequality
and (5.16), we easily get

—2 —3 —4
|(5.14)] SCT*|pol|2 10 Vv | L3 0,71 x2) sup 10"Vnllollpod nllx

=2 =3 —=4
<CTY?)18"Vl[7s(0,11x62) + CTllpoll3 [SOUTE] 10" Vnll§llpod nll3

<CT'/? (Mo + CT?/3 P(sup Er(t))) + My + CTP(sup E,.(t))
[0,7] [0,7]

<My + CTP(sup E,(t)).
[0.7]

Hence, we obtain

[(5.6)] <My + CTP(sup E.(t)).
(0,7]

Case 2. s = 2. By integration by parts with respect to time, it yields

-Cr 1//8 - ka (Alaf — ak AND v ; p2J2dxdt (5.17)

=-C%, 8T Lo (Alaf — aFADT n' ;ped Pdx (5.18)
N l 0 .
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T
+0371// gTizvl,k 52(A§af - afA{)grni’j p2J " 2dxdt (5.19)
0Ja
T
+Cry // gr_QTll,k 523:&(1%&? — afA{)grniyj paJ " 2dxdt (5.20)
+C% 1// a Ajal —akAJ)(“)Tni,j pedJ 2dxdt. (5.21)

Applying the fundamental theorem of calculus yields for a small § > 0
=r—2 =T
(5 18)] <Cllpoll2ll0” V(D)L PIn(T))IVa(T) 1 llped Vi(T)llo

T
<C||po|2P(77(T)II4777(T)|Ir)</0 Vudt +|Vn(0)||1> 1pod" V(T o

<My + d sup E,.(t) + CTP(sup E,.(t)).
[0,T] [0,7]

1

Similar to (5.14), we can get

[(5.19)] + [(5.20)| <My + d sup E,.(t) + CTP(sup E,.(t)).
[0,7] [0,7]

By an LS-LS-LS-L? Holder inequality and the Sobolev embedding theorem, we
get

(5.21)| <M + CTP(sup E,.(t)).
[0,7]

Therefore, we have obtained

|(5.17)| <KMo + d sup E,.(t) + CTP(sup E.(t)).
[0,T] [0,7]

Case 3. s =r — 1. We write the space-time integral as, for 8 € {1,2}

// on' o 1( TAF — Aka)3 v j p2J2dxdt (5.22)
// an' 9 ﬁA’c falﬁ)grviﬁ peJ 2dxdt (5.23)
// 877 a- 3A’8 APa)d vl 5 pRJ 2 dudt. (5.24)
By integration by parts with respect to xg, we have
// on' k/j@ (af AF — Afa'l@)érving_dedt (5.25)
+ /O/anl,k 7! (a?ﬁ A — Afafﬁ )0 v p2J 2 dadt (5.26)
+ /T/ gnl’k gril(a?Af’ﬁ - A?,ﬂ alﬂ)grving_2dmdt (5.27)
/ / B 0 al A — AFaP)T V (B) T2 dadt (5.28)

/ / a0 (P Al — A¥a?)D ViR T2 5 dudt. (5.29)
0JQ



2808 CHENGCHUN HAO
From (A.14), it follows that

(5.25) / / ol 50 [anquAﬁ(Aqu A’“Aq)} 92 2dwdt  (5.30)
+ /0 /Q a0 [énpyq JAZB(A’;A;?—AgAf)} 9 vip2  2dwdt  (5.31)
+/OT/Qanl,kﬁaT‘2 [OnF , JAB(AFAT — ATAF) O ' p3J 2dadt.  (5.32)

We can write
/ / Tl 50 Onp AP (A% AF — A’;A?‘)} 9 vip2J 2 dxdt
// Tl 0y [anngAﬁ(ASAa AQAS)] F vipR I 2dadt

/ / ' 450 P o AD(ASAF — AEAMD W R T dudt (5.33)

m =r—2—m - o
+ Z cm 2/0/ a0 0 [JA?(ApAf—A’;Al )}
m=0
-9 Wi pR T2 dadt (5.34)

T
+ / / 577{(155’"‘177{3/1?(142/1& AS A} v pd T dadt (5.35)
0/

r— T
m = —=m-+ =r—2—m o o
+Y o, /O /Q o' 0 50 [JAE(AgAl _APA?)}
m=0

-9 W pR I 2 dadt. (5.36)
It is easy to see that
=2 =T
(5.33)] <CT|lpoll3” sup 18"Vl llpod 0l P([nlls) | s >0 v o
<My + CTP(sup E,(t)),
(0,77
and by an L8-L5-L5-L? Holder inequality and the Sobolev embedding theorem,
|(5.34)] +1(5.36)| <CT|lpol3 sup P(lnlla, 1) ll05"*8" vllo
<My + CTP(sup E,(t)).
[0,T]

By using integration by parts with respect to time, we have

3 a1 «a « i -
(5.35) :/Qanl,aﬁa W5 AL (ASAY — ASAP)D ' p3 ]~ da . (5.37)
T
- / Dl s 0 5 AP (ABAF — ACADND 27 dudt (5.38)
Q
Tr_ —=r—1 =T
- / / ' o5 @ WP 5 AL (ASAY — ASADD i pd T dwdt (5.39)
0JQ

T
0
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Obviously, it yields by using the fundamental theorem of calculus twice

T*S
[)0/ 0 BtVndt
0

) P(ln(T)s, [In(T)ll) lp0d ()l

)

By the Holder inequality, the Sobolev embedding theorem and the fundamental
theorem of calculus, we get
0)

(5.37) <C (PO|3||77|3 +
0

T
Lo / 33 8152 Vﬂdt
0

—=3
<C|pollslnlls + CT <|p08 9, Vn(0)[[o +

- P([0(T), In(T)l) 1008 (Tl

<My + CTP(sup E,(t)).
[0,7]

o =3 —=r—1 =T
(5.38) <CT[SOHYI3] 100" en[1110"~Vnllollpod nll+ L([Inlls)

T _g
po/ AV
0

=3
<CT [Sup] <||p0||3||v|3 + [1p0d"0:Vn(0)lo +
0,T

lpod" 0l P(l[nlls. nll-)
<My + CTP(sup E.(t)).
T

)

Similarly, we have

. =3 —=r—1 =T
(5.39) <CT[SOU711)] 19 n1l11p00" ~3:Vnllollpod nll1P(l|nll3)
<My + CTP(sup E,(t)),
[0,7]
and
=3 —=r—1 —=r
(5.40) <CT\pol|2 [S(/)u% 19" nll1lo Vnllol[Vollillpod nllx P(lInlls)
<My + CTP(sup E,(t)).
[0,7]

We can deal with (5.31) and (5.32) as the same arguments as for (5.30). Thus, we
obtain

1(5.25)] < My + CTP(sup Ey (1)), (5.41)
0.7]
We write
Tr_ =r—1 U
(5.26) = / /Q T 3P g AL(APAF — AR APYD i 2T ddt (5.42)
0

T
+ / /Q Enl,ké’"’lnpvaﬁ AB(AFAY — AT AF)D ' p} T~ dadt (5.43)
0

T
+ / 95771@5_177”735,45(14?1413—A;?’Af“)grving‘ldxdt (5.44)
0

r—2 T
+ ZCZ”,I/O/QEnlvkémnpyqﬁé“l‘m JAY(ATAF — AFAD)]
m=0

9 v pRJ 2dadt (5.45)
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r—2
m —=r—1-m o o
+ZCT—1//877 ka "’ ap0 [JAﬁ(AfAz —Aj A;C)]
m=0

-8 v pRJ 2 dadt (5.46)
— m —=r—1—-m o o
+ZCT_1//877 " P 350 [JAS(AQ A} — AP AD)]
m=0
-8 v R 2dadt. (5.47)

It is easy to see that
. 1/2 =7 1/257
|(5.42)] + |(5.43)] + |(5.44)| <CTl|poll3’ sup nllallpod” VnlloP(lInlls) e @ v o

<My + CTP(sup E.(t)).
(0,77

By the Holder inequality and the Sobolev embedding theorem, we have
|(5.45)] + 1(5.46)| + |(5.47)| <CT|poll3 sup o5 v llo P([Inlla, lInll)

<My + CTP(sup E.(t)).
(0,77

Hence,

1(5.26)| <My + CTP(sup E,(t)). (5.48)
[0.7]

y (A.10), we have
//an 80 1 1 45 JA’;(A;?A?—A?A;Z)) 9" pg T2 dudt
:/O/anlchr_ n .8 Al;(AgAf —AfA?)grvipgjfldxdt (5.49)

r—2
m =r—1-m
+ ZCM//(% cIP 45 (ap(aza7 — A7 AD)
m=0

-9 v pR I 2 dadt. (5.50)
By the Holder inequality and the Sobolev embedding theorem, we have

5 1/25
|(5.49)] <CT[SOH% llallpod VnlloP(Inlls) o vloll o5
<My 4+ CTP(sup E.(1)),
(0,77
and similar to (5.45)

1(5.50)] <Mo + CTP(sup E,(t)).
[0,T7]

Thus,

1(5.27)] <Mo + CTP(sup E,(t)). (5.51)
[0.7]

For (5.28) and (5.29), it is easy to have

3/2 3/2 1/25
1(5.28)] + |(5.29)| <CT([lpoll3’* + llpoll3 ){s(,)u% "> vlloP(|[nlla, |1nll-)
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<My + CTP(sup E,(t)).
[0,7]
Hence,

[(5.23)] <My + CTP(sup E,(t)). (5.52)
[0,7]

By integration by parts with respect to time, it holds

(5.24) /an N aBAP — APa®YT i 4 2T 2da ; (5.53)
: —
// ' s dAﬁ )3 n' 3P0 2J2dxdt (5.54)
/ / Tt 50 0 (a3AP — AP 4 pRI 2 dwdt (5.55)
Tr_ —=r—1 =r
—|—// 8771758 (a?Af—Afa?)@ ' 5 P50 dxdt. (5.56)
0/

It is easy to see that by applying the fundamental theorem of calculus three times

1(5.53)] <CIn(T)||allpod” V(T) o P(|n]]3)
/T3Vvdt
0

T —=r—1
. ,00/ 0 atV'I]dt
0
1)

—=r—2
+ llpoll2ll0 “Vnllx
0
T72
/8Vvdt
0

=3
+(1 = sgn(5 —7))llpoll2ll0”Vnllx

1

—=r—3
+lleoll2ll0” " Vnlly

L3(Q)

T —=r—4
/ 0 Vodt
0

<My + CTP(sup E,(t)).
(0,7

y (A.14) and (A.10), we have

(5.54) // 'l zd P o JAIB(A?AS“ - A?ai)) 5T77173 pJ 2dxdt  (5.57)
// ol 59 (377 o JAD(APAY — Afa?)) an g dadt  (5.58)

// ' 0 P o JA?(AgA? - Afja?)) gr”]iys p2J " 2dxdt. (5.59)
We split (5.57) into two mtegrals, ie.,

T
(5.57) :/ ' s gr_lnpva JA?(A;?’A; - Af‘ag)grniﬁ peJ tdxdt (5.60)

Q
r—3 T _ . 1 o
+yoom, / / ot g0 9T (JAf(A?Ag —Af‘af;))
m=0 0/Q
'’ 5 g 2dwdt. (5.61)
Obviously, we see that

N =2 =T
|(5.60)| <CT sup 18701111200 nll P(I[nll3)llpod” Vnllo < Mo +CTP([s0u713]E r(1)),
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and

. =2 —r
[(5.61)] <CT|pol2 E)ujg) 07 v[[1 P(|[nll-)llpod Vnllo < Mo + CTP([S(f)u%)] E.(t)).

Both (5.58) and (5.59) can be dealt with as the same argument as for (5.57). Thus,
we obtain

(5.54)| <My + CTP(sup E,(t)).
[0,7]

By (A.15) and (A.11), we have
(5.55) = / / an' 50 ! {Up JA(A3AS — Agag)} '’ 5 paJ 2dwdt (5.62)
// on' ﬁa - L JAf(A‘?Af‘ — Afad)] grni,?, peJ 2dxdt  (5.63)

+ /O /Q 577%5“ vp,a JA?(A;’;A;"—A;‘;CL?)] '’ 5 p3J 2dwdt.  (5.64)

We write

T
://énl’ﬁgrilvl’ya AIE(A?AO‘ Afa 3)8 n' 3pOJ Ydzdt (5.65)
0JQ
Gl / / ' 50" G0 | TA)(ABAS — A2ad)
— 0JQ

-grr]i p2J " 2dxdt. 5.66
3P0

Then, by the same arguments as for (5.44) and (5.47), we can estimate (5.65) and
(5.66), and then

|(5.55)] <My + CTP(sup E.(t)).
[0,7]

It is easy to see that (5.56) has the same bounds. Thus, we obtain the estimates of
(5.24) and then of (5.22), i.e

\(9.22)| <My + CTP(sup E,.(t)).
[0,7]

Case 4. s =r — 2 and r = 5. Integration by parts with respect to time gives

//817 k(’? “Yalaf — at al))av,jpoJ 2dxdt

/82nl,€8 “alak — ot al)>8 n' et~ de‘
//8 v “alak —ak al))a ' pgd 2dadt
//877 k&g ~“alaf — at al))an paJ " 2dadt

//8 ka “alak — at al)>8n ROy 2dudt,

which can be controlled by My + CTP(supyy ) E5(t)) from the Hélder inequality
and the fundamental theorem of calculus.
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Therefore, we obtain

/0 oy

Step 2. Analysis of the integral J,. Similar to those of J;, by (1.13b), (1.13c)
and n; = v, we have

<My + d sup E,(t) + CTP(sup E,(t)).
[0,7] [0,7]

Jg = — / aggrng_Qgrviyj dx—i—/ a?grng_Qgrvidxlde
Q Fo
:—/ﬁpgAnglgrn;j dz.
Q
Integration by parts shows that
T T i =T 4 =T i =T
/ Jo(t)dt :// grpg(Agjfl)ta n' ;dzdt — / d paAlJ 1 ! jdz
0 0/o ’ Q ’
T "7 y "7 4
:// 8 pR(ALT), ' dudt
0Ja 7
- [T (az + <A3J-1>tdt> 9" (T)da,
Q 0

which yields, by Holder’s inequality and Sobolev’s embedding theorem, that

T ar 2
/ o (t)dt 9 ri
0

Po
<My + é sup E,.(t) + CTP(sup E.(t)),
where we require pg € H™**(47)(Q) because, for r < 5,
[(r=1)/2]

t=T

<C

<T s 1900 VllollvllslImll3 + [lpod" div nllo)
0

)

[0,7] [0,7]

b~ =r—m

=T _m J/r—m

‘3 P% < ZT: cm 9" pod Po <9 Z cm d" pod Po

Po — " Po h — " Po

0 m=0 0 m=0 0
= =2

=T 0 —=r—1 0 —=r—2

<l mlo+ |22 15 mlo+ 0 |22 15l
0 |2 0

<C|lpollr + Cllpollallpoll-—1 + Clipollsllpoll»

<Cllpollmax(a,r), (5.67)
by the higher order Hardy inequality.
Step 3. Analysis of the integral J3. Similar to those of Jq, by (1.13b), (1.13c),
(A.12) and n; = v, we have

33:—/p35rJ_2afgrvi,j dac—l—/ pgng_Qafgrvidxldxg
Q To
:2/ p(z)gT—l(J—:ng)ag‘g"viJ dz
Q
:Q/ﬁJAggrvi’j peJ 2dx (5.68)
Q

r—2
+23 s /Q 9 38 g6l v pRda, (5.69)
s=0
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Due to v =1y, we get
(5.68 / ' n* lAk('? vt AlpRg e (5.70)
2 r—1—s l —s+1 k j 2
+220H/a L0 AP T2 dx (5.71)
:£/Qgr77k,z Afﬁrnid Al 2T Yda + (5.71)
ATk AT i AL AT 2 71
+/ o’ 0 ; AyAdivyvpgJ ™ dx (5.72)
Q
- / T T (AL A 3T (5.73)
Q
Noticing that @ div7(0) = 0, integrating over [0, 7] yields

/T (5.68)dt’:/ |divna’"n(T)2p§J—1(T)dx+/T[(5.72)+(5.73)+(5.71)]dt.
0 Q 0

By Holder’s inequality and Sobolev’s embedding theorem, we obtain

T
/ (5.72) + (5.73)dt
0

<CT sup lod" Vi3 llvllsInll§ < CTP([bup]E r(1))-

By integration by parts we have

T .
/ (5.711) = 1// e al.d nngrviJ- paJ 2 Aldxdt
0

:722 1//3’” e T R R Al dwdt (5.74)
. —r—1—s l —s+2 k} ] 2 7—2 AJ
220 . a 20 pRI T2 Aldwdt (5.75)

722 / / TS k8 D03 2 AT ddt.
(5.76)

We first consider (5.74) and split it into four cases.

Case 1. s = 0. By an L?-L>°-L? Holder inequality, the Sobolev embedding theorem

ar—1
and the fundamental theorem of calculus for the norm [|pgd ~ Vol|o, we can easily
get

< My + CTP(sup E.(t)).

T
2 /graignkylgr v JpOJ 2Ajclxdt
0Ja [0,T]

Case 2. s = 1. Integration by parts yields

—2C} 1//8T ' 16 n* 18 "y ,jng_QAgdxdt (5.77)

=2CT1_1//57@25277’“7157‘_2111'7]- paJ 2 Al dadt (5.78)
0/Ja



FREE-BOUNDARY COMPRESSIBLE EULER IN VACUUM 2905
—=r—1 =r—2 ; _ i
+2Ct // 9 ald nk’l 9 o' pid 2 Aldxdt (5.79)

+20 / / ka9 D(p3 T2 AT dwdt. (5.80)
0

By an L2-L5-L3 Hélder inequality, (5.16) and the Sobolev embedding theorem, we
get

[(5.78)] + [(5.80)| < Moy + CTP(sup E,(t)).
[0,7]
By using (A.14), it holds
(5.79) = 2C1_ 1// & o, J(ALAL — ATALY & 0k 7P p2 2 Al dudt
=2C;_ 1// P g (ALAS — AQA;,)E nk,lé’“’ o' paJ LAl dadt (5.81)

+2C,_ 1//8 U S (AP AR — A AN LD T R T Al dndt (5.82)

+2C,L 2// a5 8T (A AL — Al AL)]
Ok 0 R A dudt (5.83)

+20, Zcr 2// gt g [J(AfA;’;—AiAg)]
9 n ,ﬁa “vi J peJ 2 Al dudt. (5.84)

By using the L5-L2-L3 Holder inequality for (5.81) and L?-L5-L3 Holder inequality
for (5.82) on higher order terms, together with (5.16) and the Sobolev embedding
theorem, we get
[(5.81)] 4+ [(5.82)] < My + CTP(sup E.(t)).
0,7

From the L°°-L5-L2-L3 Holder inequality for the case m = 0 and LS-L*°-L2-L3
Holder inequality for the case 1 < m < r — 3 on higher order terms, together with
(5.16) and the Sobolev embedding theorem, we can get the same bounds for (5.83)
and (5.84). Then, we obtain

(5.77)| < My + CTP(sup E,(t)).
[0.7]

Case 3. s = 2. By integration by parts, it yields

—202_ 1//8T ? 18 n* 18 Ly PRI T2 Al dadt (5.85)

=202 1/ 7 al.d nngr_zvi,j p2J 2 Al dadt (5.86)
Q

+20%. 1//ar 2akd'nt 0 p2 2 A dadt (5.87)

+207_, / / &k k0 D(p3 AT dudt. (5.88)
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It is clear that C!_;(5.86) = C2_;(5.79) while the latter has been just estimated.
By an LS-L2-L3 Holder inequality for higher order terms, (5.16) and the Sobolev
embedding theorem, we get

|(5.87) + |(5.88)| < Mg + CTP(sup E,(t)).
[0,T]

That is, (5.85) has the same bound Mo + CTP(supy 1) Er(t)).
Case 4. s =r — 2 with r = 5. It is easy to see that
Tr o 4, =4, ;
// 9 and o' pgJ 2 Aldxdt (5.89)
0Ja

can be bounded by the desired bound in view of Holder’s inequality and the funda-
mental theorem of calculus.
Next, we consider (5.75). Since for the case s =0

—2//8T ' lan la v,jng_2Agd:vdt:

and for the case s =1

- : cl,
—20_ 1//8 k@t 0 p2 2 A dudt = i (5.89),

r—1

we have the desired bounds. For the case s = 2, we have, by Holder’s inequality
and the Sobolev embedding theorem and the fundamental theorem of calculus, that

—202_ 1//# k@t 0 p2 2 A dadt

T
Po / #7183V7]dt
0

=4 —=r—1
<CT sup [Inll-P(lInll3)lpo0 Vnllo ( + [lpod Vv(0)||o>

0

<My + CTP(sup E,.(t)).
[0,7]

For the case s =r — 2 and r = 5,

T
—20::12//gaigrnk,lgr_lvi’j peJ 2 Aldxdt
0Ja

T
—r —r—1 —=r—1
<CT[3011713] InllaP([nll3)llpo0 V77||0( ,00/ 9 O;Vndt|| + [lpod VU(O)Ho)
5 0

0
<My + CTP(sup E,(t)).
[0,7]

For (5.76), by the Hélder inequality, the Sobolev embedding theorem and the
fundamental theorem of calculus, we can easily obtain the desired bounds. Thus,

/O 5

Now, we turn to the estimates of fOT (5.69)dt.

< My + CTP(sup E,(t)).
[0.7]

Case 1. s = 0. By (A.12) and integration by parts, we see that

T
2 / / 9 I380al0 v pRdadt (5.90)
0JQ
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T —=r—2 - = =T
=—6 / / 9 (J %o L AP)onP ,ALATD W' pg I dudt
:—6//8 nkan” AlAquavaJldasdt

—6 Z Gy // 5m+17]l7k gr_Q_m(J_?’Af)gnpﬂ AgAzgrvi,j pe T2 dxdt
m=0 08

T
:6//grnl’kgnp,qgrflvﬂjp%J_lAngAfdxdt (5.91)
0Jo
T .
—|—6//gr_lnl,kgznp7qgr_lvi7j pod HAFALAldadt (5.92)
0/o
T —=r—1 = =r—1 , = i
+6//a 0o, 0 vl,ja(ng—lA;ngAg)dxdt (5.93)
0Jo

1 T .
+6> oy / /Q " T I A B 8 pR T AL AL dwdt (5.94)
oo 0

r—3 T )
+6> - arm, /O /Q " AT T ARy 0 pRJPAY Al dedt
m=0
(5.95)
— T m+l | zr—2-m k52 —=r—1 2 12 i
—|—62C’;”_2//98 n 50 (J2AR)D P ;0 ' ppJ? AL AL ddt
- 0
(5.96)
r =m+1 =r—2—-m = =r—=1 , = i
+6 Z /O/Qa 0,0 (J=2AF)an? D vﬂja(pgﬁAgAg) dadt.
(5.97)

By the Holder inequality, the Sobolev embedding theorem and the fundamental
theorem of calculus, we can easily obtain the desired bound

My + 6 sup E.(t) + CTP(sup E.(t)),
[0,7] [0,T]

for (5.91) and (5.93)-(5.97).
For (5.92), we use integration by parts with respect to time to get

(5.92) :6/Qér‘lnl,,ﬁznpﬂé“lnﬁj PRI AF AL AT da| (5.98)
Tr 1 =2 —r—1 ;

—6 / /Q 9 0,0 ' pid T AFALA] dwdt (5.99)
g A=l 1 72 =1 i 271 4k J

—6// o "m0 0 ;e A ALA]dxdt (5.100)

76// 9 77 ka " 4 9 7) Oy (p J~ 1AkAqAJ> dzxdt. (5.101)
It is clear that (5.99) = —(5.92

(5.92) = = ((5.98) + (5.100) + (5.101)). (5.102)
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Moreover, integration by parts yields

(5.100) //87) k@ 0P 0 77 peJ T AF AS Al dadt (5.103)
+6//a 7' kav” a9 77 o TTAf ALA] dadt (5.104)

+6//a O R a( 3J*1A{“A§)A{> dzdt.  (5.105)

Since (5.104) = (5.92), we have from (5.102)
(5.92) = (5.98) 4 (5.101) + (5.103) + (5.105). (5.106)
By integration by parts, we get for t =T

(5.98) = — 12/ ' RO, 9 77 PR 1AkAqAde
—6 [ o, 0y D (pR AR ATAT d
0 77 ko1 ,q n J £o I “p*i €T

which yields the desired bound for (5.98) by using the Holder inequality, the Sobolev
embedding theorem and the fundamental theorem of calculus.
Integration by parts implies

(5.101) //a ka .0 n”,j O (p%J—lA{“AgA{) dadt (5.107)
—&—6//95“27#%5277}’@57"7]1‘,34 O (p%JflAngAg) dxdt (5.108)
0

T
+6 / / o O 000 (s A ALAT) dedt. (5.109)
0Ja
Due to (5.107) = —(5.101), it follows that
(5.101) = %((5.108) +(5.109)),

which implies the desired bound for (5.101) by using the Hélder inequality and the
Sobolev embedding theorem. It is clear that both (5.103) and (5.101) have the same
bound in view of the Hélder inequality and the Sobolev embedding theorem. Thus,
we have obtained

1(5.90)| < Mo + 6 sup E,.(t) + CTP(sup E,.(t)).
[0,7] [0,7]

Case 2. s =1. From (A.12), it follows that
T
20}, // 5T72J_352Jaggrvi7j padxdt (5.110)
0JQ

T
-6t | 95"3 (T3 AFDY ) D (JATD ) adB v, ot

— 601 IZCT 3//5 ST (I AR) T, 0 (149)

m=0

P O piJ Aldxdt (5.111)
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~6C;_, Z cr 3// T (AN D B O v R AL ATt
(5.112)

By using integration by parts with respect to d for (5.111) and the cases m = 0,7—3

n (5.112), and integration by parts with respect to time for the case m = 1 in
(5.112), together with the Holder inequality, the Sobolev embedding theorem, (5.16)
and the fundamental theorem of calculus, we obtain

[(5.110)] < Mo + d sup E,.(t) + CTP(sup E,(t)).
[0,T7] [0,7]

Case 3. s =2. By (A.12) and integration by parts, it yields
202 1// 9 g3 g0 v pRJ Aldwdt (5.113)

=—6C7, 4//3n+1 N 33 P 3 v quA]Al pa JAdxdt

— 6C7 Z - Z 3! / / Ty T T e T (JA9)
-9t AL AR pR T dxdt
=607, z_: cr, /0 T/Q L0 T T 8 AL AT AL p2 T dwdt
- (5.114)
+ 602, Scf—zx /:/Q 5n+1nZJ€ 57-_4—nJ_354np,q5 vl ; ATAT AF 2 T2 dxdt
n=0

(5.115)

r—4 T
n —n—+1 =3 —=r—1 i
+603,120r,4/0/ga 0 e @, 0 v
n=0

0@ T T B AY AT AF T dwdt (5.116)
+602 12@ . Z cr / / AR 7”J’35m+1n”7q

9 (JA‘J)E Ly ATAR R Jdxdt (5.117)
ey 12 2 Z e // an+1 i d-n 6m+2,r’p7q

9 (JAg)a LS ATAR 2 Jdxdt (5.118)

r—4
+1 r4 +1
+603_1204202/ 5 0T
n=0

9T (JAY) T ALY pRTdwdt (5.119)
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voc, Y er, S [ 7T e 2 (a7
= 0

r—4— n

-0(0 J 3 AL AR p2J)ddt. (5.120)

Due to the case n = 0 in (5.114) is equal to C?_;(5.92), we have obtained the desired
bound for this case of (5.114). For (5.115)-(5.120) and the case n = r—4 withr =5
of (5.114), we can easily use the Holder inequality, the Sobolev embedding theorem
and the fundamental theorem of calculus to get the desired bounds. Then, so does
(5.113).

Case 4. s =r — 2 with r = 5. Integration by parts with respect to time yields

//&] 35" Jajav j pedzdt
/aJ 3g* Jajﬁ ' podx 7// (03 a Jo n' ; podadt

//8J 3@8 Jaja 77 - prdadt — //aJ 35" Jajan - padadt,

which can be easily controlled by the desired bound in view of the Holder inequality
and the fundamental theorem of calculus.
Therefore, combining with four cases, we obtain

T
/ (5.69)dt
0

Step 4. Analysis of the remainder J,.
For [ = 0, we have from the integration by parts in time, the fundamental theorem
of calculus, the Holder inequality, the Sobolev embedding theorem and the Cauchy

inequality that
// 0 povy0 n'dzdt
0Jo

T
//grpovigrvidxdt <
0JQ

<CTHETPOHO sup ||5r77‘|0||vtt||2
[0,T7]

< My + dsup E,(t) + CTP(sup E,(t)). (5.121)
[0,77] [0,7]

T
+ '/ 0 povy0 nzdac‘ ‘
Q 0

<My + d sup E,(t) + CTP(sup E,.(t)),
[0,T7] [0,7

where we need the condition pg € H"(Q).
For [ = 1, we have, at a similar way, that

T —=r—1
//5T71p08vt8 vidxdt 9 ro
0Jo

1/2
L ()

1/2R/"T
sup [|po*® vllollve 3
o 0T

1/2§
<llpoll3llpoll? + 6 sup log’*0" vlI3 + CT 1§

<CT|lpoll

<My + 0 sup E,(t) + CTP(sup E,(t)).
[0,7] [0,T7]

For | = 2, we get, by the Holder inequality and the Sobolev embedding theorem,
T —=r—2
=r— =2 ;=T o 0
|// 0 2,00821123 v'dxdt 12
0JQ

gOTHPOHLOO(Q)

1/2=r —2
sup [l oo’ 0 v]lo]|8 velx
L 0.7
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1/2H
<llpoll3llpolly + 5;111)] lo’*3" vlI3 + CT o 1§

<My + 0 sup E,(t) + CTP(sup E,(t)).
[0,7] [0,7]

For | = 3, we obtain, by the Holder inequality and the Sobolev embedding
theorem, that

T
//5T73p053vt8 vidzdt
0Jo

r—3

0

<CTlpoll 2 o sup 5/ 0ll0 " vello
0.

<lpoll3llpoll +6[s0up] /28" 0l|2 + CT* v, I3

<My + 0 sup E,(t) + CTP(sup E,(t)).
[0,7] [0,T]

For | = 4 with r = 5, we have, by the Holder inequality and the Sobolev embed-
ding theorem, that

T 7
—r— — —r 6

/ / 9" pod i vidudt| <CT||poll}2 o, £

0JQ

1/2H
sup [|og/ % 0[|o][3" vello
50T

1/2H
<lpoll3llpoll? -1 +8sup po/ 28" 0l|2 + CT|[v||4

<My + d sup E,.(t) —|— C’TP(bup E.(t)).
[0,7] [0,T]

Step 5. Analysis of the remainders J; and Jg. By integration by parts,
(A.13), (1.13b) and (1.13¢) for I =1,--- ,7 — 1, we have

T r-1 T
/ Jsdt = ZC’,Z// Er_laggl(p%Jﬂ)grvi’j dxdt,
0 = JoJa

which can be written as, by integration by parts with respect to time,

r—1

—r—1 T 7
dcl] o ald (p2J 9"y’ dx (5.122)

t=T
1=1 @

—ch / / 74l (0202 ' dadt (5.123)
—Zcﬁ / / 9" 7'ald (020,20 dadt. (5.124)
1=1 070

Case 1. | = 1. By using the fundamental theorem of calculus twice and (A.10),
we get for (5.122)

|7 @@y (1o

/ar Ll (T)Op3~(T) ' ; (T)de

—2 [ T @) AT (1T (T
_ /Q /O ! 9l dtd 2 (T)0p30 ' (T)dx
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T
—2// " 1andtJ 2Ap877 ppga n' ; (T)dz
QJo
—=r—1 =T
<CTllmlsP(sup B, (1) (1-+ w0~ Terlo) o3 Vil

<My + 0 sup E,(t) + CTP(sup E,(t)).
[0,7] [0,7]

Similarly, we have for (5.123)

T
// gr_laiig(ng_Q)grniJ dxdt| < Mo+ d sup E,.(t) + CTP(sup E,(t)).
0/Q (0,7 (0,77

For (5.124), it is harder to be controlled than (5.122) and (5.123). We write it as

T . .
—//Er‘laga(pgatjﬂ)a ' jdadt
0/Q

T
:2//grilafgngQAqu’pgrni,j dzdt (5.125)
+2 / / & al p2a(T AR, By dwdt (5.126)
+2/0/95T7 aiﬁp%J_QAgqu,pgrniﬁ dxdt (5.127)
T —=r—1 — —r .
—|—2/O/Q<9 ag’p%J*QAg@vq,pa n' 5 dzdt. (5.128)

It is easy to see that (5.125) and (5.126) are bounded by

My + dsup E,(t) + CTP(sup E,(t)).
[0,7] [0,7]

By integration by parts, Holder’s inequality, (5.16) and Sobolev’s embedding theo-
rem, it holds

T
(5.127) = — 2//ar Yol AT, O g P dudt
_2/ /a a) APov? , 9 ' piJ 2 g dudt
—2//ar ! ol AL Ov? 0 ' g 2wt
_2/ /a al AP 5 0" ' pdJ 2 dadt
—2//5% angqu,pgrni(pg)ﬁ J2dxdt
0JQ
T =T = =T
S [ 1008 allolll3139 ] o0 e
0
T —=r—1 a Y
+/O poll218" " allolInll3lnll- 10V 0|1 [l p0d 1l dt

T
=r—1 = =T
+/ lpoll=10"allollml13 10V vl 000" 71t
0
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T
—r—1 —2 —r
+ / looll213 ™ alloll 218V ol agey 10Dl st

T
—=r—1 = =T
+/ lpollsllO” allol[All2l0Vvll1llped 1l dt
0

<My + 0 sup E,(t) + CTP(sup E,(t)).
[0,7] [0,7]

For (5.128), we can easily get the desired bound by an LS-L3-L? Holder’s inequal-
ity and the Sobolev embedding theorem because each component of a3 is quadratic
in On due to (1.9).

Case 2. [ = 2. By the fundamental theorem of calculus, Holder’s inequality and
the Sobolev embedding theorem, we can see that

/grfzagEQ(ngﬂ)grni’j dx
Q

‘ < Mo+ ésup E,(t) + CTP(sup E.(t)).
t=T [0,T] [0,T]

From (A.15), the Holder inequality, the Sobolev embedding theorem and (5.16), it
yields

T =r—2 =2 =T
—//6 a3,0 (pgJ )0 ' ; dadt
0/a
T
:/O/QET_2 (qu,p (AgAf—AgAg)) gg(ng_Q)géLni’j dxdt
T . _ 4 .
:—2// Jgrdvq,p (AgAf—AgAg)ng*2A582nl7k 8477”]- dxdt 4+ remainders
0/a
T =r—2 =T
<C||p0||2/ o Vv||L3(Q)H17||ZHp08 Vnllodt + remainders
0

<My + 0 sup E,(t) + CTP(sup E,(t)),
[0,77 [0,7]

since the remainders can be easily controlled by the desired bound.
Similarly, we can get the bound for the last integral

T
// gr_Qaggg(pgﬁtJd)ngiJ dzdt| < My + 6 sup E,.(t) + CTP(sup E,.(t)).
0o 0,T] 0,7]

Case 3. | = 3. By using the Holder inequality, the Sobolev embedding theorem and
the fundamental theorem of calculus, the spatial integral (5.122) can be bounded by
Mo + ésupyy 1) Er(t) + CTP(supyy r) Er-(t)). Similarly, we can get the same bound
for the first space-time integral (5.123). Since the norm ||pgd?J~2||3 is contained in
the energy function F,.(t), the last space-time integral (5.124) have the same bound
by the Holder inequality, the Sobolev embedding theorem and the fundamental
theorem of calculus.

Case 4. | =r —1 and r = 5. They can be easily controlled by the desired bound,
especially with the help of the fundamental theorem of calculus for (5.124).
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We can deal with the integrals in Jg by using a similar argument and we omit
the details for simplicity.

Step 6. Summing identities. Integrating (5.1) over [0, T, by Holder’s inequality
and Cauchy’s inequality, we have, for sufficiently small 7" such that

]. =r ]- =r =r =T
i/onw v|?dx + 5/0 [|Vn8 n? + |div, @ n|*> — |curl, 0 n|?| p3J tdz

1 =7
:*/ pol® uol*dx
2 Ja

1 r =7 —=r —=r
~5 /O/Q [|V7,0 n|? + |div, 9 n|* — |curl, 0 n*| piJ ~*div, vdzdt
LTy kAT _ 4T ARy 2 71
+ 2 ), Q@ N x0n' ;O (ATA] — AJA] ) o~ dxdt
T =~ y =r 4
—//6 po(ALT 10 ' dadt
0/a
=T —=r T
+/ d padiv, 0 n(T)J’lda:f/ [(5.4) + (5.73) + (5.71) + (5.69)]dt
Q 0
T
+/ (34 + J5 + Jg)dt
0

<My + d sup E,(t) + CTP(sup E,(t)).
[0,7] [0,7]

By the fundamental theorem of calculus, we have
/ V0 n|*p5 ] de = / (V0 n)i (V0 n)lpgJ " da
Q Q
= /Q Ol (A5 A pE T
t o t o
= [ ([ e+ a) T, ([ anei + a20) a7 ds
Q 0 0
t t
— [ vapas s [ g ( [araa)ae, ([ anea)a
Q Q 0 0
t
+ [ ([ anwr )5 a0
Q 0
t
+ [aean ([ e )a i
Q 0
which yields
sup [[100V, 013 = 100" V3]
0,7]
<CT? sup |pod Vll§llvll7_1 07 + CT sup llpod Val3l[oll—1llnll.
[0,77 [0,T7]
Thus, taking T' so small that CT'||v||,—1|n|/* < 1/6, we obtain

1 _ _ 3
— sup ||poarVn||0 < sup ||p0Vn8r77H0 < - sup ||p05rV77H0. (5.129)
2 j0,1] [0,7] 2 10,17
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Similarly, we have
/|div7,57n77|2p(2)J_1da:
Q
—=r —=r ¢ —=r =r b
:/ oe (8 divy+9 ", / (JlAfc)tdt’> ((’9 divn+0 7' ; / Aiidt') dx
Q 0 0
t .
:/ p%|5rdivn|2d:z:+/ pgﬁdivngrnij </ A{idt’) dx
Q Q ' 0
t
-|-/ pggrdivngrnkJ </ (JlAfﬁ)tdt') dx
Q 0

t t
+ / PRI "k ( / Aikdt’> ' ( / Aiidt’> dz,
Q 0 0
/Q|curl,,5T77|2,o(2)J_1dx

¢
:/pg <8Tcurln+s.ijﬁr77jys / (Af]l)tdt')
Q 0

t
: (3Tcurln +ewd ', /0 Afkdt’> dx

and

t
:/ p%|5rcurln|2dx—|—aij/ p%grcurlngrnjﬁ </ (AfJ_l)tdt'> dx
Q Q 0
t
—|—€.kl/ p%grcurlngrnl7p (/ Afkdt’> dx
Q 0

¢ ¢
—l—&.ijs.kl/ pggrnj’s (/ (AfJ_l)tdt’> ngl’p (/ Afkdt’> dz,
Q 0 0

which yields for a sufficiently small T that

sup ||pod divn]lo,
[0,7]

N W

1 —=r .. . =T

5 5P [lpod" div nllo < sup [lpodivy 9 nllo <
(0,7 (0,77

1 =T =T 3 =T

5 s |90 curlnllg < sup f[pocurl, 3 nllo < 5 sup llpod curlnfo.
(0,7 [0,T] [0,7]

Thus, we obtain the desired inner estimates with the help of curl estimates.

Step 7. Boundary estimates. By Lemma A.3, (A.5), the fundamental theorem
of calculus and Hélder’s inequality, we obtain

—r —r —=r—1
101215 SN0 nllg + lleurl @ alI3

—=r —r —r—1
<llpod nllg + lpoVO 1§ + [lcurld” |3
0

t 2
£0o / grvdt
0
1/2

—r —r—1
5\ 1oV 3 + w2
—r —r —r—1
Sllpoll2T? sup 1P/ 0 v[I3 + ooV 13 + lleurld” 7|3,

which implies the desired estimates from curl estimates. O
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5.2. The estimates for the time derivatives. We have the following estimates.

Proposition 5. Let r € {4,5}. Then, for a small § > 0 and the constant M

depending on 1/§, we have
1/2 .
sup (lps/* 8 ol + 10002Vl + o007 div

<My + d sup E5(t) + CTP(sup Es5(t)).
[0,7] [0,7]

Proof. Acting 07" on (1.13a), and taking the L?(Q)-inner product with 92"v¢, we

obtain
1d o 19
—— "v|fdr +TJ1 + To =
2dt/9p0|at v|?dx + Ty + Jo = T,

where

J1 ::/Qafra{ (p%J_Q)ﬁj oFvtde, Jg = /Qag (,0(2)837”57_2)7j P vid,

Q2
w

2r—1
=Y ch [ ta(iol ) o,
=1

Step 1. Analysis of the integral J;. Noticing that 9?"a?0?"v" = 0 on T,

integration by parts gives that
Jy=— /Q O alofTv’  pgJ P + /F O O a30% v 3 J 2 day day
/Q@Qr Yol g T (al 'k — ok al))a” l]pOJ 2dx
- / oF oty 8t2rvi7j AR AT 2T

/82r 1 l 827’ % Ak:AlpOJ 1d(E

2r—1

- Z C'er_l/ 1=l L33 (T Halal — aFal))o v ’]p(Q)J 2dz.
— Q

Then, we have

1d

(5.130) = — 5%/ |div,, 97" o[ p3 T tdx
1
"2 Q

1
—|—§/ \div,, 97" o|? pd0, T d.
Q

827 1 l 827 1 z 815(14114])[)0 1d$

It follows from (A.2) that
1
827“ 1 l AkAJ82r i §8t [|vnat2r—1,u‘2 _ lcurln at27"—1v|2]

1 r— r—1, 1 j
7533 Wl L 07N O (AT AY).

(5.130)

(5.131)

(5.132)
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Thus, we have

(5.131) =

DN | =

d
@/ (V07" |? — |ewl, 07" v|?] p§J ~'da
Q
1

- 5/0 [|Vn8t2r_1v|2 — |eurl,, Q?T_lv\Q] P20 tdx

1 . .
—5/83T_1vl,k8t2r_lvz7j Ou(AF AN pR T d.
)

Step 2. Analysis of the integral J;. Similar to those of J;, by noticing that
a30?"v' = 0 on Ty, we get

Jp = —/Qa{af"ui,j pg(“)f’“J_de—i—/F adF v p20?" J 2 dxyday
0
:2/ Ag(“)frvi,j AFoF oty p2 g Ydx
927‘72
+2> C5 /Q A2t 5 p2 TP 1S (T2 AR O ), da (5.133)
=2 -g(_50.130) +(5.133).
Thus, we obtain by integrating over [0, T

1

1
5/ pol0Z"v|*dx + 5/ [|Vn3t27"_1v|2 + |div, 87"~ o] — |curl,, 8t2r_1v|2] peJ tdx
Q Q

1
—5 [ mleFr o)
Q

1
+ 5/9 (VO (0)? + |div 97" 0(0)|* — |curl 07" Mv(0)|?] pgda
1 /7
+3 // [V, 07" | + |div, 07" [ — |ewrl, 07" 0|?] pgopJ ~ ' dzdt
0/a

e _ _
+ 5// oF 1l 3,52T_1vl7j On(A¥AD) p3 T~ dxdt
0/

1 T - L | _
“1‘5/0/98152 1vl,kat2 1U1’j @(AfAf)p(Q)J ldl’dt

T T T
f/ (5.132)dt7/ (5.133)dt+/ Tsdt.
0 0 0

The first three space-time double integrals can be absorbed by the left hand side as
long as T is sufficiently small.

Step 3. Analysis of the remainder fOT (5.132)dt. Integration by parts with
respect to time gives

T
—/ (5.132)dt
0

2r—1 T
=Y G5, / / OF 1o L O (J(ATAY — AFAD)) 07" pg ]~ dudt
s=1 0/
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2r—1

. . . T
= 30 Gy [ OB L0 (ALAY — AL (5.134)

s=1

=3 G [ [ O O LAY — AEADGE Y b Pdudr (5.135)
o 0Jo

=G [ [ O O LAY — AL i Pdudr (5.130)
po 0Jo
2r—1

T
=3 G [ [ O OIS — ALAD)GE 0T dnde. (5.137)
po 0Ja

We first consider (5.135). For the cases s = 1,2, it is easy to get the desired
bounds by the Hélder inequality and the Sobolev embedding theorem. For the case
s=3,

T
| [ ot oraaiat — ataory b dede (5.138)
T
_ / /Q =2, OF(J(APAF — AFAPYOR g2 2dudt (5.139)
0
T
+ /O /Q 072! 5 07 (J(AZA] — ATAD)OF ' 5 pJ 2 dadt. (5.140)

It is clear that (5.140) is easy to deal with by an LS-L3-L? Holder inequality. For
(5.139), integration by parts yields

T

(5.139) = — / / =2 L O3(J(APAF — A AP)OF BT Pdedt (5.141)
0JQ
T

= [ aEr op Al Al — akaR) Lo T Pt (5142

T
= [ [ o o AL A - AEAD) IR R o, (5.143)
0
which, then, can be controlled easily by the desired bound by an L2-L3-L5 Hélder
inequality, in addition for (5.142), with the help of
||6t2mDr717m77t||2L3([0,T]><Q)

<CT* [0 D" =" o0}y + sup 0™ D"~ 0F™ D"

<CT* (10 D" =" oO) s oy + $p 10F™ 1l -l OF™ -1
<My + CTP(sup E,(t)), (5.144)
(0,77

for the integer 0 < m < r — 1 due to (2.1).
For the case s = 4,

T
/O/Qatzrignl,k OF(J(AJAF — AFADNOT™' ; pp ] *ddt (5.145)
T
= [ o O AT A — AR O e (5.146)
0
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T
+ / / 0F ' s ONJ(ARA] — AT A0 4 phJ 2 dadL. (5.147)
0JQ

It is clear that (5.147) is easy to be dealt with by an L5-L3-L? Hélder inequality.
For (5.146), integration by parts yields

(5.146) / / Ol L ONI(ADAF — A AP OF R Pdedt (5.148)
/ / 077 OF(J(AL A — AFAY)) ;07 pg ) P dadt (5.149)

-/ / 02l ONJ (AL AF — AFAD)OF (RS 2) dedt.  (5.150)
0JQ

By an L%-L3-L5 Hélder inequality, (5.148) and (5.150) can be easily estimated. We
can also use an L3-L*- L% Holder inequality to control (5.149) since 92" *Vn, €
L3([0,T) x Q) due to (5.144).

For the case s = 5,

T
|| ottt wop At - Axapyo i dede (5.151)

0

T
= [ [ ot ol Al — kAl o g 2w (5.152)
/ / OF ' s OR(J(APA] — AT A0 4 phJ ~2dadL. (5.153)

It is easy to see that (5.153) is well estimated by an L°-L3-L? Hélder inequality.
For (5.152), integration by parts implies

T
(5.152) = — / / 2yl g OF (J(AAF — AR AP))OF ! 2T 2 dudt (5.154)
/ / 07 DR (J (AL A — AFAY)) ;07 i pg 2 dadt (5.155)

—//afr"‘nl,k@?(J(AfAf—AfAzB))af’“ni(ng‘Q),gdl’dt- (5.156)
0JQ

By an L2-L3-L5 Hélder inequality, (5.154) and (5.156) can be easily estimated. We
can use an L3-L2-L% Holder inequality to control (5.149) because of pgd?dVn €
L?(Q) in view of the fundamental theorem of calculus.

For the case s = 6, integration by parts gives

// 82r 577lk86 JAl Ak )87:27”771'“7 p%J_Qdmdt (5157)
// aQr 5 l 36( JAk Ak )5‘t2rq7lp0 J2dxdt (5.158)

- /Qaf“%l,ka?<azAf—Ak DO (o400 dadt. (3.159)
0

For (5.158), it can be controlled by the bound

My + ésup E,(t) + CTP(sup E,(t))
[0,7] [0,7]
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by an L3-L2-L% Holder inequality with the help of (5.144). For (5.159), it is easily
to be controlled by the desired bound.

For the cases s = 7, and s = 8,9 with » = 5, they are easy to be controlled by
the desired bound via the Holder inequality.

Next, we consider (5.136). For the case s = 2r — 1, it is easy to get the desired
bounds by the Holder inequality and the Sobolev embedding theorem. For other
cases of s, it is the same as the cases of s — 1 in (5.135). Thus, we get the desired
bounds for (5.136).

The spatial integral (5.134) can be treated similarly as for (5.136) with the help
of the fundamental theorem of calculus for one lower order term in order to get
the factor T'. For the last integral (5.137), it is much easier to get the bound than
(5.136), thus we omit the details. Therefore, we have obtained

< My + dsup E5(t) + CTP(sup E5(t)).
[0,T7 [0,T]

T
/ (5.132)dt
0

Step 4. Analysis of the remainder fOT (5.133)dt. By integration by parts with
respect to time, we get

T
- / (5.133)dt
0
2r—2 T )
=-2>" cgr_l//a%ﬂj OF s (J2 ANV pRT Al dadt
s=0 0/
2r—2

. . T
=-2) C3_, /Q Oyt OF T (I TRAD) O s pi T Ald . (5.160)
s=0

2r—2 T

+2> cgr_l// OF )’ O (T 2AR) Ok T Al dudt (5.161)
s=0 070
2r—2 T ]

+2>C5, / / OF )’ OIS (T2 AR 9Ty pR T Al dadt (5.162)
s=0 070
2r—2

T
23 6 / / 2y 91 (T2 ANO . RO T AT dadt.  (5.163)
s=0 070
We first consider the double integral (5.161). For the case s = 0, we write it as
T . .
// 83’“7727]- OF(J2AM ) i, p3 J Al dxdt
0/
2r T . .
= Z 057// A O I 2O T ARt pR T Al dadt.
0 0Ja

For m = 0,3,2r — 1,2r, we can use the Holder inequality, (5.144) and the Sobolev
embedding theorem to get the desired bound. In particular, we have to use an L2-
L3-L% Holder inequality and (5.144) to deal with the integral involving the terms of
the form 07" Vno7" ~*Vnd3Vn in order to get the bound. Form = 1,2,4,--- ,2r—2,
we can only apply the Holder inequality and the Sobolev embedding theorem to get
the desired bound by noticing that pgd?J =2 € H™¥(Q) for 0 < £ < r — 1.
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For the case s = 1, since v, € H™1(Q), or Vo, € L®(Q), it is similar to and
easier than those of the case s = 0. We omit the details.
For the case s = 2, we have

T

// o7’ 5 0F (I 2ar)0f! k plal dudt

0o

2r—2 T )

= Z 02";72// ot ;07 I ROF T T M ar 0! i, phal dudt.
m=0 0/

For m =0, i.e.,
T . .
// o' i 2ako2! ), plal T 3dudt, (5.164)
0Ja

we must use Es5(t) to control [|0F Vv|| L (o) when r = 4; while it is easy to get the
desired bound for » = 5. For m = 1, we can use an L?-L3-L°® Hélder inequality and
(5.144) to obtain the desired bound, i.e., Mo+6 supyg 7 £ (t) +CT P(supg 11 Er (1))
Form = 2,--- ,2r—2, they are controlled by the desired bounds by using the Holder
inequality and the Sobolev embedding theorem.

For the case s = 3, we get

T
//3t2r77i’j DI (T 2AN R ), pR T Aldxdt
0/Ja
2r—3

T .
=y cny / / Ot ;O IR0 TP T AP O . phJ Al dadt.
m=0 079 ’

For m = 0, we can use an L2-L3-L5 Hélder inequality and (5.144) to obtain the
desired bound. For m = 1,--- ,2r — 3, they are controlled by the desired bounds
by using the Holder inequality and the Sobolev embedding theorem.

For the case s = 4, we can use an L?-L5-L3 Holder inequality, and (5.144) for
r = 4 additionally, to obtain the desired bound. For the cases s = 5, -+ ,2r — 2,
we can use the Holder inequality and the Sobolev embedding theorem to get the
desired bounds.

Next, we consider the integral (5.162). For the case s = 0, we have

T
/ / 7y’ ;OF (I TP AD) O g, piJ Al dadt
0JQ
2r—1 T ) )
=y cp / / ' ;O TPOF T T AT O pgJ Aldudt,
m=0 0Ja

which can be controlled by the desired bound by using the Holder inequality and
the Sobolev embedding theorem.
For the case s = 1, it follows that

T
//6t2r77i’j O 2T 2 AN ), pR T Al dxdt
0/a
2r—2

T .
=Y oy, / / 02 Oy T 292 2 AR 92! 1 pR T Al dudt.
m=0 079 ’
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For m = 0, we can have to use the fact v € H*(Q), which is contained in Es(t), for
all cases r = 4,5 to obtain

T
/ / ' ; JTROF TP AT O e i J Al dandt
0JQ

<My + d sup E5(t) + CTP(sup Es5(t)).
[0,7] [0,T7]

For m = 1, we can use an L?-L3-L5 Hélder inequality, (5.144) and the Sobolev
embedding theorem to get the desired bound. For other cases of m, we can use
the Holder inequality and the Sobolev embedding theorem to get the desired bound
by mnoticing that pod2*J=2 € H™¢(Q) for 0 < ¢ < r — 1 with the help of the
fundamental theorem of calculus if necessary.

For the case s = 2, we get

T
//afrni,j OF (T 2AN) O pR T Aldxdt
o/a
2r—3

T .
e / / 2, O T2ORr S M AROR 4, pRT Al dudt,
m=0 079 ’

which can be controlled by the desired bound by using the Holder inequality and
the Sobolev embedding theorem, in addition, with the help of (5.144) for m = 0.

For other cases of s, we can use similar argument to get the desired bounds and
omit the details.

For the spatial integral (5.160), we can use the same argument as for (5.162) to
get the desired bound with the help of the fundamental theorem of calculus. For the
double integral (5.163), it is easier to get the bound than either (5.161) or (5.162)
and thus we omit the details. Therefore, we obtain the estimates for fOT (5.133)dt,
ie.,

< My + d sup E5(t) + CTP(sup E5(t)).
[0,77 [0,T]

T
/ (5.133)dt
0

Step 5. Analysis of the remainder fOT Jsdt. By integration by parts with
respect to the spatial variables and the time variable, respectively, we obtain

T 2r—1 T ) .
/ Jadt =Y C4, / / 0Ftalop 2o phdadt
0 =1 0JQ ’
2r—1 ) ) T
= Z C’ér/ ¥l ol g 207yt . pada (5.165)
1=1 Q N 0
2r—1 T ) )
-y, / / oF - talol g 2o phdudt (5.166)
1=1 070 7
2r—1 T . .
- > Ci, / / oFtaloftt IOy phdudt, (5.167)
=1 0JQ

due to 97" 'a3d?"v' = 0 on Ty.
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We first consider (5.166). For the case [ = 1,

T
//8fra§8tJ_28§rni)j pedxdt

//3% Y0P 0 Ya] aq aaj))at 23t2rni7jpgdxdt
2r—1

= Z Cs._ 1//82T 0’ 07 (J (aZagfa aj))atzrnl ROy T dxdt  (5.168)

/ / 071 (07 P02 T (A] AL — ATA] ) duwdt. (5.169)

Since 8;J72 € L*(Q), we can use a similar argument as in (5.132) to get the
estimates of (5.168). For (5.169), we easily have

(5.169)| <CT sup 1pod;" V1V olla P(Ea(t)) < CTP([Sup] E,(t)).
0,T 0,T

For the case | = 2, similar to the case [ = 1, we can get the bound easily since
02772 € L>(Q) and we omit the details. For the case | = 3, we get

T
//8?’“72@{8?(]_28?7'17{]- pidadt
0Ja

T
:A/ﬂ@?r—?’(atﬁpﬂ T (alal — alal))0P T 7207’ phduwdt
2r—3

T
:ZCgr—s//afT_Q_Snp7q8f(J_1(agaZ ala}))dJ 207" ; pydadt (5.170)
s=1 070

T
+ // 8?“277”# aE’J”af’”n{j ng_l(azag — ala))dxdt. (5.171)
0/

n (5.170), we use an L3-L°-L? Hélder inequality and (5.144) for the higher order
terms of the cases s = 1 and s = 2r — 3 and an L5-L5-L5-L? Hélder inequality for
the other cases to get the desired bounds. For (5.171), since podiJ 2 € H"2(Q) C
L>(Q), we can get the desired bound easily in view of the Holder inequality, the
Sobolev embedding theorem and the fundamental theorem of calculus. For the case
I = 4, we have the desired bound as a similar argument as for the case [ = 3. For
the case [ = 2r — 3, we can use an L5-L3-L? Holder inequality and (5.144) to get the
desired bound. For the case [ = 2r — 2, we use an L3-L5-L? Holder inequality and
the Sobolev embedding theorem to get the bound due to p()(‘3t2(T71)J_2 € HY(Q) C
L5(Q). For the case | = 2r — 1, it is similar to the case s = 1 in (5.161) and we omit
the details. For the other cases, we can easily get the desired bounds by using the
Holder inequality and the Sobolev embedding theorem.

Next, we consider (5.167). Since the cases 1 <1 < 2r—2 are identical to the cases
2<1<2r—1of (5.166) estimated just discussed up to some constant multipliers,
we only need to consider the remainder case | = 2r — 1. We can apply (1.11) to
split the integral of the case I = 2r — 1 into two integrals. One of them can be used
an L?-L? Holder inequality to get the estimates, the other one can be dealt with
as the same arguments as for the case [ = 2r — 1 of (5.166) or the case s = 1 in
(5.161). Thus, we omit the details.
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For the spatial integral (5.165), it can be estimated as the same arguments as
for (5.166) or (5.167) with the help of the fundamental theorem of calculus whose
details are omitted.

Step 6. Summing inequalities. As the same argument as in the estimates of the
horizontal derivatives, we can obtain the desired result by combining the previous
inequalities. O

5.3. The estimates for the mixed time-horizontal derivatives. We have the
following estimates.

Proposition 6. Letr € {4,5} and 1 <m <r—1. Foré > 0 and the constant My
depend on 1/5, we have

1 2 mf'r‘fm m*T*’I’n
sup [[lpo/ 2020 0|2 + [lpoVORmE )2
[0,T7]
—=r—m

+ llpodiv 6278 I3 + 1021 21 2]

<My + 0 sup E,(t) + CTP(sup E,(t)).
[0,7] [0,7]

Proof. Since the ideas is similiar to those in Propositions 4 and 5, we omit the
lenthy details. O

6. The elliptic-type estimates for the normal derivatives. Our energy es-
timates provide a priori control of horizontal and time derivatives of 7; it remains
to gain a priori control of the normal derivatives of 1. This is accomplished via a
bootstrapping procedure relying on the fact 87v(t) is bounded in L?().

Proposition 7. Fort € [0,T], it holds that

sup |[|0fv(®)[I} + ||p08§J*2(t)Ilﬂ < Mo + 9 sup E5(t) + CTP(sup Es(t)).
[0,T] [0,7] [0,7]

Proof. From (1.13a), we have for § =1,2
poaiJ %3 + 2afp0,3 J 2= vl — poafJ_2,/3 - 2afp0,5 J2 (6.1)
Acting 0% on (6.1), we get
poaldfJ 2 5 + 2a§’P0¢3 oI
== ' — pod(a] T2 5) = 2p0 5 07 (a] T 7)
—8Padlpod %3 +2p0 5 %] — i C40; a0l pod % 3 + 2p0 5 T2

1=1
By (A.5), the fundamental theorem of calculus and Hélder’s inequality, we have

180(1)]2 <C / g2 (18002 + [VOFu]?) da

<C/p3
Q

t
<ct / e / 010u[2dt’ + C / PR1020(0) 2z + C|lpod? Vo2
Q 0 Q

1/2
<C#||po|l o= (e sup oo 0800l13 + [l polI < (0 182 0(0) |13 + Cll p0df V3.

2

t
/ 010udt’ + %0(0)| dz + CllpoV v
0
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By the fundamental inequality of algebra, the fundamental theorem of calculus,
the Holder inequality and the Sobolev embedding theorems, we see that

lpod (@ T2 6)II3

4
<C Y lpodsal 07 T2 5 113

=0
4 t 2
+CY |lpod) ' a] (/ I pdt’ + 07T (0)>
=1 0 0
4
Mo+t ?#‘TZ 10007212 PUBE 2 nllis1, -+ el el ).
=0
Similarly, we also have, that
|08a3 pod ~2 3113 < My + Ct? ?311]) oo 21ZPO5n 1, -+ meellas ey (1)),
,t
and
o 2 !
oo, 05 (af T72)|[3 <Mo + Ct* | =2 sup > [0 T 22,
PO Lo () [0,t] 1=,

PO llaers -+ s llmellas mellas lmlls)-

By the fundamental theorem of calculus, we get
108 a?po 5 J 7215 < Mo + Ct|lpo 5 1|7~ (q)
s P65l - 105 nlliers - Ieellas Nellas limlls)-
it

Similarly, it follows that

7
S 108 a2al [poT 25 +2p0 577 |:

=1
4
<o + €1 sup S~ 0 T8 PURE 0, el Il )
't —o
+ Clpo. ey PO 105, el Il ).

Thus, we have obtained, for all ¢ € [0, T, that

| poald; J =2 5 + 24} po 5 atSJ—?Hf) < Mo + 6 sup E5(t) + CTP(sup E5(t)).
[0,7] [0,77]

It follows that
lpoa?0} T2 5 115 + 4lla®po 5 07 T2 13
<My + 0 sup E5(t) + CTP(sup Es5(t)) — 4/ popo s |a P05 T2 305 T 2 du.
(0.7] [0,7] Q

By Hoélder’s inequality and the fundamental theorem of calculus, we get
4 [ poposla¥ ORI 2 403 2o
Q

<Mo =+ 8lm0f T~ o+ Sl 5 521 + CTP(up (1)
0,T
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and then, by the fundamental theorem of calculus once again,

0005 T2 3 115+ P03 05T 2|l5 < Mo+ 6 [Sup} Es(t) + CTP([SUP] E5(t)).
0,7 0,T

By integration by parts with respect to x3, the Holder inequality and noticing that
po =0 on I'y, it holds

00087 2(1)]12 = / D3 (p00 T 2)2de

=— 2/ 230005 J 2 (po .3 05 J % + poafJ_Q)?) )dx
Q

<2[lpodF T 2(®)[lo[llpo.3 85T *llo + 1105 T2 4 llo]
which implies that

00T~ 2(8) 113 <8 llpo 5 O T 213 + o0 T2 4 |3]

<My + d sup E5(t) + CTP(sup Es(t)). (6.2)
[0,T7] [0,T]

Since we can get, by Proposition 6, that

P00 T 2|13 < Mo + 6 sup] Es(t) + C’TP([sup] E5(t)),
0,7

we have

o0 J 2|7 < My + & sup Es5(t) + CTP(sup Es(t)).
[0,7] [0,7]

It follows from (A.5) and (6.2) that
105772115 <CllpodF I3 + Cllpo Vs T ~2|I5
<My + 0 sup E5(t) + CTP(sup Es5(t)).

[0,7] [0,T]
Due to (1.11), we see that
07T == 20](J Al ;)
=—2J A0V ; — 207 (T2 Al —220781 J2ANO

namely, in view of the fundamental theorem of calculus,

1 ) t . o
divofv = — 7a§J—2 — o' / (J72AD)dt — O] (T2 A"
0

_Zc7al 2AJa7lz_

We can easily estimate last three terms by using the fundamental theorem of calculus
and the Holder inequality. Thus, we obtain

(|div 0] v||2 < My + 6 sup Es(t) + CTP(sup Es(t)).
[0,7] [0,1]

According to Proposition 3, we have

lcurl 87 v||2 < My + CTP(sup Es(t)).
(0,7]
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With the boundary estimates on 9/v® or 98n® given by Proposition 6, we obtain,
from Lemma A.4, that

1070]2 < Mo + 8 sup Es(t) + CTP(sup Es(t)).
[0,77] [0,7]

Thus, we complete the proof. O
Having a good bound for & v(t) in H'(Q), we proceed with the bootstrapping.

We have the following estimates and omit the lengthy proofs since their ideas are
similar to Proposition 7.

Proposition 8. Fort € [0,T], it holds that

sup [[970(2) 3 + o008 T 2(8)|3] < Mo + 6 sup B (1) + CTP(sup Es (1)),
[0,T] [0,7] [0,7]

Proposition 9. Fort € [0,T], it holds that

sup [[[oee ()13 + 0077 ~2(2) 8] < Mo + 8 sup B () + CTP(sup By (1)),
[0,7] [0,7] [0,7]

Proposition 10. Fort € [0,T], it holds that
sup [[ur(8) I3 + 002 T 2(1)|13] < Mo + 6 sup Es (1) + CTP(sup Es ().
0.7] [0,7] 0,71
Proposition 11. Fort € [0,T], it holds that

sup [0 12 + o0 (OI12] < Mo + 6 sup B (1) + OTP(sup B (1))
[0,7] [0,7] [0,7]

7. The a priori bound. For the estimates of ||curl, v(¢)||3 and ||p055curln v(t)]|3,
it is similar to those in [4] so that we omit the repeated proofs. Combining the
inequalities provided by energy estimates, the additional elliptic estimates and the
curl estimates shows, with the help of Proposition 1, that

sup Es5(t) < C(E5(0)) + CTP(sup Es5(t)).
[0,77] [0,7]

According to the polynomial-type inequality (A.3), by taking 7" > 0 sufficiently
small, we obtain the a priori bound

sup E5(t) < 2C(E5(0)).
0,7]

Therefore, we complete the proof of the main theorem.
Appendix A. Preliminaries.

A.1. Notations and weighted Sobolev spaces. We make use of the Levi-Civita
permutation symbol

1 1, even permutation of {1,2,3},
Eijk = 5(2 -G —k)k—1i) =< -1, odd permutation of {1,2,3},
0, otherwise,

and the basic identity regarding the i*" component of the curl of a vector field u:

(curlu); = sijkuk,j ,
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where it means that we have taken the sum with respect to the repeated scripts j
and k.. Since vy o= outJon® - onk /0| it follows that du'/Onk = dxI /onk - v ;,
ie., u'p = Ajv' ;. The chain rule shows that

(curlu(n)); = (curl, v); := €ijkvk,s A3,

where the right-hand side defines the Lagrangian curl operator curl,, . Similarly, we
have
divu(n) = div, v =17 4 A3,

and the right-hand side defines the Lagrangian divergence operator div, . We also
use the notation for any vector field F’

(VoF)s = F' AL (A1)
For any vector field F', we have
F3 Ay~ F? A
curl, F' =cwrl (FA) = | F! ; A3 — F? ; A] |,
F2 A1 - F'j Ay
and then
IV F? = Jewl, FI? + (V,F) - (V,F) T, (A2)

where the superscript T denotes the transpose of the matrix.

As a generalization of the standard Gronwall inequality, we introduce a polyno-
mial type inequality. For a constant My > 0, suppose that f(¢) > 0, t — f(¢) is
continuous, and

f(t) < Mo+ CtP(f(1)), (A.3)

where P denotes a polynomial function, and C' is a generic constant. Then for ¢
taken sufficiently small, we have the bound (cf. [4,5])

f(t) < 2Mo.
For integers k > 0 and a smooth, open domain € of R?, we define the Sobolev
space H*(Q) (H*(£2;R?)) to be the completion of C*° () (C°°(£2; R?)) in the norm
1/2
= | 3 [0t as)
laf<k 7€

for a multi-index o € Z3 , with the standard convention |a| = a1 + a2 + a3. For

real numbers s > 0, the Sobolev spaces H*({2) and the norms || - ||s are defined by

interpolation. We will write H*(£2) instead of H*(Q; R3) for vector-valued functions.

In the case that s > 3, the above definition also holds for domains €2 of class H*®.
Our analysis will often make use of the following subspace of H'(Q):

Hl={ue HY(Q) : u=0onT,(z1,xs) — u(z;, ) is periodic},
where, as usual, the vanishing of u on I' is understood in the sense of trace.
For functions u € H¥(T), k > 0, we set
1/2

Juli = { > [ 107u(@)fPdz |

lal<k 7T
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for a multi-index o € Z2 . For real s > 0, the Hilbert space H*(I') and the boundary
norm | - |5 is defined by interpolation. The negative-order Sobolev spaces H ~*(I)
are defined via duality: for real s > 0,

H=*(T) == [H*(T)]'.

The derivative loss inherent to this degenerate problem is a consequence of the
weighted embedding we now describe.
Using d to denote the distance function to the boundary I'y, i.e.,

d(z) = dist (z,T),

and letting p = 1 or 2, the weighted Sobolev space H},(£2), with norm given by
[ d@r(F@P +9F (@) Ps
Q
for any F' € H},(Q), satisfies the following embedding:
Hj, () — H'™5(Q);
that is, there is a constant C' > 0 depending only on {2 and p, such that

(13 FAPES C/ d(2)? (|F (2)|* + |VF(2)|*)de. (A4)
Q

See, for example, Section 8.8 in Kufner [12]. From this embedding relation and
(1.7), we obtain

IFI2<C /Q R(F@)P + |VF()?)dr. (A5)

A.2. Higher-order Hardy-type inequality and Hodge-type elliptic esti-
mates. We will make fundamental use of the following generalization of the well-
known Hardy inequality to higher-order derivatives, see [7, Lemma 3.1]:

Lemma A.1 (Higher-order Hardy-type inequality). Let s > 1 be a given integer,
Q and d(x) be defined as above, and suppose that

we H*(Q) N H(Q),
then % € H*~1(Q) and

I3
d
The normal trace theorem provides the existence of the normal trace w - N of a

velocity field w € L?(Q) with divw € L*(Q) (see, e.g., [19]). For our purposes, the
following form is most useful (see, e.g., [2]):

_ <Clluls (A.6)

Lemma A.2 (Normal trace theorem). Let w be a vector field defined on Q such
that Ow € L*(Q) and divw € L*(Q), and let N denote the outward unit normal
vector to T'. Then the normal trace w - N exists in H~'/%(T') with the estimate

B NIy 3 < C[10wl32(q) + Idivel3a)|, (A7)

for some constant C independent of w.
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Lemma A.3 (Tangential trace theorem). Let Ow € L2?(2) so that curlw € L?(12),
and let Ty, Ty denote the unit tangent vectors on I, so that any vector field u on T’
can be uniquely written as u*T,. Then

|5’LU . Ta|31/2 < C|:||5’U}H%2(Q) + ||CU.I'1'IUH%2(Q):| 5 o = 172, (A8)
for some constant C independent of w.

Combining (A.7) and (A.8), we have
0w| /2 < C[||5w||L2(Q) + [[divw|[r2 (o) + chﬂwHL?(Q)} (A.9)

for some constant C' independent of w.
The construction of our higher-order energy function is based on the following
Hodge-type elliptic estimate (see, e.g., [4]):

Lemma A.4. For an H" domain Q, r > 3, if F € L?*(Q;R3) with curl F €

H*~1(Q), divF € H*"(Q), and F - N|p € H*=Y2(T) for 1 < s < r, then there
exists a constant C > 0 depending only on Q such that

IF]s <C (1Fllo + llewrl Flls—1 + [|div Flls—1 + [0F - N|s_5/2) ,

2
1E1ls <C(IIFllo + lowrl Flls—1 + |div Fllo—y + Y [0F - Tul,-5/2 )

a=1
where N denotes the outward unit normal to I' and T, are tangent vectors for
a=1,2.

A.3. Properties of J, A and a. From the derivative formula of matrices and
determinants, we have

Af=— AP, Al (A.10)
Ak =0, AF = — AR AT (A.11)
Js :JA{nl’js = a{nlvjs. (A.12)

It follows from a = JA, (A.10) and (A.12) that the columns of every adjoint matrix
are divergence-free, i.e., the Piola identity,

ay , =0, (A.13)

which will play a vital role in our energy estimates. We also have
afys :Jnl’js (AfA{ — AgAf) = J_lnlﬁjs (ai—“a{ — agaf), (A.14)
af; =Jv' ; (AFA] — AJAY) = T (afa] — alaf). (A.15)
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