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Preface

Harmonic analysis, as a subfield of analysis, is particularly interested in the
study of quantitative properties on functions, and how these quantitative proper-
ties change when apply various operators. In the past two centuries, it has become
a vast subject with applications in areas as diverse as signal processing, quantum
mechanics, and neuroscience.

Most of the material in these notes are excerpted from the book of Stein [Ste70],
the book of Stein and Weiss [SW71], the books of Grafakos [Gral4a, Gral4b] and the
book of Wang-Huo-Hao-Guo [WHHGI11], etc. with some necessary modification.

Please email me (hcc@amss.ac.cn) with corrections or suggested improvements

of any kinds.
Chengchun Hao
Beijing
April 28, 2020
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§1.1 The distribution function and weak L?

In this chapter, we will consider general measurable functions in measurable
spaces instead of R™ only.

A o-algebra on a set X is a collection of subsets of X that includes the empty
subset, is closed under complement, countable unions and countable intersections.
A measure space is a set X equipped with a o-algebra of subsets of it and a function
p from the o-algebra to [0, oo] that satisfies (@) = 0 and

| B | =D B
j=1 j=1

for any sequence {B;} of pairwise disjoint elements of the o-algebra. The function
p is called a positive measure on X and elements of the o-algebra of X are called
measurable sets. Measure spaces will be assumed to be complete, i.e., subsets of
the o-algebra of measure zero also belong to the o-algebra.

A measure space X is called o-finite if there is a sequence of measurable subsets
X, of it such that X = J;2, X, and p(X,) < co. A real-valued function f on a
measure space is called measurable if the set {x € X : f(z) > A} is measurable for
all real numbers A. A complex-valued function is measurable if and only if its real
and imaginary parts are measurable.

We adopt the usual convention that two functions are considered equal if they
agree except on a set of -measure zero. For p € [1,00), we denote by LP(X, du) (or
simply LP(du), LP(X) or even LP) the Lebesgue-space of (all equivalence classes of)
scalar-valued p-measurable functions f on X, such that

1= (/. If(w)\pdu)l/p

is finite. For p = oo, L™ consists of all y-measurable and bounded functions. Then
we write

[ flloo = eSS;HPIf(I)I =inf{B > 0: u({z: |f(z)| > B}) = 0}.
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It is well-known that LP(X, ;1) is a Banach space for any p € [1,00] (i.e., the
Riesz- Fisher theorem). For any p € (1, c0), we define the Holder conjugate number
p = - —£=. Moreover, we set 1’ = oo and oo’ = 1, so that (p’)’ = pforall p € [1, o0].
Holder’s inequality says that for all p € [1, co] and all measurable function f, g on

(X, ), we have
LFglle < 1A llp 11l

It is also a well-known fact that the dual (LP)’ of L? is isometric to L?" for all
p € (1,00) and also when p = 1 if X is o-finite. Furthermore, the L norm of a
function can be obtained via duality when p € (1, c0) as follows:

I, = suw | [ sadn).
lgll,r=1
The endpoint cases p = 1, oo also work if X is o-finite.

It is often convenient to work with functions that are only locally in some LP
space. We give the definition in the following.

Definition 1.1.1. N

(X) is the set of all

For p € [1,00), the space Lj (X,u) or simply LI
Lebesgue measurable functions f on R" that satisfy

/ |flPdp < oo (1.1.1)
K

for any compact subset K C X. Functions that satisfy (1.1.1) with p = 1 are
called locally integrable function on X.

loc

The union of all LP(X) spaces for p € [1,00] is contained in L{ (X). More
generally, for 1 < p < ¢ < oo, we have

LY — L]

p
loc<_>L

loc*

We recall that a simple function is a finite linear combination of characteristic
functions of measurable subsets of X, these subsets may have infinite measure. A
finitely simple function has the canonical form ZN ajxp; where N < oo, a; € C,
and B, are pairwise disjoint measurable sets with ,u( i) < oo. If N = oo, this func-
tion will be called countably simple. Finitely simple functions are exactly the inte-
grable simple functions. Every non-negative measurable function is the pointwise
limit of an increasing sequence of simple functions; if the space is o-finite, these
simple functions can be chosen to be finitely simple. In particular, for p € [1, c0),
the (finitely) simple functions are dense in LP(X, 11). In addition, the space of sim-
ple functions (not necessarily with finite measure support) is dense in L>°(X, u).

We shall now be interested in giving a concise expression for the relative size of
a function. Thus, we give the following concept.

Definition 1.1.2. )

Let f(x) be a measurable function on (X, i), then the function f. : [0, 00)
[0, 00| defined by

fela) = p({z € X+ |f(z)] > a})

is called to be the distribution function of f.
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§1.1. The distribution function and weak L” -3-

The distribution function f, provides information about the size of f but not
about the behavior of f itself near any given point. For instance, a function on R"
and each of its translates have the same distribution function.

In particular, the decrease of f.(a) as o grows describes the relative largeness
of the function; this is the main concern locally. The increase of f.(«) as « tends to
zero describes the relative smallness of the function “at infinity”; this is its impor-
tance globally, and is of no interest if, for example, the function is supported on a
bounded set.

Now, we give some properties of distribution functions.

Proposition 1.1.3.

Let f and g be measurable functions on (X, x). Then for all v, 3 > 0, we have

(i) f«(c)is decreasing and continuous on the right.

(i) 1| (2)] < lg(x)], then f.(a) < g.(a).

(iii) (cf)«(a) = fe(a/|c]), forall c € C\ {0}.

(iv) If [f(2)] < [g(@)] + [h(2)], then fi(a + B) < gu(a) + ha(B).

V) (f9)«(aB) < f(@) + g+(B).

(vi) For any p € (0,00) and o > 0, it holds

flay<a [ F@)Pduz).
{zeX:|f(z)[>a}
(vil) If f € LP, p € [1,00), then
i 1) =0 = iy’ (),
(viii) If [;° o~ fi(a)da < oo, p € [1,00), then
af fi(a) = 0, as o« — +oo and o — 0, respectively.

(ix) If |f(z)] < likm inf | fi(z)| for a.e. x, then
—00

fe(a) < liminf(fy).(a).

Proof. For simplicity, denote E¢(a) = {z € X : |f(z)| > a} for a > 0.

(i) Let {ay} is a decreasing positive sequence which tends to «, then we have
E¢(a) = U Ef(ay). Since {Ef(ag)} is a increasing sequence of sets, it follows
klim f«(ar) = fi(a). This implies the continuity of f.(«) on the right.

—00
(v) Noticing that
{re X :[f(x)g(x)] >ap} C{zreX:[f(x)] >a}U{zre X :[g(z)] > p},
we have the desired result.
(vi) We have

fule) =p({z : |f(2)] > a})
dp(x)

|f ()]
< ——Pdu(x
/{IEX:If(:c)>a}( @ Faule)

[ £@)Pduo)
{zeX:[f(z)[>a}

B /{xeX:|f(:c)>oc}
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(vii) From (vi), it follows

a’f(e) < [ F@Pdn() < [ |f@)Pduta).
{zeX:|f(2)|>a} R
Thus, p({z € X : |f(x)] > a}) = 0as o — +oc and
lim x)[Pdu(z) = 0.
N |f (@) [Pdp(x)
Hence, o? f,(a)) — 0 as @ — +oo since o f, (o) > 0.
For any 0 < o < 3, we have, by noticing that 1 < p < oo, that

lim o f(e) = lim o(f.(@) = fu(8))
=lim a’p({z € X :a <|f(x)] < B})

a—

< / F(@)Pdp(z).
{zeX:|f(z)|<B}

By the arbitrariness of 3, it follows a? f, (o) — 0 as o — 0.
(viii) Since f (tP)dt = o — (a/2)P and f.(a) < fi(t) for t < a, we have

fe(a)aP(1 —27P) < p/ P (t)dt

a/2
which implies the desired result.
(ix) Let E = {x € X : |f(z)] > a}and E}, = {z € X : |fx(z)| > a}, k € N. By
the assumption and the definition of inferior limit, i.e.,

N o
|f(2)] < lim inf[ fy,(2)] 3g§g>1§\fk(rv)!,

for x € E, there exists an integer M such that for all & > M, |fx(z)| > «. Thus,
E cCcUy—i1Miey Ex,and forany ¢ > 1,

(ﬂ Ek> < 1nf w(Ey) < sup mf ,u(Ek) = hrn 1nf,u(Ek)

Since {(,— s Ex}37_ is an increasing sequence of sets, we obtain

fula) = (U N Ek> = lim 4 ( N Ek> < liminf(fy). (@),

M=1k=M
For other ones, they are easy to verify. n

From this proposition, we can prove the following equivalent norm of L? spaces.

Theorem 1.1.4: The equivalent norm of L? \

Let (X, ;1) be a o-finite measure space. Then for f € LP(X, u), p € [1, 0], we
have

0o 1/p
i 11£], = <p / a”‘lf*(a)doz) | ifl<p<o,
(i) (/1o = inf {0 : fu(a) = 0).

Moreover, for any increasing continuously differentiable function ¢ on [0, co)
with ¢(0) = 0 and every measurable function f on X with ¢(|f|) integrable
on X, we have

[ ellfhdnt) = [ @) (a)da (1.1.2)
X 0
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§1.1. The distribution function and weak L” -5-

Proof. In order to prove (i), we first prove the following conclusion: If f(x) is finite
and f.(«) < oo for any a > 0, then

/X (@) Pdu(z) = — /0 oPdf. (). (1.13)

Indeed, the rh.s. of the equality is well-defined from the conditions. For the inte-
gral in the L.h.s., we can split it into Lebesgue integral summation. Let 0 < e < 2¢ <
- <ke<---and

E]:{$€X(]—1)6<|f(33)|<]€}, j:1727"'7
then, u(E;) = £.((j — 1)2) — f.(j), and

[ \r@)rdnte) = tim > GerulE

o

=—lim > (je)?[f.(je) = fo(( = D)e)]
j=1

- /0 " aPdf. (o),

since the measure space is o-finite.

Now we return to prove (i). If the values of both sides are infinite, then it is
clearly true. If one of the integral is finite, then it is clear that f.(a) < 400 and f(x)
is finite almost everywhere. Thus (1.1.3) is valid.

If either f € LP(X) or [;* o~ ! f.(a)do < oo for 1 < p < oo, then we always
have o?f,(a) — 0 as @ — +oo and o — 0 from the property (vii) and (viii) in
Proposition 1.1.3.

Therefore, integrating by part, we have

- [T = [ i a)a - @l =p [ 0r f(@)de
0 0 0

Thus, i) is true. Identity (1.1.2) follows similarly, replacing the function o® by the
more general function ¢(a)) which has similar properties.
For (ii), we have

inf{a: fi(a) =0} =inf{a: p({z € X : |f(z)| > a}) =0}
=inf{a: |f(z)| < a, a.e.}

=esssup | f(x)] = || floo-

zeX

We complete the proofs. |

Using the distribution function f,, we now introduce the weak LP-spaces de-
noted by L.

Definition 1.1.5. )

For 1 < p < oo, the space LE(X, u1), consists of all u-measurable functions f
such that

1
£z = sup afl/P(a) < oo.
a>0

In the limiting case p = oo, we put L° = L.

Two functions in LY (X, p) are considered equal if they are equal p-a.e. Now, we
will show that L is a quasi-normed linear space.
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-6- Chengchun HAO

1°If | f]|,» = O, then for any o > 0, it holds u({z € X : |f(x)| > a}) = 0, thus,
f=0, u-ae.
2° From (iii) in Proposition 1.1.3, we can show that for any £ € C \ {0}

k£l e =sup a(kf)eP (@) = sup afi/?(a/|k)
a>0 a>0

1
=[k|supaf2/? () = [kl 2

v = ||| f|| » also holds for k = 0.
3° By the part (iv) in Proposition 1.1.3 and the triangle inequality of LP norms,
we have

1
If +gllpr =supalf + g)f (o)
a>0

<oma (1 (3) 0. (3))’

swpa (£ (5) +0
<esup (77 (5) +at (3))

<2 (supaf* (a )+supag* (a )>

a>0 a>0
<

2+ llgllze)-
Thus, LY is a quasi-normed linear space for 1 < p < oo.
The weak LP spaces are larger than the usual L? spaces. We have the following;:

Theorem 1.1.6. «

Forany 1 < p < oo,and any f € LP(X, ;1), we have

11z < [1f[lp-
Hence, LP(X, p) < LE(X, ).

Proof. From the part (vi) in Proposition 1.1.3, we have

1/p
afi/"(a) < (/ If(:v)lpdu(w)> < [ £l
{zeX:|f(z)|>a}
which yields the desired result. [

The inclusion LP — L% is strict for 1 < p < oo. For example, on R" with the
usual Lebesgue measure, let h(z) = |z|~ "/ P. Obviously, h is not in LP(R™) due to

oo
/ |x| "dx = wnl/ P dr = oo,
0

where w, 1 = 27"/ /T(n/2) is the surface area of the unit sphere S”~! in R”, but h
is in LE(R™) and we may check easily that

I#llzz =sup ahi/” (@) = sup a({a : [+ 7" > a})'/*
=supa(|{z:|z| < a_p/"}|)1/p = sup oz(oz_an)l/p
(0% (6%
:an/p’

where V,, = 7"/2/T'(1 + n/2) is the volume of the unit ball in R" and I'-function
= [, t*te7 dt for Rz > 0.
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§1.1. The distribution function and weak L” -7-

It is not immediate from their definition that the weak L? spaces are complete
with respect to the quasi-norm || - || .». For the completeness, we will state it later as
a special case of Lorentz spaces.

Next, we recall the notion of convergence in measure and give the relations of
some convergence notions.

Definition 1.1.7. )

Let f, fn,n =1,2,---, be measurable functions on the measure space (X, ).
The sequence { f,,} is said to convergent in measure to f, denoted by f, LN
f,if for all € > 0, there exists an ng € Z* such that

n>ng = p({z € X :|fulzx) = f(z)| >c}) <e. (1.1.4)

Remark 1.1.8. The above definition is equivalent to the following statement:
lim p{z e X :|fu(z) — f(x)] >€}) =0, Ve>0. (1.1.5)

Clearly, (1.1.5) implies (1.1.4). To see the converse, given ¢ > 0, pick 0 < § < ¢
and apply (1.1.4) for this §. There exists an ng € Z" such that

p{z € X o [fulz) — f(2)] > 0}) <0

holds for n > ng. Since

p{z € X o fu(z) — f(2)] > e}) < p({z € X : |ful) — f(2)] > 6}),

we conclude that

p{z € X2 |fulz) — f(2)] > €}) <0

for all n > ng. Let n — oo, we deduce that

limsup p({z € X : |fu(z) — f(z)| > e}) <0. (1.1.6)

n—oo

Since (1.1.6) holds for all § € (0,¢), (1.1.5) follows by letting 6 — 0.

Convergence in measure is a weaker notion than convergence in either L? or
LY, 1 < p < oo,as the following proposition indicates:

Proposition 1.1.9. s

Letp € [1,00] and fy, f € LE(X, ).

@) If fo,f € LP and f,, — fin L?, then f, — fin L%.
(i) If f, — fin L%, then f, - f.

\.

Proof. For p € [1, o), Proposition 1.1.6 gives that
an - fHLZ < an - f“pv

which implies (i) for the case p € [1, 00). The case p = oo is trivial due to L3° = L.
For (ii), given € > 0, there exists an ng such that for n > ny,

£ = Flliz = supan({z € X : |fu(a) = f(@)] > a})r <&'*v.

Taking o = ¢, we obtain the desired result. |
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Example 1.1.10. Note that there is no general converse of statement (ii) in the above
proposition. Fix p € [1,00) and on [0, 1] we define the functions

Teg = k‘l/px(u iy 1<j<k
k 'k
Consider the sequence { f1,1, f2,1, f2,2, f3.1f32, f3.3,- - - }. Observe that
Hx: frj(x) >0} =1/k =0, as k,j — oo.
Therefore, f}, ; £ 0. Similarly, we have
| frll e ZSlil(O)OéHZE : fog(@) > P

=supal{z : kl/px(u 1 (z) > a}[!/?

a>0 k>

J—17 1/ }

=supa |z € |, ]| kP >«
a0 { < k k‘)

= sup a(l/k)Y/P
0<a<kl/p

Bl

1/p

1/p
= sup <1—12> (taking o = (k —1/k)Y/?)
k>1 k

which implies that f;, ; does not converge to 0 in L.

It is useful fact that a function f € LP(X,u) N LY(X, p) with p < ¢ implies
f € L"(X,u)forallr € (p,q). The usefulness of the spaces L% can be seen from the
following sharpening of this statement:

Proposition 1.1.11. :

Letl < p<gq< ocand f € LY(X,p) N LLX,u), where X is a o-finite
measure space. Then f € L"(X, u) forall r € (p, q) (i.e., 6 € (0,1)) and

r r O\ 1-6)| £110
1< (= =) I (117
with the interpretation that 1 /0o = 0, where
1_1-0 90
r p q

\.

Proof. We first consider the case ¢ < co. From Theorem 1.1.4 and the definition of
the distribution function, it follows that

1717 =r /0 ™1 f.(a)da (1.18)

o0 LA A1
gr/ " ! min ( Lg, L2 ) da
0 oP ol

1
) 1% IfISq £\ ar
We take suitable « such that = = e, a < | =: B. Then, we

o ot 177,

get

B o%s)
Il < [ o P e+ [ oty da
0

.
r—p

— r _
1172 B + qjllflqugBT ¢ (duetop <r<gq)
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§1.2. Complex method: Riesz-Thorin and Stein interpolation theorems -9-

_ r r r(1-6) 0
— (5 + 5 ) Mg

For the case ¢ = oo, due to f.(a) = 0 for @ > || f||~, we only use the inequality
fela) < —pr”p for o < || f|| for the integral in (1.1.8) to get

I1f oo
|um<@/ oL £ da
0

which implies the result since p = r(1 — §) and L° = L™ in this case. [

Remark 1.1.12. From the Holder inequality, we easily know that (1.1.7) holds with
constant 1 if L} and L{ are replaced by L? and LY, respectively.

§1.2 Complex method: Riesz-Thorin and Stein interpolation theorems

§1.2.1 Riesz-Thorin interpolation theorem

In this section, scalars are supposed to be complex numbers.
Let T be a linear mapping from LP = LP(X,du) to L9 = L9(Y, dv). This means
that T(af + Bg) = oT(f) 4+ BT (g). We shall write
T:17— 14
if in addition 7" is bounded, i.e.,
IT1llq _

oy Il =
The number A is called the norm of the mapping 7.

1T fllg < oo

It will also be necessary to treat operators 7" defined on several L? spaces simul-
taneously.

Definition 1.2.1.

We define LP* + LP? to be the space of all functions f, such that f = fi + fo,
with f; € LP* and f> € LP2,

Suppose now p; < pa. Then we observe that
LP— LP + L7, Vp € [p1,pa]-
In fact, let f € L” and let y be a fixed positive constant. Set

[ s@e @i,
(mw—{a 5@ <

and fa(z) = f(x) — fi(x). Then
/mwwwmmz/muwm<wwmt mp/v ) Pdu(
since p; — p < 0. Similarly, due to p» > p,
/ue ) Pdp(z /ua P o) P> Pdu(a mp/U‘|wu

so f1 € LP' and fy € LP2, with f = f1 + fo.
Now, we have the following well-known Riesz-Thorin interpolation theorem.
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Theorem 1.2.2: The Riesz-Thorin interpolation theorem \

Let (X, 1) and (Y,v) be a pair of o-finite measure spaces. Let T be a linear
operator with domain (LP° + LP')(X,dpu), po,p1, 9o, q1 € [1,00]. Assume that

1T £ Lao (vav) < Aol fllro(x,a), i f € LP(X, dp),
and

ITfllar (vian) < Al fllze (x,aw)>  if f € LPH(X, dp),
for some py # p1 and qo # ¢1. Suppose that for a certain 0 < 6 < 1
1 1-6 0 1 1-60 6
= + — +

P P P q 0 @

(1.2.1)

Then
ITfllLacv,any < Aol fllirx,any, i f € LP(X, dp),
with
Ag < AFTAY. (1.2.2)

Remark 1.2.3. 1) (1.2.2) means that Ay is logarithmi-
cally convex, i.e., In Ay is convex.

2) The geometrical meaning of (1.2.1) is that the points
(1/p,1/q) are the points on the line segment between o 20)
(1/po,1/q0) and (1/p1,1/q1).
3) One can only assume the boundedness of T for (5 9)
all finitely simple functions f on X, and obtain the
boundedness for all finitely simple functions. When Gorav)
p < oo, by density, T" has a unique bounded exten- 0
sion from LP(X, ) to LY(Y,v) when p and q are as in
(1.2.1).

Q=

(L1

S0

In order to prove the Riesz-Thorin interpolation theorem, we first give the fol-
lowing three lines theorem, which is the basis for the proof and the complex inter-
polation method, and we will give its proof later. For convenience, let S = {z € C :

0 < Rz < 1} be the closed strip, S = {z € C : 0 < Rz < 1} be the open strip, and
0S = {z € C: Rz € {0,1}}. We have the following.

Theorem 1.2.4: Hadamard three lines theorem N

Assume that f(z) is analytic on S and bounded and continuous on S. Then
1-6 0
supl(0-+ o) < (suplfi0])  (suplsa+in])
teR teR teR
for every 6 € [0, 1].

We now prove the Riesz-Thorin interpolation theorem with the help of the
Hadamard three lines theorem.

Proof of Theorem 1.2.2. Denote

(h,g) = /Y h(y)g(y)dv(y)
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§1.2. Complex method: Riesz-Thorin and Stein interpolation theorems -11-

and 1/¢' =1 — 1/q. Then we have, by the dual,
Ihllg = sup [(h,g)l, and Ag = sup  [(T'f,g)l.
llgllqr=1 £ ll=llglly=1

Noticing that C.(X) is dense in LP(X,u) for 1 < p < oo, we can assume
that f and g are bounded with compact supports since p, ¢ < oo.! Thus, we
have |f(z)] < M < oo forall z € X, and supp f = {z € X : f(z) # 0} is com-
pact, i.e., u(supp f) < oo which implies [ |f(z)|‘du(z) = Jsupp 1 |f ()| du(z) <
M*p(supp f) < oo for any £ > 0. So g does.

For 0 < Rz < 1, we set

L_l—z+i 1 _1_Z+i
p(z) po  p ¢(2) 4 ¢’
and
n(z) =n(w, 2) = |f ()| ‘g;,xe{xexwfm»¢0hn@>=00mawsa
qw—q%a—wmww@>E%Vye{er:mw¢0haa—nomawma
Now, we prove n(z), n'(z) € LPi for j = 0, 1. Indeed, we have
Al =[1£@) | = L] = [P DG )
1—Rz §Rz
— (@) 0 ) = | ()70
Thus,
In(2) pﬁﬁ/szwwu /ﬁf )75 dp(z) <
We have

pz )n
(1 0| . NIWH

b
On one hand, we have lim¢(;) o, |f(z)|*In|f(z )] = 0 forany a > 0, i.e., Ve > 0,
30 > 0s.t. ||f(x)|“In|f(x)]| < eif |f(x)] < 0. On the other hand, if | f(x)| > J, then
we have

1f@)[* [ f(2)[| < M |In|f(2)]] < M max(]In M|, [Ind]) <
Thus,\|f(:c)|"ln\f( )|| < C. Hence,

W

(2)]° [l | £ ()]
\zqmwﬁﬂ

I—p‘—

<C |If @)1t
which yields

I(2) c/v ) Gtk gy () <

Therefore, 1(z), 1/ (z) € LPi for j = 0,1. So ((z), ¢'(z) € L% for j = 0,1 in the same
way. By the linearity of 7', it holds (T'n)'(z) = T/(z). It follows that Tn(z) € L%,
and (Tn)'(z) € L% with 0 < Rz < 1, for j = 0, 1. This implies the existence of

F(z) = (Tn(2),(()), 0<Rz<1

1-1/q0

L,
ar-1/q = Lifd = oo

1Otherwise, it will be pg = p1 = 0 if p = 00, or § =
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Since
dFdiZ) :%<T77(Z)7C(z)> = diz /Y(Tn)(y,z)g(y’ 2)dv(y)

- / (Tn)2(y, 2)C(y, 2)dv(y) + / (T0) (9, 2)C (y, 2)dw (y)
Y Y
—(T0)(2), ¢(2)) + (Tn(2), ¢ (2)),

F(z) is analytic on the open strip 0 < Rz < 1. Moreover, it is easy to see that F'(z)
is bounded and continuous on the closed strip 0 < #z < 1.
Next, we note that for j = 0,1

P
In(j +it)llp; = Iflly" = 1.

Hq; =1forj =0,1. Thus, for j = 0,1

[P (G + i) =[(Tn(j +it), (G +it)| < ITn( + it)llg, IS +it)
<AylInG + i), 1€G +it)lg = Aj.

Using Hadamard'’s three line theorem, reproduced as Theorem 1.2.4, we get the
conclusion

Similarly, we also have ||((j + it)

|F(0+it)| < AY?A), vteR.

Taking t = 0, we have |F(6)| < A}~ AY. We also note that 5(f) = f and ¢(§) = g,
thus F'(0) = (T'f, g). Thatis, [(T'f, g)| < Aé_eA(f. Therefore, Ag < Atl)_eA(f. [ |

Before proving the three line theorem, we recall the following theorem.

Theorem 1.2.5: Phragmen-Lindel6f theorem/Maximum principle

Assume that f(z) is analytic on S and bounded and continuous on S. Then

sup |(2)] < max (sup|f<z‘t>|, sup | (1 +z‘t>|) |
z€S teR teR

Proof. First, assume that f(z) — 0 as |3z| — oco. Consider the mapping h : S — C
defined by
etz g
h(z) = g ? €s. (1.2.3)
Then £ is a bijective mapping from S onto U = {z € C : |z] < 1} \ {£1}, thatis
analytic in S and maps dS onto {|z| = 1} \ {£1}. Therefore, g(z) := f(h~1(z)) is
bounded and continuous on U and analytic in the interior /. Moreover, because of
limg.| o0 f(2) = 0, lim, 41 g(2) = 0 and we can extend g to a continuous function
on {z € C: |z| < 1}. Hence, by the maximum modulus principle, we have
|9(2)] < max |g(w)| = max (Sup £ (@t)], sup | f(1 + it)l) :
|w[=1 teR teR

which implies the statement in this case.

Next, if f is a general function as in the assumption, then we consider

Foo(2) = T f(2), 60, z €S
Since |e5<z—z0)2| < @ =v?) with 2 — 2o=x+1y, —1 <z <landy € R, we have

f5.20(2) = 0 as |Jz| — oo. Therefore,

f (20)[ =[/5,20(20)| < max <Sup | fo,20 ()], sup [ fs20 (1 + it)|>
teR teR
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§1.2. Complex method: Riesz-Thorin and Stein interpolation theorems -13-

<e® max (sup |f(@it)], sup|f(1+ zt)|> .
teR teR
Passing to the limit 6 — 0, we obtain the desired result since zy € S is arbitrary. W

Proof of Theorem 1.2.4. Denote

Ag :=sup|f(it)|, Ai:=sup|f(l+it)l.
teR teR

Let A € R and define
FA(z) = € £(2).
Then by Theorem 1.2.5, it follows that | F)(z)| < max(Ag, e*A1). Hence,
| (0 +it)| < e max(Ag, e A7)
for all ¢ € R. Choosing A = In j—‘; such that e*A; = A, we complete the proof. W

Now, we shall give a rather simple application of the Riesz-Thorin interpolation
theorem.

Theorem 1.2.6: Young's inequality for convolutions

If fe LP(R")and g € LY(R"),1 < p,q,r < occand 1 =
1 *gllr < 1 lpllgllq-

Proof. Fix f € L?, p € [1,00], then we will apply the Riesz-Thorin interpolation
theorem to the mapping g — f * g. Our endpoints are Holder’s inequality which
gives

[f* 9@ < flpllglly

and thus g — f * g maps v (R™) to L*>°(R™) and the simpler version of Young’s
inequality (proved by Minkowski’s inequality) which tells us that if g € L!, then

1f * gllp < £ llpllgll1-
Thus g — f * g also maps L' to LP. Thus, this map also takes L4 to L where

1 1-6 0 1 1-6 46

- =—+—,and - = —— + —.

q 1 p' r P 00
Eliminating 6, we have 1 = 11? + é — 1. Thus, we obtain the stated inequality for
precisely the exponents p, ¢ and r in the hypothesis. u

Remark 1.2.7. 1) The sharp form of Young’s inequality for convolutions can be
found in [Bec75, Theorem 3], we just state it as follows. Under the assumption of
Theorem 1.2.6, we have

1+ gllr < (ApAg A )™ ([ fllpllgllas
where A, = (m!/™/m"/™" )12 for m € (1,00), A; = Ao, = 1 and primes always
denote Holder conjugate numbers, i.e., 1/m + 1/m’ = 1.
2) The Riesz-Thorin interpolation theorem is valid for a sublinear operator, i.e.,
T satisfying for measurable functions f and g:
I T(af) =l ()], VaeC,
T(f + 9l <IT(HI+1T(9)l-
One can see [CZ56] for details.
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§1.2.2 Stein interpolation theorem

The Riesz-Thorin interpolation theorem can be extended to the case where the
interpolated operators allowed to vary. In particular, if a family of operators de-
pends analytically on a parameter z, then the proof of this theorem can be adapted
to work in this setting.

We now describe the setup for this theorem. Suppose that for every z in the
closed strip S there is an associated linear operator 7', defined on the space of sim-
ple functions on X and taking values in the space of measurable functions on Y’
such that

/Y T (xa)xBldv < 00 (1.2.4)

whenever A and B are subsets of finite measure of X and Y, respectively. The
family {7}, is said to be analytic if the function

z—>/yTZ(f)ng (1.2.5)

is analytic in the open strip S and continuous on its closure S. Finally, the analytic
family is of admissible growth if there is a constant 0 < a < 7 and a constant C 4

such that
/ T.(f)gdv
Y
forallz € S.

Note that if there is a € (0, 7) such that for all measurable subsets A of X and B
of Y of finite measure there is a constant ¢(A, B) such that

/ TZ(XA)dV <
B
then (1.2.6) holds for [ = Z]kw_l akXAk and g = EN_ bjxp, and

eS8zl

< Cpy < 00 (1.2.6)

_ Cx
e al3z] In

c(A, B), (1.2.7)

Cty=In(MN) +ZZ (Ag, Bj) + [In |agb;]|) -
k=1 j=1

In fact, by the linearity of 77, (1.2.7) and the increasing of In, we get

M N
/ T.(f)gdv| =In / T, (Z%m) > bixs,dv
Y Y k=1 j=1

In

M N
<1DZZ‘akbj|/BTz(XAk)dV

k=1 j=1 j

<lIn MNH%?;X <|akbj|exp< (Ak, Bj) a\rz))}

<In(MN) + max|in [ (lagbs| exp (e(Ay, By)e®™) )] |

¥
<I(MN) +max |In agbs|| + c(Ay, By)el*]
?-]

M N
<I(MN) + 303 [Imfarbsl| + c(Ay, By’

k=1 j=1
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M N

< | MN) + 375 (1 fagby|] + e(Ay, By)) | !9,
k=1 j=1

Then, we have an extension of the three lines theorem.

Lemma 1.2.8.

Let F be analytic on the open strip § = {z € C : 0 < Rz < 1} and continuous

on its closure S such that for some A < co and 0 < a < 1, we have
In |F(z)| < Ae?l¥! (1.2.8)

forall z € S. Then
sinmx [ [ In|F(it + iy)| In|F(1+ it + iy)|
F dt
P +iy)] < exp { 2 /oo [cosh nt —cosmx  coshmt + cosmx ’
whenever 0 < z < 1, and y is real.

Before we give the proof of Lemma 1.2.8, we first recall the Poisson-Jensen for-
mula from [Rub9%6, pp.21].

Theorem 1.2.9: The Poisson-Jensen formula \

Suppose that f is meromorphic in the disk Dr = {z € C : |z| < R}, r < R.
Then for any z = re? in Dg, we have

] g ) R2 2
in e =5 [ WIARE) e 3 In|Ba(e )

1 _ pil|2
x |Re re'| IoR

Z In|Bgr(z:w,)| — klnﬁ,
,

|lwy |[<R
where B is the Blaschke factor defined by
. R(z—a)
Bgr(z:a) = 7%,

and the z, are the zeros of f, the w, are the poles of f, and k is the order of

the zero or pole at the origin.

\.

Proof of Lemma 1.2.8. It is not difficult to verify that
1+¢
= —1
0O = (i ¢
is a conformal map from D = {z : || < 1} onto the strip S = (0,1) x R. Indeed,
i(1 4+ ¢)/(1 — () lies in the upper half-plane and the preceding complex logarithm

is a well-defined holomorphic function that takes the upper half-plane onto the
strip R x (0, 7). Since F o h is a holomorphic function on D, by the Poisson-Jensen
formula, we have
1 ™ ; R2 _ P2
(P < o [ PR
when z = pe' and |z| = p < R. We observe that for R < |¢| = 1 the hypothesis on
F implies that

dy (1.2.9)

ln\F( (Reup))‘ <Ae ‘ (i*Rg)) (letCZGisD/ h(RC)Z%In (Zijgg))
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o }

(the square root is > 1 if cos ¢ > 0 and < 1 otherwise)

_a 1+ R% +2R|cos ¢ e
- \1+ R?2 —2R|cos | '

S}

I (14 Rcosp)? + (Rsinp)?
(1 — Rcosg)? + (Rsinp)?

Since
1+ R? — 2R|cos | =(R — | cos ¢|)? + sin® ¢ > sin? ¢,
1+ R? 4+ 2R|cosp| <(1+ R)* < 4,
we get
4 4 \2* . .
In |F(Rh(Re'*))| < A <2> < A2~ |sinp| .
sin® ¢
Now,

/ |sincp|_%dg0 :4/2 sin~ pdp = 4/2 sin2(3—3%) 1 4,00032'%_1 wdp
- 0 0

11 a
=2B| -, - — —
<2’ 2 27r> =0
since a < 7 and the fact that the Beta function

™

1 ks
Bla, ) = / 21— 2)" () = 2/2 sin?? 1 p cos®* L pdyp
0 0

converges for a, § > 0. Moreover, for 1 > R > %(p + 1), it holds

R? — p? R? — p? R? —p?
, ___ = <
|Rei¢ — pei?|2 R2 —2Rpcos(f — @) + p2 ~ RZ—2Rp+ p?
_(BR—p)(Rtp) Rtp_ 2 o4
(R—p)? R=p " 3lp+1)=p 1-p

Thus, (1.2.9) is uniformly bounded w.r.t. R € (1(p+1),1).

We will now use the following consequence of Fatou’s lemma: suppose that
Fr < G,where G > Oisintegrable, thenlimsupp_, ., [ Frde < [limsupg_,. Frde.
Letting R 1 1 in (1.2.9) and using this convergence result, we obtain

. 1 (™ . 1—p?
In|F(h(pe®))| < — [ In|F(h(e" de. 1.2.10
n F(hpe)| < 5 [ WIPOE ) oo de. (1210)

Setting = = h(pe'?), we obtain that
T

e —q cosTx + 1sinwxr — ¢

pe? =h7t(z) = ——— = — .
emT 4 g cosTx +1sinmwx + 1

(cosmz +i(sinma — 1))(cos mx — i(sinma + 1))

| cosmx + i(sinmx + 1)|?

. cosTx COS X o
= —1 - = N e 2
1+ sinmx 1+ sinnmx ’

from which it follows that p = (cosz)/(1 4 sinmz) and 6 = —7/2 when z € (0, 3],
while p = —(cosz)/(1 + sin7wz) and 6 = m/2 when z € [1,1). In either case, we
have p = (sgn (3 —2))(cosmz)/(1+sinz) and = —(sgn (3 —z))m/2 for z € (0, 1).
We easily deduce that
1—p?
1 —2pcos(0 — @) + p?
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1— cos? Tz

_ Tisinra?
1—2(sgn (3 —2)) S5 cos((sgn (3 — )% + ) + (Coﬂ

1+sinmz 1+sin 7z)?

(1+ sin7wz)? — cos? ma

(1 + sinmx)? + 2(1 4 sin7z) cos mx sin ¢ + cos?

2sin mx + 2sin® 7w

2(1 +sinmz)(1 + cos Tz sin )
sin Tx

1t cosTrsin g’
Using this we write (1.2.10) as
1 (" sin 7z -
In|F(x)] < — In|F(h(e'?))|dep. 1.2.11
0P < 5 [ e Pl (1211)
We now change variables. On the interval [, 0), we use the change of variables
it = h(e") or, equivalently,

e—7rt —q (e—ﬂ't o Z')2 6—27rt —1— Qie—ﬂ't

e =h"1(it) = = =
(i) e~ g e—2m 1 e—2m 1
e—ﬂ't _ eﬂ't — %
= — — _—tanhnt — isechrt.
efmf + e7rt

Observe that as ¢ ranges from —= to 0, ¢ ranges from +o0o to —oo. Furthermore,
dp = —msech 7t dt. We have

1 0 sin Tx

— In |F(h(e"¥))|d
2m J_; 14 cosmxsinp n[F(h(e™)ldy

1 [ i
— / SIMTY g |F(it)|dt. (1.2.12)

2 J_o coshmt — cosmx
On the interval (0, 7], we use the change of variables 1+ it = h(e'?) or, equivalently,
o1 :h*1(1 +it) = emf(lﬂit) _Z: — em:e_m _Z: _ (eme ™ —i)(e e ™ — )
em(l-{-zt) iy eTie—mt + 4 e—2mt +1
67271'25 1= iefﬂt(efﬁi 4 ewi) B efTrt _ eTrt 4+ 92
1 4+ e—2mt - et 1 et
= — tanh 7t 4 ¢ sech 7t.

Observe that as ¢ ranges from 0 to 7, ¢t ranges from —oo to +oo. Furthermore,
dyp = msechrt dt. Similarly, we obtain

1 i sin Tx

In|F(h(e'))|dyp

27 o 14 cosmxsing
1 [ sin 7 )

_2/00 coshnt - conra In|F(1 4 dt)|dt. (1.2.13)
Adding (1.2.12), (1.2.13) and using (1.2.11), we conclude the proof when y = 0.

We now consider the case when y # 0. Fix y # 0 and define the function
G(z) = F(z +iy). Then G is analytic on the open strip S={zeC:0<Rz<1}
and continuous on its closure S. Moreover, for some A < coand a € [0, 7), we have

In |G(2)| = In |F(z + iy)| < AelS7H9 < AealvlealS?
for all z € S. Then the case y = 0 for G (with A replaced by Ae®) yields

G(x”gexp{sinﬁx/oo[ |G|, |G +it) ]dt}

2 —oo Lcosh7t —cosma  coshwt 4 cosmx
which yields the required conclusion for any real y, since G(z) = F(x +1iy), G(it) =
F(it +iy), and G(1 + it) = F(1 4 it + iy). [ |
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The extension of the Riesz-Thorin interpolation theorem is now stated.

Theorem 1.2.10: Stein interpolation theorem \

Let (X, 1) and (Y, v) be a pair of o-finite measure spaces. Let T, be an analytic
family of linear operators of admissible growth. Let 1 < po,p1,q0,q1 < o0
and suppose that My and M are real-valued functions such that

sup e " n M; (1) < o0 (1.2.14)
teR
for j =0,1and some 0 < b < 7. Let 0 < 6 < 1 satisfy
L1200 g 12120, 9 (1.2.15)
p Po P q qo0 a1
Suppose that
1Tt (Hllgo < Mol fllpos  Tawie(F)llg < Mr(®)]]f ]y (1.2.16)
for all finitely simple functions f on X. Then
1To(f)llg < M@O)| fllp, when0<6<1 (1.2.17)

for all simple finitely functions f on X, where
M(9) = exp {81n27r9 / [ InMo(t) M) ] dt} _

coshmt — cosmf ~ coshmt + cos
By density, Ty has a unique extension as a bounded operator from L”(X, )
into L4(Y,v) for all p and q as in (1.2.15).

—00

The proof of the Stein interpolation theorem can be obtained from that of the
Riesz-Thorin theorem simply “by adding a single letter of the alphabet”. Indeed,
the way the Riesz-Thorin theorem is proven is to study an expression of the form

F(z) = (T'n(2),((2)),

the Stein interpolation theorem proceeds by instead studying the expression

F(z) = (T:n(2),¢(2))-
One can then repeat the proof of the Riesz-Thorin theorem more or less verbatim to
obtain the Stein interpolation theorem. For convenience, we give the proof for this
version of finitely simple functions.

Proof of Theorem 1.2.10. Fix 6 € (0,1) and finitely simple functions f on X and
g on Y such that || f||, = |lg|ly = 1. Note that since § € (0,1), we must have
D,q € (1,00). Let

m n
F=) aexa, and g=3 bieixp,
k=1 j=1
where a;, > 0, b; > 0, ay, (; are real, A, are pairwise disjoint subsets of X with
finite measure, and B; are pairwise disjoint subsets of " with finite measure for all
k,j. Let

p P q q
Plz)=—(1—-2)+—2 Q)= ;(1-2)+ 7=z 1.2.18
(2) po( ) s Q(2) qé( ) p ( )
For z € S, define
=Y a Py, g = 09 eixg (1.2.19)
k=1 j=1
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§1.3. The decreasing rearrangement and Lorentz spaces -19-

and
F(Z) _/ Tz(fz)gzdl/- (1.2.20)
Y
Linearity gives that

ZZak ) o i / T.(xa,)(@)x5, (2)dv(z),

k=1 j=1
and the condition (1.2.4) together with the fact that {7 } . is an analytic family imply
that F'(z) is a well-defined analytic function on the unit strip that extends continu-
ously to its boundary:.
Since {7}, is a family of admissible growth, (1.2.7) holds for some c(Ay, B;)
and a € (0, 7) and this combined with the facts that
d d
af @1 < (@ agm L) < (1 by
forall z € S, implies (1.2.8) with @ as in (1.2.7) and

/

= In(mn) +ZZ[ (Ap, B (p+p> ln(l—i-ak)—i—(s,,—i-q,) ln(1+bj)].

k=1 j—1 Po P b @

Thus, F' satisfies the hypotheses of Lemma 1.2.8. Moreover, the calculations in the
proof of Theorem 1.2.2 show that (even when py = p; = 00,q0 =q1 = 1) forj =0,1

/
q_

[ fj+iyllo; = HfHPJ =1= gl = lgj+illg, whenyeR. (1.2.21)
Holder’s inequality, (1.2.21) and the hypothesis (1.2.16) give
1+ iy)| < I Tjiy(Fivig)lg; | g5+ivllq < M) Fiviyllp; 95+iullg, = M;(y)
for all y real and j = 0,1. These inequalities and the conclusion of Lemma 1.2.8
yield

]F(9)|<exp{smﬂa/_(:[ WMo(t) () ]dt}zM(@)

2 cosh 7t — cosm@  coshnt + cosmh
forall € (0,1). But notice that
F(0) = / Ty(f)gdv. (1.2.22)
Y

Taking absolute values and the supremum over all finitely simple functions g on
Y with L7 norm equal to one, we conclude the proof of (1.2.17) for finitely simple
functions f with L norm one. Then (1.2.17) follows by replacing f by f/| f|,. W

§1.3 The decreasing rearrangement and Lorentz spaces

The spaces LY are special cases of the more general Lorentz spaces LP9. In
their definition, we use yet another concept, i.e., the decreasing rearrangement of
functions.

Definition 1.3.1. )

If f is a measurable function on X, the decreasing rearrangement of f is the
function f* : [0, 00) — [0, co] defined by

fr(t) = inf{a>0: fi(a) <1},

where we use the convention that inf @ = oo.
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Now, we first give some examples of distribution function and decreasing rear-
rangement. The first example establish some important relations between a simple
function, its distribution function and decreasing rearrangement.

Example 1.3.2. (Decreasing rearrangement of a simple function) Let f be a simple
function of the following form

k
z) = ajxa,(z)
=1

wherea; >ag > - >a, >0,4; ={r € R: f(x) = a;} and x 4 is the characteristic
function of the set A (see Figure (a)). Then

k k
fela) =z : [f(2) > a}| = [§2: Y ajxa,(@) > ap| = bixs, (@)
j=1 j=1
where b; = S7_ |A;|, Bj = [aj41,a;) for j = 1,2,--- ,k and a1 = 0 which shows

that the distribution function of a simple function is a simple function (see Figure
(b)). We can also find the decreasing rearrangement (by denoting by = 0)

ff@t) =inf{la > 0: fu(a) <t} =infca>0: Zb]XB

k
Za]X[bJ 1,0;
7=1

which is also a simple function (see Figure (c)).

f() fe(@) £
air |—| aly—|
[ |
azr (. |_| a h
asr M |1 | | b5 as | 1
atl b= T O
. RN by |=——— L
N - “ro
SRR R E—— B
[ L | | A . ] L
As As A A5 Ay 2 as a4 aszaz a1 o b1 b2 b3 babs"t
(a (b) (c)

Example 1.3.3. Let f : [0,00) — [0, 00) be

1—(x—1)2  0<2<2,
0, x> 2.

It is clear that f.(«) = 0 for a > 1 since | f(z)| < 1. For a € [0, 1], we have
fela) ={z € [0,00) : 1 = (z — 1)* > a}
={re0,00):1-VI-a<z<l+vV1I-a}|=2V1—-a.
That is,

0, a>1.

f*(a):{ o0WI—a, 0<a<l,
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The decreasing rearrangement f*(¢) = 0 for ¢ > 2 since f.(a) < 2 for any a > 0.
For ¢t < 2, we have

ff@) =inf{la > 0:2v1 —a <t}
—infla>0:a>1-t?/4} =1—t*/4.
Thus,
1—t2/4 0<t<2
*t: ’
ro-{o U5
T T 1
2“ 2_ 2__
T 1 1_\
T2 . S T2 ¢

(a) (b) (c)
Observe that the integral over f, f. and f* are all the same, i.e.,

/Ooof(w)d:nZ/OQ[l—(:c—1)2]d:1::/12\/mda:/02(1_t2/4)dt:4/3‘

0
Example 1.3.4. We define an extended function f : [0,00) — [0, <] as

0, z =0,
lnﬁ, <<,

f(z) =< oo, 1<z <2,
n-Lo,  2<a2<3,
0, T = 3.

Even if f is infinite over some interval the distribution function and the decreasing
rearrangement are still defined and can be calculated, for any a > 0

ful@) =p <{x €[1,2]: 00> a}| J{z € (0,1): 1n(1ix) > a}
U{x €(2,3): ln(xi2) > a})

=141 - D[+ (2,67 +2)|

=1+2e"¢,
and
0, 0<t<1,
[t =4 (%), 1<t<s3,
0, t>3
5} Fa e
a 4t 41
3 31 3t
=+ 1+ it
| | N Il Il ! # Il Il b
1 > L. 1 2 3« 1 2 30t
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Example 1.3.5. Consider the function f(z) = z for all z € [0,00). Then fi(a) =
{z € [0,00) : # > a}| = oo for all @ > 0, which implies that f*(¢) = inf{a > 0 :
oo <t} =oc0forallt > 0.

Example 1.3.6. Consider f(z) = {; for z > 0. Itis clear that f.(a) = 0 for a > 1

since |f(x)| < 1. For « € [0,1), we have

f*(a):‘{xe [0, 00) : :E >a}’

142z
!
= 0 N =
Hme[,oo) $>1—a}’ 00
That is,
o, 0<<ax<l,
f(e) _{ 0, a> 1.
Thus, f*(t) =inf{la > 0: fi(a) <t} =1
PN
1 £
f
! —>
1 2

The following are some properties of the function f*.

Proposition 1.3.7. \

The decreasing rearrangement f* of the measurable function f on (X, x1) has

the following properties:

(i) f*(t) is a non-negative and non-increasing function on [0, o).
(i) f*(t)is right continuous on [0, c0).
(i) (kf)* = |k|f* for k € C.
(iv) |f] < |g| a.e. implies that f* < g*.
V) (f +9)"(t1 +t2) < f*(t1) + g*(t2)-
(vi) (fg)*(t1 +1t2) < f*(t1)g" (t2).
(vii) |f| < liminfy_ o |fx| a.e. implies that f* < liminfy_, f}.
(viii) |fx| 1T |f| a.e. implies that f 1 f*.
(ix) f*(f«(o)) < a whenever f.(a) < co.
09 fe(f* (@) = u({1f1 > 70} <t < p({lf] = f@)}) if f*(F) < oo
(xi) f*(t) > aif and only if f, () > t.
(xii) f* is equi-measurable with f, thatis, (f*).(«) = f«(a) for any « > 0.
(xiii) (If)*() = (F*(£)? for 1 < p < ox.
oiv) 1%l = Il for 1 < p < oo.
0v) [1lloc = £(0).

(xvi) sup;sot®f*(t) = sup,soa(fi(a))® for 0 < s < oo.

\.

Proof. (v) Assume that f*(t1) + ¢g*(t2) < oo, otherwise, there is nothing to prove.
Then for oy = f*(t1) and ay = g*(t2), by (x), we have f,(a1) < t; and g.(ag) < to.
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From (iv) in Proposition 1.1.3, it holds

(f + 9)«(a1 + a2) < filon) + g«(a2) < 11 + ta.

Using the definition of the decreasing rearrangement, we have
(f+9)"(t1 +t2) =infla: (f +g)(a) <t1 +t2} < a1 +ag = f*(t1) + g"(t2).

(vi) Similar to (v), by (v) in Proposition 1.1.3, it holds that ( fg)«(a1a2) < fi(on)+
g«(a2) < t1 + to. Then, we have

(fg)*(t1 +t2) = infla : (fg)«(a) <t +t2} < arae = f*(t1)g" (t2).

(xi) If f.(a) > t, then by the decreasing of f,, we have a < inf{3 : f.(8) < t} =
J*(t). Conversely, if f*(t) > o, ie., inf{ : f.(B) < t} > o, we get f.(a) > ¢ by the
decreasing of f. again.

(xii) By the definition and (xi), we have

(f)xla) = p({t = 0: f7(t) > a}) = p({t 2 0: fu(@) > t}) = fula).

(xiii) For a € [0, 00), we have
(LF17)*(t) =inf{a > 0: p({z : [f(@)|" > o}) <t}
=inf{o? 2 0: p({z : [f(z)| > o}) <t} = (7 (1))",

where o = a!/P.
(xiv) From Theorem 1.1.4 and (xii), we have

o0

£ @)l = / TPt = p |t (a)da

0
—p /0 a1 f (@)do = | I,

We remain the proofs of others to interested readers. |

Having disposed of the basic properties of the decreasing rearrangement of
functions, we proceed with the definition of the Lorentz spaces.

Definition 1.3.8. \

Given f a measurable function on a measure space (X, ) and 1 < p, g < oo,

define
VIS U qdt ‘
([T(re) ) a<x
[ fllzna =4 Vo

supt» f*(t), q = oo.
t>0

The set of all f with ||f||r.e < oo is denoted by LP9(X, ;1) and is called the
Lorentz space with indices p and gq.

As in LP and in weak LP, two functions in L”? will be considered equal if they
are equal almost everywhere. Observe that the previous definition implies that
LP>° = [ in view of (xvi) in Proposition 1.3.7 and LP? = L? in view of (xiv) in
Proposition 1.3.7 for 1 < p < oo. By (i) and (xv) in Proposition 1.3.7, we have
| fllLoce = supyso f*(t) = f*(0) = || fllc which implies that L°>° = L>* = Lg°.
Thus, we have
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Theorem 1.3.9.
Let 1 < p < co. Then it holds, with equality of norms, that
PP =[P, [P =[P

Remark 1.3.10. For the Lorentz space LP4, the case whenp = coand 1 < ¢ < oo
is not of any interest. The reason is that || f||L=.« < oo implies that f = 0 a.e. on
X. In fact, assume that L°9 is a non-trivial space, there exists a nonzero function
f € L7 on a nonzero measurable set, that is, there exists a constant ¢ > 0 and a set
E of positive measure such that | f(x)| > cforall 2 € E. Then, by (iv) in Proposition

1.3.7, we have
o0 o dt wE)dt
> [Clwror s [ e =
0 0

s = [ (@)1
since (fxg)*(t) = 0 fort > p(E). Hence, we have a contradiction. Thus, f = 0 a.e.

on X.

| &

\_/H

The next result shows that for any fixed p, the Lorentz spaces LP-¢ increase as
the exponent ¢ increases.

Theorem 1.3.11.

Letl <p<oand 1< ¢g<r < oo Then,

[ fllzo.r
where C,, ;. = (¢/p)"/7"'/". In other words, LP4 — [P,

(1.3.1)

Proof. We may assume p < oo since the case p = oo is trivial. Since f* is non-
creasing, we have

Il = { [0 02 }”q
{ et} o { [ o)
=f*(t) <§t‘1/p>1/q = ()P <§>1/q.

Hence, taking the supremum over all ¢ > 0, we obtain

g\
£z < (2) " Wl (132
This establishes (1.3.1) in the case r = co. Finally, when ¢ < r < oo, we have by
(1.3.2)
00 M
e ={ [T10r -]
~ g e
<suptr )0 { [T opt )
£>0 0 ¢
g
r r r n
1211 < (2) 7 Wl
This completes the proof. n
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In general, LP9 is a quasi-normed space, since the functional || - ||z».« satisfies
the conditions of normed spaces except the triangle inequality. In fact, by (v) in
Proposition 1.3.7, it holds

1 + gllzea <2P(I fllLra + llgllzra)- (1.3.3)

However, is this space complete with respect to its quasi-norm? The next theorem
answers this question.

Theorem 1.3.12.

Let (X, u) be a measure space. Then for all 1 < p,g < oo, the spaces
LP9(X, 1) are complete with respect to their quasi-norms, and they are there-
fore quasi-Banach spaces.

Proof. The proof is standard, we omit the details. One can see [Gral4, p.54, Theo-
rem 1.4.11] for details. |

For the dual of Lorentz spaces, we have

Theorem 1.3.13.

Suppose that (X, 1) is a non-atomic o-finite measure space. Let 1 < p,q < oo,
1/p+1/p=1and 1/q+ 1/¢' = 1. Then we have

(Lray = D, (LMY = (L) =1, (@MY = {0y, (L) = 1

Proof. See [Gral4, p. 57-60, Theorem 1.4.16]. |

For more results, one can see [Gral4, Kri02].

§1.4 Real method: Marcinkiewicz’ interpolation theorem

We first introduce the definition of quasi-linear operators.

Definition 1.4.1. 3

An operator 7' mapping functions on a measure space into functions on an-
other measure space is called quasi-linear if T'(f + g) is defined whenever
Tf and Tg are defined and if [T'(\f)(z)| < &|A||Tf(z)| and |T(f + g)(z)| <
K(|Tf(z)| + |Tg(z)|) for a.e. x, where x and K is a positive constant inde-
pendent of f and g.

The idea we have used, in Definition 1.2.1, of splitting f into two parts accord-
ing to their respective size, is the main idea of the proof of the theorem that follows.
There, we will also use two easily proved inequalities, which are well-known re-
sults of Hardy’s (see [HLP8S, p. 245-246]):

Lemma 1.4.2: Hardy inequalities

If g > 1, > 0 and g is a measurable, non-negative function on (0, o), then

(/ooo (/Otg(y)dyyt_r%)l/q <g (/Om(yg(y))qy‘r%y/q, (1.4.1)
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([ ([ o) %)

Proof. To prove (1.4.1), we use Jensen’s inequality with the convex function ¢(z) =

z? on (0, 00). Then
t q
()
0

t q 1 t 1 1
9y dy> = / g(y)y' 1y ay
([ st (IOtyr/q_ldy )
! r/q—1 -t ! 1-r/q q r/q—1
< Yy dy (g(y)y Yy dy
0 0

g—1 [t
= (gt’"/ q) / (ya(y) y" /T " dy.
r 0

By integrating both sides over (0, c0) and use the Fubini theorem, we get that

/OOO (/Otg(y)dy>qt""‘1dt
S (g)q_l /OOO tir (/Ot (yg(y))qy"/q”dy> dt
- (g)q_l /OOO (yg(y) /o7 (/yoo t_l_’”/th) dy

= (q)q/ooo (yg )"y~ " dy,

r

N

0 1/q
z( /0 (yg(y))qyrdyy) : (14.2)

q

which yields (1.4.1) immediately.

To prove (1.4.2), we denote f(z) = g(1/z)/x?. Then by taking t = 1/s and
y = 1/z, and then applying (1.4.1) and changing variable again by = = 1/y, we
obtain

</Ooo </too g(y)dy> q tTldt> : - </OOO </1: g(y)d?J) q sr1d5> i
/Ooo </Osg(1/aj)/$2d:p>q8—r_1ds> 1/q

I
=S IR o
N
8
/N
c\m
=
G
<%
&
~_
_Q
»
!
N
QL
»
~_
—
~
_Q

Q

= ( /0 oo(g(y)y)qy’"‘ldy) "

Thus, we complete the proofs. n

Now, we give the Marcinkiewicz interpolation theorem and its proof due to
Hunt and Weiss in [HW64].

Theorem 1.4.3: Marcinkiewicz interpolation theorem

Let (X, 1) and (Y, v) be a pair of o-finite measure spaces. Assume that 1 <
pi < ¢ < 00, py < p1, g # ¢1 and T is a quasi-linear mapping, defined on
LPo(X)+ LP*(X), which is simultaneously of weak types (po, o) and (p1, g1),
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ie.,
1T fllLaoo vy SAoll fllpo, VF € LP(X),
T fllLaree vy <AL fllp, VS € L7 (X).
If0<f<1,and

(1.4.3)

1-6 0 1 1-60 40

1
P p p 4 @ @
then 7 is of type (p, ¢), namely

ITfllg < Allfllp,  f € LP(X).
Here A = A(A;, pi, g, 0), but it does not otherwise depend on either 7" or f.

9

Proof. Let o be the slope of the line segment in R? joining (1/po, 1/q0) with (1/p1,1/q1).
Since (1/p, 1/q) lies on this segment, we can denote the slope of this segment by
_Va—-1q 1/g-1/q
lpo—1/p 1/p—1/p1’
which may be positive or negative, but is not either 0 or oo since gy # ¢1 and py < p1.

For any ¢ > 0, we split an arbitrary function f € L? as follows:

f=r+r
where
ton_ ) f@), [f(@)] > (),
Fiw) = { 0, otherwise,
and f; = f — f*.
Then we can verify that
. <fy), 0<y<to,
() <y>{ B
) 0 <ve (1.4.4)
* f* tU 9 ~ y ~ 07
()" v) <{ A

In fact, by (iv) in Proposition 1.3.7, | f!| < |f| implies (f*)*(y) < f*(y) for all
y > 0. Moreover, since for 0 < a < f*(t7)
(f)s(@) =p({z : |[f' (@) > o}) = p({z : |f(@)] > f*(t7),and | f(2)| > a})
=p({x: [f(x)] > [7@7)}) = [ (7 (7)),
by the definition of f! and (x) in Proposition 1.3.7, we have

(f9)e(@) < (f)(f* (7)) = f(F7(17) <7, Va = 0.
Thus, for y > t7, we get (f)*(y) = 0.

Similarly, by (iv) in Proposition 1.3.7, we have (f;)*(y) < f*(y) forany y > 0
since | fi| < |f|- On the other hand, for y > 0, we have (f;)*(y) < (ft)*(0) = || ft|loo <
[*(t7) with the help of the non-increasing of (f;)*(y) and (xv) in Proposition 1.3.7.
Thus, (f1)*(y) < min(f*(y), f*(t?)) for any y > 0 which implies (1.4.4).

Suppose p; < co. Notice that p < ¢, because p; < g;. Denote K, ; = K(p/q)V/P—1/a,
By Theorems 1.3.9 and 1.3.11, (1.4.3), (1.4.4) and then by a change of variables,
Hardy’s inequalities (1.4.1) and (1.4.2), and (xiv) in Proposition 1.3.7, we get

ITfllg < KT g + 1T fellg) = KT Nzoe + 1T fillLoo)
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<K (p/)"" "V UT ! Law + 1T fill o)
([ o ) ([ )]
SHra {AO (/Oo [t/ gt ] ‘f) ”p
e ([T g, }”it)”p}
<Kpq {Ao (/OOO ¢1/a=1/a0 <plo>1—1/po qum’lr dtt>1/p
o </ooo [t” i (zf)/ Hftum dt }
)
Ay <p11>1 1 ( [1/q1/q1 (/ta S G )(Z )rity/p
AR
=Kl ¥ {Ao (plo>1—1/P0 </0°° —p(1/po=1/p) (/0 S oy )dy>p ds) 1/p

Yy S

+ A

a <pll)1—1/p1 </Ooosp(1/p_1/p1) </s e )Cg)p?)l/p
1=1/p1 / poo g .
+ A (pll> </0 sP(1/p=1/p1) </0 yl/p g (s )dyy> (is) }
<Kpglo| > {Ao (;})11/]00 (1/p01—1/p) </OOO (yl/pf*(y))p cZy) 1/p
(o) e ([ ey )

1 1_l/pl [e%} l/p
() (e rors)
1 0

S
1-1/po ) 4, ( >1—1/p1

|-

L
~
S
i
o
/N
3|
| —

+ Apy" 3

bS]
S
hSEE
AT
Z |-

=Al|flp-

For the case p; = oo, the proof is the same except for the use of the estimate
|l filloo < f*(t7), we can get
)1 1/po

A= Kp,q|0|_1/p (

’B‘,_. ’B‘.—n
"@M—‘

Lecture Notes on Harmonic Analysis

Updated: April 28, 2020



REFERENCES -29-

Thus, we complete the proof. u

A less superficial generalization of the theorem can be given in terms of the no-
tation of Lorentz spaces, which unifies and generalizes the usual L? spaces and the
weak-type spaces. For a discussion of this more general form of the Marcinkiewicz
interpolation theorem see [SW71, Chapter V] and [BL76, Chapter 5].
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In this chapter, we introduce the Fourier transform and study its more elemen-
tary properties, and extend the definition to the space of tempered distributions.
We also give some characterizations of operators commuting with translations.

§2.1 Fourier transform of L' functions

§2.1.1 The definition and properties

Now, we first consider the Fourier transform of L! functions.

Definition 2.1.1. )

Letw € R\ {0} be a constant. If f € L'(R"), then its Fourier transform is 7 f
or f : R" — C defined by

. n/2 |
f&) = ('2‘*;') / e f(a)da (2.1.1)

for all £ € R™.

We now continue with some properties of the Fourier transform. Before doing
this, we shall introduce some notations. For a measurable function f on R", z € R"
and a # 0 we define the translation and dilation of f by

T f(z) =f(x = y), (2.1.2)
5 f(x) =f (az), (2.1.3)
f(@) =f(~).
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Proposition 2.1.2. \

Given f,g € LY(R"), z,y,¢ € R", @ multi-index, a,b € C,c € Rand ¢ # 0,
we have

(i) Linearity: m = af +bj.
(i) Translation: 7V f(¢) = e “W<f(&).
(iii) Modulation: (e¥#¥ f(z))(£) = TV F(€).
(iv) Scaling: 5°F(¢) = |e| 0= " F(£).
(v) Differentiation: 9% 7(¢) = (wi€)*7(€), 0°F(¢) = m@.
(vi) Convolution: <%>n/2 f/*\g(g) = ?(g) (&) and fg= (M) 1 x4

(vii) Transformation: ﬁﬁ(g ) = ?(Af ), where A is an orthogonal matrix and
¢ is a column vector.

(viii) Conjugation: jf_\ = ?

\.

Proof. These results are easy to be verified. We only prove (vii). In fact,

F(f o A)(€) = (M>m [ et

27

w n/2 -
() L
n/2 o

= (—';J) /n e AL fy)dy

|w’ n/2 —wiy- A€
o B e f(y)dy

where we used the change of variables y = Az and the fact that A=! = AT and
|det A] = 1. [ ]

Corollary 2.1.3.

(i) The Fourier transform of a radial function is radial.

(ii) Products and convolutions of radial functions are radial.

Proof. Let £, € R™ with |{| = |n|. Then there exists some orthogonal matrix A
such that A¢ = 7. Since f is radial, we have f = f o A. Then, it holds

F) =7F(48) = Fo A(©) = 1(©),
by (vii) in Proposition 2.1.2. Products and convolutions of radial functions are eas-
ily seen to be radial. [

It is easy to establish the following results:

Theorem 2.1.4: Uniform continuity

0 171 < ()" 111
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{ (ii) If f € L'(R"), then ? is uniformly continuous.

Proof. (i) is obvious. We now prove (ii). By

Fle+n) =7 = (';J )n/z / ne*“"””'f[e*m'h— 1)f(z)dz,

we have

(€+h) — F(€)]
|

7
w| n/2 7(.1.712?
<(50) [ e
H>n/2 _wm;h <‘w’>n/2
<(s2) [ e () [ i

<(52) [ w2 (2) [ el

=1 + I,

since for any 6 > 0

€% — 1] = /(cos8 — 1)2 + sin?0 = v/2 = Zcos @ = 2|sin(6/2)| < |6].
Given any € > 0, we can take 7 so large that I; < /2. Then, we fix this r and take
|h| small enough such that I; < €/2. In other words, for given ¢ > 0, there exists
a sufficiently small 6 > 0 such that |f(§ + h) — f(§)| < € when |h| < 6, where ¢ is
independent of &. |

Example 2.1.5. Suppose that a signal consists of a single rectangular pulse of width
1 and height 1. Let’s say that it gets turned on at z = —% and turned off at z = 3.
The standard name for this “normalized” rectangular pulse is

1
1, if —l<a<l —

0, otherwise. — T >
2 2

It is also called, variously, the normalized boxcar function, the top hat function, the
indicator function, or the characteristic function for the interval (—1/2,1/2). The

II(z) = rect(x) := {

Fourier transform of this signal is

~ || 1/2/ iz wl 1/2/1/2 int
11 — = Wizl T _ (¥ Wiz
€3] ( o . e (x)dx o e e dx
() e e\ 2
o\ 27 —wi& 71/2_ 2T wé 2

~ 1/2 1/2
when & # 0. When £ = 0, I1(0) = (%) fiﬁz dx = (%) . By 'Hopital’s rule,

A 4 R e S 4 A
51—r>1(l) (f) < o2 gl—r>l(l) wé or 51—% w or (0),

SO ﬁ(f ) is continuous at £ = 0. There is a standard function called “sinc” that is
defined by sinc(§) = 5”15 for 5 # 0 and sinc(0) = 1 for the unnormalized version.

In this notation ﬁ(§ ) = sinc%> 2 . Here is the graph of ﬁ(§ )
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D ZE I B N 3

Remark 2.1.6. The above definition of the Fourier transform in (2.1.1) extends im-
mediately to finite Borel measures: if i is such a measure on R", we define .7 11 by

letting
ar |w ’ n/2 —wiz-§
Fu(e) = (%) / (o),

Theorem 2.1.4 is valid for this Fourier transform if we replace the L' norm by the
total variation of u.

§2.1.2 Riemann-Lebesgue lemma

The following theorem plays a central role in Fourier Analysis. It takes its name
from the fact that it holds even for functions that are integrable according to the
definition of Lebesgue.

Theorem 2.1.7: Riemann-Lebesgue lemma

If f € LY(R™), then |£1|im ?(5) = 0; thus, in view of the last result, we can
—00

conclude that f € Cy(R™) of all continuous functions vanishing at infinity.

ﬂ‘\ The Riemann-Lebesgue lemma states that the integral of a
\ ‘ function like the left is small. The integral will approach zero

as the number of oscillations increases.

Proof. We first consider the case when f € Z(R") := C°(R") of all €*> functions

~

with compact support. Integrating by parts gives [w&|*f(§) = —AJ(€) for each

¢ € R"\ {0}, where Af := " 97 f. Hence,
j=1

N Z\ n/2 A
For< P < (1) IS wernon @1

from which it is clear that |£1|im ?(5 ) = 0 in this case.
— 00

Consider now the case when f is an arbitrary function in L'(R"). Since Z(R") is

dense in L!(R™), for each fixed ¢ > 0, there exists a g € Z(R") such that || f — g||1 <

—n/2 . N ) R
% 5. Then, there is an M such that [g({)| < § for [£| > M, since §(£) — 0 as

|€| — oo. It follows that

N N w n/2
FO1<7© 9@+ < (51) 17 gl + 1€ < 5+ 5

provided |{| > M by Theorem 2.1.4. This implies that |?(§)\ — 0as || — oo. [ |
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Theorem 2.1.7 gives a necessary condition for a function to be a Fourier trans-
form. However, that belonging to Cy is not a sufficient condition for being the
Fourier transform of an integrable function. See the following example.

Example 2.1.8. Suppose, for simplicity, that n = 1. Let

1
1. ¢~ §>€,

) O < g < 67
9(&) =—9(=¢), £<0.
It is clear that g(§) is uniformly continuous on R and ¢(§) — 0 as [{| — o.
~ 1/2
Assume that there exists an f € L' (R) such that f(¢) = (%) / g(&),ie.,
9= [ e s

—0o0

Since g(&) is an odd function, we have

9O = [ e playdn = i [ sin(wrg)f(ayds = [ sinfwat)Fa)da,

—00 — 00

where F(z) = i[f(—z) — f(x)] € L'(R). Integrating = 98 oyer (0, N) yields

[ e[ re ([ ) a
:/0 F(z) (/Ommi”fdt>dx.

/ sin? dt‘ / Lntdt g (i.e. Dirichlet integral),
0

and by Lebesgue dominated convergence theorem,we get that the integral of r.h.s.
is convergent as N — oo. That is,

. Ng©) . m [™
]\}gnoo ; fd§—2/0 F(z)dr < oo,

which yields [ %dﬁ < oo since [y %df = 1. However,
N N

. g . . ¢

o f gdfﬂvlﬂﬁo/e clné

This contradiction indicates that the assumption was invalid.

Noticing that

§2.1.3 Approximate identities

We now turn to the problem of inverting the Fourier transform. That is, we shall
consider the question: Given the Fourier transform 7 of an integrable function f,
how do we obtain f back again from 7 ? The reader, who is familiar with the
elementary theory of Fourier series and integrals, would expect f(z) to be equal to
the integral

C | emEF(E)de. (2.1.5)

R
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Unfortunately, ? need not be integrable, for example, let » = 1 and f be the charac-
teristic function of a finite interval, as in Example 2.1.5, we have

/oo\s'nc( Jd /°° sin 4 i/(kﬂ)” sin
1 X xr = €Tr =
0 0 z i k7 x

. [T sinz . [T sinz
— E dr > E —d
k:o/o kr ot k:o/o (k+1)m “

2
:Zm:oo.

k=0
In order to get around this difficulty, we shall use certain summability methods
for integrals. We first introduce the Abel method of summability, whose analog for
series is very well-known. For each € > 0, we define the Abel means A. = A.(f) to
be the integral
A(f) = A = / el f(2)dx. (2.1.6)

n

It is clear that if f € L'(R") then lig% Ac(f) = Jgn f(x)dz. On the other hand,
these Abel means are well-defined evsen when f is not integrable (e.g., if we only
assume that f is bounded, then A.(f) is defined for all ¢ > 0). Moreover, their limit

lim A (f) = lim [ el f(z)da (2.1.7)
e—0 e—=0 Jpn
may exist even when f is not integrable. A classical example of such a case is
obtained by letting f(z) = sinc(xz) when n = 1, as a similar way as in Example
2.1.8. Whenever the limit in (2.1.7) exists and is finite, we say that [, fdz is Abel
summable to this limit.

A somewhat similar method of summability is Gauss summability. This method

is defined by the Gauss (sometimes called Gauss-Weierstrass) means

G.(f) = / e=<l £(2)dz. (2.18)
We say that [, fdx is Gauss summable (to 1) if
lim Ge(f) = lim [ el f(2)dx 2.1.7')
e—0 e—=0 Jpn

exists and equals the number /.
We see that both (2.1.7) and (2.1.7’) can be put in the form

Meolf) = M) = [ @(ea) ()i, (2.19)

where ® € Gy and ®(0) = 1. Then [, f(z)dx is summable to ¢ if lim._,o M.(f) = .
We shall call M, (f) the ® means of this integral.

We shall need the Fourier transforms of the functions e <" and eI, The first
one is easy to calculate.

Theorem 2.1.9.

For all a > 0, we have

2
ﬁe—a\wmﬁ(g) — (2|w|a)—”/2e_%. (2110)
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Proof. The integral in question is

’w| n/2 ) )
(2_) / e—wm~fe—a|w:c| dz.
s n

Notice that this factors as a product of one variable integrals. Thus it is sufficient to
prove the case n = 1. It is clear that

oo 9 poo
/ e—wixge—aw2:c2 dx :e—i—a / e—a(wx+i§/(2a))2dx.
S —oo

We observe that the function

F(f) _ /Oo e—a(wx—i—i{/(Qa))zdx’ €ER,
—0oQ

defined on the line is constant (and thus equal to | e~a(@?)* ), since its deriva-

tive is -
F &) =-—1 / (W + i€/ (2a))e~ AW tiE/ Qa)? gy
d§ -
i [ d ‘ ,
- Y —a(wz+i€/(2a)) _
2aw o dxe dl‘ 0

It follows that F'(§) = F(0) and

o0 . 2,.2 ‘52 > 2
/ emwWirE gmaw e g, =|w\_16_4a/ e " dx

—0o0 —00

_ -1 _e > —my?
=|w| e da/7/a e ™ dy
—00

( T )1/2 _¢?
g _— e 4a
aw? ’

where we used the formula for the integral of a Gaussian, i.e., the Euler-Poisson
integral: [ e~™dz = 1 at the next to last one. |

For the special cases, we have a fixed point for special definitions of the Fourier
transform.

Corollary 2.1.10.
It holds
el _lullgl?
e 2 (§)=e 2z . (2.1.11)
Proof. It is clear by taking a = 1/(2|w|) in (2.1.10). [

The second one is somewhat harder to obtain:

Theorem 2.1.11.

For all a > 0, we have

/\ w —n/2 Codl n
e (U) : n e = D) 0019

a1 €272’ T(ntl)/2

Proof. By a change of variables, i.e.,
y( —a|w:c|) _ M n/2/ —wix-§ —a|wx|d _ M ”/2( ’ D—n/ —iz-§/a _|x‘d
e =15, i e e T = o alw i e e T,
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we see that it suffices to show this result when ¢ = 1. In order to show this, we
need to express the decaying exponential as a superposition of Gaussians, i.e.,

\F/ —e—72/4’7dn, v >0. (2.1.13)

Then, using (2.1.10) to establish the third equality,

e~ @wto=lzl g :/ —iz-t < / 7|x‘ /477d77> o
/n n \/> \/»
]_ / e -n (/ —ix-t _|‘,E|2/477 >
/T m € e dr | d
ﬁ 0 \/77 R n
1 /OO e " B )
== = ((4mm)/2e M7 g
vrlo VM <( n) ) n
0

_nt1 n
:2n7_‘_(n—1)/2 (1 + ’t’Q) 2 / _CC ntl 1dC
0

1 1
_on_(n—1)/217 <n+ )
" 2 ) L+ [P)esr

Thus,

F (e—alwaly — M n/2 (alw) " (2m)"e, M —n/2 a
Z( )_<27r) (1 + [&/al?)(n+D) /2_<27r> (2 1 €)D"

Consequently, the theorem will be established once we show (2.1.13). In fact, by
changes of variables, we have

e”/ _72/4’70{17

\/>

2
:\f/ e—v(U—g) do (by n = 702)

2V —w(a——>2L !
/ 5do (by o — 5

5)

1
a— 7) - 1
\f / ( + 5 ) do (by averaging the last two formula)

1
= 77“ = _
T / e du (byu =0 20)

=1, (by / e ™ dy = 1)
R
which yields the desired identity (2.1.13). [

n/2 n/2
We shall denote the Fourier transform of <|°‘;T|) e~alvzl” and (%) e~ lwal,
a > 0,by W and P, respectively. That is,

cpa
(a? + |¢]?)(nt1)/2

The first of these two functions is called the Weierstrass (or Gauss-Weierstrass)
kernel while the second is called the Poisson kernel.

W€ a) = (dma) 2%, P(¢,a) =

(2.1.14)
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Theorem 2.1.12: The multiplication formula

If f,g € L*(R™), then

A

f(€)g(&)de = | f(x)g(z)dz.

Rn R™

Proof. Using Fubini’s theorem to interchange the order of the integration on R?",

we obtain the identity. |
‘
If f and ® belong to L*(R™), ¢ = ® and ¢, (z) = e "p(z/e), then

/n P () F(€)dE = /% —z)f(y)dy

for all € > 0. In particular,

|w| ik wiz-€ —e|wé|F
() [ e eiious= [ P oo

27T Rn
and

’w\ n/2 izt —clwt2%
<_> / RN (dE = | Wy —a,e)f(y)dy.

R”

\.

Proof. From (iii) and (iv) in Proposition 2.1.2, it implies (Z e <®(£€))(y) = e (y —
x). The first result holds immediately with the help of Theorem 2.1.12. The last two
follow from (2.1.10), (2.1.12) and (2.1.14). |

@) fgn W dx =1foralle > 0.
(i) [zn P dx = 1foralle > 0.

Proof. By a change of variable, we first note that

2|2
W(x,e)dx =/ (47‘(’6)_”/26_%61.’17 = W(z,1)dz,
R n Rn
and
P(z,e)dx —/ Cn® dx = P(z,1)dx
- 5 = Jre (2 + [22) D27 T [, ; .

Thus, it suffices to prove the lemma when ¢ = 1. For the first one, we use a change
of variables and the formula for the integral of a Gaussian: [ e ™ dx =1to get

W, 1)dz /

For the second one, we have

1
/n Ple,1)de = ca /Rn (1 + [z[2)(tD)/2 dz

Letting r = |z|, 2/ = 2/r (Whenz # 0), S"~ ! = {x € R" : |z| = 1}, d2’ the element of
surface area on 5"~ whose surface area is denoted by w,,—1 and, finally, putting r =
tan @, we have

(4m) "2~ s dm—/ (4%)_"/26_“|y|22"7r”/2dy: 1.

n

R
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Ln41

1 — - 1 /..n—1
/Rn T+ e ‘/o /3 T ymme’
n—1

_ Ty ER
—n 0 U )02 G /

w/2
=Wy, 1 / sin” 1 6do.
0

But w,,_; sin” ! A is clearly the surface area of the
sphere of radius sinf obtained by intersecting
S™ with the hyperplane 1 = cosf. Thus, the
area of the right half of S™ is obtained by sum-
ming these (n— 1) dimensional areas as § ranges
from 0 to 7/2, that is,

w/2
W1 / sin”10do = .
o 2

which is the desired result by noting that 1/¢,, = wy /2. [ |

Theorem 2.1.15. )
Suppose ¢ € L'(R™) with [;, ¢(x)dz = 1 and let ¢.(z) = e "p(z/e) for
e>0 IffePR"),1<p<ooorfe R cC L®R"), then for
I<p< o

|| f * e — fllp =0, ase = 0.

In particular, the Poisson integral of f:

u(we) = [ Pla-p.) )y

and the Gauss-Weierstrass integral of f:

s(z,e) = - W(x —y,e)f(y)dy

converge to f in the L” norm as ¢ — 0.

\.

Proof. By a change of variables, we have

/n pe(y)dy = /Rn e "p(y/e)dy = /Rn p(y)dy = 1.
Hence,
(F+0e)(@) = f@) = [ 1o =9) = F@losla)dn

Therefore, by Minkowski’s inequality for integrals and a change of variables, we
get

1500 = 1l < [ 1 =) = F@ e lolw/e)ldy

- /R 1£(z —ey) = F@)llo)ldy.

We point out that if f € LP(R"), 1 < p < oo, and denote ||f(z —t) — f(z)], =
Ag(t), then Af(t) — 0,ast — 0. In fact, if f; € Z(R"), the assertion in that case
is an immediate consequence of the uniform convergence fi(x —t) — fi(x), as
t — 0. In general, for any 0 > 0, we can write f = f; + f2, such that f; is as
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described and || f2||, < o, since Z(R") is dense in LP(R") for 1 < p < oo. Then,
Ap(t) < Ap(t) + Ay (t), with Ay (t) = 0ast — 0, and Ay, (t) < 20. This shows
that A¢(t) — 0ast — 0 for general f € LP(R"), 1 < p < oo.

For the case p = oo and f € Cy(R"), the same argument gives us the result since
Z(R") is dense in Cyp(R™) (cf. [Rud87, p.70, Proof of Theorem 3.17]).

Thus, by the Lebesgue dominated convergence theorem (due to ¢ € L' and the
fact As(ey)|p(y)| < 2| fllple(y)]) and the fact Ay(ey) — 0 as e — 0, we have

. _ <1 _ . _ 0.
lim [| £+ g — fllp < lim /Rn Af(ey)le(y)ldy /Rn lim As(ey)le(y)ldy = 0
This completes the proof. |

With the same argument, we have

Corollary 2.1.16.

Let 1 < p < oc. Suppose ¢ € L'(R") and [p, p(z)dz = 0, then || f ¢, — 0
as e — 0 whenever f € LP(R"),1 < p < oo, 0or f € Co(R™) C L=(R"™).

Proof. Once we observe that
(f*pe)(@) =(f * ) () — f(2) - 0= (f xpc)(x) — f() /n Pe(y)dy
= [ =) = @)ooy,

the rest of the argument is precisely that used in the last proof. u

In particular, we also have

Corollary 2.1.17. .

Suppose ¢ € L'(R™) with [, ¢(x)dz = 1 and let ¢.(z) = e "p(z/e) for
e > 0. Let f € L>(R") be continuous at {0}. Then,

lim /R f(@)pe(a)dz = f(0)

e—0

\.

Proof. Since [, f(x)p-(x)dz — f(0) = [zn(f(x) — f(0))¢e(x)dz, then we may as-
sume without loss of generality that f(0) = 0. Since f is continuous at {0}, then for
any o > 0, there exists a § > 0 such that

£ ()]

o
< T
el

whenever |z| < §. Noticing that | [, ¢(z)dz| < |[¢||1, we have

<7 _(2)|d _ o)l
<pop [ e+ 1l [ fouGolas

Tz

f(@)pe(z)dx
Rn

g
<7 el + 1l / o(y)ldy
lella ly|>6/e

=0 + || flloo e

But I. — 0 as ¢ — 0. This proves the result. |
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§2.14 Fourier inversion

From Theorems 2.1.13 and 2.1.15, we obtain the following solution to the Fourier
inversion problem:

Theorem 2.1.18. Y

If both ® and its Fourier transform ¢ = & are integrable and fRn o(x)dx =1,
then the ® means of the integral ('2%') Jrn eviTEf(€)d¢ converges to f()

in the L' norm. In particular, the Abel and Gauss means of this integral
converge to f(z) in the L' norm.

We have singled out the Gauss-Weierstrass and the Abel methods of summa-
bility. The former is probably the simplest and is connected with the solution of
the heat equation; the latter is intimately connected with harmonic functions and
provides us with very powerful tools in Fourier analysis.

’I’L/2 . ~N
Since s(z,¢) = (%) Jgn evir€eelwe”f(£)d¢ converges in L' to f(z) ase > 0
tends to 0, we can find a sequence ¢, — 0 such that s(x,e;) — f(z) for a.e. z. If
we further assume that f € L' (R"), the Lebesgue dominated convergence theorem

gives us the following pointwise equality:

Theorem 2.1.19: Fourier inversion theorem

If both f and }"\ are integrable, then

n/2 o
f(z) = (%) / nem'ﬁf(g)dg, Yz a.e.

Remark 2.1.20. We know from Theorem 2.1.4 that ? is continuous. If ? is integrable,

’I’L/ 2 . PN
the integral ('2%') fRn ew i Ef(€)d¢ also defines a continuous function (in fact, it

equals ?(—x)). Thus, by changing f on a set of measure 0, we can obtain equality
in Theorem 2.1.19 for all .

It is clear from Theorem 2.1.18 that if ?(5) = 0 for all £ then f(z) = 0 a.e.
Applying this to f = fi — fo, we obtain the following uniqueness result for the
Fourier transform:

Corollary 2.1.21: Uniqueness

If f; and f> belong to L'(R™) and /fl &) = ?2(5) for £ € R”, then f; = f> a.e.

We will denote the inverse operation to the Fourier transform by .% ! or *. If
f € L', then we have

Fa) = (%)W [ e piepe (2.1.15)

We give a very useful result.
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Theorem 2.1.22. \

Suppose f € L'(R") and 7 > 0.1f f is continuous at 0, then

1(0) = ('%’)W BRISLS

Moreover, we have f € L(R") and

(@) = <%>n/2 JRCaiGL3

for almost every z.

\.

Proof. By Theorem 2.1.13, we have

<|w|>”/ ’ / ne—elwﬁl?(g)dgz P(y,e)f(y)dy.

2 Rn

From Lemma 2.1.14, we get, for any 6§ > 0,

/n P(y,e)f(y)dy — f(O)‘ _

[ Pl - oy

< +

/| P2~ F0)dy

/ Pl — 7Oy

=1 + I.

Since f is continuous at 0, for any given o > 0, we can choose ¢ small enough such
that | f(y) — f(0)| < o when |y| < ¢. Thus, I < 0 by Lemma 2.1.14. For the second
term, we have, by a change of variables, that

I <||fllx sup P(y,e) + | £(0)] P(y,e)dy
ly|=d ly| =6
||| +[£(0)] P(y,1)dy — 0
I PR I C P |25/e Y, Hay ;

n 2 A~
as ¢ — 0. Thus, (%) / fRn e_5|w5‘f(§)d§ — f(0) as ¢ — 0. On the other hand,

by Levi monotone convergence theorem due to 0 < e_6|w5|?(§) 0 ?(ﬁ) ase | 0, we
obtain

W\ [ A Jwl \"2 —efut]
<_) B f@dg:( ) tim [ e lele)ds = 7(0),

27 2T e—=0 Jpn

which implies ff\ € LY(R") due to ? > 0. Therefore, from Theorem 2.1.19, it follows
the desired result. [ |

An immediate consequence is

Corollary 2.1.23.

i) [ e (g, e)de = el
Rn

ii) /R ) eTEP(E £)dE = eI,
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Proof. Noticing that

n/2 n/2
W(,e)=7 ((‘;;J) 6a|wx|2> ,and P(&,e) = F ((‘;;J) ea|wx|> ,

we have the desired results by Theorem 2.1.22. [

We also have the semigroup properties of the Weierstrass and Poisson kernels.

Corollary 2.1.24. |

If a1 and « are positive real numbers, then
OW(E a1 +a2) = [ W(E=n.0)W(nax)dn
]Rn

(i) P(&c+02) = | P(€=n.00)Ply.00)dn

\.

Proof. It follows, from Corollary 2.1.23 and the Fubini theorem, that
n/2
W(E a1+ az) = (gﬁ) (Felerteallonty ()

|w‘ n/2 — wl‘2 — UJCC2
()7 sy

2
|OJ| TL/2 P 7a1|w1,|2 wixr-n
- (4 Z (e e W(n,a2)dn | (§)
_ <|w\> / e—wiz-ie*aﬂwmp ewiz-TIWO?, 042)d77d$
2 R R

/n (I;J) (/nem“")eaww'%) W (n, az)dn
:/]R W(£ - 777041)W(77’042)d77-

A similar argument can give the other equality. [ |

Finally, we give an example of the semigroup about the heat equation.

Example 2.1.25. Consider the Cauchy problem to the heat equation
—Au=0, u(0)=u(x), t>0, zeR"
Taking the Fourier transform, we have
4 [we*@ = 0, @(0) =T (€).
Thus, it follows, from Theorem 2.1.9, that
u=F e el gy = (9_1e_|w5‘2t) * Uy = (Q\w]t)_”/26_|x‘2/4t U
=W (x,t) *ug =: H(t)up.
Then, we obtain
H(t1 + to)ug =W (x,t1 + ta) * ug = Wz, t1) * W(x, t2) * ug
=W (z,t1) x (W(x,t2) *ug) = Wiz, t1) * H(tz2)ug
=H (t1)H (t2)uo,
ie, H(t; +t2) = H(t1)H(t2).
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§2.2 Fourier transform on L” for 1 < p < 2

The integral defining the Fourier transform is not defined in the Lebesgue sense
for the general function in L?(R"); nevertheless, the Fourier transform has a natural
definition on this space and a particularly elegant theory.

If, in addition to being integrable, we assume f to be square-integrable then 7
will also be square-integrable. In fact, we have the following basic result:

Theorem 2.2.1: Plancherel theorem

If f € LY(R™) N L%(R"), then

IFll2 = 1 £z

Proof. Let g(z) = f(—x) € L'(R"). Then, h = f x g € L'(R") by Theorem 1.2.6 and

P (T, " T thus B = (Y52
h= (s fg by Proposition 2.1.2. Butg = f, thus h = ( 5 |fI* = 0. In
addition, h is continuous at {0}, since

|h(x) — h(0)| = Wf@*yM@Myf

[ =) - 1T

<A@ 12
by the Holder inequality, where A¢(x) = | f(z + ) — fll2 — 0 as z — 0 in view
of the proof of Theorem 2.1.15. Thus, applying Theorem 2.1.22, we have h(0) =

n/2 ~ ~
(%) / Jgn h(€)dE and h € LY (R™). It follows that

[ irra= ()" [ deae = no)

= | f@)g(0—=z)de = | [f(z)f(x)dx
Rn R™

~ [ Iz,

which completes the proof. |

Since L' N L2 is dense in L?, there exists a unique bounded extension, .#, of this
operator to all of L2. . will be called the Fourier transform on L?; we shall also
use the notation f = .7 f whenever f € L3(R™).

A linear operator on L?(R") that is an isometry and maps onto L?(R") is called
a unitary operator. It is an immediate consequence of Theorem 2.2.1 that .# is an
isometry. Moreover, we have the additional property that .# is onto:

Theorem 2.2.2.

Z is a unitary operator on L?(R").

Proof. Since .7 is an isometry, its range is a closed subspace of L*(R"). If this sub-
space were not all of L?(R"), we could find a function g such that Jzn /fgdw = 0 for
all f € L? and ||g||2 # 0. Theorem 2.1.12 obviously extends to L?; consequently,
Jgn fGdz = [gn fgdx = 0 for all f € L2. But this implies that g(z) = 0 for almost
every z, contradicting the fact that ||g||2 = ||g||2 # 0 in view of Theorem 2.2.1. H
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Theorem 2.2.2 is a major part of the basic theorem in the L? theory of the Fourier
transform:

Theorem 2.2.3.

The inverse of the Fourier transform, .# ~! or *, can be obtained by letting

for all f € L?(R"™).

Having set down the basic facts concerning the action of the Fourier transform
on L' and L?, we extend its definition on L for 1 < p < 2. Given a function
f e LP(R") with 1 < p < 2, we define f = f1 + fo, where f; € LY(R"), f, € L2(R"),
and f = fi + f2; we may take, for instance, f1 = fx|y>1 and f2 = fx|s<1- The
definition of /f is independent of the choice of fi and f», since if f| + fo = hi+ hs for
f1, hi € Ll(Rn) and f2, hy € L2(Rn), we have f1 —hi1 = hy — f2 S Ll(Rn) N LZ(Rn).
Since these functions are equal on L!(R") N L?(R™), their Fourier transforms are
also equal, and we obtain ?I — fz} = ﬁ; — 3“;, which yields m = m We
have the following result concerning the action of the Fourier transform on L?.

Theorem 2.2.4: Hausdorff-Young inequality |

Let1 <p<2and1/p+ 1/p = 1. Then the Fourier transform defined as in
(2.1.1) satisfies

n(1/p—1/2)
w
") £l 221)

<
111 < (5

\.

Proof. It follows from using the Riesz-Thorin interpolation theorem between the

n/2
LY-L% result |.Z f|loo < <%> / Il fll1 (cf. Theorem 2.1.4) and Plancherel’s theorem
II-Z fll2 = || f||2 (cf. Theorem 2.2.1). [ ]

Remark 2.2.5. Unless p = 1 or 2, the constant in the Hausdorff-Young inequality is
not the best possible; indeed the best constant is found by testing Gaussian func-
tions. This is much deeper and is due to Babenko [Bab61] when p’ is an even integer
and to Beckner [Bec75] in general.

Remark 2.2.6. The p’ can not be replaced by some ¢ in (2.2.1). Namely, if it holds
IFllg < Cllfllp, ¥ € LP(RT), (222)

then we must have ¢ = p’. In fact, we can use the dilation to show it. For A > 0, let
fa(z) = A" f(x/A), then

1/p 1/p n
=3 ([ 1stenpac) " =x ([ wlspay) =i,
(2.2.3)

By the property of the Fourier transform, we have 7; = AN f= (5)‘/]? and
y the property

Y N 1/q N
IRl = ( [ o) =,
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Thus, (2.2.2) implies A~ || 7], < CA™ 7| £]lp, ice., [ Fllg < CAe~# || f|lp, then ¢ = p/
by taking A tending to 0 or oo.

Remark 2.2.7. Except in the case p = 2 the inequality (2.2.1) is not reversible, in
the sense that there is no constant C such that H/fH » = C|fllp when f € 2. Equiv-
alently (in view of the inversion theorem) the result can not be extended to the
case p > 2. In order to show it, we take w = 27 for simplicity, and f\(z) =
d(x)e "HNP where ¢ € 2 is fixed and ) is a large positive number. Then,
| follp is independent of A for any p. By the Plancherel theorem I f,\||2 is also in-
dependent of A\. On the other hand, f)\ is the convolution of qﬁ, which is in L?,
with (14 iX)""/2e=7(1+0) 7 el (of, [Gral4, Ex.2.3.13, p.133] or [BCD11, Proposition
1.28]), which has L*> norm (1 + )\2)_”/4 Accordingly, if p € [1,2) then

~ _m(l_1

Bl < IR 15 < C 422726,
Since || 1] is independent of ), this show that when p € [1, 2) there is no constant
C such that C|| f|, > || f||, forall f € 2.

As an application of the Marcinkiewicz interpolation theorem, we present a
generalization of the Hausdorff-Young inequality due to Paley. The main differ-
ence between the theorems being that Paley introduced a weight function into his
inequality and resorted to the theorem of Marcinkiewicz. Let w be a weight func-
tion on R”, i.e., a positive and measurable function on R". Then we denote by
LP(w) the LP-space with respect to wdz. The norm on LP(w) is

£l e (w) = (/Rn If(x)lpw(a:)dx> l/p.

With this notation we have the following theorem.

Theorem 2.2.8: Hardy-Littlewood-Paley theorem on R"

Assume p € [1,2]. Then
1Z fll Lo (g)-ne-») < Cpll fllp-

Proof. We consider the mapping (T'f)(&) = | \"}’\(f ). By Plancherel theorem, we
have

1T fll2qe;-2n) < NT flle2qe-2ny = 1fll2 = I fll2

which implies that T is of weak type (2, 2). We now work towards showing that T’
is of weak type (1, 1). Thus, the Marcinkiewicz interpolation theorem implies the
theorem.

Now, consider the set E, = {£ : |€ |”|?(f )| > a}. For simplicity, we let v denote

~ n/2
the measure |£|72"d¢ and assume that || f||; = 1. Then, [f(¢)| < (%) . For

¢ € E,, we therefore have a < <|w|) |£]™. Consequently,

A

Thus, we prove that

a-(Tf)«(e) <O flx,
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which implies 7" is of weak type (1, 1). Therefore, we complete the proof. n

§2.3 The class of Schwartz functions

We recall the space Z(R") = C°(R") of all smooth functions with compact
support, and C*°(R") of all smooth functions on R".

Distributions (generalized functions) 2’(R"™), which consists of continuous lin-
ear functionals on the space Z(R"), aroused mostly due to Dirac and his delta func-
tion ég. The Dirac delta gives a description of a point of unit mass (placed at the
origin). The mass density function satisfies that it vanishes if it is integrated on a set
not containing the origin, but it is 1 if the set does contain the origin. No function
(in the traditional sense) can have this property because we know that the value of
a function at a particular point does not change the value of the integral.

The basic idea in the theory of distributions is to consider them as linear func-
tionals on some space of “regular” functions — the so-called “testing functions”.
The space of testing functions is assumed to be well-behaved with respect to the
operations (differentiation, Fourier transform, convolution, translation, etc.) we
have been studying, and this is then reflected in the properties of distributions.

The multiplication formula (Theorem 2.1.12) might suggest defining the Fourier
transform of a distribution based on duality. However, there is a serious impedi-
ment in doing so. Specifically, while for every ¢ € Z(R") we have € C*(R")
from the definition of the Fourier transform directly, and & decays at infinity. We
nonetheless have

F(2(R")) & 2(R™). (2.3.1)
In fact, we claim that
peZR")and p € Z(R") = ¢ =0. (2.3.2)

To prove it, suppose ¢ € Z(R") is such that ¢ has compact support in R", and pick
an arbitrary point y = (y1,-- - ,yn) € R™. Define the function ® : C — C by

n/2 ) N
D(z) = <‘;T’> / e wilzzitd i, yfmj)cp(:vl, <o xy)dxy - - - dxy, for z € C.

(2.3.3)

Then, ® is analytic in C and ®(t) = §(t, y2, - - - ,yn) for each t € R. Given that ¢ has
compact support, this implies that ¢ vanishes on R \ [—R, R| if R > 0 is suitably
large. The identity theorem for ordinary analytic functions of one complex variable
then forces ® = 0 everywhere in C. In particular, $(y) = ®(y;) = 0. Since y € R”
has been chosen arbitrary, we conclude that $ = 0 in R"™.

To overcome the difficulty highlighted in (2.3.1), we introduce a new (topolog-
ical vector) space of functions, .7, that contains Z(R"), is invariant under .%#, and
that has a dual that is a subspace of 2’ (R™). Then, it would certainly have to consist
of functions that are indefinitely differentiable; this, in view of part (v) in Proposi-
tion 2.1.2, indicates that each function in ., after being multiplied by a polynomial,
must still be in .. We therefore make the following definition:
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Definition 2.3.1. \

The Schwartz class .7 (R") of rapidly decaying functions is defined as
SR = {p € €2(R") : pays(9) = |Plas

= sup |2°9%p(z)| < oo, Va, B € Ng}, (2.3.4)
TeER™

where Ny = NU {0}.

If p € .7, then |p(z)| < Cp (1 + |z|)™™ for any m € Ny. The second part of next
example shows that the converse is not true.

Example 2.3.2. ¢(z) = e—cll® ¢ >0, belongs to .#; on the other hand, p(z) = e~elzl
fails to be differential at the origin and, therefore, does not belong to .~

Example 2.3.3. o(z) = e~<(1+121)” belongs to .7 for any &, > 0.

Example 2.3.4. The function f(x) = (1+|z‘2 —2Lo— ¢ .7 forany k € Nsince |z|?* f(z) £ 0
as |z| — oc.

Example 2.3.5. Sometimes .7’ (R") is called the space of rapidly decaying functions.
But observe that the function f(z) = e % sin(e”’) ¢ .#(R) since f'(z) /4 0 as
|z| — oo. Hence, rapid decay of the value of the function alone does not assure the
membership in . (R).

Example 2.3.6. . contains the space Z(R").

Remark 2.3.7. Butit is notimmediately clear that & is nonempty. To find a function
in Z, consider the function

e~ 1/t t>0
t: ) M
f(®) {0, t<0.

Then, f € €, is bounded and so are all its derivatives. Let ¢(t) = f(1+1t)f(1 —t),
then ¢(t) = e~ 2/(=) if |¢| < 1, is zero otherwise. It clearly belongs to 7 = 2(R).
We can easily obtain n-dimensional variants from ¢. For examples,

(i) For z € R", define ¢)(z) = ¢(x1)p(x2) - - - p(xy,), then ¢ € Z(R™);
(ii) For z € R", define ¢(z) = e~2/(=1=") for |z| < 1 and 0 otherwise, then 1 €
2(R™);
(iii) If n € € and v is the function in (ii), then ¢ (ex)n(z) defines a function in
2(R™); moreover, e2y(cx)n(z) — n(z) as e — 0.

Remark 2.3.8. We observe that the order of multiplication by powers of 1, - ,z,
and differentiation, in (2.3.4), could have been reversed. That is, for ¢ € €,

o e SR < sup |0°(z%(x))| < o0, Vo, B € NL.
TeR”

This shows that if P is a polynomial in n variables and ¢ € . then P(z)¢(x) and
P(0)p(z) are again in ., where P(0) is the associated differential operator (i.e., we
replace 2 by 0% in P(x)).

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



-50- Chengchun HAO

Remark 2.3.9. The following alternative characterization of Schwartz functions is
very useful. For ¢ € €,

¢ € LR < sup[(1+ |z))V]|0%(z)|] < 00, VN € Np,Va € N, |a| < N.
TER™

(2.3.5)

Indeed, it follows from the observation that for each N € Ny there exists C' €
[1,00) such that

CHzV < > < ClalN, Vo eR™ (2.3.6)
[v[=N
The second inequality in (2.3.6) is seen by noting that Vo € N} and Vx € R", we
have
2] = |21 [0 || < 2]z = [zl (2.3.7)

To justify the first inequality in (2.3.6), we consider the function g(z) := > |27|
IvI=N

for z € R™. Then its restriction to S"~! attains a positive minimum since it has no

zeros on S" !, and the desired inequality follows by scaling.

For the three spaces, we have the following relations:
2(R") Cc Z(R™) C C*(R").

Definition 2.3.10. ~

We define convergence of sequences in these spaces. We say that
fr = fInC® <= f, f € C° and
lim sup [0%(fr — f)(z)] =0, Va € Nj,VN € N.

kgxm|xng
o> finS < f, f€.¥and
lim sup |2*0°(fy — f)(z)| =0, VYo, B € Nj.

k—00 rER?

fe = fIn 9 < fi, f € ,3B compact,s.t.supp fr C B forall k,
and klim 10%(fx — f)lleo =0, Yo € Nj.
—00

It follows that convergence in Z(R") implies convergence in .(R"), which in
turn implies convergence in > (R").

The space C*°(R") is equipped with the family of seminorms

pa.N(f) = sup [(8°f)(z)l, (2.3.8)
|lz|<N
where o ranges over all multi-indices in Njj and N ranges over Ny. It can be shown
that C*°(IR") is complete with respect to this countable family of seminorms, i.e., it
is a Frechet space. However, it is true that Z(R") is not complete with respect to
the topology generated by this family of seminorms.

The topology of Z given in Definition 2.3.10 is the inductive limit topology, and
under this topology it is complete. Indeed, letting Z(B(0, k)) be the space of all
smooth functions with support in B(0, k), then Z(R") is equal to |J;—; Z(B(0, k))
and each space Z(B(0,k)) is complete with respect to the topology generated by
the family of seminorms p, n, hence so is Z(R"). Nevertheless, Z(R") is not
metrizable by the Baire category theorem.
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Theorem 2.3.11.

& is contained in and dense in Cy(R") and LP(R") for 1 < p < oo.

Proof. . C € is obvious by (2.3.4). The LP norm of ¢ € .# is bounded by a finite
linear combination of L* norms of terms of the form x“p(z). In fact, by (2.3.4), we

have
1/p
([ 1wpa)
1/p 1/p
< ( / |so<x>|pdx) + ( / |so<w)|pdx)
lz|]<1 |z|>1
1/p 1/p
<l ( / dx) + e o)l ( / |x|2”pdx>
|z|<1 |z|>1
_ (Wn-1 1/p Wn—1 e 2n
= (*=2) Tl + (M> ll*"lell|, < oo
For the proof of the density, it follows from the fact that 2 is dense in those
spaces! and 7 C .. [

Remark 2.3.12. The density is not valid for p = co. Indeed, for a nonzero constant
function f = ¢y # 0 and for any function ¢ € Z(R"), we have

If = ¢llse = lcol > 0.
Hence we cannot approximate any function from L*°(R") by functions from Z(R").
This example also indicates that .7 is not dense in L> since | llim |o(z)| = 0 for all
T|—00

pe.s.

From part (v) in Proposition 2.1.2, we immediately have

Theorem 2.3.13.
Ifpe. . thenp e ¥,

'For convenience, we review the proof of the fact that Z is dense in LP(R"™) for 1 < p < oo, and
leave the case of €y to the interested reader.

We will use the fact that the set of finite linear combinations of characteristic functions of bounded
measurable sets in R" is dense in LP(R™), 1 < p < oo. This is a well-known fact from functional
analysis.

Let E C R™ be a bounded measurable set and let € > 0. Then, there exists a closed set I’ and an
openset Q@ suchthat F C E C Qand |Q \ F| < &” (or only |Q| < €? if there is no closed set F' C E).
Here p is the Lebesgue measure in R™. Next, let ¢ be a function from Z such that suppy C Q,
p|lFp =1and 0 < ¢ < 1. Then,

o= xels = [ lo@ - xe@Pas< [ do=1Q\Fl<e
R™ Q\F

or
lle —xEl, <e,

where x g denotes the characteristic function of E. Thus, we may conclude that Z(R") = LP(R")
with respect to L” measure for 1 < p < oo.
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We can define the inverse Fourier transform for Schwartz functions as for L2
functions. Given f € . (R"), we define

@) = (=),
for all 2 € R". The operation
RS
is called the inverse Fourier transform.
It is straightforward that the inverse Fourier transform shares the same proper-

ties as the Fourier transform. We now give the relation between the Fourier trans-
form and the inverse Fourier transform and leave proofs to the reader.

Theorem 2.3.14. Y

Given f, g, and h in . (R"), we have

(1) Multiplication formula: /f(:c) g(x)dr = f(2)g(x)dx;
R" R7
(2) Fourier inversion: /f =f= \f; o
(3) Parseval’s relation: f (2)h(z)dz = | F(E)h(&)dE;
Rn

(4) Plancherel’s identity. H Fll2 =171z = I1Fll
6) [ s@hds = [ Fahds.
R R™

If p,9 € ., then Theorem 2.3.13 implies that 3, ¥ € .. Therefore, ’gb{/l\ € 7. By

—n/2
part (vi) in Proposition 2.1.2, i.e., # (¢ *x ) = <%> " 1, an application of the
inverse Fourier transform shows that

Theorem 2.3.15.
Ifp, e s, thenpxy € 7.

The space .(R") is not a normed space because |¢|, g is only a semi-norm for
multi-indices o and S, i.e., the condition

|0la,s = 0if and only if ¢ = 0

fails to hold, for example, for constant function ¢. But the space (., p) is a metric
space if the metric p is defined by

= Y grlel 2 Ylas |0 = Ylap
o BGN" 1 + |SO d]’a”@

Theorem 2.3.16: Completeness

The space (7, p) is a complete metric space, i.e., every Cauchy sequence
converges.

Proof. Let {1 }3°, C . be a Cauchy sequence. For any ¢ > 0 and any v € N,
211;‘;’, then there exists an Ny(e) € N such that p(pg, om) < € when k,m >
No(e) since {¢y}32, is a Cauchy sequence. Thus, we have
[k — Pmloy g
L+ [or = @mloy 1+0

lete =
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and then
sup |07 (¢r — om)| < o
reK

for any compact set X C R". It means that {¢;};°, is a Cauchy sequence in the
Banach space C1/(K). Hence, there exists a function ¢ € C1"/(K) such that

lim ¢ = ¢, in CI(K).
k—o0

Thus, we can conclude that ¢ € €*°(R"). It only remains to prove that ¢ € .. It is
clear that for any «, 5 € N}

sup [220° | < sup [2°0° (o1, — )| + sup [0 ¢y
zeK e K zeK
<Co(K) sup [8° (), — ¢)| + sup [2°07 .
rxeK rxeK
Taking k — oo, we obtain

sup [299% | < limsup |ppla,s < o0.

TeK k—o0
The last inequality is valid since {¢}72; is a Cauchy sequence, so that |¢y|q s is
bounded. The last inequality doesn’t depend on K either. Thus, |¢|s3 < oo and

then ¢ € .¥. |

Moreover, some easily established properties of .#(R") and its topology, are the
following;:

Proposition 2.3.17.

i) The mapping o(z) + x*3%p(z) is continuous.
ii) If ¢ € Z(R"), then limy,_,o 7@ = .
iii) Suppose ¢ € L (R") and h = (0,--- ,h;,---,0) lies on the i-th coordi-
nate axis of R”, then the difference quotient [ —7"¢]/h; tends to O/
as |h| — 0.
iv) The Fourier transform is a homeomorphism of .#(R") onto itself.
v) Z(R") is separable.

Finally, we describe and prove a fundamental result of Fourier analysis that is
known as the uncertainty principle discovered by W. Heisenberg in 1927. It says
that the position and the momentum of an object cannot both be measured exactly,
at the same time, even in theory. In the context of harmonic analysis, the uncer-
tainty principle implies that one cannot at the same time localize the value of a
function and its Fourier transform. The exact statement is as follows.

Theorem 2.3.18: The Heisenberg uncertainty principle \

Suppose ¥ is a function in . (R). Then
o 5
>
Jwlbldil > 5o 2

and equality holds if and only if ¢(z) = Ae~B7* where B > 0 and A € R.
Moreover, we have

113
2w

Iz — zo)¥||2]|(€ — &) |2 >
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for every xo, & € R.

Proof. The last inequality actually follows from the first one by replacing v(x) by
e~wié0y) (1 + z0) (whose Fourier transform is ewi®0(6+60)7)(¢ 4 &) by parts (ii) and
(iif) in Proposition 2.1.2) and changing variables. To prove the first inequality, we
argue as follows.

Since ¢ € ., we know that ¢ and ¢’ are rapidly decreasing. Thus, an integra-
tion by parts gives

o oo d
Wl = [ @Pde =~ [~ ol o)

:__/j:(xwmxﬁmm)+am/@g¢@g)dx

The last identity follows because |t)|> = 11). Therefore,

I3 < 2/ |z ()[4 ()| da < 2[|2l|a]|9 |2,

where we have used the Cauchy-Schwarz inequality. By part (v) in Proposition
2.1.2, we have .Z (¢')(§) = wi&y (). It follows, from the Plancherel theorem, that

1l = -7 ()2 = wll€ .
Thus, we conclude the proof of the inequality in the theorem.

If equality holds, then we must also have equality where we applied the Cauchy-
Schwarz inequality, and as a result, we find that ¢)'(z) = Sz (z) for some constant
B. The solutions to this equation are ¢ (z) = AeP7*/2, where A is a constant. Since
we want ¢ to be a Schwartz function, we must take 8 = —2B < 0. [ |

§2.4 The class of tempered distributions

The collection .’ of all continuous linear functionals on . is called the space
of tempered distributions. That is

Definition 2.4.1. )

The functional 7' : . — C is a tempered distribution if

(i) T is linear, ie., (T, ap + 1Y) = (T, p) + B(T,4¢) for all o, € C and
PR TN

(ii) T is continuous on ., i.e., there exist ng € Ny and a constant ¢y > 0 such
that

(Tl <co D lolags
. |B1<no

forany p € ..

In addition, for Ty, T' € ., the convergence T, — T in .’ means that (T}, ¢) —
(T, p)yinC forall ¢ € .77.

Remark 2.4.2. Since & C .7, the space of tempered distributions .’ is more nar-
row than the space of distributions 7/, i.e., ./ C %’. Another more narrow distri-
bution space &’ which consists of continuous linear functionals on the (widest test
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function) space C*°(R"). In short, ¥ C . C €* implies that
gcscd.

By definition of the topologies on the dual spaces, we have

T 5 Ting « Tp,,T € 9 and To(f) — T(f) forall f € 2.
T, - Tin " <= T, T €. and Ty(f) — T(f) forall f € ..
T, - Tin & < Ty, T € & and T (f) — T(f) forall f € €.

Definition 2.4.3.

Elements of the space 2’'(R") are called distributions. Elements of .#'(R")
are called tempered distributions. Elements of the space &”’(R") are called
distributions with compact support.

Before we discuss some examples, we give alternative characterizations of dis-
tributions, which are very useful from the practical point of view. The action of a
distribution u on a test function f is represented in either one of the following two
ways:

(u, f) = u(f).

There exists a simple and important characterization of distributions:

Theorem 2.4.4.

(1) A linear functional u on Z(R") is a distribution if and only if for every
compact K C R", there exist C' > 0 and an integer m such that

(u, I C D [10%fllsey  Vf € € with support in K. (2.4.1)

laj<m

(2) A linear functional v on . is a tempered distribution if and only if there
exists a constant C' > 0 and integers ¢ and m such that
(@) SC 3 paply), Vo (242)
|a|<e,|Bl<m
(3) A linear functional v on €*°(R") is a distribution with compact support if
and only if there exist C' > 0 and integers IV, m such that
(. )I<C Y pan(f), Vf€CXR). (243)
laj<m

The seminorms p, g and p, v are defined in (2.3.4) and (2.3.8), respectively.

Proof. We prove only (2), since the proofs of (1) and (3) are similar. It is clear that
the existence of C, ¢, m implies the continuity of .

Suppose u is continuous. It follows from the definition of the metric that a basis
for the neighborhoods of the origin in .7 is the collection of sets Ny, = {¢ :
2 lal<t,|g<m [©la,p < €}, where € > 0 and £ and m are integers, because ¢ — ¢ as
k — oo if and only if oy, — ¢|a,3 — 0 for all (a, 3) in the topology induced by this
system of neighborhoods and their translates. Thus, there exists such a set IV ¢,
satisfying |(u, ¢)| < 1 whenever ¢ € N, /.

Let [lof] = - jaj<e8/<m |9las forall g € 7. If o € (0,¢), then ¢ = op/[p]| €
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N ¢.m if ¢ # 0. From the linearity of u, we obtain

g
T, o) = [(u, )| < 1.
||90H’< ) = {u, )|
But this is the desired inequality with C' = 1/0. [ |

Example 2.4.5. Let f € LP(R"), 1 < p < oo, and define T' = T} by letting

To) = Tpi) = [ Fa)plo)is

for o € .. Itis clear that Ty is a linear functional on .. To show that it is continu-
ous, therefore, it suffices to show that it is continuous at the origin. Then, suppose
v — 0in . as k — oo. From the proof of Theorem 2.3.11, we have seen that
for any ¢ > 1, ||¢kl|lq is dominated by a finite linear combination of L> norms of
terms of the form x“py(x). That is, ||¢%| 4 is dominated by a finite linear combi-
nation of semi-norms |pg|q0. Thus, ||¢k|l; — 0 as & — oo. Choosing ¢ = 7/, i.e.,
1/p+1/q = 1, Holder’s inequality shows that [(T', ¢)| < || fllpll¢kll,y — 0ask — oo.
Thus, T € ..

Example 2.4.6. We consider the case n = 1. Let f(z) = > ", axz" be a polynomial,
then f € . since

(T, )] = | /R S gt (x)dz
k=0

<> Jaxl /R (14 J2) 75+ ) e o) de

k=0

m
<O lallelksiseo / (1 + o)) ~de,
k=0 R

so that the condition ii) of the definition is satisfied for ¢ = 1 and ng = m + 2.

Example 2.4.7. The Dirac mass at the origin dy. This is defined for ¢ € . by

{90, ) = (0).
Then, ¢y € .’. The Dirac mass at a point 2y € R" is defined similarly by

<5€E07 90> = c)0(1'0)'

The tempered distributions of Examples 2.4.5-2.4.7 are called functions or mea-
sures. We shall write, in these cases, f and g instead of Ty and Tj,. These functions
and measures may be considered as embedded in .. If we put on .’ the weakest
topology such that the linear functionals 7" — (T, ¢) (p € .¥) are continuous, it is
easy to see that the spaces LP(R"), 1 < p < oo, are continuously embedded in ..
The same is true for the space of all finite Borel measures on R”, i.e., Z(R").

Suppose that f and g are Schwartz functions and « a multi-index. Integrating
by parts || times, we obtain

/n (0°)(x)g(x)dw = (=1)"* L [@)@%g)(@)de. (2.4.4)
If we wanted to define the derivative of a tempered distribution u, we would have
to give a definition that extends the definition of the derivative of the function and
that satisfies (2.4.4) for g € .’ and f € .7 if the integrals in (2.4.4) are interpreted as
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actions of distributions on functions. We simply use (2.4.4) to define the derivative
of a distribution.

Definition 2.4.8. )

Let u € ./ and a a multi-index. Define

(0%u, f) = (=)l (u, 82 f). (2.4.5)
If u is a function, the derivatives of u in the sense of distributions are called
distributional derivatives.

In view of Theorem 2.3.14, it is natural to give the following;:

Definition 2.4.9. )

Let u € .. We define the Fourier transform % and the inverse Fourier trans-
form @ of a tempered distribution u by

(@ f) = (uf) and (i, f) = (u, f), (24.6)
for all f in .7, respectively.

Example 2.4.10. For ¢ € ., we have

B0 = 07 =20 = ()7 [ cmpman = (Y,

~ n/2
Thus, §g = <M> / in .. More generally, since

27

(9%30, ) =(0%60, B) = (—1)!* (80, 9°9) = (8o, F[(wi€)*¢])

wl

~@ i) = ()" e,

— n/2 e
we have 0%y = ('%J) / (wi&)®. This calculation indicates that 0“dy can be identi-

| n/2
fied with the function (%) (wi)e.

Example 2.4.11. Since for any ¢ € .7,

=19 = [ = ()" (BT [ oncpiern
()50 = () o= () o

we have

¥ (wl\"?
Moreover, 6o = ( 5. .

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



-58- Chengchun HAO

Now observe that the following are true whenever f, g are in ..
[ s@)is =tz = [ g5
/ glaz) fa)d = / gla)a " fla w)d, (247)
[ s@)i@is = [ g@)fa)da.

for all ¢ € R™ and a > 0, where ~ denotes the reflection. Motivated by (2.4.7), we
give the following:

Definition 2.4.12. ~

The translation 7'u, the dilation §%u, and the reflection @ of a tempered dis-

tribution v are defined as follows:
(r'u, f) =(u, 77" f),
(0%u, f) =(u,a""8Yf),
(@, f) =(u, f),
forallt € R" and a > 0. Let A be an invertible matrix. The composition of a
distribution v with an invertible matrix A is the distribution

(u?, ¢) = |det A| " (u, 017,
where o4 (z) = p(A~1a).

It is easy to see that the operations of translation, dilation, reflection, and differ-
entiation are continuous on tempered distributions.

Example 2.4.13. The Dirac mass at the origin Jy is equal to its reflection, while
0%6g = a~"ép for a > 0. Also, 7%y = 6, for any =z € R".

Now observe that for f, g and h in ., we have

/n(h x g)(x)f(x)dr = /n g(az)(ﬁ * f)(x)dz. (2.4.8)

Motivated by this identity, we define the convolution of a function with a tempered
distribution as follows:

Definition 2.4.14.

Letu € ./ and h € .. Define the convolution h * u by
(hxu, f) = (uh*f), fe (2.4.9)

Example 2.4.15. Let u = 0, and f € .. Then f * 0, is the function 77° f, since for
h € ., we have

(f % 0zgysh) = (Oug, [ xh) = (f xh)(z0) = . f(xz — zo)h(z)dx = (T*° f, h).

It follows that convolution with dy is the identity operator by taking z = 0.

We now define the product of a function and a distribution.
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Definition 2.4.16. )

Let u € .’ and let h be a € function that has at most polynomial growth at
infinity and the same is true for all of its derivatives. This means that for all
« it satisfies [(0%h)(z)| < Cyu(1 + |z|)¥e for some Cy, ko > 0. Then define the
product hu of h and u by

(hu, f) = (u, hf), fes. (2.4.10)

Note that Af € . and thus (2.4.10) is well defined. The product of an arbi-
trary C*° function with a tempered distribution is not defined.

Example 2.4.17. Let T € .’ and ¢ € Z(R") with ¢(0) = 1. Then the product
o(xz/k)T is well-defined in .7’ by
(p(@/R)T, ) := (T, p(x/k)P),
for all ¢ € .. If we consider the sequence T}, := ¢(z/k)T", then
(T, ) = (T, p(x/k)p) — (T, 9)

as k — oo since p(x/k)y — ¢ in 7. Thus, Ty, — T in .¥" as k — oco. Moreover,
T}, has compact support as a tempered distribution in view of the compactness of

or = p(z/k).

Next, we give a proposition that extends the properties of the Fourier transform
to tempered distributions.

Proposition 2.4.18. .

Givenu,v € ' (R"), fj, f € #,y€R", be C,a € Nj,and a > 0, we have

() uto=10+79,
(i) bu = ba,
(ifi) 7 = 2,
(iv) TPu(§) = e <a(g),

(viii) 01 = (—wix)

(ix) U =u,

Proof. All the statements can be proved easily using duality and the corresponding
statements for Schwartz functions. u

Now, we give a property of convolutions. It is easy to show that this convolu-
tion is associative in the sense that (u * f) * g = u * (f *x g) whenever v € ./ and
f, g € 7. The following result is a characterization of the convolution we have just
described.
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Theorem 2.4.19. )
If u € . and p € ., then ¢ * u is a € function and
(pxu)(z) = (u, 7°9), (24.11)
for all x € R™. Moreover, for all multi-indices « there exist constants C,, ko, >
0 such that

10%( % u) ()| < Call + |z|)ke. (2.4.12)

\.

Proof. We first prove (2.4.11). Let ) € . (R"). We have
(0% u, ) =(u, @ * 1))

=u (/n o — y)w(y)dy>

([ eewmay) 24.13)
— [ wrrautdy,

where the last step is justified by the continuity of u and by the fact that the Rie-

mann sums of the inner integral in (2.4.13) converge uniformly to that integral in

the topology of .7, a fact that will be justified later. This calculation implies (2.4.11).

We now show that ¢ is a € function. Lete; = (0,--- ,1,---,0) with 1 in the
jth entry and zero elsewhere. Then by part iii) in Proposition 2.3.17,

Tfhej szb _ T‘T@

h
in . as h — 0. Thus, since u is linear and continuous, we have

7hei (o % u)(x) — *u)(x rhei (12 3) — 725
(¢ )(h) (¢ )():u< ( ;Lp) w)_><u77x(aj@>

— aij(,b = T“”(‘)j@,

as h — 0. The same calculation for higher-order derivatives show that ¢ x u € €*
and that 907 (p xu) = (07¢) * u for all multi-indices ~. It follows from Theorem 2.4.4
that for some C, m and k we have

0%(p * u)(@)] <C Y sup [y T (0 E)(y)l

[v|<m yeR™

[BI<k

=C Z sup |(z +y)"(0“™P3)(y)| (change variables: y — = — )

v |<m YER"

[BI<k

<Chm > sup |(1+ [2™ + [yI™) (0> 3) (y)]
18l<k YER"

L+ 2™ + [y
<Cp ko SUP
S e (L Y)Y

<Cmka(l+|2]™),

(taking N > m)

which clearly implies that 0%(¢ * u) grows at most polynomially at infinity.

Next, we return to the point left open concerning the convergence of the Rie-
mann sums in (2.4.13) in the topology of .#(R"). For each N = 1,2,---, consider
a partition of [~ N, N|" into (2N?)" cubes Q. of side length 1/N and let y,, be the
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center of each @),,,. For multi-indices «, 8, we must show that

(2N2)»

Z 208 3(x — Ym) U (Ym )| Q] _/ 20 B (x — y)v(y)dy

R

converges to zero in L>°(R") as N — oo. We have by the mean value theorem

08B (& — Y ()| Qo] — / 2085 (z — y)(y)dy

m

_ / (D2 E(2 — Y ) (ym) — D (2 — y)o(y)]dy
_ / 2(y — ym) - (V2 3(x — )))(€)dy

- / 2y — ym) - (~VOH(x — b + VOl B — ))()dy

for some £ = y + 0(y,m — y), where 0 € [0, 1]. We see that |y — y,| < v/n/2N and the
last integrand

|2%(y — ym) - (—VOE@(x — E)Y(&) + VY (§)(z — ©))]
1 1
<C \alﬂ
N B D (1 e ey
1 1
<Clafl V7
N @ (a2
1 1
<Claflel ¥V
N T R (@ e
since (1 + [z —&)(2+[§]) =2 1+ |z — &[]+ [§] = 1+ [z], and |y| < [€] + Oly — ym| <
€] + Vn/2N < €] + 1 for N > /n/2. Inserting the estimates obtained for the
integrand, we obtain

¢ |x\‘a| / dy /

The first integral in the precedlng expression is bounded by

/ﬁN rLdr < /\/EN dr < 2wp—1
Wy —— < wy— < )
o @AM ST Gy Eeen S M2

(for M large)

where we pick M > 2n, while the second integral is bounded by

/ C|z[1*! dy
(=N Nmye (L4 |z —y[)M72 (1 + [y))M

o C|z|l! / dy
(L +[2))M72 J iy, npmye (14 [y)M72

oo pn—lgy 2wn—1
<Cuwp— < o=l NneM/2

for M > max(2n,2|«a|) since (1 + |z —y|)(1 + |y|) = 1+ |z —y| + |y| = 1+ |z|. From
these estimates, it follows that

1 1
sup [Dy(2)| < C(—=4+ —+—) — 0, asN — oc.
s Dx(a)] < Ol + )
Therefore, lim sup |Dy(z)| =0. [

N—o0 TERM
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We observe that if a function g is supported in a set K, then for all f € Z(K°)
we have

f(z)g(z)dz = 0. (2.4.14)
Rn

Moreover, the support of g is the intersection of all closed sets K with the property
(2.4.14) for all f in 2(K°). Motivated by this observation we give the following:

Definition 2.4.20.

Letu € 2'(R™). The support of u (supp ) is the intersection of all closed sets
K with the property

peZR"), suppp CR"\ K = (u,p) =0. (2.4.15)

Example 2.4.21. supp 6y, = {xo}.

Along the same lines, we give the following definition:

Definition 2.4.22. N

We say that a distribution v € 2'(R") coincides with the function i on an
open set (2 if

(u, f) = /R" f(z)h(x)dx Vf e 2(Q). (2.4.16)

When (2.4.16) occurs we often say that u agrees with h away from Q°.

This definition implies supp (u — h) C Q€.

Example 2.4.23. The distribution |z|? + &4, + da,, where a;, as € R", coincides with
the function |z|? on any open set not containing the points a; and as.

We have the following characterization of distributions supported at a single
point.

Proposition 2.4.24.

If w € #'(R") is supported in the singleton {z(}, then there exists an integer
k and complex numbers a,, such that

U= Z 600z

o <k

\.

Proof. Without loss of generality, we may assume that g = 0. By (2.4.2), we have
that for some C, m, and k,
(N <C ) sup o0 f)(@)l Vfe S R).
reR?

la|<m

|8I<k
We now prove that if ¢ € . satisfies
(0%)(0) =0 V]a| <k, (2.4.17)
then (u,p) = 0. To see this, fix a ¢ satisfying (2.4.17) and let ((z) be a smooth

function on R" that is equal to 1 when |z| > 2 and equal to zero for |z| < 1. Let
¢*(z) = ((x/e).Then using (2.4.17) and the continuity of the derivatives of ¢ at the
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origin, it is not hard to show that p, 5((*¢ — ¢) = 0ase — 0 for all |a| < m and
|B| < k. Then

|<u7(p>| <’<U7CE§O>|+‘<U7CE¢_§0>|
<O+ Y pas(Co—¢) =0

la] <m
[BI<k

as ¢ — 0. This proves our assertion.
Now, let f € Z(R"). Let n be a Z(R") function on R" that is equal to 1 in a
neighborhood of the origin. Write

p@)y =) | S T hy | e, @4

la|<k

where h(z) = O(|z|**1) as |z| — 0. Then nh satisfies (2.4.17) and hence (u, nh) = 0
by the claim. Also,

(u, (L =m)f)) =0
by our hypothesis. Applying u to both sides of (2.4.18), we obtain
0°f)(0 o o
)= 3 PO sy = 37 a0 (),
lal<k o<k
with a, = (=1)l*/(u, 2% (x)) /a!. This proves the results. [ |

An immediate consequence is the following result.

Corollary 2.4.25.

Let u € &/(R™). If 4 is supported in the singleton {}, then u is a finite
linear combination of functions (—wif)®e“* %, where a € N2. In particular,
if u is supported at the origin, then u is a polynomial.

Proof. Proposition 2.4.24 gives that 4 is a linear combination of derivatives of Dirac
masses at &g, i.e.,

U= a,0%%,
lo| <k

Then, Proposition 2.4.18 yields

u=Y 0.0 = 3 a0y,

|| <k |al<k
e (W) YT -
= Z Ao (Wi&)“0¢, = (27r> Z o (Wi€) e wiE 50
lo| <k || <K
’w‘ n/2 s\ wik-E
= (27r> Z A (—wi&)*e's 50,
o<k

Proposition 2.4.26.

Distributions with compact support are exactly those whose support is a
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compact set, i.e.,

u € &' (R™) <= supp u is compact.

Proof. To prove this assertion, we start with a distribution u with compact support
as defined in Definition 2.4.3. Then there exist C, N,m > 0 such that (2.4.3) holds.
For a €* function f whose support is contained in B(0, N)¢, the expression on the
right in (2.4.3) vanishes and we must therefore have (u, f) = 0. This shows that
the support of u is contained in B(0, V) hence it is bounded, and since it is already
closed (as an intersection of closed sets), it must be compact.

Conversely, if the support of u as defined in Definition 2.4.20 is a compact set,

then there exists an NV > 0 such that suppu C B(0, N). We take n € Z that is equal

to 1 on B(0, N) and vanishes off B(0, N +1). Then for h € 2, the support of h(1—1n)
does not meet the support of u, and we must have
<u> h’> = <u7 h77> + <u7 h(l - 77)) = <u7 h77>

The distribution u can be thought of as an element of &’ by defining for f € C*°(R")

(u, f) = {u, fn).

Taking m to be the integer that corresponds to the compact set K = B(0, N + 1)
in (2.4.1), and using that the L> norm of 0%(fn) is controlled by a finite sum of
seminorms p,, n+1(f) with |a| < m, we obtain the validity of (2.4.3) for f € C*. R

For distributions with compact support, we have the following important re-
sult.

Theorem 2.4.27.

If u € &'(R™), then 4 is a real analytic function on R". In particular, u € €.
Furthermore, % and all of its derivatives have polynomial growth at infinity.
Moreover, 2 has a holomorphic extension on C".

Proof. Since u € &' C ./, we have for f € .

(@, 1) =(u, ) = (‘;jj>/u < [ e—wwff@)dx)
~(5)" Lo () o

provided that we can justify the passage of u inside the integral. The reason for
this is that the Riemann sums of the integral of e“*¢ f(z) over R" converge to it in
the topology of C*°, and thus the linear functional u can be interchanged with the
integral. To justify it, we argue as in the proof of Theorem 2.4.19. For each NV € N,
we consider a partition of [~ N, N]" into (2N?)" cubes Q,, of side length 1/N and
let y,,, be the center of each @,,,. For a € N{}, let

DyE) = 3 ¢ ()| @l — [ (i) f(a)d
m=1

R

We must show that for every M > 0, sup |Dy(§)| converges to zero as N — oo.
[§l<M
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Setting g(x) = (—wiz)® f(x) € ¥, we write

(2N2)»

Z / “wWim L (y,,) — eV g(x)]dx — / e ¥l (z)d.
([=N,N]™)e

Using the mean value theorem, we bound the absolute value of the expression
inside the square brackets by

Vi _ Cr(L+[g) v

2N = (24 |zm|)K N’

for some point z,,, = « + 0(y,, — x) in the cube Q,,, where 0 € [0, 1]. Since 2 + |z, | >
1+ |z|if N > /n/2, and then for [{| < M,

(2N2)n

‘Hf\ Cr(1+(£))
Z/ 2+\z Z/ 1+ [z)E i)k &

CK M fN 77‘” : 7;, C 1 M
< —+ < K + X

(IVg(zm)| + [wll€llg (zm)])

provided K > n, and for L > n,

Jsp T 17
(=N, Nye (14 YD
oo pn—lgp Wn—1
<Wn-— < ——N"F,
w I/N (14+r)t “L-—n

it follows that sup |Dxy(§)| — 0as N — oo by noticing g € .77
I€l<M

Let p(¢) be a polynomial, then the action of u € &’ on the € function &
p(€)e~ =€ is a well-defined function of z, which we denote by u(p(-)e~***()). Here
x € R™ but the same assertion is valid if 2 € R" is replaced by z € C". In this case,

we define the dot productof £ and z via & - 2 = Y &2y
k=1

It is straightforward to verify that the function of z

F(z) = <|2<,;\>"/2 u(e = 0))

defined on C" is holomorphic, in fact entire. Indeed, the continuity and linearity of
u and the fact that (e=%i" — 1) /h — —wig; in €°(R") as h — 0, h € C, imply that
F is holomorphic in every variable and its derivative with respect to z; is the action
of the distribution u to the €*> function

€ (—wigj)e W Zim B8,
By induction, it follows that for all o € Njj, we have
9 9 =u ((_m‘(.))ae—wi 2= Zj(')j) _

Since F is entire, its restriction on R", i.e.,, F(z1,--- ,xy), Wwhere z; = Rz;, is real
analytic. Also, an easy calculation using (2.4.3) and Leibniz’s rule yields that the
restriction ' on R™ and all of its derivatives have polynomial growth at infinity.
Therefore, we conclude that the tempered distribution u(x) can be identified
with the real analytic function F'(z) whose derivatives have polynomial growth at
infinity. |

Finally, we finish this section by giving a density result.
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Theorem 2.4.28: Density \

Let T' € ./, then there exists a sequence {7} }7°, C - such that

Tig) = | Dla)plo)ds > (T, ask— oo,

where ¢ € .. In short, .# is dense in .’ with respect to the topology on .7".

\.

Proof. Let now ¢ € Z2(R") with [, ¥(z)de = 1 and ¢)(—z) = ¥ (z). Let { € Z(R")
with ¢(0) = 1. Denote ¢y-1(z) := k™ (kz). Forany T' € .#/, denote T}, := 11 x T},
where T}, = ¢(z/k)T. From the definition, we know that (¢, 1 T}, ) = (T}, 1 *
p) for p € 7.

Let us prove that these 7}, meet the requirements of the theorem. In fact, we
have

(Thy 0) = (g1 % Ti, 0) = (T, 1 % @) = (C(x/k)T, -1 * )
:<T7 <($/k)(¢k—1 * 50)> - (Tv §0>a ask — 0,

by the fact 1,1 * ¢ — ¢ in . as k — oo in view of Theorem 2.1.15, and the fact
((z/k) — 1 pointwise as k — oo since ((0) = 1 and ((z/k)p — pin.” as k — oc.
Finally, since ( € 2(R"), it follows from Proposition 2.4.26 that 7T}, is a tem-
pered distribution with compact support, then due to 1;—1, T}, is €*° function with
compact support by Theorem 2.4.19, namely, 7}, € Z(R") C /(R"). ]

Remark 2.4.29. From the proof, it follows that 2(R") is also dense in .’ (R") with
respect to the topology on ./ (R").

§2.5 Characterization of operators commuting with translations

Having set down these facts of distribution theory, we shall now apply them to
the study of the basic class of linear operators that occur in Fourier analysis: the
class of operators that commute with translations.

Definition 2.5.1. N

A vector space X of measurable functions on R" is called closed under trans-
lations if for f € X we have 7¥f € X for all y € R™. Let X and Y be vector
spaces of measurable functions on R" that are closed under translations. Let
also T be an operator from X to Y. We say that T' commutes with transla-
tions or is translation invariant if

T(rf) =7(Tf)
forall f € X and all y € R™.

It is automatic to see that convolution operators commute with translations.
One of the main goals of this section is to prove the converse, i.e., every bounded
linear operator that commutes with translations is of convolution type. We have
the following:
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Theorem 2.5.2. \

Let 1 < p,q < oo. Suppose T is a bounded linear operator from LP(R")
into LY(R™) that commutes with translations. Then there exists a unique
tempered distribution u such that

Tf=uxf ae., Vfe.Z.

The theorem will be a consequence of the following lemma.

Lemma 2.5.3. N

Let1 < p < oo. If f € LP(R™) has derivatives in the L” norm of all orders
< n+1, then f equals almost everywhere a continuous function g satisfying
9O <C > 110°flp,

|a|<n+1
where C' depends only on the dimension n and the exponent p.

\.

Proof. Let £ € R™. Then there exists a C/, such that (cf. (2.3.6))
L+ [ A+ ]+ + &)™ <O Y 167

o] <n+1

Let us first suppose p = 1, we shall show ? € L'. By part (v) in Proposition 2.1.2
and part (i) in Theorem 2.1.4, we have

()] <Cp(1+ [}~ +02 5™ jee|[F(e)]

o] <nt1

=Cr (14 [¢) 723" w712 (0% F)(©)]
la|<n+1

<C"(1+ [¢7) D2 N (0% £
lo|<n+1

Since (1 + |¢[?)~(+1)/2 defines an integrable function on R™, it follows that 7e
LY(R") and, letting C" = C" [5,. (1 + |¢[%)~("FD/2d¢, we get
IFlh<e” > 9%l
Ja|<n+1

Thus, by Theorem 2.1.19, f equals almost everywhere a continuous function g and
by Theorem 2.1.4,

|g<o>|<||f|roo<<'2°jj> Fli<o ¥ 1ol

la|<n+1

Suppose now that p > 1. Choose ¢y € Z(R") such that ¢(x) = 1if |z| < 1 and
¢(x) = 01if |x| > 2. Then, it is clear that fo € L'(R"). Thus, f¢ equals almost
everywhere a continuous function h such that

RO <C > l0*(fo)lh.

la|<n+1

By Leibniz’ rule for differentiation, we have 0%(fy) = >, ,_, u'V' o' f0” o, and

then
I (Fo)ll < /

z|<2 ;H—u a

o o 10" ol
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Z C sup |0"¢(z)] |0F f(z)|dx
LH‘V o ‘$|<2 ‘$|<2
a4y / 0 f(x)ldz < AB S 0" f1],
/<ol 7 1712 lul<lal

where A > C'(|0"¢||o, || < |a], and B depends only on p and n. Thus, we can find
a constant K such that

RO <K Y 110°f]p-
|| <nt1

Since ¢(z) = 1if |x| < 1, we see that f is equal almost everywhere to a continu-

ous function g in the sphere of radius 1 centered at 0, moreover,
9O = hO) <K Y 110%fllp-
|a|<nt1

But, by choosing ¢ appropriately, the argument clearly shows that f equals almost
everywhere a continuous function on any sphere centered at 0. This proves the
lemma. u

Now, we turn to the proof of the previous theorem.

Proof of Theorem 2.5.2. We first prove that

PTf=Tdf, Vfe.ZR". (2.5.1)
In fact, if h = (0,--- , hj,--- ,0) lies on the j-th coordinate axis, we have
TR -Tf TG =T (71
hj N hj - hj )’

since 7 is linear and commuting with translations. By part iii) in Proposition 2.3.17,
m — —% in . as |h| — 0 and also in L? norm due to the density of .7 in

h;
LP. Since T' is bounded operator from L? to L9, it follows that M %ﬁf

in L? as |h| — 0. By induction, we get (2.5.1). By Lemma 2.5.3, T’ f equals almost
everywhere a continuous function g, satisfying

grO) <C > 10T Hlg=C > IT@%f)ll,

|8]<n+1 18]<n+1
<l 10l
[B]<n+1
From the proof of Theorem 2.3.11, we know that the L? norm of f € .# is bounded
by a finite linear combination of L norms of terms of the form z® f(x). Thus, there
exists an m € N such that

grOl<C DY N2 flle=C D> Aflap
o] <, | B <41 o] <m,| Bl <n+1
Then, by Theorem 2.4.4, the mapping f — g¢(0) is a continuous linear functional
on .7, denoted by u;. We claim that v = w7 is the linear functional we are seeking.
Indeed, if f € ., using Theorem 2.4.19, we obtain

(ws f)(x) =(u, 7F) = (w, 77 f) = (@, 72 f) = {ur, 7 f)
=(T(r~))(0) = (~°T'f)(0) = Tf ().

We note that it follows from this construction that u is unique. The theorem is
therefore proved. [ |
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Combining this result with Theorem 2.4.19, we obtain the fact that T'f, for
[ € 7, is almost everywhere equal to a C* function which, together with all its
derivatives, is slowly increasing.

Now, we give a characterization of operators commuting with translations in
LY(R™).

Theorem 2.5.4.

Let T be a bounded linear operator mapping L' (R") to itself. Then T' com-
mutes with translations if and only if there exists a finite Borel measure
p € B(R") suchthat Tf = px* f, forall f € L'(R"™). We also have ||T|| = ||u|,
where || || is the total variation of the measure .

Proof. We first prove the sufficiency. Suppose that T'f = p * f for a measure p €
A(R") and all f € L}(R"). Since % C ./, by Theorem 2.4.19, we have

TMTf) (@) =(Tf) (@ = h) = (u, 7" f) = (uly), f(—y — =+ h))
=(u, T ) = (7" f) (@) = T(7" ) (@),

i.e, 7"T = T7". On the other hand, we have | T'f||1 = ||x * fll1 < |lull|lf]lx which
implies | 7] < [

Now, we prove the necessariness. Suppose that 7" commutes with translations
and |Tf|1 < ||T|/|If|1 for all f € L*(R™). Then, by Theorem 2.5.2, there exists a
unique tempered distribution p such that T'f = p * f for all f € .. The remainder
is to prove u € #A(R").

We consider the family of L! functions . = pu* W(-,¢) = TW(-,¢), & > 0. Then
by assumption and Lemma 2.1.14, we get

lpells < ITNWE )l = (177

That is, the family {u.} is uniformly bounded in the L' norm. Let us consider
L'(R"™) as embedded in the Banach space #(R"). %(R") can be identified with
the dual of Cy(R") by making each v € £ corresponding to the linear functional
assigning to ¢ € €y the value [, ¢(x)dv(z). Thus, the unit sphere of 4 is compact
in the weak* topology by the Banach-Alaoglu theorem. In particular, we can find a
v € % and a null sequence {¢} such that ., — v as k — oo in this topology. That
is, for each ¢ € Cy,

lim go(x)ugk(a:)d:n:/ o(z)dv(z). (2.5.2)

k—o0 Rn n

We now claim that v, consider as a distribution equals L.

Therefore, we must show that (u, fRn x) forall € . Let . =
W (-,e) % 1. Then, for all & € Njj, we have 0. = ( ) * 0. It follows from
Theorem 2.1.15 that 09, (z) converges to 0“¢(x) uniformly in z. Thus, . — v in
& as € — 0 and this implies that (u1,.) — (11, v). But, since W (-,¢) = W e),

(1:62) = 0. W (e2) ) = QW20 0) = [ peo)is(a)da,

Thus, putting ¢ = ¢, letting k — oo and applying (2.5.2) with ¢ = 1, we obtain the
desired equality (11, 1) = [zn ¥( ). Hence, u € .
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Next, (2.5.2) implies that for all ¢ € Cj, it holds
[ t@intz)
Rn

The Riesz representation theorem gives that the norm of the functional

g [ pl)duta)

on Cj is exactly ||u||. It follows from (2.5.3) that ||T'|| > ||p||. Thus, combining with
the previous reverse inequality, we conclude that || T|| = ||x||. This completes the
proof. [ |

< HwHooSnguakHl < [lellooIT1l- (2.5.3)

Let i be a finite Borel measure. The operator & — h % v maps LP(R") to itself
for all p € [1, oo]. But there exists bounded linear operators 7" on L> that commute
with translations for which there does not exist a finite Borel measure . such that
Th = hx pfor all h € L>*(R™). The following example captures such a behavior,
which also implies that the restriction of 7" on . does not uniquely determine 7" on
the entire L*°.

Example 2.5.5. Let (X, ||-||oc) be the space of all complex-valued bounded functions
on the real line such that
1 (R
Tf= RIE;I;O R/o f(t)dt

exists. Then, T is a bounded linear functional on X with norm 1 and has a bounded
extension T on L*® with norm 1, by the Hahn-Banach theorem. We may think of T
as a bounded linear operator from L>(R) to the space of constant functions, which
is contained in L°°(R). We note that 7' commutes with translations, since for all
f € L*(R)and z € R, we have

T(rf)—(Tf) =T(rf) —~Tf=T(="f - f) =T(r°f — f) =0,

where the last two equalities follow from the fact that for L> functions f and R >

2 [0 - sa=t ([ rwa- [ o)

|z,

1 0 R

=— t)dt — t)dt
([ rwi [ so)
20

gf”f”OO*)Ov as R — oo.

If Tp = ¢ x u for some u € .¥'(R) and all ¢ € .¥(R), since T vanishes on ., i.e.,

|Ty| < P}im % = 0, the uniqueness in Theorem 2.5.2 yields that v = 0. Hence,
—00

if there existed a finite Borel measure p such that Th = h % p for all h € L, in
particular we would have 0 = T'¢ = ¢ * p for all ¢ € .77, thus p would be the zero
measure. But obviously, this is not the case, since 7" is not the zero operator on X.

For the case p = 2, we have a very simple characterization of these operators.

Theorem 2.5.6.

Let T be a bounded linear transformation mapping L?(R") to itself. Then T
commutes with translation if and only if there exists an m € L*°(R") such
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n/2
that Tf = ux f withu = (%) m, for all f € L?(R"). We also have
T[] = flm oo

Proof. If v € .’ and ¢ € ., we define their product, vi, to be the element of .7’
such that (v, ¢) = (v, 1Y) for all ¢ € .. With the product of a distribution with a
testing function so defined we first observe that whenever u € .%" and ¢ € .7, then

y( B M —n/2 .
u* Q)= o up. (2.5.4)

-n/2
To see this, we must show that (% (u * ¢),v) = (%) / (up,y) for all p € 7.

It follows immediately, from (2.4.9), part (vi) in Proposition 2.1.2 and the Fourier
inversion formula, that

(F (ux ), ) =(uxp,0) = (u, B+ ) = (@ F (@)

Thus, (2.5.4) is established.

Now, we prove the necessariness. Suppose that 7' commutes with translations
and ||Tf|l2 < ||T|||f]l2 for all f € L?(R™). Then, by Theorem 2.5.2, there exists a
unique tempered distribution u such that 7'f = u  f for all f € .. The remainder
is to prove u € L*(R").

Let g = e_%mQ, then, we have ¢y € . and 9, = ¢ by Corollary 2.1.10. Thus,
Twog = u* g € L? and therefore ®q := .7 (u * o) = (%)#L/Z WP, € L? by (2.5.4)
and the Plancherel theorem. Let m(§) = ®o(£) /@0 (£).

We claim that

Fuxp)=mp (2.5.5)

| n/2

o (mp, 1)) for all
Y € P since 7 is dense in .. But, if ) € 2, then (/) (&) = zﬁ(&)e%'ﬂrz € Z; thus,
(U@, v) =(u, ov) = (U, PPoy/Po) = (o, P1b/P0)

(B [ anemieuiors sas

()" [ et = ()" g

for all ¢ € .. By (2.5.4), it suffices to show that (U, y) =

n/2
It follows immediately that & = (%) m. In fact, we have just shown that

@, P0) = (ﬁ) (mi@, ) = (g) (m,3y) forall p € # and ¢ € 2. Selecting
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n/2
¢ such that $(§) = 1 for £ € supp ¢, this shows that (u, 1)) = (%) (m, ) for all

n/2
v € 9. Thus, i = (§)" m.
Due to
[mBllz =[|F (uxp)ll2 = [[uxel2 < [[T[lellz = T2
for all ¢ € ., it follows that

L = ) e >

for all ¢ € .. This implies that ||T||?> — |m|? > 0 for almost all z € R™. Hence,
m € L®(R") and [|m|loc < [|T|-
/2

Finally, we can show the sufficiency easily. If © = <% "m e L (R™), the

Plancherel theorem and (2.5.4) immediately imply that
ITfll2 = llux fllz = [Imfll2 < [mlleoll fl2
which yields ||7']| < ||m|co-
. ] —n/2A
Thus, if m = (g) @ e L, then || T = [|m]|oo. n

For further results, one can see [SW71, p.30] and [Gral4, p.153-155].

§2.6 Fourier multipliers on L?

We have characterized all convolution operators that map L' to L' or L? to L.
In this section, we introduce briefly the Fourier multipliers on LP.

Definition 2.6.1. ~

Let1 < p < ocoand m € .. mis called a Fourier multiplier on LP(R") if the
convolution m x f € LP(R") for all f € .(R"), and if
Iz = () sup e s
AT\ ’
P
is finite. The linear space of all such m is denoted by M,(R").

Since . is dense in L? (1 < p < o0), the mapping from . to LP: f — m * f can
be extended to a mapping from L? to LP with the same norm. We write /2 x f also
for the values of the extended mapping.

For p = oo (as well as for p = 2) we can characterize M,,. Considering the map:

femxf forfe.,

we have
m € Mo < [(Mm* [)(0)| < C|fll, f€7. (2.6.1)
Indeed, if m € M, we have
|mwﬁwn<”wﬂ”umw<mmu.

On the other hand, if |(7 * f)(0)| < C/||f]|c0, We can get
175 flloo = sup [(m+ f)(2)| = sup |[m* (f(z +-))](0)]

reR™ reR™

SO f(@ A+ )lloo = Cll flloo,
which yields m € M.
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But (2.6.1) also means that 7 is a bounded measure on R". Thus, M is equal
to the space of all Fourier transforms of bounded measures. Moreover, ||m/| .. is
equal to the total mass of 7. In view of the inequality above and the Hahn-Banach
theorem, we may extend the mapping f — m * f from . to L* to a mapping from
L*> to L*° without increasing its norm. We also write the extended mapping as
frmx ffor fe L™

Theorem 2.6.2. \

Letl <p<ocand1/p+ 1/p' =1, then we have
M,(R™) = My (R™) (equal norms). (2.6.2)

Moreover,
M (R") ={m € ./(R") : i is a bounded measure on R"},

W\ (2.6.3)
Imllae @y =5 ) 17l

and
Mo(R™) = L*(R") (equal norms). (2.6.4)
For the norms (1 < pg, p1 < o0),

Imllac, ) < 5 oIl ey Vi € Mg (R NV, (RY), (265)
if 1/p = (1 —-0)/po+6/p1 (0 < 0 < 1). In particular, the norm || - || y/p(rn)
decreases with p in the interval 1 < p < 2, and

My =My, =M, =My, (1<p<qg<2). (2.6.6)

\.

Proof. Let f € LP, g € LY and m € M,,. Then, we have

jw \ 2 _ .
(50) " tlag, = sw isgly = swp [Geg.f
7r llgllr=1 I £llo=Ilgll,r=1
— ap [(RegeNO) = s [ %frg)0)
£ llp=llgll, =1 £ lp=llgll,y=1
= s [0
£ llp=lIgll =1
_ |w’ —n/2
= s (s sl = (52) o,
I£llp=1 7T

The assertion (2.6.3) has already been established because of M; = M. The
Plancherel theorem immediately gives (2.6.4). In fact,

’w| n/2
Il = (52) s [+ 7l

IFll2=1
|w| n/2 —
~(5) s 1T
& Il fll2=1
— sup_[mfls
[/]l2=1
Sl

On the other hand, for any given ¢ > 0, let
Ee = {&: €] <1/eand [m(§)] > [lmlec — e}
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Then E. has positive and finite measure, and let f € L? be such that supp/f C E..
Hence, we can obtain

(52 s 18 =713 = [ )7 )P

€

>(llmfloe — €)? / G

=(llmlloc — €)IIF1I3-
It follows that ||m||ar, = ||m| s, and then the equality holds.
Invoking the Riesz-Thorin theorem, (2.6.5) follows, since the mapping f +— mx f
maps LP° — LP° with norm [[m|a,, and LP* — LP* with norm ||m||at,, -
Since 1/q = (1—0)/p+0/p’ for some f and p < ¢ < 2 < p/, by using (2.6.5) with
po = p, p1 = P/, we see that

Imllae, < [mllv,,
from which (2.6.6) follows. |

Proposition 2.6.3.

Let 1 < p < co. Then M,(R") is a Banach algebra under pointwise multipli-
cation.

Proof. It is clear that || - [|5¢, is a norm. Note also that M,, is complete. Indeed, let
{ms} be a Cauchy sequence in M,. So does it in L> because of M,, C L*°. Thus,
it is convergent in L> and we denote the limit by m. From L>* C ./, we have
my * f — T« f for any f € .7 in sense of the strong topology on .#’. On the
other hand, {7, = f} is also a Cauchy sequence in L? C .#’, and converges to a
function g € LP. By the uniqueness of limit in .#’, we know that g = 7 * f. Thus,
[mi —m|la, — 0as k — oc. Therefore, M, is a Banach space.
Let m; € M, and mo € M,. For any f € ./, we have

n/2 n
w T\ w ~ ~_
(52) " Gmima) 1= (52 ) 75 7 11,

|w| n/2
<(52) Il 7 5 1,

<llmalla, llmellve, £,
which implies mims € M, and
lmamal[ae, < llmalla, [Imella, -
Thus, M,, is a Banach algebra. n

The next theorem says that M, (R") is isometrically invariant under affine trans-
forms? of R™.

Theorem 2.6.4.

Leta : R" — R be a surjective affine transform with n > k, and m € M, (R*).

2An affine transform of R" is a map F : R" — R" of the form F(p) = Ap+qforallp € R",
where A is a linear transform of R™ and q € R".
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Then

[m o allae,®ny = I ln, ®E)-
In particular, we have

||5Cm||Mp(Rn) :Hm||Mp(Rn), Ve > 0, (267)
HmHMp(Rn) :HmHMp(Rn), (2.6.8)
[m((z, ), @®r) =Ml ®), Yz #0, (2.6.9)

where (z,£) =3 L, ;.

Proof. It suffices to consider the case that a : R” — R¥ is a linear transform. Make
the coordinate transform

m=ai(§), L<i<ks mj=§& k+1<j<n, (2.6.10)

which can be written as n = A7'¢ or € = An where det A # 0. Let AT be the
transposed matrix of A, ' = (n1,--- , k) and 0’ = (g1, -+ ,mn). It is easy to see,
for any f € . (R"), that

7@ = ()" [ ememaeniion
—taenal (M) [t Famyan
Sjaenal (B [ e anan
= (B)™ [ e FT T
k/2
[ e e

wl (n—Fk)/2 AT o) T TS
(W) [ el ATy )(n’,n">dn”) a

|OJ‘ k/2 AT N !
= (W / e AT oy (FHFAT) ) (o (ATa)
Rk
|w\ k/2 AT N !
—(B1) [ e ) (12 (AT ) O (A7)
a—1

It follows from m € M, (R¥) that for any f € .7 (R")

wl ™"
(D)™ 17 (el * Ve
1 ()T

W kp/2
—(51) | o sany ey - 4Ty

Lecture Notes on Harmonic Analysis Updated: April 28, 2020

p

LP(R™)




-76- Chengchun HAO

|w] kp/2 -1 ~/ Ty—1/,/ ron /p
=5 | det A| m(y) (A7) (@ =y 2"))dy

2 RE LP(Rn)

_ p
<l det Al mI gy [ 17T @ D[ g
=[ det Al [[mll e IF (A @I oy
=lml5e, @I 120y
Thus, we have
[m(a(-)lla, @) < llmlle, @e)- (2.6.11)

Taking f((A")"'x) = fi(z')f2(z"), one can conclude that the reverse inequality
(2.6.11) also holds. |

Now we give a simple but very useful theorem for Fourier multipliers.

Theorem 2.6.5: Bernstein multiplier theorem \

Assume that k > n/2 is an integer, and that 03 m € L*(R"™),j=1,--- ,nand
0 < a < k. Then we have m € M,(R") for 1 < p < oo, and
n/2k

1 2k k
I, S llmlly ™ Zna |2

\.

Proof. Lett > 0and J(z) =37, [x; |¥. By the Cauchy-Schwarz inequality and the
Plancherel theorem, we obtain

/|| tlm(az)ldazz/u tJ(:c)_lJ(:c)|\Tr/z(x)|dm§t"/Q_kZ||8£]_m||2.
x|> x|>

j=1
Similarly, we have

/| _ a5 2l
PARS

Choosing t such that ||m|j = t~* > i1 ||8§jm||2, we infer, with the help of Theo-
rem 2.6.2, that
n/2k

n/2
w 1 —n/2k
Imllae, <llmllae, = <‘27r|> /Rnl (2)|d < [lmll3 " E 105, m 2

This completes the proof. [

Remark 2.6.6. 1) From the proof of Theorem 2.6.5, we see that m € L', in other
words, it is equivalent to the Young inequality for convolution, i.e., |7 * f|, <
[l 1]l flp forany 1 < p < oo

2) It is not valid if the rh.s. of the inequality is equal to zero because such
at € (0,00) does not exist in this case in view of the proof. For example, one
can consider the rectangular pulse function and the sinc function introduced in
Example 2.1.5.

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



REFERENCES -77-

References

[Abell] Helmut Abels. Short lecture notes: Interpolation theory and function
spaces. May 2011.

[Bab61] K. I. Babenko. An inequality in the theory of Fourier integrals. Izov.
Akad. Nauk SSSR Ser. Mat., 25:531-542, 1961.

[BCD11] Hajer Bahouri, Jean-Yves Chemin, and Raphaél Danchin. Fourier Anal-
ysis and Nonlinear Partial Differential Equations, volume 343 of GMW.
Springer-Verlag, Berlin Heidelberg, 2011.

[Bec75] William Beckner. Inequalities in Fourier analysis on R"™. Proc. Nat.
Acad. Sci. U.S.A., 72:638-641, 1975.

[BL76] Joran Bergh and Jorgen Lofstrom. Interpolation spaces. An introduction.
Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen Wis-
senschaften, No. 223.

[Gral4] Loukas Grafakos. Classical Fourier analysis, volume 249 of Graduate
Texts in Mathematics. Springer, New York, third edition, 2014.

[Mit13] Dorina Mitrea. Distributions, partial differential equations, and harmonic
analysis. Universitext. Springer, New York, 2013.

[Rud87] Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New
York, third edition, 1987.

[SW71] Elias M. Stein and Guido Weiss. Introduction to Fourier analysis on
Euclidean spaces. Princeton University Press, Princeton, N.J., 1971.
Princeton Mathematical Series, No. 32.

[WHHG11] Baoxiang Wang, Zhaohui Huo, Chengchun Hao, and Zihua Guo. Har-
monic analysis method for nonlinear evolution equations, volume I. World
Scientific Publishing Co. Pte. Ltd., 2011.

Lecture Notes on Harmonic Analysis Updated: April 28, 2020






g

The Maximal Function and Calderén-Zygmund Decomposition

3.1. Twocoveringlemmas . ................0 0. 79
3.2. Hardy-Littlewood maximal function . ............... 81
3.2.1. Hardy-Littlewood maximal operator. . . . . ... ... .. 82
3.2.2. Control of other maximal operators . ... ......... 88
3.2.3. Applications to differentiation theory . ... ... ... .. 89
3.2.4. An application to Sobolev’s inequality . . . . ... ... .. 92
3.3. Calderén-Zygmund decomposition . . . ... ........... 94
References . . . .. .. . ittt it i e e 99

§3.1 Two covering lemmas

Lemma 3.1.1: Finite version of Vitali covering lemma \

Suppose B = {Bj,Bs,---,Bn} is a finite collection of open balls in R".
Then, there exists a disjoint sub-collection Bj,, Bj,, - - -, Bj, of B such that

N k
m <U Bg) < 3”Zu(Bji).
=1 i=1

\.

Proof. The argument we give is constructive and relies on the following simple ob-
servation:

Suppose B and B’ are a pair of balls that intersect, with
the radius of B’ being not greater than that of B. Then B’
is contained in the ball B that is concentric with B but
with 3 times its radius. (See Fig 3.1.)

As a first step, we pick a ball B;, in B with maximal
(i.e., largest) radius, and then delete from B the ball B;,
as well as any balls that intersect B;,. Thus, all the balls
that are deleted are contained in the ball B;, concentric
with Bj,, but with 3 times its radius.

The remaining balls yield a new collection B’, for Figure 3.1: The balls B
which we repeat the procedure. We pick Bj, and any ball and B
that intersects B;,. Continuing this way, we find, after at
most N steps, a collection of disjoint balls B;,, Bj,, - - -, Bj,.

Finally, to prove that this disjoint collection of balls satisfies the inequality in
the lemma, we use the observation made at the beginning of the proof. Let B;,
denote the ball concentric with Bj,, but with 3 times its radius. Since any ball B in
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B must intersect a ball B;, and have equal or smaller radius than Bj,, we must have
UbnB,,#2B C Bj;, thus

N k k k

m (U BE) <m (U Bz) < ZN(Bji) = BnZM(Bji)'
=1 i=1 i=1 i=1

In the last step, we have used the fact that in R" a dilation of a set by § > 0 results

in the multiplication by 6" of the Lebesgue measure of this set. [

For the infinite version of Vitali covering lemma, one can see the textbook [Ste70,
the lemma on p.9].

The decomposition of a given set into a disjoint union of cubes (or balls) is a
fundamental tool in the theory described in this chapter. By cubes, we mean closed
cubes; by disjoint we mean that their interiors are disjoint. We have in mind the
idea first introduced by Whitney and formulated as follows.

Theorem 3.1.2: Whitney covering lemma |

Let F' be a non-empty closed set in R™ and (2 be its complement. Then there
exists a countable collection of cubes F = {Q}72; whose sides are parallel
to the axes, such that

(i)QiileZQ:FC; .

(i) @; N Qr = @ if j # k, where () denotes the interior of Q;

(iii) there exist two constants c;,c2 > 0 independent of F' (In fact we may
take ¢c; = 1 and ¢y = 4.), such that

c1 diam (Qp) < dist (Qg, F') < co diam (Qg).

\.

Proof.

Consider the lattice of points
in R® whose coordinates
are integers. This lattice de-

termines a mesh .#(, which
is a collection of cubes:
namely all cubes of unit
length, whose vertices are
points of the above lat-
tice. The mesh .#; leads
to a two-way infinite chain
of such meshes {.#;}>,

with .2}, = 27" Figure 3.2: Meshes and layers: .#, with dashed lines;

Thus, each cube in the . with dotted lines; .#_; with solid lines
mesh .} gives rise to 2"

cubes in the mesh .#}. by
bisecting the sides. The cubes in the mesh .}, each have sides of length 2% and
are thus of diameter \/n27*.

In addition to the meshes .7}, we consider the layers 2, defined by

Q= {m :e27F < dist (z, F) < cQ*kH},

where c is a positive constant which we shall fix momentarily. Obviously, 2 =
UZo:—oo Qk'

-+ =
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Now we make an initial choice of cubes, and denote the resulting collection by
Fo. Our choice is made as follows. We consider the cubes of the mesh .#, (each
such cube is of size approximately 27%), and include a cube of this mesh in Ty if it
intersects (), (the points of the latter are all approximately at a distance 2% from
F). Namely,

Fo=|J{Q € M :QnQ +# 2}
k

For appropriate choice of ¢, we claim that
diam (@) < dist (@, F) < 4diam (Q), Q € Fo. (3.1.1)

Let us prove (3.1.1) first. Suppose Q € .#; then diam (Q) = /n27*. Since Q €
Fo, there exists an z € Q N Q. Thus, dist (Q,F) < dist (2, F) < 27%+1, and
dist (Q, F) > dist (z, F) — diam (Q) > ¢27% — \/n27%. If we choose ¢ = 2\/n, we
get (3.1.1). Then by (3.1.1) the cubes ) € Jy are disjoint from F' and clearly cover
Q. Therefore, (i) is also proved.

Notice that the collection Fy has all our required properties, except that the
cubes in it are not necessarily disjoint. To finish the proof of the theorem, we need
to refine our choice leading to J, eliminating those cubes which were really un-
necessary.

We require the following simple observation. Suppose Q1 and ()2 are two cubes
(taken respectively from the mesh .#}, and .#,). Then if ()1 and Q> are not dis-
joint, one of the two must be contained in the other. (In particular, Q1 C Qo, if
ki > ko.)

Start now with any cube @ € J), and consider the maximal cube in Fy which
contains it. In view of the inequality (3.1.1), for any cube Q" € F, which contains
Q € Fy, we have diam (Q') < dist (Q', F) < dist (Q, F) < 4diam (Q). Moreover,
any two cubes ' and Q" which contain @ have obviously a non-trivial intersection.
Thus, by the observation made above each cube @ € J has a unique maximal cube
in Jp which contains it. By the same taken these maximal cubes are also disjoint.
We let F denote the collection of maximal cubes of Fy. Then obviously,

(1) UQE? Q=19Q,

(ii) The cubes of F are disjoint,

(iii) diam (Q) < dist (Q, F) < 4diam (Q), Q € 7.

Therefore, we complete the proof. |

§3.2 Hardy-Littlewood maximal function

Maximal functions appear in many forms in harmonic analysis. One of the
most important of these is the Hardy-Littlewood maximal function. They play an
important role in understanding, for example, the differentiability properties of
functions, singular integrals and partial differential equations. They often provide
a deeper and more simplified approach to understanding problems in these areas
than other methods.

First, we consider the differentiation of the integral for one-dimensional func-
tions. If f is given on [a, b] and integrable on that interval, we let

Fo) = | "y, o€ o).
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To deal with F'(z), we recall the definition of the derivative as the limit of the
quotient w when h tends to 0, i.e.,

F -F
F'(z) = lim (z+h) (:B)
h—0 h
We note that this quotient takes the form (say in the case i > 0)

1 z+h 1
[ = [ s,

where we use the notation I = (z,z + h) and || for the length of this interval.

At this point, we pause to observe that the above expression in the “average”
value of f over I, and that in the limit as |I| — 0, we might expect that these
averages tend to f(x). Reformulating the question slightly, we may ask whether

i 1 [ )y = 1(@)

xzel
holds for suitable points z. In higher dimensions we can pose a similar question,
where the averages of f are taken over appropriate sets that generalize the intervals
in one dimension.

In particular, we can take the sets involved as the open ball B(z, ) of radius r,
centered at =, and denote its measure by p(B(z,r)). It follows

1

}%m /B(w) f(y)dy = f(x), fora.e. z? (3.2.1)

Let us first consider a simple case, when f is continuous at x, the limit does
converge to f(z). Indeed, given ¢ > 0, there exists a § > O such that |f(z)— f(y)| < ¢
whenever |z — y| < §. Since

1 1
@) = s /B Ol = s /B IRUCR Y

we find that whenever B(z,r) is a ball of radius r < §, then

1 1
o) = L Bw) /BW) T < B m)

as desired.

<

/ |f(z) = f(y)ldy <e,
B(z,r)

§3.2.1 Hardy-Littlewood maximal operator

In general, for this “averaging problem” (3.2.1), we shall have an affirmative
answer. In order to study the limit (3.2.1), we consider its quantitative analogue,
where “lim,_.q” is replaced by “sup,-(”, this is the (centered) maximal function.
Since the properties of this maximal function are expressed in term of relative size
and do not involve any cancellation of positive and negative values, we replace f

by |f].

Definition 3.2.1. Y

If f is locally integrable on R", we define its maximal function M f : R" —
[0, 0o] by

Mf(z) = sup —

Wb (Bla,r) /B o |f(y)ldy, xeR", (3.2.2)
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where the supremum takes over all open balls B(x,r) centered at x. More-
over, M is also called as the centered Hardy-Littlewood maximal operator.

The maximal function that we consider arose first in the one-dimensional situa-
tion treated by Hardy and Littlewood. It is to be noticed that nothing excludes the
possibility that M f(z) is infinite for any given .

It is immediate from the definition that

Theorem 3.2.2.
If f € L°(R"), then M f € L®°(R") and
M flloo < || floo-

By the previous statements, if f is continuous at x, then we have

| f(x) :}%W/B(“)| (y)|dy
| 1twldy =5,
B(z,r)

SSUPp ————~
r>0 H(B(I) T))

Thus, we have proved

Proposition 3.2.3.

If f e C(R"), then |f(z)| < M f(x) for all z € R™.

Sometimes, we will define the maximal function with cubes in place of balls. If
Q(z,r) is the cube [x; — r, x; 4+ r|", define

1
Mf@) =swp o [ fwldy, @ e R (3.23)
r>0 (QT) Q(z,r)
When n = 1, M and M’ coincide. If n > 1, then
Va2 "M f(x) < M'f(x) < V2 "2 M f(z). (3.2.4)

Thus, the two operators M and M’ are essentially interchangeable, and we will use
whichever is more appropriate, depending on the circumstances.
In addition, we can define a more general maximal function

M" f(z) = sup / |f(y)|dy, (3.2.5)

Q> 'u
where the supremum is taken over all cubes containing z. Again, M" is point-wise
equivalent to M, indeed, V27" M f(z) < M" f(x) < V,,n™?M f(z). One sometimes
distinguishes between M’ and M” by referring to the former as the centered and
the latter as the non-centered maximal operator.

Alternatively, we could define the non-centered maximal function with balls
instead of cubes:
W f(w) = sw—z [ 1wlay
B>z :u
at each x € R". Here, the supremum is taken over all open balls B in R" which
contain the point x and u(B) denotes the measure of B (in this case a multiple of
the radius of the ball raised to the power n).
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Clearly, M f < M f < 2"M f and the boundedness properties of M are identical
to those of M.

Example 3.2.4. Let f : R — R, f(x) = x(0,1)(7). Then

2z
Mf(z)=M'f(z) =< 1, O0<z <1,
1
sz TS0
T, x>l
Mf(x)=M"f(z)={ 1, 0<x<l,
1
—, TS 0
In fact, for z > 1, we get
1 z+h
M f(x) = M'f(zx) =sup - X(0,1)(¥)dy
h>0 2h Jo_p

ey 1 z+ho
Mf(z)=M"f(x) = su / d
f(z) f(x) iy X(0,1)(y)dy

r—hy
l—ax+M 1 1
= max sup ——, sup — | = —.
O<z—hy<1 hy e—h1<0 M1 x
For 0 < z < 1, it follows
1 x+h
!
Mf(z) = M'f(z) =sup X(0,1)(y)dy
h>0 z—h
2h l—xz+h
= max sup i sup -
O<z—h<zt+h<l 2P 0<o—n<i<atn 2R
T+ h 1
sup LI sup —
e—h<0<a+h<1 2h " n<o<i<aetn 2h

1 /1 1
=max | 1,1,1, —min | —, =1,
2 z 1l—x

. 1 x+ho
Mf(z)=M"f(z) = sup / d
f(z) f(z) hho B+ by Jyn, X(o,l)(y) Y

:max< sup hl+h2, u $+h2,
O<a—hi<z+ha<l M1+ N2 o p <O<otho<t P1 + h2
1—xz+ hl 1
0<x—h?l<111)<x+h2 hi+ he 7gg—h1<?)l<lll)<gc-;-112 h1 + h2>

=1.

For z < 0, we have

Mf(@zM’f(x)zmax( sup z+h su 1>: 1

77 p a1 7’
O<z+h<1,h>0 2R " 4yp>12h 2(1—x)
— T+ ho 1
Mf(x) = M" f(x) =max sup ,  sup
( ) hi,ha>0,0<z+ha<1 P1 + N2 hy>0z4no>1 1 + he
_ 1
1l—a
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Observe that f € L'(R), but M f, M'f, M" f, M f ¢ L*(R).

Remark 3.2.5. (i) M f is defined at every point z € R" and if f = g a.e., then
M f(x) = Mg(z) at every x € R™.

(ii) It may be well that M f = oo for every x € R". For example, let n = 1 and
fl) = 2.

(iii) There are several definitions in the literature which are often equivalent.

Next, we state some immediate properties of the maximal function. The proofs
are left to interested readers.

Proposition 3.2.6. \

Let f,g € Lj,.(R"). Then

(i) Positivity: M f(x) > 0 for all z € R™.
(ii) Sub-linearity: M (f + g)(z) < M f(z) + Mg(x).
(iii) Homogeneity: M (af)(x) = |a|M f(z), a € R.

(iv) Translation invariance: M (7, f) = (1,M f)(z) = M f(x — y).

With the Vitali covering lemma, we can state and prove the main results for the
maximal function.

Theorem 3.2.7: The maximal function theorem \

Let f be a given function defined on R".

() If f € LP(R™), p € [1, o¢], then the function M f is finite a.e.
(ii) If f € L'(R™), then for every o > 0, M is of weak type (1, 1), i.e.,
377,
p{z: Mf(z) > a}) < —[fl

(iii) If f € LP(R™), p € (1,00], then M f € LP(R") and

M fllp < Apllf1lp-
where A, = 3"p/(p— 1) + 1forp € (1,00) and A = 1.

\.

—

Proof. We first prove the second one, i.e., (ii). Since M f < M f < 2"M f, we only
need to prove it for M. Denote for o > 0

E, = {aj cMf(z) > a},
we claim that the set E, is open. Indeed, from the definitions of M f and the supre-
mum, for each z € E, and 0 < ¢ < M f(z) — a, there exists a 7 > 0 such that

M(Jlax) / |f)|dy > Mf(z) — e > a,

where we denote by B, the open balls contains z. Then for any z € B,, we have
My (2) > o, and so B, C E,. This implies that E, is open.
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Therefore, for each open ball B,, we have

uB) < [ 1Sl (3.2.6)

Fix a compact subset K of E,. Since K is covered by Uzcf, Bz, by the Heine-Borel
theorem, we may select a finite subcover of K, say K C J;', B;. Lemma 3.1.1
guarantees the existence of a sub-collection B;,, - - -, Bj, of disjoint balls with

N k
[ (U Bg) <3" u(By,). (3.2.7)
/=1 =1

Since the balls Bj,, - - -, Bj, are disjoint and satisfy (3.2.6) as well as (3.2.7), we find
that

N k an
u(K) <p (U Be) <3 _n(Bj) < Z/ f (y)ldy
(=1 i=1 i=1 Y Bij;

== [ iy <= [ 17wy
a Uf:1 By, & JRe

Since this inequality is true for all compact subsets K of E,, taking the supremum

over all compact K C E, and using the inner regularity of Lebesgue measure, we

deduce the weak type inequality (ii) for the maximal operator M. It follows from

M f < Mf that

pl{z s Mf(z) > a}) < p({z: Mf(z) > a}) < %Ilflh-

The above proof also gives the proof of (i) for the case when p = 1. For the case
p = oo, by Theorem 3.2.2, (i) and (iii) is true with A, = 1.

Now, by using the Marcinkiewicz interpolation theorem between L' — L1
and L>™° — L, we can obtain simultaneously (i) and (iii) for the case p € (1,00). B

Now, we make some clarifying comments.

Remark 3.2.8. (1) The weak type estimate (ii) is the best possible (as far as order of
magnitude) for the distribution function of M f, where f is an arbitrary function in
LY(R™).

Indeed, we replace |f(y)|dy in the definition of (3.2.2) by a Dirac measure dpu
whose total measure of one is concentrated at the origin. The integral [, (@ =1
only if the ball B(z, ) contains the origin; otherwise, it will be zero. Thus,

1 ny—1
M= o By~ (Pl
i.e., it reaches the supremum when r = |z|. Obviously, || M (du)||1 = co. Moreover,
the distribution function of M (du) is

(M(dp))«(er) = {z : [M(dp)(2)] > o} | = [{z: (Valz[") ™' > a} |
=[{z: Vala|" < a'}| = |B(0, (Vha) ™)
=V, (Vo)™ =1/a,
namely, || M (dp)|| 1.« = 1. But we can always find a sequence { f,(z)} of positive
integrable functions, whose L! norm is each 1, and which converges weakly to the
measure du. So we cannot expect an estimate essentially stronger than the estimate

(ii) in Theorem 3.2.7, since, in the limit, a similar stronger version would have to
hold for M (du)(z).
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(2) It is useful, for certain applications, to observe that
1
Ap:O(p—l)’ asp—)l.
(3) It is easier to use M in proving (ii) than M, one can see the proof that E,, is
open.

In contrast with the case p > 1, when p = 1 the mapping f — M f is not
bounded on L!(R™). That is,

Theorem 3.2.9.

If f € LY(R") is not identically zero, then M f is never integrable on the
whole of R”, i.e., M f ¢ L*(R").

Proof. We can choose an NV large enough such that

JRECIEES
B(0,N)

Then, we take an = € R" such that [z| > N. Letr = |z| + N, we have

1 1
M f(x) >W /B(w,r) |f(y)|dy = W/B(w) |f(y)|dy
1 1
> L o O > Sl
S 1
/WWHL

It follows that for sufficiently large |x|, we have
Mf(x) = el e=(Va2" 7| flh
This implies that M f ¢ LY(R"). [ |
Moreover, even if we limit our consideration to any bounded subset of R", then

the integrability of M f holds only if stronger conditions than the integrability of f
are required. In fact, we have the following.

Theorem 3.2.10. \

Let £ be a bounded subset of R”. If fIn™ |f| € L'(R™) and supp f C E, then
[ M@z <218+ € [ 17)|m" 5@l
E E

where In" ¢t = max(Int, 0).

Proof. By Theorem 1.1.4, it follows that
/ M f(z)dx :2/ H{z e E: Mf(x) > 2a}|da
E 0

:2(/01—1—/100)|{:c€E:Mf(a:)>2a}|da

<2/E| + 2/ {z € B: Mf(z) > 2a}|da.
1

Decompose f as fi + fa, where fi = fX(s|f@)>a} and fo = f — fi. Then, by
Theorem 3.2.2, it follows that

M fa(z) < [M falloo < [l f2lloo < e,
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which yields
{reE:Mf(zx)>2a} C{xeE:Mfi(z)>a}.

Hence, by Theorem 3.2.7, we have

o

/00 Hx € E: Mf(z) > 2a}|da < / H{x € E: M fi(x) > a}lda
1 1

~ 1 max(LIf@)) g,
<[ 2 f@)dada < [ 17 9 4o
1 & J{zeE:|f(z)>a} E 1 o

= X n+ X XT.
—C/E!f( It |f())d

This completes the proof. [

§3.2.2 Control of other maximal operators

We now study some properties of the Hardy-Littlewood maximal function.

Definition 3.2.11.

Given a function g on R" and ¢ > 0, we denote by g. the following function:
g-(z) = e "g(e ). (3.2.8)

If g is an integrable function with integral equal to 1, then the family defined
by (3.2.8) is an approximate identity. Therefore, convolution with g. is an aver-
aging operation. The Hardy-Littlewood maximal function M f is obtained as the
supremum of the averages of a function f with respect to the dilates of the kernel
k =V, 'Xp(0,1) in R". Indeed, we have

M) =swp o |17 = ) e w/=)dy

e>0 Vngn
=sup(|f] * k:)(x).
e>0

Note that the function k = V,; ! x p(0 1) has integral equal to 1, and convolving with
k. is an averaging operation.

Theorem 3.2.12. ‘

Suppose that the least decreasing radial majorant of ¢ is integrable, i.e., let
Y(x) = supjy|> 5 le(y)], and ¢ € L'(R™). Then for f € L} (R"),

loc

sup |(f * @e)(2)] < [[¢[[1 M f ().
e>0

\.

Proof. With a slight abuse of notation, let us write ¢(r) = (), if || = r; it should
cause no confusion since v(x) is anyway radial. Now observe that v(r) is decreas-
ing and then fr/2<\x|<r Y(x)dx = () fr/2<|z|<r dr = c(r)r". Therefore, the as-
sumption ¢ € L! proves that r™(r) — 0 asr — 0 or r — co. We need to show
that

(f*ve)(z) < AM f(z), (3.2.9)
where f > 0,¢ > 0and A = [, ¥(z)dz.
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Since (3.2.9) is clearly translation invariant w.r.t f and also dilation invariant
w.r.t. ¢ and the maximal function, it suffices to show that

(f %1)(0) < AM £(0). (3.2.10)

In proving (3.2.10), we may clearly assume that M f(0) < co. Let us write A(r) =
Jgn-1 f(ra')do(2"), and A(r) = f|a:\<r f(z)dz, so

. " / nn—1 _ " n—1 i /7" — r ,r,n—l
A(r)—/o /Snlf(tx Vo ()1 dt—/o MOt ie, A(r) = A(r)rmL.
We have
0O = [ f@p@de= [T [ oo
N

_/000 "IN Y(r)dr = lim A(r)(r)r™dr

e—0
£

N o N
— iy [ Nl = tig {80 - [ A}

Since A(r) = f\m|<r f(z)dx < V,r"M f(0), and the fact r™(r) — 0 asr — 0 or
r — 00, we have

0< Jim ANNYE(N) < VaMF(0) Tim N™6(N) =0,

which implies limy_,oc A(N)¢(N) = 0 and similarly lim._,o A(¢)y(¢) = 0. Thus, by
integration by parts, we have

o) = [ T A () < VaMF(0) / ()

_nV, M(0) /O S e = M(0) [ w(ayda,

where two of the integrals are of Lebesgue-Stieltjes type, since (r) is decreasing
which implies ¢/(r) < 0, and nV;, = w,,—1. This proves (3.2.10) and then (3.2.9). R

§3.2.3 Applications to differentiation theory

We continue this section by obtaining some applications of the boundedness of
the Hardy-Littlewood maximal function in differentiation theory.

We now show that the weak type (1, 1) property of the Hardy-Littlewood max-
imal function implies almost everywhere convergence for a variety of families of
functions. We deduce this from the more general fact that a certain weak type prop-
erty for the supremum of a family of linear operators implies almost everywhere
convergence.

Let (X, ) and (Y, v) be measure spaces and let 1 < p < 00,1 < ¢ < 0o. Suppose
that D is a dense subspace of LP(X, ;). This means that for all f € LP and all § > 0,
there exists a ¢ € D such that ||f — g||, < 0. Suppose that for every ¢ > 0, T; is a
linear operator that maps LP(X, i) into a subspace of measurable functions, which
are defined everywhere on Y. For y € Y, define a sublinear operator

T.f(y) = sup|Tf(y)| (3.2.11)
e>0

and assume that 7 f is v-measurable for any f € LP(X, ;1). We have the following.
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Theorem 3.2.13. )

Let p,q € [1,00), T. and T, be as previously stated. Suppose that for some
B >0andall f € LP(X, u), we have

[T fllace < Bl fllp (3.2.12)

and that for all f € D,
limT.f=Tf (3.2.13)
e—0

exists and is finite v-a.e. (and defines a linear operator on D). Then, for all

f € LP(X, ), the limit (3.2.13) exists and is finite v-a.e., and defines a linear
operator T on L”(X, ;1) (uniquely extending 7" defined on D) that satisfies

1T fllzace < Bl fllp (3.2.14)
for all functions f € LP(X, p).

\.

Proof. Given f € LP, we define the oscillation of f:
Oy(y) = limsuplimsup |- f(y) — Tof (y)|.
e—0 0—0
We would like to show that for all f € L” and § > 0,
v({y €Y : Of(y) > 0}) = 0. (3.2.15)

Once (3.2.15) is established, given f € LP(X, u), we obtain that Of(y) = 0 for v-
almost all y, which implies that 7. f (y) is Cauchy for v-almost all y, and it therefore
converges v-a.e. to some 7' f(y) as ¢ — 0. The operator T defined in this way on
LP(X, u) is linear and extends 7" defined on D.

To approximate O, we use density. Given n > 0, find a function g € D such
that || f — g|l, < n. Since T.g — Tg v-a.e., it follows that O, = 0 v-a.e. Using this
fact and the linearity of the 7.’s, we conclude that

Os(y) < Og(y) + O—4(y) = O—4(y) v—ae
Now for any § > 0, we have by (3.2.12)

v({y €Y : Of(y) > 6}) <v({y € Y : Op—4(y) > 6})
<v({y €Y 2T5(f — 9)(y) > 0})
QC[T(f = g)llpaee/0)?

2Bl f = gllp/0)*

(2Bn/d)4,

/

NN N

due to

Of_¢(y) =limsup limsup [T.(f — g)(y) — To(f — 9)(v)|

e—0 6—0

<2sup IT-(f = 9)(W)| = 2T(f — 9)(v)-

Letting n — 0, we deduce (3.2.15). We conclude that 7. f is a Cauchy sequence,
and hence it converges v-a.e. to some T'f. Since |T'f| < T, f, the conclusion (3.2.14)
follows easily. [ ]

As a corollary of Theorem 3.2.7 or 3.2.13, we have the differentiability almost
everywhere of the integral, expressed in (3.2.1).
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Theorem 3.2.14: Lebesgue differentiation theorem ,

If f € LP(R"), p € [1,00], or more generally if f is locally integrable (i.e.,
f € Ll (R")), then

. 1 _
}1;1(1) m /B(x,r) fly)dy = f(x), fora.e. x. (3.2.16)

\.

Proof. We first consider the case p = 1. It suffices to show that for each a > 0, the

set
T, .
M(B(x7 71)) B(z,r)

has measure zero, because this assertion then guarantees that the set & = ;2| Ey /j,

f(y)dy — f(x)

r—0

E, = {w : lim sup

has measure zero, and the limit in (3.2.16) holds at all points of E°.

Fix a, since all continuous functions of compact support (i.e., C.(R")) are dense
in L' (R"), for each € > 0 we may select a continuous function g of compact support
with || f — g||1 < €. As we remarked earlier, the continuity of g implies that

1
lim / g9(y)dy = g(x), forall z.
r—0 /’L(B('T7 T)) B(z,r)

Since we may write the difference m I3 @) (y)dy — f(z) as

1
w(Ba,r)) /B@,T)(f (y) — 9(y))dy
1
" uBer) /B(x,r) 9(v)dy = 9(z) + 9(z) = f(2),

we find that

lim sup
r—0

fdy — f(x)] < M(f —g)(x) +|g(z) — f(z)].

1
:“(B(:Evr)) /B(;B,r)
Consequently, if
Fo={z:M(f—g)(z)>a} and Gq={z:|f(z)—g(z)| > a},

then £, C F, UG,, because if u; and us are positive, then u; + uz > 2c only if
u; > « for at least one u;.

On the one hand, Tchebychev’s inequality yields

1
p(Ga) < If =gl

and on the other hand, the weak type estimate for the maximal function gives

377,
p(Fy) < gllf — gl

Since the function g was selected so that || f — g||1 < ¢, we get

3™ 1 3" +1
W(Ea) < eq—e= 2
« «

g.
a

Since ¢ is arbitrary, we must have (E,) = 0, and the proof for p = 1 is completed.

Indeed, the limit in the theorem is taken over balls that shrink to the point z, so
the behavior of f far from x is irrelevant. Thus, we expect the result to remain valid
if we simply assume integrability of f on every ball. Clearly, the conclusion holds
under the weaker assumption that f is locally integrable.
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For the remained cases p € (1, 0|, we have by Holder inequality, for any ball B,

‘éuwwm<wmﬂmmmm@<uwfwwm.

Thus, f € L} .(R") and then the conclusion is valid for p € (1,00]. Therefore, we
complete the proof of the theorem. [

By the Lebesgue differentiation theorem, we have

Corollary 3.2.15.

Let f € Lj,.(R"). Then
|f(x)| < Mf(x), ae. xzeR"

Combining with the maximal function theorem (i.e., Theorem 3.2.7), we get

Corollary 3.2.16. .

If f € LP(R™), p € (1, 0], then we have
1fllp < M Fllp < Apll Fllp-

\.

Corollary 3.2.17. .

Suppose that the least decreasing radial majorant of ¢ is integrable, and
Jgn ¢(x)dz = 1. Then lim._,o(f * ¢c)(x) = f(z) a.e. forall f € LP(R"),
1<p<oo.

\.

Proof. We can verify that if f; € C., then (fi * ¢.)(z) = fi(z) uniformly ase — 0
(cf. Theorem 2.1.15). Next we can deal with the case f € LP(R"), 1 < p < oo, by
writing f = f1 + fo with f; as described and with || f2||, small. The argument then
follows closely that given in the proof of Theorem 3.2.14 (the Lebesgue differenti-
ation theorem). Thus, we get that lim._,o f * ¢-(z) exists almost everywhere and
equals f(z). [ |

§3.2.4 An application to Sobolev’s inequality

As an application, we prove the (Gagliardo-Nirenberg-) Sobolev inequality by
using the maximal function theorem for the case 1 < p < n. We note that the
inequality also holds for the case p = 1 and one can see [Eval0, p.279-281] for the
proof.

Theorem 3.2.18: (Gagliardo-Nirenberg-) Sobolev inequality

Let p € (1,n) and its Sobolev conjugate p* = np/(n—p). Then for f € Z(R"),
we have

£l < ClUV fllp,
where C' depends only on n and p.

\.

Proof. Since f € Z(R"), we have
fla) == [ Srttat v
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where z € S"~1. Integrating this over the whole unit sphere surface $"~! yields

wnaf@ = [ f@aoe) == [ 7 it ropno(:)

= /S" 1/ Vfi(x+rz)-zdrdo(z)
=— / Vi(x+rz)- zdo(z)dr.
0 Jsn-1

Changing variables y = 2 + 72, do(z) = r~ " Ydo(y), 2 = (y — x)/|ly — x| and
r=|y — x|, we get

wn1f(@ / /8er \yy— x\"dg( v)dr

—— | Vi

Fal< / VTN

W1 Jgn [y — x| !

‘n dy,

which implies that

We split this integral into two parts as [z, = [p(,,) + Jgn\ (- For the first

part, we have
1 v
/ \ f(n)|1dy
Wn—1 (z,r) ’l‘ - y’

/ vl ,
wn Ly (z,2=kr)\B(z,2=k—1r) ‘{IJ‘ - y‘n—l
/ v,
wn 1y r\B(z,2=k—1r) (27 B T)ni
b 1 V)

kZ::O nVnQ_’“r /B(x,2—k7,) (2= Fp)n—1
e el I\ Z10) "

n k=0 B(l’ 27’670)) B(xz,27kr)

n—1

<MV (a 22— M (V) @)

For the second part, by Holder 1nequa11ty, wegetforl<p<mn

\Y
[ s,
R™\B(z,r) ‘JJ - y‘

1/p 1/p'
< (/ IVf(y)I”dy> (/ |z — y|P dy)
R™\ B(z,r) R™\B(=,r)

> 1 / 1 1
<(wn1 P g dp) IV £l

/

— 1w, 1/p -
:(<p o ) P £

n—p

( 1)(17 1)/n n”VfH p/n . .
(n— pI;(p 1)/nw1/n (M(Vf)(lc)c)) Satlsfymg

Choose r =

n _ 1/p'
2w = - (L2) T g,

Wn—1 n—p
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then we get
[f (@) < CIV LI (M(V f) ()P
Thus, by part (iii) in Theorem 3.2.7, we obtain for 1 < p < n
1 £l <CIVAR™IME@HILE"
=C| VLI M (V)™ < CIV S lp-

This completes the proof. n

§3.3 Calderén-Zygmund decomposition

Applying Lebesgue differentiation theorem, we give a decomposition of R",
called Calderén-Zygmund decomposition, which is extremely useful in harmonic
analysis.

Theorem 3.3.1: Calderé6n-Zygmund decomposition of R" \

Let f € L'(R™) and « > 0. Then there exists a decomposition of R” such that
HR"=FUQ FNQ=0.

(i) |f(x)] < aforae. .z € F.

(iii) © is the union of cubes, Q@ = |J, Qr, whose interiors are disjoint and
edges parallel to the coordinate axes, and such that for each @y,

1 n
en / f(2)]dz < 2" (33.1)

a <

\.

Proof. We decompose R" into a mesh of equal cubes Q,go) (k = 1,2, ---), whose
interiors are disjoint and edges parallel to the coordinate axes, and whose common
diameter is so large that

1

g o @tz < (332)

since f € L.
Split each Q,(CO) into 2" congruent cubes. These we denote by Q,(cl), k=1,2,---
There are two possibilities:

1 1
either / f(2)|dz < o, or / f(@)|dz > a.
n(@Q) Jaf p(@QM) Jo

In the first case, we split Q,gl) again into 2" congruent cubes to get Q,(f) (k=1,2,---).
In the second case, we have
1 1

in view of (3.3.2) where Ql(cl) is split from Q% ), and then we take Q,(cl) as one of the
cubes Q. |

A repetition of this argument shows that if z ¢ Q =: |J;2, Q; then z € Ql(cjj)
(j =0,1,2,---) for which

j 1

M(QI(CJ_))—>Oasj—>oo, and ——— [ |f(@)|de<a (j=0,1,---).
J ©) ()
N(ij) ij
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Thus, |f(z)] < ca.e. x € F = Q° by a variation of the Lebesgue differentiation
theorem. Thus, we complete the proof. |

We now state an immediate corollary.

Corollary 3.3.2.

Suppose f, o, F, 2 and Q) have the same meaning as in Theorem 3.3.1.
Then there exists two constants A and B (depending only on the dimension
n), such that (i) and (ii) of Theorem 3.3.1 hold and

@ w0) < 2151

1
b) —— dr < Bo.
(b) /rif\x o

(Qk)

Proof. In fact, by (3.3.1) we can take B = 2", and also because of (3.3.1)
1 1
Q) = = <= )
) = 3@ < [ 1 @dz < 21l

This proves the corollary with A = 1 and B = 2". |

It is possible however to give another proof of this corollary without using The-
orem 3.3.1 from which it was deduced, but by using the maximal function theorem
(Theorem 3.2.7) and also the theorem about the decomposition of an arbitrary open
set as a union of disjoint cubes. This more indirect method of proof has the advan-
tage of clarifying the roles of the sets F' and () into which R" was divided.

Another proof of Corollary 3.3.2. We know thatin F, |f(x)| < «, but this fact does
not determine F. The set F' is however determined, in effect, by the fact that the
maximal function satisfies M f(z) < « on it. So we choose F' = {z: M f(x) < a}
and Q = E, = {x: M f(z) > a}. Then by Theorem 3.2.7, part (ii) we know that
pn(2) < %||f||1 Thus, we can take A = 3".

Since by definition F' is closed, we can choose cubes @) according to Theorem
3.1.2, such that 2 = J,, Q, and whose diameters are approximately proportional
to their distances from F. Let @} then be one of these cubes, and p; a point of F
such that

dist (F, Qk) = dist (pk; Qk‘)

Let B, be the smallest ball whose center is p;. and which contains the interior of
Q. Let us set

e = M Bk)
1(Qr)
We have, because py, € {z : M f(x) < a}, that

1 1
0> Mf) > o /B 1@l > s /Q 1S @)

Thus, we can take a upper bound of v, as the value of B.
The elementary geometry and the inequality (iii) of Theorem 3.1.2 then show
that

radius(By) < dist (pg, Qx) + diam (Qg) = dist (F, Q) + diam (Qy)
<(ez + 1) diam (@),
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and so
1(By) =Vy,(radius(By))" < Vi (c2 + 1)™(diam (Qy))"
=Vn(ca + 1)"n"2p(Q),

since p(Qy) = (diam (Qx)/v/n)". Thus, v < Vi(ca 4+ 1)"n™/? for all k. Thus, we
complete the proof with A = 3" and B = V,(cy + 1)"n"/2. [ |

Remark 3.3.3. Theorem 3.3.1 may be used to give another proof of the fundamental
inequality for the maximal function in part (ii) of Theorem 3.2.7. (See [Ste70, §5.1,
p-22-23] for more details.)

The Calderén-Zygmund decomposition is a key step in the real-variable analy-
sis of singular integrals. The idea behind this decomposition is that it is often useful
to split an arbitrary integrable function into its “small” and “large” parts, and then
use different techniques to analyze each part.

The scheme is roughly as follows. Given a function f and an altitude «, we
write f = g + b, where g is called the good function of the decomposition since it
is both integrable and bounded; hence the letter g. The function b is called the bad
function since it contains the singular part of f (hence the letter b), but it is carefully
chosen to have mean value zero. To obtain the decomposition f = g + b, one might
be tempted to “cut” f at the height a; however, this is not what works. Instead, one
bases the decomposition on the set where the maximal function of f has height a.

Indeed, the Calderén-Zygmund decomposition on R"™ may be used to deduce
the Calderén-Zygmund decomposition on functions. The latter is a very important
tool in harmonic analysis.

Theorem 3.3.4: Calderén-Zygmund decomposition for functions

Let f € L'(R") and « > 0. Then there exist functions g and b on R™ such that
f=g+band

@) [lglle < /]l and [[gjoc < 2"a.

(ii) b = }_;bj, where each b; is supported in a dyadic cube Q; satisfying
fQj bj(z)dx = 0and ||bj|l; < 2" au(Q;). Furthermore, the cubes Q; and Q
have disjoint interiors when j # k.

(i) 32, 1(Q7) < a7 HIfIh-

\.

Proof. Applying Corollary 3.3.2 (with A = 1 and B = 2"), we have
DR"=FUQ FNQ=0g;
2)|f(x)] <a,ae zeF;
3) @ = ;2 Qj, with the interiors of the Q; mutually disjoint;
4) p(Q) < a™t fo, |f(2)|de, and o < ﬁ%) fQj |f(z)|dz < 2"
From 3) and 4), it is easy to obtain (iii).

1

Lecture Notes on Harmonic Analysis Updated: April 28, 2020

Now define




§3.3. Calderén-Zygmund decomposition -97-

b=>_;bjand g = f —b. Itis clear that fQj b;j(x)dx = 0. Consequently,

/ bjldz < / @)l + 1) Sy

j Qj

(QJ)
<9 / 1f(@)lde < 2 ap(Qy),

which proves ||b;][1 < 2" au(Q;). Thus, (i) is proved with the help of 3).
Next, we need to obtain the estimates on g. Write R" = U;Q; U F, where
F is the Closed set obtained by Corollary 3.3.2. Since b = O on F' and f — b; =
QJ) fQ z)dz on Q;, we have

1, on F,

g= 1 ' (3.3.3)
Q) 0. f(z)dx, onQ;.

On the cube @y, g is equal to the constant —=— f Q x)dz, and this is bounded by
"o by 4). Then by 2), we can get ||g||o < 2”a Fmally, it follows from (3.3.3) that
||g||1 < || f]l1- This completes the proof of (i) and then of the theorem. [

As an application of Calderén-Zygmund decomposition and Marcinkiewicz in-
terpolation theorem, we now prove the weighted estimates for the Hardy-Littlewood
maximal function (cf. [FS71, p.111, Lemma 1]).

Theorem 3.3.5.

For p € (1,00), there exists a constant C' = C,,,, such that, for any non-
negative real-valued locally integrable function ¢(z) on R", we have, for
f € LL (R"), the inequality

| ts@yeayie<c [ 15@r g (3:34)

Proof. Except when M¢(z) = oo a.e., in which case (3.3.4) holds trivially, M is
the density of a positive measure 0. Thus, we may assume that My(z) < oo a.e.
z € R" and My(x) > 0. If we denote

do(z) = Mp(x)de and dv(z) = p(x)dz,

then by the Marcinkiewicz interpolation theorem in order to get (3.3.4), it suffices
to prove that M is both of type (L>°(c), L°(v)) and of weak type (L'(o), L (v)).
Let us first show that M is of type (L>°(c), L*°(v)). In fact, if || f| o (») = a, then

/ Mo(z)dz = o({z € R" : |f(z)| > a}) = 0.
{zeR™:|f(z)[>a}
Since Mp(xz) > 0 for any € R", we have u({z € R" : |f(z)| > a}) = 0, equiv-
alently, |f(z)] < ca.e. © € R". Thus, Mf(z) < aae. z € R" and then p({z :
M f(z) > a}) = 0 which implies that v({M f(z) > a}) = f{x Mf(@)>ay PE@)dT =0
and thus || M f|| () < . Therefore, | M f| 1oy < [|f][10(0)-

Before proving that M is also of weak type (L!(c), L' (1)), we give the following
lemma.
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Lemma 3.3.6.

Let f € L'(R™) and « > 0. If the sequence {Qy} of cubes is chosen from the
Calderén-Zygmund decomposition of R for f and « > 0, then

{z eR": M'f(z) > Ta} c | JQj,
k
where Q} = 2Qy. It follows
p{z e R : M'f(z) > Ta}) < 2" 5 u(Qu).
k

\.

Proof. Suppose that = ¢ | J, Q;. Then there are two cases for any cube () with the
center z. If Q C F:=R" \ |J, Qi, then

1
@ @ <

If Q@ N Qy # @ for some k, then it is easy to check that @, C 3Q, and
Qe @rnQ # 2} c3@.
k

Hence, we have

JNEIEEY RUCIZED Sl MECTE

QLNQ#D
> 2%ap(Qr)
QrNQ#D
<ap(Q) + 2"au(3Q)
<Tap(Q).
Thus we know that M’ f(z) < 7"a for any z ¢ |J,, @}, and it yields that

p({z e R": M'f(z) > T"a}) < (U%) = 2" Zu Q).

We complete the proof of the lemma. [

Let us return to the proof of weak type (L!(o), L!(v)). We need to prove that
there exists a constant C such that for any a > 0 and f € L!(o)
/ o(x)dr =v({x e R" : M f(x) > a})
{z€R™: M f(z)>a} 335
C ( e )
<5 L W@ie)ds.
We may assume that f € L*(R"). In fact, if we take f; = | f[x 5(0,0), then f; € L'(R"),
0 < fo(z) < fogr1(z) forz € R"and ¢ = 1,2, ---. Moreover, limy_,, fo(z) = |f(z)]
and
{z €R": Mf(z) > a} = J{z e R": M fy(z) > a}.
¢
By the point-wise equivalence of M and M’, there exists ¢, > 0 such that
Mf(zx) < cpM'f(z) for all z € R™. Applying the Calderén-Zygmund decompo-
sition on R”™ for f and o/ = a/(¢,,7"), we get a sequence {Q} of cubes satisfying

/ 1 n_/
o' <M(Qk)/Qk|f(m)|dx<2 o
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By Lemma 3.3.6 and the point-wise equivalence of M and M”, we have that

/ (@) de
{zeR™: M f(z)>a}

< / o(z)dx
{zeR™:M' f(z)>7T"a'}

g/UkQ; o(z)dr < Z/Q;; o(z)dx
\Z< il <m>dw> (3 ] rwla)
/ < s sO(JU)d:L‘) dy

k

/ )M o (y)dy

< /R TW)IMw)dy.

Thus, M is of weak type (L!(c), L*(v)), and the inequality can be obtained by ap-
plying the Marcinkiewicz interpolation theorem. |
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§4.1 Poisson kernel and Hilbert transform

§4.1.1 Poisson kernel and the conjugate

We shall now introduce a notation that will be indispensable in much of our
further work. Indeed, we have shown some properties of Poisson kernel in Chapter
2. The setting for the application of this theory will be as follows. We shall think of
R™ as the boundary hyperplane of the (n + 1) dimensional upper-half space R"*L.
In coordinate notation,

Ry = {(z,y) : 2 € R",y > 0}
We shall consider the Poisson integral of a function f given on R". This Pois-
son integral is effectively the solution to the Dirichlet Problem for R’:": find a har-

monic function u(z,y) on R, whose boundary values on R” (in the appropriate

sense) are f(x), thatis
Ax,yu('ra y) = 07 (IL‘, y) € R1}r+1a (411)
u(z,0)=f, zeR"™
The formal solution of this problem can be given neatly in the context of the L?
theory.
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In fact, let f € L?(R"), and consider

n/2 R
u(z,y) = <‘2°:T’> /ne“’f'”“e"“f'yf(g)dg, y > 0. (4.1.2)

This integral converges absolutely (cf. Theorem 2.1.15), because 7 € L*(R"), and
e~1“¢lv is rapidly decreasing in || for y > 0. For the same reason, the integral
above may be differentiated w.r.t. x and y any number of times by carrying out the
operation under the sign of integration. This gives
Pu = 0
Apyu=——+> —5=0,
v 0y? ; o
because the factor <% Z¢~1“¢lY satisfies this property for each fixed &. Thus, u(x, y)
is a harmonic function on R?fl.

By Theorem 2.1.15, we get that u(z,y) — f(x) in L?(R™) norm, as y — 0. That s,
u(z, y) satisfies the boundary condition and so u(z, y) structured above is a solution
for the above Dirichlet problem.

This solution of the problem can also be written without explicit use of the
Fourier transform. For this purpose, we recall the Poisson kernel Py(x) := P(x,y)
by

W\ " o —| W\ ]
Py(x) = (27?) /n eVt Tem el ge — <27r> (F ey (), y>0. (41.3)

Then the function u(z, y) obtained above can be written as a convolution
u(z,y) =/ Py(2)f(x — z)dz, (4.1.4)

as the same as in Theorem 2.1.15. We shall say that « is the Poisson integral of f.
For convenience, we recall (2.1.14) and (2.1.12) as follows.

Proposition 4.1.1.

The Poisson kernel has the following explicit expression:

Cn I'((n+1)/2)
P N = = 4.1.5
y(m) (‘35‘2 + 192)71; ‘ ™2 ( :

Remark 4.1.2. We list the properties of the Poisson kernel that are now more or less
evident:

(i) The expression in (4.1.5) is independent of the definition of the Fourier trans-
form, and Py(x) > 0 fory > 0.

(ii) Jgn Py(z)dz =1,y > 0by Lemma 2.1.14; more generally, 73;(5) = <%)n/2 e~ lw€ly
by Corollary 2.1.23.

(iii) Py(x) is homogeneous of degree —n w.rt. (z,y); and Py(xz) = y "Pi(z/y),
y > 0.

(iv) Py(z)is a decreasing function of |z|, and P, € LP(R"), 1 < p < oc. Indeed, by
changes of variables, we have for 1 < p < oo

p
p_ Y
||Py”p —Cﬁ /R" <(|$|2+y2)(n+1)/2> dx
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= 1
T=YZ p, —n(p—1)
T Cﬁy /Rn (1 + |Z|2)p(n+1)/2 dz

et > 1
Z=rz" p,—n(p—1) n—1
chy Wn—1 /0 i+ r2)p(n+1)/2r dr

/2 1
r=tan ¢ —n(p—1) n—1 2
chy wn—l/o 7@% G)P(”H) tan™ ™" 0 sec” 6df

/2
—(/J;Lyn(pl)wn_l/ sin”fl 9COS<p71)(n+1) 9d6
0

_Chwn1 (p(n t)-n ”) D).
2 2 2

where we recall that the Beta function

1 us
B(a,p) = / 21— 2)f dp(z) = 2/2 sin?# 1 o cos?* ! pdy
0 0

converges for fa, RG > 0. Here, it is clear that p(n +1) —n > 0 for p € [1,00)
and thus the Beta function converges. Therefore, we have for p € [1, c0)

1/p
Wn—1 p(n+1)—n n .
IRl =[5t (M)

For p = oo, it is clear that | Py(2)|lcc = cny™".

(v) Suppose f € LP(R"™), 1 < p < oo, then its Poisson integral u, given by (4.1.4),
is harmonic in R*!. This is a simple consequence of the fact that P,(z) is
harmonic in RT}F‘H which is immediately derived from (4.1.3).

(vi) We have the “semi-group property” P, * Py, = Py, 4y, if y1,y2 > 0 in view of
Corollary 2.1.24.

The boundary behavior of Poisson integrals is already described to a significant
extension by the following theorem.

Theorem 4.1.3.

Suppose f € LP(R"), 1 < p < 0o, and let u(x, y) be its Poisson integral. Then

(@) sup |u(x,y)| < M f(z), where M f is the maximal function.
y>0

(b) lim u(z,y) = f(z), for almost every z.
y—0

(c) If 1 < p < o0, u(z,y) converges to f(z)in LP(R"™) norm, as y — 0.

Proof. We can prove it by applying Theorem 3.2.12 directly, because of properties
(i)—-(iv) of the Poisson kernel in the case p(z) = ¥ (z) = Pi(x). [ |

Now, we give the definition of harmonic conjugate functions as follows.

Definition 4.1.4.

The harmonic conjugate to a given function u(z, y) is a function v(z, y) such
that

f(z,y) = u(x,y) +iv(x,y)
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is analytic, i.e., satisfies the Cauchy-Riemann equations
Uy = Uy, Uy = —Uy,
where u, = du/0z, u, = 0u/0y. Itis given by
(2y)
v(z,y) = /( uzdy — uydx + C,

0,Y0)
along any path connecting (g, o) and (z,y) in the domain, where C is a

constant of integration.

Given a function f in .(R), its harmonic extension to the upper half-plane is
given by u(z,y) = P, * f(x), where P, is the Poisson kernel. We can also write, in
view of (4.1.2),

1/2 ) N
ue) =ute) = (51) [ e lanieie

1/2 00
_ <|w\) [/ €T W (£)de + /0 e“’ig'xewwy?(f)df}
0

1/2 oo 0
_ <’2w‘) [/ ewig.(x—&—isgn(w)y)/f(é-)df +/ ewif-(m—isgn (w)y)?(f)dé] :
™ 0 —0o0
where z = z + iy. If we now define

12 poo
isen(p(z) = () [ [ et on g

_ /0 Wi (z—isgn (w)y)/f(f)df 7
—00
then v is also harmonic in R? and both v and v are real if f is. Furthermore, u + iv
is analytic since it satisfies the Cauchy-Riemann equations u, = v, = wifu(z) and
uy = —v, = —wifv(z), so v is the harmonic conjugate of .
Clearly, v can also be written as, by Proposition 2.4.18,

o) = isem @) (B)7 [ e geereaingiern

= —isgn (w).7 ! (sgn (&) EVF(€))(x)

‘w| 1/2
——ismn(@) (51) 17 (s (90« (0,
which is equivalent to
v(z,y) = Qy x f(z), (4.1.6)
where
O(L) — —; wl V2 —|wély 417
Qy(§) = —isgn(w) { 5 | sgn(§e Y. (4.1.7)

Now we invert the Fourier transform, we get, by a change of variables and integra-
tion by parts,

Qy(r) = —isgn (w)|;;| /Rem*’”'£ sgn (€)e™ el g

, ‘w| > wiz-§ ,—|wléy ’ wiz-€ |w|ly
= —1isgn (w)ﬁ ; e e d¢ — e evIsYdg
—00
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- sgn( ) ‘W’ [/ wza:f —\w|£yd£ / —wiz-& —|w|§yd£:|

|/ wzx£ —wzx §> 856 |w|§yd§
—lwly

w)
_ 1 wiz-& —wzz-f) —\w\{y‘
=isgn (w )2 [(e e e o

- /oo wix (e“”‘:""'£ + efwixf) e*|w|5yd§}
0

_’;)1; /oo (ewm.g + e—wix-§> e—\w\{ydg
0

1/2
_ |w|x / e*“’i‘”'ge*“"g‘ydf — Eg‘ M 6*|Wf‘y
21y Y 27

x a1y 1T
7P =
y y(@) = yyr+a?  y2+a?

where ¢; =T'(1)/m = 1/7. That s,

= —isgn(w

1 =z
Qy(x) = ;yg + 2’
One can immediately verify that Q(z,y) = Q,(z) is a harmonic function in the
upper half-plane and is the conjugate of the Poisson kernel P,(x) = P(x,y). More
precisely, they satisfy Cauchy-Riemann equations

1 2zy 1 2?2 —q?

0P =0,Q = ———5—55, 0P =-0,Q=—-—"—5—55.
Y@ ™ (y2 + 22)2 Y Q ™ (y2 + 22)2

In Theorem 4.1.3, we studied the limit of u(x,t) as y — 0 using the fact that { P, }

is an approximation of the identity. We would like to do the same for v(z,y), but

we immediately run into an obstacle: {Q,} is not an approximation of the identity

and, in fact, ), is not integrable for any y > 0. Formally,

lim Q, () = —

y—0 T

this is not even locally integrable, so we cannot define its convolution with smooth
functions.

§4.1.2 Hilbert transform

We define a tempered distribution called the principal value of 1 /x, abbreviated

p.v.1/z, by
<p.v.1,qb>zlim/ Mda:, pe.s.
T e—0 |z|>e T

To see that this expression defines a tempered distribution, we rewrite it as

(pbo)= [ S0y, [ oy,

this holds since the integral of 1/z on € < |z| < 1is zero. It is now immediate that

1
(b330 )| < CU N + ool
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Proposition 4.1.5.

In '(R), we have lim Qy(z) = 1 p.v. L.
y—0

Proof. For each ¢ > 0, the functions .(r) = 27! X|z|>e are bounded and define
tempered distributions. It follows at once from the definition that in .7,

, 1
lim ¢ (2) = p.v. .

Therefore, it will suffice to prove that in .7’

1
i (Qy B My) =0

Fix ¢ € ., then by a change of variables, we have

7@y~ vy 0) = [ 70@) 4y /Mﬂ%x

rRZ+22 z

_ ¢ (7) I
_/93|<y y2+x2dx+/|x|>y <y2+$2 $> o(z)d

_ zp(yx) ,  Plyx)
B /x|<1 1+ 22 e /m|21 z(1+ $2)dx'

If we take the limit as y — 0 and apply the dominated convergence theorem, we
get two integrals of odd functions on symmetric domains. Hence, the limit equals

0. [
As a consequence of this proposition, we get that
1 —t
lim Qy * f(z) = — lim I )dt,
y—0 T e—0 [t|>e t

and by the continuity of the Fourier transform on .’ and by (4.1.7), we get

# (3o 2)© =-ism (@) (’2“;‘)/ sn (€).

s x

Given a function f € ., we can define its Hilbert transform by any one of the
following equivalent expressions:

Hf :ég%Qy*f’
1 1

Hf =—pv.—xf,
s x

Hf =7 (~isen (w) sen (6)1(€)).
The third expression also allows us to define the Hilbert transform of functions in
L?(R), which satisfies, with the help of Theorem 2.2.1,

Efll2 =IHFll2 = IFll2 = [I£]l2: (4.1.8)
that is, H is an isometry on L?(R). Moreover, H satisfies
H*f = H(Hf) =7 *((~isgn (w)sgn (£)27(€)) = — 1. (4.19)
By Theorem 2.2.3, we have

(H,g) = /R H - gdo = /R F\(~isgn (w)sgn (7€) - gda
- /R —isgn (w) sen ()F(€) - §(€)de
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/ f(z) - F[—isen (w) sen (E)F(E)](x)da

- / f(z) - Fl—isgn (@) sen (€)3(—6)|(x)da
/ f(z) - Fisgn () sgn (©)9(6))(x)dz
=(f,—Hy), (4.1.10)

namely, the dual/conjugate operator of H is H' = —H. Similarly, the adjoint oper-
ator H* of H is uniquely defined via the identity

(#.H9) = [ 1+ Tgds =~ [ Higds = (~Hf.q) = (H'f.g).
thatis, H* = —H.
Note that for given € R, Hf(z) is defined for all f € L'(R) satisfying the
following Holder condition near the point x:

|f(x) = f()] < Culz —t*
for some C; > 0 and ¢, > 0 whenever |t — z| < §,. Indeed, suppose that this is the
case, then

lim Q, * f(z) L ﬂ)ﬁ+1/ IO g
y—0 T e=0 Jec|p—t|<s, T — 1t jo—t]>8, L 1
1 t) — ! t
=_ lim Mdt + / f( ) dt.
me=0 Joclzoti<s, Tt jo—t|>8, £~ 1

Both integrals converge absolutely, and hence the limit of @, * f(z) exists as y — 0.
Therefore, the Hilbert transform of a piece-wise smooth integrable function is well-
defined at all points of Holder-Lipschitz continuity of the function. On the other
hand, observe that @), * f is well-defined for all f € LP(R), 1 < p < oo, as it follows
from the Holder inequality, since Q,,(x) is in L (R). Indeed,

p’ > x v
il =2 [ (i)
/ o0 X p’
=2y’ d
Y /0 (wQ + 1> *

/ Tr/2 / /
=2y'P / sin? A cos? ~20df (let z = tan6)
0

=y P B +1,p — 1),
where the Beta function converges if p’ — 1 > 0. Thus, we obtain for p’ € (1, c0),

1 1 / —1 1
1Qylly = ;(B(p/ +1,p = 1)YPy P and ||Qyls = oy

Definition 4.1.6. \

The truncated Hilbert transform (at height ¢) of a function f € LP(R), 1 <
p < o0, is defined by

© f(p) = L fa—y), 1 fy)
@ /|y|>€ w 7r/Icv y|>e w

Y rT—Yy

Observe that H©) f is well-defined for all f € LP(R), 1 < p < co. This follows
from Holder’s inequality, since 1/ is integrable to the power p’ on the set |z| > ¢
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It is clear that the Hilbert transform of f € .’ can be given by
Hf(z) = lim HE f(a). (4.1.11)
e—

Example 4.1.7. Consider the characteristic function x|, of an interval [a, b]. Itis a
simple calculation to show that

1
H(X[a,b])(l‘) = ;ln |.I — b| :

|z — al

(4.1.12)

Let us verify this identity. By the definition, we have

1 T — 1 1
H(X[a b])([[j) = — lim wdy = — lim *dy
) T e—0 ‘y|>£ Yy T e—0 b‘<y‘><5 Y
r—b<y<z—a

It is clear that it will be —ooc and +o00 at x = a and = = b, respectively. Thus, we
only need to consider three cases: x —b >0,z —a < 0and z — b < 0 < = — a. For
the first two cases, we have

1 /1 1

Hixun)@) == [y = Zm

|z — af

For the third case we get (without loss of generality, we can assume ¢ < min(|z —

al, |z —b[))
1., ! z—a q
H(X[a)(2) = limy </$_b ;4 +/€ ydy>
:1lim<ln’x_a|+] < >

T e—=0 € n\a:—b\
1. |x—a

==1In
T |z—0b|

where it is crucial to observe how the cancellation of the odd kernel 1/x is mani-
fested. Note that H(x[,)(z) blows up logarithmically for x near the points a and
b and decays like 27! as 2 — +o0. See the following graph witha = 1 and b = 3:

1

¥
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It is obvious, for the dilation operator 6 with € > 0, by changes of variables
(ey — y), that

1 flex —ey)
H6° = lim ~ EAS i P
(H6°)f(x) lim — . ; y
i [ LY g - ey pa),
=0 ly|ze0 Yy

so Hé° = 0°H; and it follows obviously that H0* = —6H, if ¢ < 0.
These simple considerations of dilation “invariance” and the obvious transla-
tion invariance in fact characterize the Hilbert transform.

Proposition 4.1.8: Characterization of Hilbert transform

Suppose T is a bounded linear operator on L?(R) which satisfies the follow-
ing properties:

(a) T commutes with translations;

(b) T' commutes with positive dilations;

(¢) T anticommutes with the reflections.

Then, T is a constant multiple of the Hilbert transform.

Proof. Since T commutes with translations and maps L%(R) to itself, according to
Theorem 2.5.6, there is a bounded function m(¢) such that 7f(¢) = m(¢)f(€). The
assumptions (b) and (c) may be written as T6°f = sgn (¢)0°T'f for all f € L?(R).
By part (iv) in Proposition 2.1.2, we have
F(T6 f)(&) =m(&)F (5 F)(&) = m(&)|e| " F(¢/e),
sen (€)F (5T f)(€) =sen (e)|e ' TF(¢/e) = sen (e)le|~'m(&/2)(¢/e),

which means m(e€) = sgn (e)m(§), if € # 0. This shows that m(¢) = csgn (§), and
the proposition is proved. |

§4.1.3 LP boundedness of Hilbert transform

The next theorem shows that the Hilbert transform, now defined for functions
in .7 or L?, can be extended to functions in L?, 1 < p < oo.

Theorem 4.1.9. \

For f € 7(R), the following assertions hold:
(i) (Kolmogorov) H is of weak type (1, 1):
C
p{z € R: [Hf(2)] > a}) < —Ifll-
(ii) (M. Riesz) H is of type (p,p), 1 < p < oc:

1 fllp < Cpll flp-

Therefore, the Hilbert transform H admits an extension to a bounded opera-
tor on LP(R) when 1 < p < oo.

\.

Proof. (i) Fix @ > 0. From the Calderén-Zygmund decomposition of f at height «
(Theorem 3.3.4), there exist two functions g and b such that f = g + b and

M llglly < l1f1lv and [glloo < 20v.
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(2 ) b = >_;bj, where each b; is supported in a dyadic interval I; satisfying

J; b I xz)dr = 0 and ||bj|[1 < 4au(l;). Furthermore, the intervals I; and I, have
dls]01nt interiors when j # k.

(3) 32 uL) < a M fa-

Let 2I; be the 1nterva1 with the same center as I; and twice the length, and let
Q= UjIj and Q* = UJ’QI]'. Then ,LL(Q*) < 2/.L(Q) < 2a‘1||f||1.

Since Hf = Hg + Hb, from parts (iv) and (vi) of Proposition 1.1.3, (4.1.8) and
(1), we have

(H f)o(0) < (Hg)u(a/2) + (HD).(a/2)
<(a/2)2 /R Hy(@) Pde + u(Q) + p({r ¢ O+ [Hb(z)| > a/2})

4
<2/ |g(x)\2d:):—|—204_1\le—l—Qofl/ \Hb(2)|da
a” Jr R\Q*
< [lo@ldo+ 20+ 2 [ 57 bl
X - 1 - 1
(8] R 0] 0] R\Q* j J
8 2 2
<=flli+ =Iflh+ = / Hbi(x)|dz.
A S [ )

For x ¢ 21;, we have

Hbj(x) = 1 p.v./] b;(y) dy = 1/] Mdy,

T LT =Y T, T =Y

since suppb; C Ij and |z — y| > u(l;)/2 for y € I;. Denote the center of I; by ¢;,
then, since b; is mean value zero, we have

[ mwlar= [ L[ 2y,
R\27; R\2I; [T J; T —Y
1 1 1
R ATy e ———
T JR\21; |1, =Yy TG
1 —Cj
< [l [ ) ay
T Ji; R\21I; |z — yllz — ¢
1 I
=
T JI; R\21; |z — ¢

The last inequality follows from the fact that |y — ¢;| < wp(f;)/2 and |z — y| >
|z — ¢;|/2. Since |z — ¢j| > pu(I;), the inner integral equals

> 1 1
2/QLI/ —dr =2u(l;))—— = 2.
(J) u(lj) 7"2 (J),U’(Ij)

dzx

dx

Thus, by (2) and (3),
(H )olo) <Nl + /|b ldy < —ufmfzm

10 16 1 10 +16/m

<+ 0Ly = LT gy,

(ii) Since H is of weak type (1,1) and of type (2,2), by the Marcinkiewicz in-
terpolation theorem, we have the strong type (p,p) inequality for 1 < p < 2. If
p > 2, we apply the dual estimates with the help of (4.1.10) and the result for p’ < 2
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(where 1/p+ 1/p' = 1):
|Hfll,= sup [(Hf g)|= sup [(f, Hg)]

llgll,r <1 llgll,y <1
<Ifllp sup [[Hgllp < Cprllfllp-
llgll,r <1
This completes the proof. |

Remark 4.1.10. i) Recall from the proof of the Marcinkiewicz interpolation theorem
that the coefficient

(10 +16/7)p N 2v/2
co— p—1 2-p’
P —1
(10 + 16 /7)p + Qﬂb, p>2.

1<p<?2,

So the constant C), tends to infinity as p tends to 1 or co. More precisely,
C,=0(p)asp — o0, and C, = O((p— 1) ) asp — 1.
ii) The strong (p,p) inequality is false if p = 1 or p = oo, this can be easily

|z—al
lz—0]

seen from the previous example H ([, = % In which is neither integrable nor

bounded. See the following figure.

The integra

iii) By using the inequalities in Theorem 4.1.9, we can extend the Hilbert trans-
form to functions in L?, 1 < p < co. If f € L' and {f,.} is a sequence of functions in
- that converges to f in L', then by the weak (1, 1) inequality the sequence {H f,,}
is a Cauchy sequence in measure: for any € > 0,

lim p({z €R: [(Hfn — Hfm)(x)| >c}) =0.

m,n—ro0
Therefore, it converges in measure to a measurable function which we define to be
the Hilbert transform of f.

If feLP,1<p< oo, and {f,} is a sequence of functions in . that converges
to f in LP, by the strong (p, p) inequality, {H f,,} is a Cauchy sequence in L?, so it
converges to a function in L? which we call the Hilbert transform of f.

In either case, a subsequence of {H f,}, depending on f, converges pointwise
almost everywhere to H f as defined.

§4.1.4 The maximal Hilbert transform and its L” boundedness

We now introduce the maximal Hilbert transform.
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Definition 4.1.11. N

The maximal Hilbert transform is the operator
H® f(z) = sup |[HE f(z), (4.1.13)
e>0

defined forall f € LP,1 < p < .

Since H®) f is well-defined, H*) f makes sense for f € LP(R), although for
some values of z, H*) f(x) may be infinite.

Example 4.1.12. Using the result of Example 4.1.7, we obtain that

« 1
H( )X[a,b] (‘7}) =

s

|z — al
n
|z = b]

However, in general, H*) f(z) # |H f(z)| by taking f to be the characteristic func-

1

= |HX[a,b} (‘r)‘ :

tion of the union of two disjoint closed intervals. (We leave the calculation to the
readers.)

The definition of H gives that H(®) f converges pointwise to H f whenever f €
2(R). If we have the estimate |H™ f||, < C,|/fll, for f € LP(R), 1 < p < oo,
Theorem 3.2.13 yields that H(®) f converges to Hf a.e. as ¢ — 0 for any f € LP(R).
This limit a.e. provides a way to describe H f for general f € LP(R). Note that
Theorem 4.1.9 implies only that H has a (unique) bounded extension on L?, but it
does not provide a way to describe H f when f is a general L function.

The next theorem is a simple consequence of this ideas.

Theorem 4.1.13.

There exists a constant C such that for all p € (1, 00), we have
[HS £l < Cmax(p, (p— 1)) £lp- (41.14)
Moreover, for all f € LP(R), H (€) f converges to H f a.e. and in LP.

Proof. Recall the kernels
1 € 1 T

p-—-_° g --_"_
T a4 e S a4 e

From Corollary 2.1.23 and (4.1.7), we know

= |w| 1/2 P W] 1/2
P.(¢) = (27r) eelel QL(€) = —isgn (we) (w) oclwel

Thus,

~1/2
—_— . —elw ~ —elw — w A~
F* Q- = —isgn (wé)e el — ¢ |§|Hf:<|27r‘) P.Hf =P.xHf,

which implies for all f € LP

fxQ.=Hf*P., £>0. (4.1.15)
Then, we have
HOf=H®f_ fxQ.+ Hf * P.. (4.1.16)
Using the identity
©) £(2) — (f % _ L[t fle—1)
HE f(w) = (f +Qu)(@) = - [/_w 2l ﬁ.% ot
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1
-1 /R fla — e (b)dt, (41.17)
where . (z) = e 1y(e71z) and
t 1 .
t .
P if |t| < 1.

Note that ¢ has integral zero since v is an odd function and is integrable over the

line. Indeed,
t 1 |t]
dt — dt+/ ———dt
/ () /t>1 t2+1 t‘ <1 1241
It]
wof
/t>1 t2+1 )|t <1 1241
/oo /1 dtQ
1 t2 + 1)t o 241
o0
/1 (s + 1 /0 s+ 1
/1 < s+ 1) 0 s+1

[1 ] +[In|s + 1]]3

=21n2.

The least decreasing radial majorant of 1) is

1
@roE 1
U(t) = s W)l =9,
s|=|t .
z =, flt] <1,
= if 1
since the function g(z) = ;%5 is increasing for z € [0,1] and decreasing for z €

(1,00). It is easy to see that ||¥|; = In2 + 1. It follows from Theorem 3.2.12 that
In2+1
sup |[H f(2) — (f * Q) (x)| <

e>0
In view of (4.1.16) and (4.1.18), from Theorem 4.1.3 we obtain for f € LP(R) that

[H®) f ()| =sup [HE f(2)| < sup [HE f(2) = (f * Qc)(x)| +sup | H f % P.|
e>0 e>0 e>0

Mf(z). (4.1.18)

2N f () + M(HF)(x).

It follows immediately from Theorems 3.2.7 and 4.1.9 that H () is LP bounded with
norm at most C max(p, (p — 1)72).

Applying Corollary 2.1.16 to (4.1.17), we have ;1_% |H® f —(f*Q¢)|, = 0since
1 has integral zero. By Theorem 2.1.15, we also have lim \Hf*P. —Hf|, = 0.
Thus, from (4.1.16), it follows that hm |HEf - H pr = 0 and therefore we also

have HE) f — Hf a.e. as e — 0. |
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§4.2 Calderén-Zygmund singular integrals

From this section on, we are going to consider singular integrals whose kernels
have the same essential properties as the kernel of the Hilbert transform. We can
generalize Theorem 4.1.9 to get the following result.

Theorem 4.2.1: Calder6n-Zygmund Theorem \

Let K be a tempered distribution in R™ which coincides with a locally inte-
grable function on R™ \ {0} and satisfies

Ree) < (4 " 4.2.1)
~ 27_(_ I V4N
/ |K(x —y) — K(z)|dr < B, yeR" (4.2.2)
|z|>2]y]
Then we have the strong type (p, p) estimate for 1 < p < oo
1K fllp < Cpll flp, (4.2.3)
and the weak type (1, 1) estimate
C
(K f)ae) < Il 424

We will show that these inequalities are true for f € .#, but they can be ex-
tended to arbitrary f € L? as we did for the Hilbert transform. Condition (4.2.2) is
usually referred to as the Hormander condition; in practice it is often deduced from
another stronger condition called the gradient condition (i.e., (4.2.5) as below).

Proposition 4.2.2.

The Hormander condition (4.2.2) holds if for every = # 0

C
VK (z)| <

s (4.2.5)

Proof. By the integral mean value theorem and (4.2.5), we have
1
[ Ke=n =K@l [ 9=y yldos
|z|>2ly| |z|>2]y]

/ / _ Clyl / / Ol
lz|>2ly| 1T — 9?J|”Jrl |m|>2|y| (=] /2)mH1

<2”+10|y|wn1/ —dr—2n+10|y|wn 1— =2"Cwy_1.
20l " %y
This completes the proof. [
Proof of Theorem 4.2.1. Let f € S and Tf = K « f. From (4.2.1), it follows that
— ‘(J_)| —TL/2 N
= = —_ K
sl =17l = (52) IR
—n/2 (4.2.6)
w V4N
<(5D) 7 IR Il < B171:
=Bl ]2,

by the Plancherel theorem (Theorem 2.2.1) and part (vi) in Proposition 2.1.2.
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It will suffice to prove that T" is of weak type (1,1) since the strong (p,p) in-
equality, 1 < p < 2, follows from the interpolation, and for p > 2 it follows from
the duality since the conjugate operator 7" has kernel K'(z) = K(—x) which also
satisfies (4.2.1) and (4.2.2). In fact,

(Tf,¢) = / T@p@de= [ [ K- i@

— [ [ K- a@distod = [ [ (& ooy

=(f,T'¢p).
To show that f is of weak type (1, 1), fix @ > 0 and from the Calderén-Zygmund
decomposition of f at height «, then as in Theorem 4.1.9, we can write f = g + b,
where

@ llgll < [1fll and [lgfle < 2"c
(ii) b = >_; bj, where each b; is supported in a dyadic cube Q; satisfying

/ bj(x)dr = 0and ||bj|l1 < 2" au(Q;).
j

Furthermore, the cubes @); and @}, have disjoint interiors when j # k.
(iif) 325 1(Q5) < o™ fllv.

The argument now proceeds as in Theorem 4.1.9, and the proof reduces to

showing that
/ |Tb;(z)|dx < C’/ x)|dz, (4.2.7)
R™\Qj

where Q; is the cube with the same center as ); and whose sides are 2,/n times
longer. Denote their common center by c;. Inequality (4.2.7) follows from the Hor-
mander condition (4.2.2): since each b; has zero average, if « ¢ Q]

Toi(e) = | K(z—y)b;(y)dy = / K (x —y) — K(z — ¢))b(y)dy:
Q; Qj
hence,

Jos o< ], </Rn\@ Kz =) = Ko - cj>|dx> )l

By changing variables z —c; = 2’ and y —¢; = ¢/, and the fact that |z —¢;| > 2|y —¢;]
forallz ¢ @} and y € Q; as an obvious geometric consideration shows, and (4.2.2),
we get

[ K-y -Ke-clde< [ K@ - y) - K@)l < B
R™\Q% lz’|>2]y]

Since the remainder proof is (essentially) a repetition of the proof of Theorem 4.1.9,
we omit the details and complete the proof. |

There is still an element which may be considered unsatisfactory in our formu-
lation because of the following related points:

1) The L? boundedness of the operator has been assumed via the hypothesis
that X € L™ and not obtained as a consequence of some condition on the kernel
K;

2) An extraneous condition such as K € L? subsists in the hypothesis; and
for this reason our results do not directly treat the “principal-value” singular inte-
grals, those which exist because of the cancelation of positive and negative values.
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However, from what we have done, it is now a relatively simple matter to obtain a
theorem which covers the cases of interest.

Definition 4.2.3. )

Suppose that K € L} _(R™\ {0}) and satisfies the following conditions:
|K(2)| < Bla|™, Va0,

/ K(z - y) — K@)lde < B, Vy#0,
|z|>2]y|

(4.2.8)
and
/ K(z)dx =0, V0< R; < Ry < 0. (4.2.9)
Ry <|z|<R2

Then K is called the Calderén-Zygmund kernel, where B is a constant inde-
pendent of x and y.

\.

Theorem 4.2.4. )

Suppose that K is a Calderon-Zygmund kernel. For ¢ > 0 and f € LP(R"),
1<p<oolet

T.f(x) = /| Ky (42.10)
y|ze
Then the following conclusions hold:
(i) We have
1T fllp < Apll fllp (4.2.11)

where A, is independent of f and ¢.
(ii) For any f € LP(R"), lim._,o T-(f) exists in the sense of L? norm. That is,
there exists an operator 7" such that

Tf(z) = p.v. o K(y)f(z —y)dy.

@iii) | Tfl, < Apllfllp for f € LP(R™).

Remark 4.2.5. 1) The linear operator 7" defined by (ii) of Theorem 4.2.4 is called
the Calderén-Zygmund singular integral operator. T is also called the truncated
operator of T.

2) The cancelation property alluded to is contained in condition (4.2.9). This
hypothesis, together with (4.2.8), allows us to prove the L? boundedness and the
LP convergence of the truncated integrals (4.2.11).

3) We should point out that the kernel K (z) = %, x € R, clearly satisfies the
hypotheses of Theorem 4.2.4. Therefore, we have the existence of the Hilbert trans-
form in the sense that if f € LP(R), 1 < p < oo, then

lim 1 7]"(3: —v) dy
e—=0 T lyl=e Yy

exists in the L” norm and the resulting operator is bounded in L?, as has shown in
Theorem 4.1.9.

For L? boundedness, we have the following lemma.
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Lemma 4.2.6.

Suppose that K satisfies the conditions (4.2.8) and (4.2.9) of the above defini-
tion with bound B. Let

K (m) _ K(:U), ‘ZL” = €,
) o, |z < e.

Then, we have the estimate
n/2
sup | K (&)| < <|2w]> CB, >0, (4.2.12)
13 ™

where C depends only on the dimension n.

\.

Proof. First, we prove the inequality (4.2.12) for the special case ¢ = 1. Since
f(\l(O) = 0, thus we can assume £ # 0 and have

P n/2 .
Ki(¢) = (’;‘) / T (v)da

|w| "2 —wix-§
== e Ki(x)dz
2m | <2/ (Jw]l€l)

|w| /2 —wiz-§
Y e Kl(x)dx
2m 2/ (lwll€D) <]

=11 + I.
By the condition (4.2.9), [, _ |, <2y (/i) K (€)dz = 0 which implies

/ Ki(x)dx = 0.
|lz[<2m/(|wll])

Thus, fio) <o uiiey € B (0)dE = Jiogcarqupig e ¢ ~ 11K (2)dx. Hence, from

the fact e — 1| < |6 (see Section 2.1) and the first condition in (4.2.8), we get

w —n/2 '
<‘2|> |11] g/ lwl|z||€]| K (x)|dr < |w|BJ¢] ||~ da
" jal<2m/wll€] ol <on/(ulléD

2m/(Jwll€h
:wn_lB|wH§|/ dr = 27wy, _1B.
0

To estimate I, choose z = z(¢) such that e “%* = —1. This choice can be
realized if 2 = 7€ /(w|¢|?), with |z| = 7/ (Jw]||¢]). Since, by changing variables x +2 =
y, we get

/ e YK (2)de = — / efm(ﬁz){Kl(ﬂU)dx = _/ e VK (y — 2)dy

n

=— / e YK (z — 2)d,

which implies [p, e 4Ky (2)de = § [, e ¥ ¢[K(2z) — Ki(z — z)|dz, then we

have
|w| —n/2 —wix-€
@i I, = - e Ki(z)dz
2T n lz| <27 /(|w]|€])

:é /R K (1) — K (0 - 2))de

- / e WK (1) da
|z|<2m/(Jwll&])
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1 .
=— lim e YK () — Ky (z — 2)]dx
2 =00 Jor/(lw|le)<[e|<R
1 .
— / e_w“”'SKl(x)dx
2 Jjal<2m/(wll€])

1 .
- = / e YK (2 — 2)d.
2 Jjal<2m/(wll€])

The last two integrals are equal to, in view of the integration by parts,

1 - 1 ,
B 2/ e K (2)d — 5 / i+ ¢ () dy
|z| <2/ (|w][€]) ly+2<2m/(|wll€])
1 ; 1 ,
=-3 / e_“’ng1($)dx + 3 / e WIS K (x)dx
|| <2/ (|wl[€]) |z+2|<2m/(|wll€])
1 ) 1 )
=— / e WIS (1) dx + / e VISR () da.
2 Szl <o/ (wlig) <la+] |z-+2|<27/(|wllE)) <=

For the first integral, we have 27 /(|w||¢]) > |z| > |z +
2l =2l > 2n/(wllg]) — 7/ (lg]) = m/(wll¢]), and for the
second one, 27/ (|w||¢]) < |z| < |z + 2| + |2] < 37/(|w][€])-
These two integrals are taken over a region contained in
the spherical shell, 7/(|w||{]) < |z| < 37/(|w||£]) (see the
figure), and is bounded by %Bwn,l In 3 since |K;(z)] <
B|z|™". By |z| = 7/(|w||¢]) and the condition (4.2.8), the
first integral of I, is majorized by

1

2/ |K1(z — 2) — Ki(x)|dzx
=27/ (Jwl|€])

1
:2/ Ky — 2) — Ki(2)]ds <
1212

B.

N =

Thus, we have obtained
n/2 n/2
@< (N (oron B+ 2B+ LB m3) <o (N B,
2T 2 2 or

where C depends only on n. We finish the proof for K.
To pass to the case of general K., we use a simple observation (dilation argu-
ment) whose significance carries over to the whole theory presented in this chapter.
Let 0 be the dilation by the factor ¢ > 0, i.e., (6°f)(x) = f(ex). Thusif T'is a
convolution operator

Tf(x)=¢x f(z)= /Rn p(z —y)f(y)dy,
then
55 (@) = [ e e ) en)dy

— [ el o= )z = e .

where ¢.(z) = e p(c¢~1x). In our case, if T corresponds to the kernel K (), then
857 Té¢ corresponds to the kernel e ™K (¢~'x). Notice that if K satisfies the as-
sumptions of our theorem, then ¢ "K (¢ ') also satisfies these assumptions with
the same bounds. (A similar remark holds for the assumptions of all the theorems
in this chapter.) Now, with our K given, let K’/ = ¢"K (cx). Then K’ satisfies the

n
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conditions of our lemma with the same bound B, and so if we denote

0, lz| <1,

—~ TL/2
then we know that |K7(§)| < <%) CB. The Pourier transform of e " K| (¢~ x)

—~ n/2
is K (¢£) which is again bounded by <%) / CB; however ¢ "K| (¢ 7'z) = K.(z),
therefore the lemma is completely proved. |

We can now prove Theorem 4.2.4.

Proof of Theorem 4.2.4. Since K satisfies the conditions (4.2.8) and (4.2.9), then
K. (x) satisfies the same conditions with bounds not greater than C'B. By Lemma
4.2.6 and Theorem 4.2.1, we have that the L? boundedness of the operators { K.}~
is uniform. Thus, (i) holds.

Next, we prove that {77 f }.~¢ is a Cauchy sequence in L? provided f; € CLRM).
In fact, we have

T: fi(z) = Ty fr(z) = K(y) fi(z —y)dy — K(y) fi(z — y)dy
ly|=>e lyl=>n

e [ K@lAG -y - @
min(e,n

<ly[<max(e,n)

because of the cancelation condition (4.2.9). For p € (1,00), we get, by the mean
value theorem with some 6 € [0, 1], Minkowski’s inequality and (4.2.8), that

1T fr = Ty fallp < KWV f1(z — 0y)llyldy

/min(&n)élyémaX(e,n) »

< / K@)V (- 09)lplyldy
min(e,n) < |y| <max(e,n)

<C K (y)|yldy
min(e,n) <|y|<max(e,n)

<CB / ly| 7" dy
min(e,n) < |y|<max(e,n)

max(e,n)
=CBuwn_1 / dr

min(e,n)

=CBwy_1|n — €

which tends to 0 as €,7 — 0. Thus, we obtain 7} f; converges in LP as € — 0 by the
completeness of L?.

Finally, an arbitrary f € L? can be written as f = f; + fo where f; is of the
type described above and || f2|, is small. We apply the basic inequality (4.2.11) for
fa to get ||T: fa||p < C|| f2]|p, then we see that lim._,o 7. f exists in LP norm; that the
limiting operator T also satisfies the inequality (4.2.11) is then obvious. Thus, we
complete the proof of the theorem. |
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§4.3 L?boundedness of homogeneous singular integrals

Definition 4.3.1. Y

Let Q € L'(S"!) with mean value zero. For 0 < ¢ < N < oo and f €
Ur<p<oo LP(R™), we define the truncated singular integral

R S T S
e<Jy|<N 9]

Note that for f € LP(R"), we have by Young's inequality
N Q(y/ly
T sl <l [ B

e<lyl<y - yI"

ity [ [ 12

N
11235y 10

which implies that (4.3.1) is finite a.e. and therefore well-defined.
We also note that the cancellation condition (4.2.9) is the same as the mean value

r”flda(y’)dr

zero condition
/ Q(z)do () = 0
Snfl

where K(x) = Q(ﬁ/‘f‘) and do(z) is the induced Euclidean measure on S"~!. In

fact, this equation implies that

/Rl<|x|<R2 K(w)de :/1:2 /sn—1 fo)da(x')rn_ldr
=i (Zi) / Q') dor (a).

Sn—l
Definition 4.3.2. w

We denote by T, the singular integral operator whose kernel is p.v. Q(lﬁ =)

ie, for f € S (R")

Tof(z) = p.v. Qﬁ/:n D, f(z) = lim 15N f(2).

The associated maximal singular integral is defined by
Tg(z**)f = sup sup |T§(2€’N)f|. (4.3.2)

0<N<oco 0<e<N

We note that if {2 is bounded, there is no need to use the upper truncations in
the definition of TS(;’N) given in (4.3.1). In this case, the maximal singular integrals
could be defined as

iﬁvzﬁyﬁﬁu (4.33)

where for f € UicpcooL’(R"), e > 0 and = € R”, Tg(f)f(x) is defined in term of
absolutely convergent integral

ngaf(x)_/ Q(y/ly!)f(x_y)dy'

T
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To examine the relationship between T\ and T for Q € L>(S"~1), notice

that
Qy/lyl)
/s<|y<N ly[" flo =)y

&N p)| =

Then for f € LP(R"), 1 < p < oo, we let N — oo on the Lh.s. in (4.3.4), and we note
that the limit exists in view of the absolutely convergence of the integral, which is
]Tg(f) f(z)|. Then we take the supremum over € > 0 to deduce that Tg(;) is pointwise
bounded by Tf(l**)' Since TS()E’N) = Tg(;) — T((ZN), it also follows that Ts()**) < 2Ts(2*)-
Thus, Tg(z*) and T, 5(2**) are pointwise comparable when  lies in L>(S""1). This is
the case with the Hilbert transform, that is, H**) is comparable to H (+).

Next, we would like to compute the Fourier transforms of p.v.Q(z/|z|)/|z|".
This provides information whether the operator Ty, is L? bounded. We have the

sup ‘ f(x ’ (4.3.4)
O<N<c>o

following result.

Theorem 4.3.3.

Let Q € L'(S"!) have mean value zero. Then the Fourier transform of

—n/2
(M> p.v.Q(z/|z|)/|x|" is a bounded homogeneous function of degree 0

gileTrenby
m(© = [ [/ o) - 5 sgn @) s 60| oot e = 1.
(4.3.5)

Moreover, m € L>(R") and then Ty, is L? bounded.

Proof. Since K (z) = Q(x/|z|)/|z|" is not integrable, we first consider its truncated
function. Let 0 < ¢ < n < 00, and

— ., €SS
Kenla) =~ Jal" !
0, otherwise.
Clearly, K., € LY(R"). If f € L%(R") then K., * J(£) = ('5;') 7).

We shall prove two facts about fe\n(f )-
(i) H@HLOO <|w|> " A, with A independent of € and 7;
(ii) lim =0 Ken(f) m(§) a.e., see (4.3.5).

For thls purpose it is convenient to introduce polar coordinates. Let z = ra’,
r=lz, 2’ =z/lx| € S"l,and £ = R¢', R =|¢], ¢’ = £/|¢| € S"~L. Then we have

—n/2
d 7 —wix- —wiz- Qz/|z
<‘27r|> KE”’(Q—/”@ 5Ke,n(rc)dac—/ o—wize2e/le]) )
<lzlsn

[

n : ! el
:/ Q') </ e wiltre L r_”r"_ldr> do(z")
Sn—1 €
n o erd
:/ Q(ZL‘/) </ e—szrm £ T> dO’({L‘/).
Sn—1 e T

/S Q)do(a') =0,

Since
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we can introduce the factor cos(|w|Rr) (which does not depend on z’) in the integral
defining fs\n(f ). We shall also need the auxiliary integral

77 N ! ! d
L&) = [l cos(lwlRn) T R >0
€

Thus, it follows

—n/2
(L) " mhe = [ raeawin,
Now, we first consider 1., (&, 2'). For its imaginary part, we have, by changing
variable wRr(z' - &) = t, that
" sin(wRr(2’ - &)

S, (&2)) = —/ dr
. r
(wl Rnla € i 4
= — sgn (w)sgn (2’ - &) S0P gt

jw|Relar €| ¢

is uniformly bounded and converges to

~sgn @)sgn (o' €) [ T dt = =T s () s (07 ),

0
ase — 0and n — oc.
For its real part, since cosr is an even function, we have
n d

RI. (&, 2') = / [cos(|w|Rr|z’ - &']) — cos(]w\Rr)]—r.
r

£
If o’ - ¢ = 41, then RI. ,(§,2') = 0. Now we assume 0 < ¢ < 1 < 7. For the case
x' - & # +1, we get the absolute value of its real part

1
/E ~2sin (’;‘Rr(\x' €] 1)) sin (“*’2|Rr(yx' €] - 1)) i

K d n d
+ ‘/ cos (Jw|Rr|z" - £'|) 77“ —/ cos (|w|Rr) ar
1 1

RIy (&, 2")] <

r

1

wl? T2
<2R(1 |x"- &%) [ rdr
15

‘W‘ng‘x/‘ cost I"‘"IRT/ cost
/ COst gy / cost
wiRlg | wir

jw]?
4
If n|¢’ - 2’| > 1, then we have

lwlR cost || R cost
/ Sty / cost
w|Rle 2| T jwiRnle 2|

Wik gt lwlBn ¢
Y
wiRlg /|t Jiw|Rylgar|

<2Mn(1/l¢ - 2']).
If 0 < n|¢ - 2'| <1, then

WIR/E | gy
L < / M < omaye o).
(wIRlg"a

_l’_

< R2—|-[1.

I =

Thus,

jw|?

LR? 4 2mn(1/)¢' - o)),

’%I&n(f,x/)‘ <
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and so the real part converges as ¢ — 0 and 7 — oo. By the fundamental theorem
of calculus, we can write

n —
/ cos()\r) cos ,ur / / sin(tr)dtdr — / / sin(tr)drdt
n -
/ / By cos(tr) d g — / cos(tn) t cos(te)dt

A cos s A cos(te sin s |An A gin s A cos(te
:/ ds—/ () gy — ‘ +/ ds—/ () 4
pn S I t s Sy 8 7 t

A
1
S0 / Jdt = —In(\/px) = In(s/A), as 5 = o0, £ = 0,
w

by the Lebesgue dominated convergence theorem with
cos(te)

A A 1
/ dt < / —dt =1In(\/p).
p t wot
Take A\ = |w|R|2’ - |, and pu = |w|R. So

lim R(L.,y(&, ') = /Ooo[wswmr(x'-s) cos ol Rr] T = n(1/Js" - €').

n—00
Next, we need to show (i) for all £ € R™. By the properties of I, just proved,
we have

<12<,jr\>—"/2|@(£)’< /S [4+’w‘232+21n(1/|§ wl)} Q@)do()  (43.6)

w 2
<+ BER ey +2 [ W/l DI dole)

For n = 1, we have S = {—1,1} and then [, , In(1/|¢ - 2/|)|Q(2')|do(2) =
2In1 = 0. For n > 2, if we can show

/s / In(1/J¢ - IR ldo (@) do (€) < oc,

then, (Iw‘) y@(g )| is finite a.e. We can pick an orthogonal matrix A such that

Ae; = 7/, and so by changes of variables and using the notation § = (y2, y3, ..., Yn),
Lo mg i) @)io(e)
[ g Ao (@)l do()
Snfl Snfl

=/ / In(1/]er - A7'€')do (€)[Q(a") do (")
Sn—1 Jgn—1
A-l¢

Sy [ w1/l ido(w)
Ifforp; € [0,7] (j=1,--- ,n—2)and ¢,—1 € [0,27], let
Y1 =cos ¢

Y2 =sin g1 cos P2

Y3 = sin ¢ sin ¢ cos ¢3

Yn—1 =sin @y - - - SN Pp—2 €COS Ppp—1

Yn =SIN Q1 -+ - SN Opy—2 SIN Py 1,
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then the volume element dgn-10(y) of the (n — 1)-sphere is given by

dgn-10(y) =sin""2(¢1) sin” 3 (o) - - - sin(dp_2) dp1 dopo - - - dpp 1
=sin""%(¢1) sin" " (¢2) - - - sin(¢n—2) dy1 dgp2 - - - A1
=1 —y}) " 2dy dga-20(y),

due to dy; = sin(¢1)d¢r and sin ¢ = /1 — y?. Thus, we get
| w1 /lmhdot)
Sn—l

1 -
- / In(1/]y ) / (1 - 2)"=9) 240 (5)dyy
-1 gn—2

1
- / 1/l )1 = ) 2y

1
s /0 In(1/ly1)(1 — g2) " 2dy,

w/2
:2wn_2/ In(1/ cos @)(sin )" ~2df (let y; = cos f)
0

:2(;.}”,2]2.

For n > 3, we have, by integration by parts,
/2 w/2
I < / In(1/ cos 0) sin Odf = / sin 0df = 1.
0 0

For n = 2, we have by changing variables

w/2 /2
P :/ In(1/cos0)do = —/ In(cos 0)d6
0 0
w/2 - w/2
= — 1 i - — - — 1 i
/0 nsin (2 0) df /0 n(sin 6)do

w/2
:/ In (2sin0c089> df
0 2 2

/2 0 0
_—/ <ln2+lnsin+lncos> do
0 2 2

T w/4 w/4
:—ln2—2/ lnsinxd:c—Z/ In cos xdx
2 0 0

T w/4 /2
:—1n2—2/ lnsinxd;r—2/ In sin xdx
2 0 w/4

:—gm2+mz

which yields I = §In2. Hence, [q._: In(1/|¢ - 2'[)|Q(2")|do(2) < C for any &' €
St

Thus, we have proved the uniform boundedness of K\n(g ), i.e., (i). In view of
the limit of 1. (&, 2") as e — 0, 7 — oo just proved, and the dominated convergence
theorem, we get

21 e—0

7—>00

’w| —n/2 . o
() lim K. ,(&§) =m(§), ae.

By the Plancherel theorem, if f € L*(R"), K., = f converges in L? norm as
e — 0 and n — oo, and the Fourier transform of this limit is m(&) f(&). From the
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formula of the multiplier m(§), it is homogeneous of degree 0 in view of the mean
zero property of ). Thus, we obtain the conclusion. |

Remark 4.3.4. 1) In the theorem, the condition that €2 is mean value zero on S™ !
is necessary and cannot be neglected. Since in the estimate

/n (|yy/|’|1y|) y)dy = [/|<1 /|>1 |y|n

the main difficulty lies in the first integral. For instance, if we assume Q(z) =1 €
LY (8™, f(x) = Xjuj<1(x) € L*(R™), then this integral is divergent for |z| < 1/2

since
Q 1 1
n ‘y| lz—y|<1 ’y‘ ly|<1/2 ‘y’

2) The proof holds under very general conditions on §2. Write Q = .+, where
2 is the even part of 2, Q.(z) = Q.(—z), and Q,(z) is the odd part, Q,(—z) =
—Q (). Then, because of the uniform boundedness of the sine integral, i.e., 31, (&,
we required only [g,_: [Q(2')|do(2) < oofor the odd part; and for the even part,
the proof requires the uniform boundedness of

[ 19 m/ o o),

(z —y)dy,

This observation is suggestive of certain generalizations of Theorem 4.2.4, see [Ste70,

§6.5, p.49-50]. In addition, In(1/|¢’ - 2'|) is not bounded but any power (> 1) of it is
integrable, we immediately get the following corollary.

Corollary 4.3.5.

Given a function 2 with mean value zero on S"°!, suppose that Q, €
L'(S" 1) and Q. € LI(S" ') for some q > 1. Then, the Fourier transform of
p.v.Q(2')/|z|™ is bounded.

IfQ e LY(S" 1) isodd, ie., Q(—x) = —Q(z) forall z € S, then
[, 9/ - aldo(a) =0
Sn—1

forall ¢ € S"~L. Thus, m € L°°(R") by Theorem 4.3.3. We have the following result
by Theorem 2.5.6.

Corollary 4.3.6.

Given an odd function Q € L!(S"1), then the singular integral To f(z) =
Q
p-v. / Mf(m — y)dy is always L? bounded.
Rn

ly|™

§4.4 Riesz transforms and spherical harmonics

§4.4.1 Riesz transforms

We look for the operators in R" which have the analogous structural charac-
terization as the Hilbert transform. We begin by making a few remarks about the
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interaction of rotations with the n-dimensional Fourier transform. We shall need
the following elementary observation.

Let p denote any rotation about the origin in R™. Denote also by p its induced
action on functions, p(f)(z) = f(pz). Then

ot = ()" [ et ppeyae = () [ cirvegipay

2

that is,
Fp=pF.
Let ¢(x) = (¢1(x),l2(x), ..., £n(z)) be an n-tuple of functions defined on R™. For

any rotation p about the origin, write p = (p;) for its matrix realization. Suppose
that / transforms like a vector. Symbolically this can be written as

U(px) = p(L(z)),

or more explicitly

li(px) = Z pilr(x), for every rotation p. (4.4.1)
k

Lemma 4.4.1. )

Suppose ¢ is homogeneous of degree 0, i.e., {(cx) = {¢(x), for e > 0. If ¢

transforms according to (4.4.1) then ¢/(z) = Clacil for some constant c¢; that is

li(x)=rc

e

L

(4.4.2)

\.

Proof. It suffices to consider z € S"~! due to the homogeneousness of degree 0 for
¢. Now, let ey, ey, ..., e, denote the usual unit vectors along the axes. Set ¢ = ¢1(eq).
We can see that ¢;(e;) = 0, if j # 1.

In fact, we take a rotation arbitrarily such that e; fixed under the acting of p, i.e.,

1

pe1 = eq. Thus, we also have e; = p~pe; = p~le; = pler. Frompe; = pley = ey,

1
weget p;g = land pip, = pj1 =0fork # land j # 1. So p = 0 Sl . Because
-1
Lo (1 P ) andpt = pT, we obtain AL = AT and det A = 1, e, A
0 A - 0 A_l p - p 7 - — 4y Ly
is a rotation in R"~!. On the other hand, by (4.4.1), we get £;(e1) = > j_y pjxli(e1)
for j = 2,...,n. That is, the n — 1 dimensional vector (¢2(e1),?3(e1),-- ,€n(e1)) is

left fixed by all the rotations on this n — 1 dimensional vector space. Thus, we have
to take 62(61) = 63(61) == Kn(el) = 0.

Inserting again in (4.4.1) gives ¢;(pe1) = pjili(e1) = cpj1. If we take a rotation
such that pe; = xz, then we have pj1 = zj, so {;(x) = cx;, (Jx| = 1), which proves
the lemma. [ |

We now define the n Riesz transforms. For f € LP(R"), 1 < p < oo, we set

R;f(z) = lim cn/||> myTjﬂf(x —y)dy, j=1,..,n, (4.4.3)
y|z€

e—0
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with ¢, = % where 1/¢, = % is half the surface area of the unit
sphere S™ of R"*!. Thus, R, is defined by the kernel K;(z) = f‘l;—ff), and Q;(x) =
Cnik

QEN

Next, we derive the multipliers which correspond to the Riesz transforms, and
which in fact justify their definition. Denote

Q(x) = (Ql(w),QQ(JI), 79“(‘7:))7 and m(é) = (m1(§),m2(§), 7mn(§))
Let us recall the formula (4.3.5), i.e

m©) = [ (e 00@in). l6-1. @44
with ®(t) = —%i sgn (w) sgn (t) +1n |1/t|. For any rotation p, since {2 commutes with
any rotations, i.e., Q(px) = p(2(x)), we have, by changes of variables,

pm(©) = [ @(¢- 2)p(Oe))do(x) = /S @& 2)0pr)do(a)
= [ e Rt = [ 2 00wty
=m(pg).
Thus, m commutes with rotations and so m satisfies (4.4.1). However the m; are
each homogeneous of degree 0, so Lemma 4.4.1 shows that m;(§) = | §| with

c=my(e1) = /Sn_l O(e - 2)Q(z)do(x)

:/ [—%Z sgn (w) sgn (z1) + In |1/x1||epz1do(x)
Sn—1

= — sgn (w)%cn / |z1|do(x) (the 2nd is 0 since it is odd w.r.t. x1)

Sn—1

o miT((n+1)/2) 2x(n-1/2

=T e Tt e W
Here we have used the fact g, [z1]|do(z) = 2r("~1/2/T'((n+1)/2). Therefore, we
obtain

R (€)= —sgn (w)i fg‘ €, j=1,..,n. (4.4.5)

This identity and Plancherel’s theorem also imply the following “unitary” character
of the Riesz transforms

SOIRFI3 = 11£15.
j=1

By m(p§) = p(m(§)) prgved above, we havg\mj(pg) = > . pikmi(§) for any
rotation p and then m;(p€)f(&) = > i pjemi(§) f(§). Taking the inverse Fourier
transform, it follows

T m;(p)F E}mmk?

:ijk«/ (my (€ = Zijka-
k k
But by changes of variables, we have

FH (mi () 1())
w n/2 N
~(51) [ e emeiee
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= (B)™ [ oy

=7 (m(©F(p ) (pz) = pZ ~ (m;(©) F(p "))
=pR;p'f,
since the Fourier transform commutes with rotations. Therefore, it reaches

pRip~f =) _pirRif, (44.6)
k

which is the statement that under rotations in R", the Riesz operators transform in
the same manner as the components of a vector.
We have the following characterization of Riesz transforms.

Proposition 4.4.2. |

Let T = (T1,T5,...,T,,) be an n-tuple of bounded linear transforms on
L?(R™). Suppose

(a) Each T; commutes with translations of R";

(b) Each T; commutes with dilations of R";

(c) For every rotation p = (pjx) of R™, pTjp~ 1 f = >, pixTif-

Then the T} is a constant multiple of the Riesz transforms, i.e., there exists a
constant csuch that7; = cR;, j = 1,...,n

\.

Proof. All the elements of the proof have already been discussed. We bring them
together.
(i) Since the T} is bounded linear on L?*(R") and commutes with translatlons, by
Theorem 2.5.6 they can be each realized by bounded multipliers m;, i.e., T} f m; 7.
(i) Since the 7; commutes with dilations, i.e., T;6° f = 0°T} f, in view of Propo-
sition 2.1.2, we see that

T0°F = mj ()5 ] = m;(€)e ™67 J(§) = my(€)e"F(¢/2)
and

FI;f =6 ;] =6 (m;f) = e "my(¢/2)f (€/2),
which imply m;(§) = m;(§/e) or equivalently m;(e£) = m;(§), e > 0; that is, each
m; is homogeneous of degree 0.

(iii) Finally, assumption (c) has a consequence by taking the Fourier transform,

i.e., the relation (4.4.1), and so by Lemma 4.4.1, we can obtain the desired conclu-
sion. |

For the L” boundedness, we have the following.

Theorem 4.4.3.

The Riesz transforms R;, j = 1,-- - ,n, are of weak-type (1, 1) and of strong-
type (p,p) for 1 < p < occ.

Proof. It suffices to show that K;(z) = ¢, p.v. E I” it satisfy the hypotheses of The-
orem 4.2.1 for j = 1,--- ,n, respectively. Clearly K; coincides with a locally inte-
grable function on R™ \ {0}. Moreover, by (4.4.5),

—n/2/\
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which is clearly bounded.
Finally, we have on R" \ {0}

2l
C
G

that is, (4.2.5) is satisfied. Thus, by Theorem 4.2.1 we obtain the desired results. W

One of the important applications of the Riesz transforms is that they can be
used to mediate between various combinations of partial derivatives of a function.

Example 4.4.4. (Schauder estimate) Suppose f € C2(R"). Let Af = Y7 &f

J=1 ox?
Then we have the a priori bound ’
0% f
ApllA 1 . 447
a:(}ja.%'k pH f“p: <p<X© ( )
Proof. Since 8/%7(5) = mgj?(g), we have
/2'\ ~
e (€) = — W66 f ()
i&j 4 3
— (csm@E) (@) Repife
=~ RiRiAT(6).
Thus, oz, gx = —RjR;Af. By the L” boundedness of the Riesz transforms, we
have the desired result. |

Example 4.4.5. Suppose f € CL(R?). Then we have the a priori bound
‘ of of of . of

— — — 4=, 1<p<oo.
6.%'1 8%2 + p >
Proof. The proof is similar to the previous one. Indeed, we have

<4,
6.%'1 8:B2 p
] &+

p

.

p

By, () =wi; f(€) = |§\ Sl e) = I 7
Z«SJ (&1 —i&2) (&1 +i&2) ~
r g 7
__ —sgn(w)ig; —sgn (w)i(& — i&)ﬁﬂa\f(g)
€] €] ”“ 2

= — Rj(R1 — iR) (0, [ + 10, f(§)-
Thatis, 0y, f = —R;j(R1 — iR2)(0, f + 10, f). Also by the LP boundedness of the
Riesz transforms, we can obtain the result. [ |
We shall now tie together the Riesz transforms and the theory of harmonic func-
tions, more particularly Poisson integrals. Since we are interested here mainly in

the formal aspects we shall restrict ourselves to the L? case. For LP case, one can
see the further results in [Ste70, §4.3 and §4.4, p.78].

Example 4.4.6. Let f and fi, ..., f, all belong to L?(R"), and let their respective
Poisson integrals be ug(x,y) = P, * f, ui(x,y) = Py* fi, ..., un(z,y) = Py * f,. Then
a necessary and sufficient condition of

fi=Ri(f), i=1..n, (4.4.8)
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is that the following generalized Cauchy-Riemann equations hold:
Z auj .
« Oz =0
o u] _ O
ox k ox 7 ’

(4.4.9)
j#k, withzy=y.

Remark 4.4.7. At least locally, the system (4.4.9) is equivalent with the existence of
a harmonic function g of the n + 1 variables, such that u; = %gj, j=0,1,2,...n

Proof. Suppose f; = R; f, then 3";({) = —sgn (w )%?(f) and so by (4.1.2)

n/2 .
w TSI witr —|w .
wien) = —sm() (M) [ o et j=1n

and

2T

The equation (4.4.9) can then be immediately verified by differentiation under
the integral sign, which is justified by the rapid convergence of the integrals in
question.

Conversely, let uj(z,y) = <|w|> fRn Jewi€Te—lwElyde = 0,1,...,n with

fo = f. Then the fact that % = g—:’é = 8% ,j = 1,...,n, and Fourier inversion
J

theorem, show that

|w| /2 7 wié-x —|w
wo(a, ) = <) Fe)eicr e ltlvag,
R’VL

wi€jfo(€)e T = —|we[Fj()e W,
therefore fAj(f) = —sgn (w)%%({), andso fj = Rjfo=R;jfforj=1,..,n. [ |

§4.4.2 Spherical harmonics and higher Riesz transforms

Consider now an open set 2 C R"™ and suppose u is a harmonic function (i.e.,
Au = 0) within Q. We next derive the important mean-value formulas, which
declare that u(z) equals both the average of u over the sphere 9B(x,r) and the
average of u over the entire ball B(z, ), provided B(z,r) C €.

Theorem 4.4.8: Mean-value formula for harmonic functions

If u € @?(12) is harmonic, then for each ball B(z,r) C €,

1 1
(0B (z.1) /aB(m) o) = B ) /B(m uly)dy.

u(x) =

Proof. Denote

1 1
F0) = LGB o, MO0 = G [ wter)io ),
Obviously,
o1 1 ou
f(r)_wn,1 /sn 128 u(z +rz)zido(z) = o 1/sn 1ay(x+rz)d0( z),
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where % denotes the differentiation w.r.t. the outward normal. Thus, by changes

of variable
ou

! _ 1 .
0= G L G @)

By Stokes theorem, we get

/ 1 /
r)=—— Au(y)dy = 0.
f(r) T (y)dy
Thus, f(r) = const. Since lim,_o f(r) = u(x), hence, f(r) = u(x).
Next, observe that our employing polar coordinates gives, by the first identity

proved just now, that

/B (x,r)u(y)dy = /O ' < /8 s u(y)da(y)> ds = /0 ' w(8B(z, s))u(z)ds

:u(x)/ nVps" tds = Vor™u(z).
0

This completes the proof. [

Theorem 4.4.9: Converse to mean-value property \

If u € () satisfies

B

u(zr) = u(y)do(y
( ) M(&B(.r,?“)) dB(z,r) ( ) ( )
for each ball B(z,r) C €, then u is harmonic.

\.

Proof. If Au # 0, then there exists some ball B(z,r) C 2 such that, say, Au > 0
within B(x,r). But then for f as above,

0= F1) = .

o,y

/ Au(y)dy > 0,
B(z,r)

is a contradiction. [ ]

We return to the consideration of special transforms of the form

Tf(x) = lim Q(a) Fz — y)dy, (4.4.10)
e=0 iy |Vl

where Q is homogeneous of degree 0 with mean value zero on 5"~ 1.

We have already considered the example, i.e., the case of Riesz transforms,
Qi(y) = c%, j =1,.,n Forn =1, Q(y) = csgny, this is the only possible
case, i.e., the Hilbert transform. To study the matter further for n > 1, we recall the
expression

m© = [ A 000)dot). 6 =1

where m is the multiplier arising from the transform (4.4.10).

We have already remarked that the mapping 2 — m commutes with rotations.
We shall therefore consider the functions on the sphere S"~! (more particularly the
space L?(S"1)) from the point of view of its decomposition under the action of
rotations. As is well known, this decomposition is in terms of the spherical har-
monics, and it is with a brief review of their properties that we begin.

We fix our attention, as always, on R", and we shall consider polynomials in R™
which are also harmonic.
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Definition 4.4.10. )

Let o = (a1, ..., an) be a multi-index, o] = >0, aj and 2% = af" -z
Let &, denote the linear space of all homogeneous polynomials of degree £,

B Py, = {P(x) = Zaaa:a el = k}

Each such polynomial corresponds its dual object, the differential operator P (0, )

> aq0y, where 97 = 0gl---03". On 2, we define a positive inner product
(P,Q) = P(9,)Q. Note that two distinct monomials 2® and z* in & are orthog-

onal w.rt. it, since there exists at least one ¢ such that o; > o}, then 8?;;8?" = 0.
(P, P) =3 |aa|*a! where a! = (a1!) - - - (a!).

Definition 4.4.11.

We define .7, to be the linear space of homogeneous polynomials of degree
k which are harmonic: the solid spherical harmonics of degree k. That is,

G, = {P(z) € P : AP(x) =0}.

It will be convenient to restrict these polynomials to S"~!, and then to define
the standard inner product,

(PQ)= [ P@)R@s(s)
For a function f on S"~!, we define the spherical Laplacean Ag by
Asf(x) = Af(z/|z]),
where f(z/|z|) is the degree zero homogeneous extension of the function f to R™ \
{0}, and A is the Laplacian of the Euclidean space.

Proposition 4.4.12. .

We have the following properties.

(1) The finite dimensional spaces {74, },-, are mutually orthogonal.

(2) Every homogeneous polynomial P € &, can be written in the form P =
Py + |2]?Py, where P; € 74, and Py € &_».

(3) Let Hj denote the linear space of restrictions of JZ; to the unit sphere.”
The elements of H}, are the surface spherical harmonics of degree &, i.e.,

Hy,={P(z) € 4 : |x| =1}.
Then L?(S"1) = >°7° | Hy. Here the L? space is taken w.r.t. usual measure,

and the infinite direct sum is taken in the sense of Hilbert space theory. That
is, if f € L2(S™1), then f has the development

(.CL') = iYk(x), Y. € Hy, (4.4.11)

where the convergence is in the L?(S"~!) norm, and

/sm| )fPdo( Z/ |Yi()[*do ().

(4) If Yy, € Hy, then AgYy(z) = —k(k +n — 2)Yi(x).
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(5) Suppose f has the development (4.4.11). Then f (after correction on a
set of measure zero, if necessary) is indefinitely differentiable on S™1 (ie.,
f € €>®(S"~1))if and only if

/ Vi (2)|?do(z) = O(k™N), ask — oo, for each fixed N.  (4.4.12)
Sn—l

“Sometimes, in order to emphasize the distribution between .7 and Hj, the members of
Hj, are referred to as the surface spherical harmonics.

Proof. (1) If P € P, ie., P(z) =) aqx® with |a| = k, then
10y, P = ij Z aqo;xyt - -w?j_l cexon = Zaj Zaaa:a =kP.
j=1 Jj=1

On S, it follows kP = %—I; where % denotes differentiation w.r.t. the outward
normal vector. Thus, for P € 77}, and QQ € JZ;, then by Green’s formula

(k — j) PQdo(z) = / <Q‘9P - PaQ) do(z)

Sn—1 Sn—1 87/ 8V

_ / [QAP — PAQ]dz = 0,
jel<1

J=1

where A is the Laplacean on R".

(2) Let |z|? P2 be the subspace of &, of all polynomials of the form |z|*>P;
where P, € &_5. Then its orthogonal complement w.r.t. (-, ) is exactly .74, In fact,
Py is in this orthogonal complement if and only if (|z|>P, P;) = 0 for all P». But
<‘.’L‘|2P2, P1> = (Pg(ax)A)?l = <P2, AP1>, SO APl = 0 and thus t@k‘ = %@‘.ﬂ%@kfm
which proves the conclusion. In addition, we have for P € &

|z|* Py (), k even,
je[t~1Py(x), & odd,
where P; € JZ; by noticing that &2; = J¢; for j = 0, 1.

(3) By the further result in (2), if |z| = 1, then we have

P(x) = Py(2) + 2> Py_o(z) + - + {

Py(z), Fkeven,
Pl(.f), k OClCl7

with P; € JZ;. Thatis, the restriction of any polynomial on the unit sphere is a finite

P($):Pk(95)+Pk—2($)+"‘-‘1‘{

linear combination of spherical harmonics. Since the restriction of polynomials is
dense in L?(S™ 1) (see [SW71, Corollary 2.3, p.141]) by the Weierstrass approxima-
tion theorem, the conclusion (4.4.11) is established.
(4) For |z| = 1, we have
AsYi(w) =A(l2|™Vi(@)) = 2| TFAY; + Ao )Y + 2V (2] ™) - VY
=(k* + (2 — n)k)|z| * 72y} — 2k 2| F 2y,
= —k(k+n—2)z[fF 2V, = —k(k +n — 2)Y;,
since Z;”:l 10z, Yy = kYy for Yy, € P
(5) Write (4.4.11) as f(z) = > po ax Y (z), where the Y)? is normalized such that
Jgn—1 [Y2(z)|?do(z) = 1. Our assertion is then equivalent with a, = O(k=V/?)
k — oo. If f is of class €%, then an application of Green’s formula shows that

AsfYddo = /S B fAsY)do.

, as

Sn—1
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Thus, if f € €, then by (4)

AL fYDdo = / ALY do = [—k(k +n —2)]" / a;YY0do
Snfl 0

n—1 n—1 %
s Ci

—[—k(k +n—2)"ax /

Sn—

Y2 |2do = ap[—k(k +n —2)]".
1

So ar, = O(k~2") for every r and therefore (4.4.12) holds.
To prove the converse, from (4.4.12), we have for any r € N

IASFI5 =(A%f, Ak f) = (ZAEYB(@’ZAE‘YI@(@)
j=0 k=0

M8

(Zuu +n=2)"Y;(@), 3 [—k(k+n - 2>rYk<x>)

<
|
o
o
Il

0

[~k(k +n = 2)]7 (Yi(2), Yi(z))

M

©)e 5P vp, e AR,

Proof. That is to prove

|w] "2 —wiz-£— 19|22 : k —leligp2
() /n Py(x)e 2 dy = (—isgn (w)) " Pr(&e 2 5. (4.4.13)

Applying the differential operator P (0 ) to both sides of the identity (cf. Theo-

rem 2.1.9)
2
2m n ’

n/2 . w 2 w 2
(M) (—wi)¥ [ Pya)e =5 1P gy — Qe)e 3 17,
27 R~

we obtain

Since Py (x) is polynomial, it has an obvious analytic continuation Pj(z) to all of
C™. Thus, by changes of variables, we get

n/2 3 w 2, |w 2
Qe =it (B1)7 [ ppereins Hiate s g
s R™

n/2
et (50) [ P om0y,

2

]

itk (e "2 g ly[?
=(—wi) 5 Pi(y —isgn(w))e” 2 dy.
T R™
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So,

vl

n/2 ol 13
Qlisn )9 =i (E) " [ Ry g Fay

n/2 00 ol 2
=(—wi)* <|2a7;T]> /0 N /n1 Pu(&+ 1y )do(y)dr.

Since Py, is harmonic, it satisfies the mean value property, i.e., Theorem 4.4.8, thus

P+ 11/)do(y)) = wnaP©) = PU(E) [ o).

Sn— 1
Hence

Q(isgn (w)§) = ( Pi(¢ ey /S do(y')dr

n—1

rw|>
(!wl) P, 5 e3P do = (—wi)kPy(e).

Thus, Q(§) = (— wz)kPk( isgn(w)€) = (—w )( zsgn( ))* Py (€), which proves the
theorem. [

The theorem implies the following generalization, whose interest is that it links
the various components of the decomposition of L?(R"), for different n.
If f is a radial function, we write f = f(r), where r = |z|.

Corollary 4.4.14.

Let Py(z) € #.(R"). Suppose that f is radial and Py(z)f(r) € L*(R™). Then
the Fourier transform of Pj(z)f(r) is also of the form Py(x)g(r), with g a
radial function. Moreover, the induced transform f — g, T}, 1. f = g, depends

essentially only on n 4 2k. More precisely, we have Bochner’s relation
Tk = (—isgn (@) Trano. (4.4.14)

Proof. Consider the Hilbert space of radial functions

% = {f(r) AP = /0 Fr)renlay < oo},

with the indicated norm. Fix now Py (x), and assume that P} is normalized, i.e.,

/ |Py(2)2do(x) = 1.
Sn—1
Our goal is to show that

(T f)(r) = (=isgn (@))" (Tosar0f)(r), (44.15)
for each f € .
We consider e~ " for a fixed ¢ > 0. By the homogeneity of P, and the in-
terplay of dilations with the Fourier transform (cf. Proposition 2.1.2), i.e., #4° =
e "6° .7, and Hecke’s 1dent1ty, we get

F (Py(z)e” Klejef? ) = e k/2 f(Pk(sl/Qx)e“%“f'f”'z)
—e k202572 (P ()e 5P
=e~H/2 2 —isgn ()5 (Bu(g)e™ BT
—=(—isgn (w))ke*/ 22 (e71/%¢)e ~l5hig/e
—(—isgn (w))Fe /2P (e)e 5 P /e.
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wl

. ol . ol
This shows that T;, ye™ 2 er? (—isgn (w))kg*k*”/Qe_ 2 ”2/5, and so

[

|w [w]
Tnyok0e 2 0g=0-(n+2k)/2= 5 r%/e

=(—isgn(w))’e
:E—k—n/Ze—%TQ/a‘

|w] lwl

Thus, Tp, g™ 2 " = (—isgn (w))* Ty ok 0e™ 2 " fore > 0.

wl

To finish the proof, it suffices to see that the linear combination of {e~ 2 er? Yo<e<oo
is dense in #. Suppose the contrary, then there exists a (almost everywhere) non-

‘87"

. |w . .
zero g € %, such that g is orthogonal to every e™ 2 ® in the sense of %, i.e.,

00
/ 6_%5T2g(r>r2k+n—1dr =0, (4416)
0

2

foralle > 0. Lety(s) = [j e g(r)r"**~1dr for s > 0. Then, putting e = 2(m +

1)/|w|, where m is a positive integer, and by integration by parts, we have

o0 2 o 2
0= / e " (r)dr = 2m/ e (r)rdr,
0 0

since 1(0) = 0and 0 < e ™ (r) < Ce ™ pkt(n=1)/2 5 0 asr — oo by the
Holder inequality. By the change of variable z = e™"

1
O:/ " hp(/Inl/2)dz, m=1,2,....
0

Since the polynomials are uniformly dense in the space of continuous functions on
the closed interval [0, 1], this can only be the case when ¢(y/In1/z) = 0 for all z in
[0,1]. Thus, ¢/(r) = e~ g(r)r"T2k=1 = 0 for almost every r € (0, ), contradicting
the hypothesis that g(r) is not equal to 0 almost everywhere.

°, this equality is equivalent to

Since the operators T}, ;, and (—isgn (w))¥T}, 2k 0 are bounded and agree on the
dense subspace, they must be equal. Thus, we have shown the desired result. W

We come now to what has been our main goal in our discussion of spherical
harmonics.

Theorem 4.4.15.

Let Py(x) € 4, k > 1. Then the multiplier corresponding to the transform
(4.4.10) with the kernel ‘I;Tk(le is

Py (&)
Yk ‘§|k )

w n/2
with v, = (H) (—isgn (w))kr L(k/2)

2 (k/2+n/2)

Remark 4.4.16. 1) If k£ > 1, then Py (z) is orthogonal to the constants on the sphere,
and so its mean value over any sphere centered at the origin is zero.
2) The statement of the theorem can be interpreted as

4 ~\on : 4417
7 (Iﬂd’“”) <27r TR (44.17)
3) As such it will be derived from the following closely related fact,
Py(z) lw| ™2 Py(€)
F T = -
d < ‘$’k+"_a> < o Tk, £ [F+a (4.4.18)

Wl T . k/24a
where Y o = (%) © (—isgn (W))k%'
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Lemma 4.4.17.

The identity (4.4.18) holds in the sense that

/R M@(:p)dw = Yk /Rn ‘];T;fiw(g)dg, Vo e . (4.4.19)

n ‘(L.|k+n—oz

It is valid for all non-negative integer k£ and for 0 < o < n.

\.

Proof. From the proof of Corollary 4.4.14, we have already known that
F (Py(z)e™ 3 17) = (—isgn (w))ke™ /2Py (g)e 5 P /e,

so we have by the multiplication formula,
ERCIPEIN el g2
| @ S e = [ F(Pw)e BT el

—(—isgn (w))*ke F 2 / P TP (e de,

fore > 0.
We now integrate both sides of the above w.r.t. ¢, after having multiplied the
equation by ¢~ (to be determined). That is

/ 5’8_1/ Pk(:c)e_%s‘xpa(a:)dxde
0 n

=(isgn ()" [Pt [ pgge B e

0 n
By changing the order of the double integral and a change of variable, we get
Lh.s. of (4.4.20) :/

(4.4.20)

Pk(x)@(x)/ 8- 1e= 5l ey
n 0

—lwlelzl2 B poo
t:|£|::/2/ Pr(x)p(x) (k;’|x]2) / P Le~tdtdx
n 0

(N7
-(%)
Thus, we can take § = (k +n — a)/2. Similarly,
rhis. of (4.4.20) = (—isen (w))* /R Pele)el)

/ e y2ras2n) o= e e g g
0

—

() / Po(2)0(a) || P .

n

t="51 1P/ wl

Cisn@)* [ Perote) (e

/00 tk/2+a/2—le—tdtd£
0

) —(k+a)/2

) —(k+a)/2

@i

= (—isgn (w))k ( L(k/2+ a/2)

2

JRGEG St
Thus, we get

W\ —(Hn—a)/2
(%) D40 —a)/2) [ B@pwlel s

Jwl

2

—(k+a)/2
> T(k/2 + a/2)

(s (@)
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TGOl

which leads to (4.4.19).
Observe that when 0 < o < n and ¢ € .7, double integrals in the above con-
verge absolutely. Thus, the formal argument just given establishes the lemma. W

Remark 4.4.18. For the complex number a with Ra € (0, n), the lemma and (4.4.18)
are also valid, see [SW71, Theorem 4.1, p.160-163].

Proof of Theorem 4.4.15. By the assumption that £ > 1, we have that the integral
of P, over any sphere centered at the origin is zero. Thus for ¢ € ., we get

| el = /. P - B0

+ /| M@(x)dw

x|>1 ’x‘k—&-n—a

Obviously, the second term tends to f|x‘>1 |I:Tk(ﬂ P(z)dx as a — 0 by the dominated

convergence theorem. It is clear that ‘I:Tk(ﬁ [@(x) — $(0)] is locally integrable, thus

we have, by the dominated convergence theorem, the limit of the first term in the
r.h.s. of the above
P
lim 7: (z)
a0+ Jiz1<1 o[

o) - 20z = [ D) - p0)as

P P
- / HE) o o) = lim ) o o)
lzl<1 7] e=0 Joglai<1 7]

Thus, we obtain

P
() P(z)dzr = lim s
e—0 2| >e ’I‘| n

: Py(@)

Similarly,

. Pi(§) . / Py(€)
lim dé = lim d€.
a—0+ /R” ‘§|]€+0490(§) € e—0 €= |§’k Sa(g) §
Thus, by Lemma 4.4.14, we complete the proof with v, = limy—0 Y a- |

For fixed k > 1, the linear space of operators in (4.4.10), where Q(y) = P|’; ‘(,?j)

Py, € A4, form a natural generalization of the Riesz transforms; the latter arise in
the special case k = 1. Those for k£ > 1, we call the higher Riesz transforms, with k
as the degree of the higher Riesz transforms, they can also be characterized by their
invariant properties (see [Ste70, §4.8, p.79]).

and

Theorem 4.4.19.

The higher Riesz transforms are of weak-type (1, 1) and of strong-type (p, p)
for1 < p < oo.

Proof. It suffices to show that K(z) = p.v. ﬁn(ﬂ with P, € 7, satisfy the hy-
potheses of Theorem 4.2.1. Clearly K coincides with a locally integrable function
on R™ \ {0}. Moreover, by Theorem 4.4.15 we get

Y w n/2
K(§) = <||> VkP’I;Tf),

27
which is clearly bounded.
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Finally, we have on R" \ {0}

a1 an Py ()|
‘VK ‘\’ ‘n—f—k Z Z ‘aaa]fﬂl "'.T] . Oc “f’(n‘i‘k)wﬁ

la|=k 1<i<n
aj>1

C
el

that is, (4.2.5) is satisfied. Thus, by Theorem 4.2.1 we obtain the desired results. W

§4.4.3 Equivalence between two classes of transforms

We now consider two classes of transforms, defined on L?(R"). The first class
consists of all transforms of the form

Q
Tf=c-f+lim W)
e—0 ly|=e |y‘n

where c is a constant, Q € €>*(S" 1) is a homogeneous function of degree 0, and
the integral [,,_, Q(x)do(xz) = 0. The second class is given by those transform 7T
for which

f(z —y)dy, (4.4.22)

TF(€) = m(€)f(€) (4.4.23)

where the multiplier m € €>(S"~!) is homogeneous of degree 0.

Theorem 4.4.20.

The two classes of transforms, defined by (4.4.22) and (4.4.23) respectively,
are identical.

Proof. First, support that 7" is of the form (4.4.22). Then by Theorem 4.3.3, T' is of
the form (4.4.23) with m homogeneous of degree 0 and

m(§) =c+ /Snl [ln(1/|§ x|) — 7r?Z.sgn (w)sgn (& - IL‘):| Qx)do(x), |£] =1. (4.4.24)

Now, we need to show m € €(S"~1). Write the spherical harmonic develop-
ments

[e%e) N
z) = Yi(z), m Zyk L Qn(e) =) Yi(z), my(z) = Yi(x),
k=1 k=1
(4.4.25)

where Yk,?k € Hj in view of part (3) in Proposition 4.4.12. k starts from 1 in
the development of €, since [g,_, Q(z)dz = 0 implies that Q(z) is orthogonal to
constants, and Hj contains only constants.

Then, by Theorem 4.4.15 and the Plancherel theorem, we get that if 2 = Qp,
then m(x) = my(x), with

N |w| n/2

Yk(:c) = 7 fkak(x), k = 1.
But () = Jonr |5 sen (@)sgn (- @) + In phe | [0 () - ()]dor(y),
Moreover, by Holder s inequality, we have

sup |ma(z) — mn(2)]
zesn—1
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. 2 1/2
T
< (sup | |5 s @sen o)+ /1y ol da<y>>
1/2
< ([ 10wt - ) Pao)) o (4:426)
as M, N — oo, since forn =1, S = {-1,1},
i 2 72
|5 s @sen -+ n(1/ly - al)| dot) =T
S0

and for n > 2, we can pick a orthogonal matrix A satisfying Ae; = zand det A =1
for |z| = 1, and then by a change of variable,

sup /
xT S'n—l

—sup [ [T Gyl 1)) o)

x

. 2
T sgn (@) sen (y - ) + In(1/ly - )| dor(y)

2

T
:an_l + sup/ (In|y - Ael\)zdo(y)
x Sn—1
_71'2 1 A—l 2d
—anfl + Sgp Snil( n | y - e1])*do(y)
2=A"1y 7T2 2
AT +/ (In |21])2do(2) < oo.
4 Sn—l

Here, we have used the boundedness of the integral in the rhs., ie., (with the
notation z = (22, ..., 2, ), as in the proof of Theorem 4.3.3,

1
/Snl(1n|z1|)2da(z) :/_l(ln]21|)2/ (1—22) =340 (2)dz

Sn—2

1
s / (In [z ])2(1 — 22)"=3/2g,

-1
A= s / (In| cos 8))2(sin )" 2df = w,,_»1;.
0
If n > 3, then, by integration by parts,
I < / (In | cos 0])? sin §dH = —2/ In | cos 8| sin 0df = 2/ sin 0df = 4.
0 0 0

If n = 2, then, by the formula! fow/z(ln(cos 0))%d6 = F[(In2)? + 72/12], cf. [GRO?,
4.225.8, p.531], we get

™ w/
L = /0 (In | cos 6])2df = 2/0 2(ln(cos 6))2df = n[(In2)? + 7%/12].

Thus, (4.4.26) shows that
n/2 oo

m(z) = c+ <\2u;r|> ;%Yk(ﬂf)‘

Since 2 € C*°, we have, in view of part (5) of Proposition 4.4.12, that

[%—1 ’Yk(CL‘)‘QdU(:c) - O(k:*N)

!One can see https://math.stackexchange.com/questions/58654 or http://www.
doc88.com/p—9798925245778 . html for some detailed solutions.
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as k — oo for every fixed N. However, by the explicit form of 7;, we see that
Vg~ k"2, so m(z) is also indefinitely differentiable on the unit sphere, i.e., m €
e (s,

Conversely, suppose m(z) € C*°(S™"~1) and let its spherical harmonic develop-

—_~ -n/2 |
ment be as in (4.4.25). Set ¢ = Yy, and Yi(x) = (%) %kYk(a:) Then Q(z),
given by (4.4.25), has mean value zero in the sphere, and is again indefinitely dif-
ferentiable there. But as we have just seen the multiplier corresponding to this

transform is m; so the theorem is proved. [ |

As an application of this theorem, we shall give the generalization of the esti-
mates for partial derivatives given in 4.4.1.

Let P(z) € Z,(R™). We shall say that P is elliptic if P(z) vanishes only at
the origin. For any polynomial P, we consider also its corresponding differential
polynomial. Thus, if P(z) = ) anz®, we write P(0,) = ) a,05 as in the previous
definition.

Corollary 4.4.21.

Suppose P is a homogeneous elliptic polynomial of degree k. Let 95 be any
differential monomial of degree k. Assume f € C¥, then we have the a priori
estimate

107 fll, < Ap 1P (82) fll,, 1 <p<oc. (4.4.27)

Proof. From the Fourier transform of 95 f and P (9;) f,

n/2 ) N
POIT© = (5) [ e==tP o) fws - @i PO ()

]
27
and

— A

03 F(€) = (i) "€ f(€),
we have the following relation
P&DFF (&) = € P(0:) (&),

[e3

Since P(§) is non-vanishing except at the origin, % is homogeneous of degree 0
and is indefinitely differentiable on the unit sphere. Thus

Oxf =T (P ) f),
where T is one of the transforms of the type given by (4.4.23). By Theorem 4.4.20,

T is also given by (4.4.22) and hence by the result of Theorem 4.2.1 and Proposition
4.2.2, we get the estimate (4.4.27). |

§4.5 The method of rotations and singualr integral with odd kernels

A simple procedure called the method of rotations plays a crucial role in the
study of operators T, when (2 is an odd function. This method is based on the use
of the directional Hilbert transforms.

Fix a unit vector § € R". For f € . (R"), let

1 o0 dt
Hgf(:r):;p.v. / f(:z:—t@)?.

—00

4.5.1)
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We call Hy f the directional Hilbert transform of f in the direction 6. For functions
[ € Z(R"), the integral in (4.5.1) is well-defined, since it converges rapidly at
infinity and by subtracting the constant f(z), it also converges near zero.

Now, we define the directional maximal Hilbert transforms. For a function
J € UigpeoclP(R") and 0 < e < N < 00, let

(V) oy L N
R B G

HYf@) = swp  |HEY f(a).
0<e<N<o©

We observe that for any fixed 0 < ¢ < N < co and f € LP(R"), HH(E’N) f is well-
defined almost everywhere. Indeed, by Minkowski’s integral inequality, we obtain

s

which implies that H, é M f(z) is finite for almost all z € R™. Thus, H, 6(,**) f is well-
defined for f € Ujg¢pcoo LP(R™).

2 N
< = fllze@ny In — < o0,
i E

LP(R™)

Theorem 4.5.1.

If 2 is odd and integrable over S"~1 then Tq and Tg()**) are LP bounded for
all 1 < p < oo. More precisely, T initially defined on Schwartz functions
has a bounded extension on LP(R™) (which is also denoted by 7).

Proof. Let ¢; be the usual unit vectors in S"~!. The operator H, is the directional
Hilbert transform in the direction e;. Clearly, H,, is bounded on L”(R"™) with norm
bounded by that of the Hilbert transform on LP(R). Indeed, by Theorem 4.1.9, we
have

1. at||”
”HelfHLp(Rn = ;igr(l] flx —te;)— "
[t| =€ Lp(RM)
p
1 dt
== lim f(xl_tafo"?xn)i
T e—0 ‘t|>5 LP(Rn)
p
INTT2
< HHHLP (R)—LP(R )”f(l'lax )HL’;l(R)‘ Li,(R"*l)

Ny 1 I
Next, observe that the following identity is valid for all matrices A € O(n) (the
set of all n x n orthogonal matrices):

Hape, f(x) :l p.v. /OO [z — tAe1)@
pV/ F(A(A x—tel))‘ff
—H,,(f o A)(A 'z). (452)

This implies that the L” boundedness of Hy can be reduced to that of H.,. We
conclude that Hy is LP bounded for 1 < p < oo with norm bounded by the norm of
the Hilbert transform on LP(R) for every 6 € S"~ 1.

Identity (4.5.2) is also valid for H, éE’N) and H, é**). Consequently, H, 6(**) isbounded
on LP(R™) for 1 < p < oo with norm at most that of H** on L?(R) (or twice of the
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norm of H*) on LP(R)).

Next, we realize a general singular integral T with © odd as an average of
the directional Hilbert transforms Hy. We start with f € ./(R") and the following
identities:

QYYD rer iy — Yoo
/e<|y<N ly| I/ y>“k‘/_/smﬁ(9>/a fla —r6)~"do(6)

= [ oo [ s Taw

:/ 20 [ fa—r0)Tdo (o),
Sn—1 N T

where the first one follows by switching to polar coordinates, the second one is
a consequence of the first one and the fact that €2 is odd via the change variables
6 — —0, and the third one follows from the second one by changing variables
r — —r. Averaging the first and third identities, we obtain

/ Q(y/!yl)f(x )y
e<[y|<N

ly|"
= f@=r9) 1o
- /S Q) / e 9) (4.5.3)
=2 /S @Y f(@)do(0). (4.5.4)

Since 2 is odd and so it has mean value zero, we can get

(453) =+ /Sn_l Q(6) /< » f@=16) = (%) 4o (0)

2 T

L F@=19) 1 io
"3 /sn—l ) /1<|r|<N r Ardo ()

Because f € .7, the inner integrals is uniformly bounded, so we can apply the
Lebesgue dominated convergence theorem to get

Tof(e) =5 [ Q0 Hof(@)do (). (455)
Sn—l
From (4.5.4), we conclude that
150 @) <5 [ 10O f@)do ). (456)
Snfl

The L? boundedness of T, and Tf(l**) for €2 odd are then trivial consequences of
(4.5.6) and (4.5.5) via Minkowski’s integral inequality. |

Remark 4.5.2. It follows from the proof of Theorem 4.5.1 and from Theorems 4.1.9
and 4.1.13 that whenever Q is an odd function on S"~1, we have

22 ifp>2,

Tallrr—rr <C||Q1
Tollze—sze <9 (p-1)7Y ifl<p<2,
. j22 ifp>2,

178 | o1 <ClI2N L
p—1)"", ifl<p<?2,

for some C' > 0 independent of p and the dimension.
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Corollary 4.5.3.

The Riesz transforms R; and the maximal Riesz transforms R'") are bounded

J
on LP(R™) for 1 < p < oo.

Proof. By the way, the boundedness for R;, we have obtained in Theorem 4.4.3. The
assertion follows from the fact that the Riesz transforms have odd kernels. Since
the kernel of R; decays like |z|™" near infinity, it follows that Rg*) f is well-defined

for f € LP(R™). Since Rg-*) is point-wise bounded by 2R§-**), the conclusion follows

from Theorem 4.5.1. |

§4.6 Singular integral operators with Dini-type condition

§4.6.1 LP boundedness of homogeneous singular integrals

In this section, we shall consider those operators which not only commute with
translations but also with dilations. Among these we shall study the class of singu-
lar integral operators, falling under the scope of Theorem 4.2.4.

If T corresponds to the kernel K (x), then as we have already pointed out,
5 To¢ corresponds to the kernel e K (¢71z). So if 55T = T we are back
to the requirement K (z) = ¢ "K (¢ 'x), i.e., K(ex) = e "K(z), e > 0; thatis K is
homogeneous of degree —n. Put another way

(x)
K(z) = —— 4.6.1
(@) = h- 461)
with © homogeneous of degree 0, i.e., Q(cx) = Q(x), € > 0. This condition on {2
is equivalent with the fact that it is constant on rays emanating from the origin; in
particular, (2 is completely determined by its restriction to the unit sphere S™ 1.
Let us try to reinterpret the conditions of Theorem 4.2.4 in terms of (2.

1) By (4.2.8), 2(z) must be bounded and consequently integrable on S"~!; and
Qz—y) _ Qz)
z|220y| | fe—y* [z
cisely in terms of 2. However, what is evident is that it requires a certain continuity
of 2. Here we shall content ourselves in treating the case where () satisfies the fol-

lowing “Dini-type” condition suggested by (4.2.8):

another condition fl

dx < C which is not easily restated pre-

1
ifw(n):= sup [Qx)— Q)] then/O w;n)dn<oo. (4.6.2)

lo—a’|<n
lz|=]a’|=1

Of course, any Q which is of class C!, or even merely Lipschitz continuous,
satisfies the condition (4.6.2).

2) The cancelation condition (4.2.9) is then the same as the mean value zero of
Qon S" L

Theorem 4.6.1.

Let Q € L*®(S™" 1) be homogeneous of degree 0 with mean value zero on
Sn=1, and suppose that () satisfies the smoothness property (4.6.2). For 1 <
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p < oo,and f € LP(R™), let

i@ = [ Ty (463)

y|=e ‘y|n
(a) Then there exists a bound A, (independent of f and ¢) such that
ITefllp < Apll £llp-
(b) lim. o T. f = T'f exists in LP norm, and
ITfllp < Apllfllp-

(¢) If f € L*(R™), then the Fourier multiplier m corresponding to 7' is a
homogeneous function of degree 0 expressed in (4.3.5).

Proof. The conclusions (a) and (b) are immediately consequences of Theorem 4.2.4,
once we have shown that any K (x) of the form 2Az) catisfies

|z["
/ |K(x —y) — K(x)|de < B, (4.6.4)
|| >2]y|
if 2 is as in condition (4.6.2). Indeed,
Qzx —y) — Q=) [ 1 1 ]
Kz—y) — K(z) = +Qz) | ——— — .
R (T =

The second group of terms is bounded since {2 is bounded and

Lo le=om = |
|| >2]y || >2]y]

o 2" =z —y["
o=yl [z

dx

|z —y[" |z

/ x| = | =yl S50 | — gyl
= dx
2| >2ly| |z —y["|z|™
n—1
< / iyl S Jal 7 — gl da
lz[>2lyl 5o

n—1
</ I >l (2l 2 e (oo y] > 2] =yl > [2]/2)
lz[>2lyl 5o

n—1
— / 1y 3 27| = 2027 — 1)y 2| da
lz[=2[yl 2o |z >2y]
1
:2(2 )|y\wn 12| | (2” — 1)wn,1.

Now, we estimate the first group of terms. Let 6 be the angle with sides x and
x — y whose opposite side is y in the triangle formed by vectors =, y and = — y.
Since [y| < |z]/2 < |z|, we have 6 < § and so
cosg > cosy = 1/v2 V2. Moreover, by the sine the-
orem, we have sinf < 4. On the other hand, in

the triangle formed by O% = ‘ i Oﬁ = h and
1@ |$ y| lw\’ it is clear that # = Z(POQ) and

?Islljn (’l = % by the sine theorem. Then, we have

x — x sinf sin @
Y T PQ| = — — = 9<\/§M<
z—y| |z sin(f —5)  cos§ ||
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Thus, the integral corresponding to the first group of terms is dominated by

d d
2"/ w <2|y’) g 2"/ w(2/]2])
lz|>2|y] 2| ) |z| |z|>2 |2]
& d ! d
—2"wn_1/ w(2/7“)—r = 2”wn_1/ win)dn < 00
2 r 0

n
in view of changes of variables = = |y|z and the Dini-type condition (4.6.2).

For part (c), it is the same as the proof of Theorem 4.3.3 with minor modification.
Indeed, we only need to simplify the proof of (4.3.6) due to € L>(S"!) here. We
can control (4.3.6) by

[
1 BN Lo (gn-1) + 2[|2| oo (5m-1)

Sn—

wna(d+ In(1/[€ o)

where the integral in the last term is equal to

/ In(1/|y:)dor(y)
Sn—l

which have been estimated in Theorem 4.3.3. Thus, we have completed the proof.
|

§4.6.2 The maximal singular integral operator
Theorem 4.6.1 guaranteed the existence of the singular integral
: y)
lim —=f(z —y)dy (4.6.5)
=0 Jyze [yl
in the sense of convergence in the LP norm. The natural counterpart of this result is

that of convergence almost everywhere. For the questions involving almost every-
where convergence, it is best to consider also the corresponding maximal function.

Theorem 4.6.2.

Suppose that ) satisfies the conditions of Theorem 4.6.1. For f € LP(R"),
1 < p < oo, consider
i@ = [ T ey e>0
yie ly"
(The integral converges absolutely for every x.)
(a) 313(1) T f(z) exists for almost every z.

(b) Let T* f(x) = sup |T©®) f(2)|. If f € L'(R™), then the mapping f — T*f is
e>0

of weak type (1, 1).
(@ If 1 < p < oo, then || T*f[l, < Apllfllp-

\.

Proof. The argument for the theorem presents itself in three stages.

The first one is the proof of inequality (c) which can be obtained as a relatively
easy consequence of the L” norm existence of lim._,q T, already proved, and cer-
tain general properties of “approximations to the identity”.

Let T'f(z) = lim._0 T f(z), where the limit is taken in the L? norm. Its existence
is guaranteed by Theorem 4.6.1. We shall prove this part by showing the following
Cotlar inequality

T°f(z) < M(Tf)(x) + CM f ().
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Let ¢ be a smooth non-negative function on R", which is supported in the unit
ball, has integral equal to one, and which is also radial and decreasing in |z|. Con-

sider
Q=) >
Ks(x) = { [z|m |.’L" Z €

0, |z < e.
This leads us to another function ® defined by
q):@*Kbe (466)

where ¢ * K = lim._,0 ¢ * K. = lim._, f\w—y|>6 K(x —y)e(y)dy.

We shall need to prove that the smallest decreasing radial majorant ¥ of @ is
integrable (so as to apply Theorem 3.2.12).

In fact, if |z| < 1, then

|| =|p* K| = ’/Rn K(y)p(z — y)dy' = K(y)(p(z —y) — p(x))dy

]Rn
xXr — — X
< /R Koo - )~ wlalldy < | [l f;), 2@l < ¢

since the mean value zero of 2 on S”~! implies fRn (y)dy = 0 and by the smooth-
ness of p. If 1 < |z| < 2, then ® = ¢ x K — K is again bounded by the same reason
and the boundedness of K in this case. If |x| > 2, we have

(z) = - K(z —y)p(y)dy — K(z) = ) |<1[K(w —y) — K(2)]p(y)dy.

Similar to (4.6.4), we can get the bound for |y| < 1 and so |z| > 2|y|,

n y —n —(n
K(x—y) — K(2)] <2 w<" ,‘)| 7 4 202" — 1|9 elylle] D

<" (| ‘)m "4 22 — 1) Qscla] ™,

as in the proof of Theorem 4.6.1, since w is increasing. Thus, due to ||¢||; = 1, we
obtain for |z| > 2

B(e)] <2"w (, ‘) 2" 4 22" — 1|9 o]V,
Therefore, we get |¥| < C for |z| < 2, and
()] < <| ,) 2™ 4+ 22" — 1)@ s+,

for |z| > 2, and then we can proved that ¥ € L'(R") with the help of the Dini-type
condition.

From (4.6.6), it follows, because the singular integral operator ¢ — ¢ * K com-
mutes with dilations, that

e x K — K. =®., with®.(x) = "®(z/e). (4.6.7)
Now, we claim that for any f € LP(R"), 1 < p < oo,
(e % K) % f(2) = Tf * a(a), 4.6.8)
where the identity holds for every z. In fact, we notice first that
(pe x K5) * f(z) = Tsf * p-(x), foreveryd >0 (4.6.9)

because both sides of (4.6.9) are equal for each x to the absolutely convergent dou-
ble integral [, g [, 155 K (4)f(2 — y)pe(2 — 2)dydz. Moreover, ¢, € LY (R™), with
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I/p+1/p =1,50 pe x K5 = e x K in L* norm, and Tsf — Tf in LP norm, as
0 — 0, by Theorem 4.6.1. This proves (4.6.8), and so by (4.6.7)

T.f=K:xf=pex Kxf—=®Qcxf=Tf*p.— fxP..

Passing to the supremum over ¢, we obtain the Cotlar inequality, and applying
Theorem 3.2.12, Theorem 3.2.7 for maximal funtions and Theorem 4.6.1, we get

1T fllp <lsup |[Tf * @elllp + [ sup | f * @]
e>0 e>0

SCIM(Tf)llp + ClIM fllp < CITfllp + Cllfllp < Cllfllp-

Thus, we have proved (c).

The second and most difficult stage of the proof is the conclusion (b). Here the
argument proceeds in the main as in the proof of the weak type (1,1) result for
singular integrals in Theorem 4.2.1. We review it with deliberate brevity so as to
avoid a repetition of details already examined.

For a given a > 0, we split f = g + b as in the proof of Theorem 4.2.1. We also
consider for each cube @); its mate @)%, which has the same center c; but whose side
length is expanded 2/n times. The following geometric remarks concerning these
cubes are nearly obvious (The first one has given in the proof of Theorem 4.2.1).

(i) If z ¢ QF, then |x — ¢;| > 2|y — ¢j| forall y €
Qj, as an obvious geometric consideration shows.

(ii) Suppose z € R™ \ @} and assume that for
some y € Qj, |x — y| = €. Then the closed ball cen-
tered at x, of radius ~,¢, contains Q;, i.e., B(x,7) D
Qj,if r = ype.

(iif) Under the same hypotheses as (ii), we have
that |z — y| > 7,,¢, for every y € Q.

Here ~,, and ~,, depend only on the dimension
n, and not the particular cube Q);.

R\ U,0;

Figure 4.1: Observation for

With these observations, and following the de-
(ii) and (iii)

velopment in the proof of Theorem 4.2.1, we shall
prove thatif z € R" \ U;Q7,
sp 1) <3 [ 1K =)~ Kz — e o)l
&€ - ;
7o (4.6.10)

+ C'sup

1
v~0 m(B(z,)) /B o) [b(y)ldy,

with K (z) = 2.

The addition of the maximal function to the r.h.s of (4.6.10) is the main new
element of the proof.

To prove (4.6.10), fix x € R™ \ U;Q%, and € > 0. Now the cubes @); fall into three
classes:

1) forally € Qj, |z —y| <e;

2)forally € Qj, v —y| > ¢

3) thereis a y € ), such that |z — y| = ¢.

We now examine

Tob(x) =) N K (x —y)b;(y)dy. (4.6.11)
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Case 1). K.(x —y) = 0if [x — y| < ¢, and so the integral over the cube @, in
(4.6.11) is zero.

Case2). K.(r —y) = K(xz —y), if |x — y| > ¢, and therefore this integral over Q;
equals

[ Kty = | (K@ —y) K=l
i i
This term is majorized in absolute value by
[ 1 =)~ K = el
j

which expression appears in the r.h.s. of (4.6.10).

Case 3). We write simply

K (z —y)b;(y)dy

< / K (x — 1) |1b; (v) | dy

Qj

Q;
- / Ke(z — 9)lb;(y)Idy,
Qij(xvr)

by (ii), with r = ~,,c. However, by (iii) and the fact that Q(x) is bounded, we have

) C
R == = | < Gror

~

Thus, in this case,

C
0. K. (v —y)b;(y)dy m(B(z.7) /Qij(M) b (y)|dy.

If we add over all cubes @);, we finally obtain, for r = v,¢,

| Teb(w)] <Z/Q_ K (2 —y) = K(x = ¢;)[[bj(y)]dy

<

+ [b(y)|dy.

eI
m(B(:v, 7’)) B(z,r)
Taking the supremum over ¢ gives (4.6.10).
This inequality can be written in the form
IT*b(z)| < X(x) + CMb(x), =e€R™\U;Q7,
and so
Hz € R" \U;Q; : [T7b(z)| > a/2}]

J

<Hz e R"\ U;Qj : B(z) > a/4}| + [{z € R" \ U;Q; : CMb(x) > a/4}].

The first term in the r.h.s. is similar to (4.2.7), and we can get

/ S(x)dr < bl
R”\UjQ}‘

which implies [{z € R" \ U;Q7 : X(z) > a/4}| < 4 010]5.

For the second one, by Theorem 3.2.7, i.e., the weak type estimate for the maxi-
mal function M, we get [{z € R" \ U;Q} : CMb(z) > a/4}| < L

The weak type (1,1) property of T then follows as in the proof of the same
property for 7', in Theorem 4.2.1 for more details.

The final stage of the proof, the passage from the inequalities of 7* to the exis-
tence of the limits almost everywhere, follows the familiar pattern described in the
proof of the Lebesgue differential theorem (i.e., Theorem 3.2.14).
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More precisely, for any f € LP(R"), 1 < p < oo, let
Af(z) = |limsup T, f(z) — iminf T, f(x)] .
e—0 e=0

Clearly, Af(x) < 2T* f(x). Now write f = f1 + f> where f; € €L, and || f2|, < 0.
We have already proved in the proof of Theorem 4.2.4 that 7T} f; converges uni-
formly as ¢ — 0, so Afi(xz) = 0. By (4.2.11), we have [|A fa]|, < 24, f2]l, < 24,0
if 1 < p < oo. This shows A f, = 0, almost everywhere, thus by Af(z) < Afi(x) +
Afa(z), we have Af = 0 almost everywhere. So lim._,o7; f exists almost every-
where if 1 < p < co.
In the case p = 1, we get similarly
A A6
[z : Af(z) > o} < —llf2llr < —
and so again Af(z) = 0 almost everywhere, which implies that li_r% T. f(z) exists

almost everywhere. [ |

§4.7 Vector-valued analogues

It is interesting to point out that the results of this chapter, where our functions
were assumes to take real or complex values, can be extended to the case of func-
tions taking their values in a Hilbert space. We present this generalization because
it can be put to good use in several problems. An indication of this usefulness is
given in the Littlewood-Paley theory.

We begin by reviewing quickly certain aspects of integration theory in this con-
text.

Let H be a separable Hilbert space. Then a function f(z), from R" to JH is mea-
surable if the scalar valued functions (f(x), ¢) are measurable, where (-, -) denotes
the inner product of }, and ¢ denotes an arbitrary vector of J{.

If f(z) is such a measurable function, then |f(z)| is also measurable (as a func-
tion with non-negative values), where | - | denotes the norm of J{.

Thus, LP(R",H) is defined as the equivalent classes of measurable functions
f(z) from R™ to 3, with the property that the norm | f||, = ([g. |f(z)[Pd2)'/? is
finite, when p < oo; when p = oo there is a similar definition, except |||l =
esssup |f(z)].

Next, let H; and Hy be two separable Hilbert spaces, and let L(J(;, H3) denote
the Banach space of bounded linear operators from H; to 5, with the usual oper-
ator norm.

We say that a function f(z), from R" to L(H;,H>) is measurable if f(x)p is
an Hy-valued measurable function for every ¢ € H;. In this case |f(z)| is also
measurable and we can define the space LP(R", L(H;, H3)), as before; here again
| - | denotes the norm, this time in L(FH;, Ha).

The usual facts about convolution hold in this setting. For example, let f <
LP(R™, H;) and K € LY(R™, L(Hy, Hy)), then g(z) = [z. K(z—y)f(y)dy converges
in the norm of H(, for almost every z, and

l9(z)] < /R K (z — y)f(y)ldy < /R K (2 — )| £ ()\dy.
Also ||g||» < |]K\|q||f||p, ifl/r=1/p+1/¢—1,withl <r < 0.
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Suppose that f € L'(R", H). Then we can define its Fourier transform

7e) = (’“")W [ s

2

which is an element of L (R", K). If f € L' (R", H)NL2(R", H), then f € L*(R", K)
with || f|l2 = || f|l2. The Fourier transform can then be extended by continuity to a
unitary mapping of the Hilbert space L?(R"™, H) to itself.

These facts can be obtained easily from the scalar-valued case by introducing
an arbitrary orthonormal basis in .

Now suppose that H; and H; are two given Hilbert spaces. Assume that f(z)
takes values in H;, and K (z) takes values in L(H;, Hz). Then

Ti)= | KW@ =y)dy,

whenever defined, takes values in 3(5.

Theorem 4.7.1.

The results in this chapter, in particular Theorems 4.2.1,4.2.4,4.6.1 and 4.6.2,
and Proposition 4.2.2 are valid in the more general context where f takes
its value in H;, K takes its values in L(H;,Hs) and T'f and 7. f take their
value in H(3, and where throughout the absolute value | - | is replaced by the
appropriate norm in 3y, L(J;, Hz) and Hy, respectively.

This theorem is not a corollary of the scalar-valued case treated in any obvious
way. However, its proof consists of nothing but an identical repetition of the argu-
ments given for the scalar-valued case, if we take into account the remarks made in
the above paragraphs. So, we leave the proof to the interested reader.

Remark 4.7.2. 1) The final bounds obtained do not depend on the Hilbert spaces
H; or Hq, but only on B, p, and n, as in the scalar-valued case.

2) Most of the argument goes through in the even greater generality of Banach
space-valued functions, appropriately defined, one can refer to [Gral4, pp.385-414].
The Hilbert space structure is used only in the L? theory when applying the variant
of Plancherel’s formula.

The Hilbert space structure also enters in the following corollary.

Corollary 4.7.3.

With the same assumptions as in Theorem 4.7.1, if in addition
ITfll2=cllfll2, ¢>0, feL*R"3),
then || [}, < AL|Tfll, if f € LP(R",301), 1 < p < .

Proof. We remark that the L?(R", 3;) are Hilbert spaces. In fact, let (-, -); denote the
inner product of }{;, j = 1,2, and let (-, -); denote the corresponding inner product
in L?(R"™, H;); that is

(fr9); = /n(f(ac),g(:n))jdx.
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Now T is a bounded linear transformation from the Hilbert space L?(R", H;) to
the Hilbert space L*(R™, H,), and so by the general theory of inner products there
exists a unique adjoint transformation 7%, from L?(R", H5) to L*(R", H;), which
satisfies the characterizing property

<Tf1, f2>2 = <f1,T*f2>1, with fj S L2(Rn,'}fj).

But our assumption is equivalent with the identity (see the theory of Hilbert spaces,
e.g., [Din07, Chapter 6])

(Tf,Tg)s =c*(f g)1, forall f,g e L*(R",3H;).

Thus using the definition of the adjoint, (T*T'f, g)1 = c2(f,g)1, and so the assump-
tion can be restated as

T*Tf =cf, feL*R",H). (4.7.1)
T* is again an operator of the same kind as 7" but it takes function with values in H
to functions with values in H;, with the kernel K* () = K*(—z), where * denotes

the adjoint of an element in L(J;, Hz).
This is obvious on the formal level since

(T'f1, f2)2 :/Rn /Rn(K(a; — 1), f2(z))2dyda
~ [ [ () Ky = ) ooy = (1, T

The rigorous justification of this identity is achieved by a simple limiting argument.
We will not tire the reader with the routine details.

This being said we have only to add the remark that K*(—x) satisfies the same
conditions as K (x), and so we have, for it, similar conclusions as for K (with the
same bounds). Thus by (4.7.1),

ENfllp = 1T T fllp < AplITfllp-
This proves the corollary with A = A, /c?. |

Remark 4.7.4. This corollary applies in particular to the singular integrals com-
muted with dilations, then the condition required is that the multiplier m(§) have
constant absolute value. This is the case, for example, when T is the Hilbert trans-
form, K (r) = -, and m(£) = —isgn (w) sgn (£).

T’
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In harmonic analysis, Littlewood-Paley theory is a term used to describe a theo-
retical framework used to extend certain results about L? functions to L? functions
for 1 < p < oo. Itis typically used as a substitute for orthogonality arguments
which only apply to L? functions when p = 2. One implementation involves study-
ing a function by decomposing it in terms of functions with localized frequencies,
and using the Littlewood-Paley g-function to compare it with its Poisson integral.
The one-variable case was originated by Littlewood and Paley (1931, 1937, 1938)
and developed further by Zygmund and Marcinkiewicz in the 1930s using complex
function theory (Zygmund 2002 [1935], chapters XIV, XV). Stein later extended the
theory to higher dimensions using real variable techniques.

§5.1 Three approach functions and L? boundedness

The g-function is a nonlinear operator which allows one to give a useful charac-
terization of the L? norm of a function on R" in terms of the behavior of its Poisson
integral. This characterization will be used not only in this chapter, but also in the
succeeding chapter dealing with function spaces.

Let f € LP(R™) and write u(z, y) for its Poisson integral

) = ()" [ ieresipigac = [ p0s -0 =B+ 0
(5.1.1)
as defined in (4.1.2) and (4.1.4). Let A denote the Laplace operator in R’}r“, ie, A=
%2 +3 01 %; V is the corresponding gradient, |Vu(z,y)|* = |g—Z\2 + |Vaeu(z, y)|?,
where [V u(z,y)]* = Y7, %F.

Definition 5.1.1.

With the above notations, we define the Littlewood-Paley g-function
9(f)(x), by

9(f)(z) = (/OOO IVU(w,y)Idey> 1/2- (5.12)
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We can also define two partial g-functions, one dealing with the y differen-
tiation and the other with the x differentiation, i.e.,

g1(f)(@) = ( In ]g;%:c,y) dey) ) = ( In \Vzu(%y)\dey) v

(5.1.3)
Obviously, g2 = g2 + ¢2.
The basic result for g is as follows.
Theorem 5.1.2.
Suppose f € LP(R™), 1 < p < co. Then we have g(f) € LP(R"), and
A;;Hpr < ||g(f>||p < Ap”f”p- (5.1.4)

Proof. Step 1: We first consider the simple case p = 2. For f € L*(R"), we have

lg(H)I3 = / / Vule, y) Pydydz = / y / V(e y)|2dady.
R™ JO 0 Rn

In view of the identity (5.1.1), we have
Ou _ |w‘ n/2 7 wil-x ,—|w|y
= () [ —eif@eee g
and

n/2
u _ <|°J|> / wifj}“\(f)emé'me_Wé‘ydf.
Rn

87@_ 2T

It follows from Plancherel’s formula that

/!V( )|*d —/ am2+§”:au2d
e ulz,y)|"ar = e ||y 2 oz T
_‘%2 ol /K ¥

ay L2 j=1 ax] L2

=||F (—|we[F(€)e™ =S W) 13 + 3 (1.7 (wig; F(€)e ™5 )13
j=1

=|| — |we[FE)e W3+ wig; F(€)e™ 5|13

j=1
=20? 16| F(€)e™ 3
= [ 2P @R s,
Rn
and by integration by parts,
lo(hIE= [ v [ 2ulerFere vacay

- / 22 |¢2(F(6)2 / " e 2l gy e
Rn 0

_ 201217y 2 L
= [ 2P e
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=S I713 = S 115
Hence, we get

lg(Hll2 = 272 fl2- (5.1.5)

We have also obtained ||g1(f)ll2 = [lga(f)ll2 = 31I£]l2-

Step 2: We consider the case p # 2 and prove ||g(f)||, < Ap| f|l,- We define
the Hilbert spaces H{; and Hy which are to be considered now. Let H; be the one-
dimensional Hilbert space of complex numbers. To define 33, we define first K9 as
the L? space on (0, oo) with measure ydy, i.e.,

H) = {f | f)P = /OOO If () |Pydy < oo}.

Let 3, be the direct sum of n + 1 copies of ng; so the elements of Hy can be rep-
resented as (n + 1) component vectors whose entries belong to H3. Since H; is the
same as the complex numbers, L(H;, Hs) is of course identifiable with 3.

Now let € > 0, and keep it temporarily fixed. Define

Kifa) = ((OHele) O0eele) | O]

oy ' Oxp 7 Oz,
Notice that for each fixed z, K. () € Hs. This is the same as saying that
< |0P, P, ?
/ L(x) ydy < oo and / L() ydy < oo, forj=1,...n
0 Ay Ox;

In fact, Py(z) = m implies that both alzj’ and 896]_ are bounded by

(lzl+y

W For the norm of K. (z) in Hy, we have

° d
K@ <) [ s

<A? 1 — S G,
and then
|Ke(2)] € Lige(R™\ {0}). (5.1.6)
Similarly,
0K () 2 / > ydy -2 2
<C —Z O ne
‘ oa, . (el + gz <Ok
thus, K. satisfies the gradient condition, i.e.,
‘W < Cla| =+, (5.1.7)
(%cj

with C' independent of €.
Now we consider the operator 7, defined by

T.f(x) = Ke x f(z) = VPyicx f(z) = V(Py+€ * f)(w) = Vu(z,y +¢).
The function f is complex-valued (take its value in H;), but T; f(z) takes its value
in Hs. Observe that

T ()] = ( | wuta s>2ydy) e ( | vuta, y)\dey) o)
(5.1.8)
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Hence, ||T:f|l2 < 27Y2||f|l2, if f € L?*(R"), by (5.1.5). Therefore, by Theorem 2.5.6,

we get

|w| 2 \w| RPN —1/2

o K (2)] < 5 [Ke(z)] =Tl <27~ (5.1.9)

T T
L2 (R™)

Because of (5.1.6), (5.1.7) and (5.1.9), by Theorem 4.7.1 (cf. Theorem 4.2.1 and Propo-
sition 4.2.2), we get [|T. f|l, < Ap||fllp, 1 < p < oo with A, independent of . By
(5.1.8), for each z, |T; f(z)| increases to g(f)(x), as € — 0, thus we obtain finally

lg(P)llp < Apllfllp, 1 <p < o0 (5.1.10)
Step 3: To derive the converse inequalities:
Al fllp < Nlg(H)llp, 1 <p < oo (5.1.11)

In the first step, we have shown that || g1 (f)]]2 = %Hng for f € L%(R™). Let u;
and us be the Poisson integrals of fi, fo € L?, respectively. Then we have ||g1(f1 +

)3 = 3llf + fol3 ie,

/n/ ' (u1 + u2)

It leads to the identity

if / Our, (xyydydx— / f1(@) Fa(a)de,

which, in turn, leads to the mequahty, by Holder’s inequality and the definition of
g1,

2
1
vdyda = [ |fi+ e
RTL

1 _
L n@R@E| < [ ai@ah) e
Suppose now in addition that f; € LP(R") and fo € LP (R") with || fa|l,y < 1
and 1/p + 1/p’ = 1. Then by Holder inequality and the result (5.1.10), we get

- fi(e) fa(w)dz| < 4lg1(F)llpllgr (F2)llp < 44 (191 (f1)llp- (5.1.12)

Now we take the supremum in (5.1.12) as f> ranges over all function in L?N LY,
with || fal,» < 1. Then, we obtain the desired result (5.1.11), with A}, = 1/4A,, but
where f is restricted to be in L2 N LP. The passage to the general case is provided
by an easy limiting argument. Let f,,, be a sequence of functions in L? N L?, which
converges in LP norm to f. Notice that

19(fm) (@) = 9(fn) (@)] = | Vim| 12(0,0039dy) = | VUnll £2(0,0059ay) |
<||vum - Vun”L2(0 oosydy)
=9(fm — fn) (@)

by the triangle inequality. Thus, {g(f)} is a Cauchy sequence in L” and so con-
verges to g(f) in L?, and we obtain the inequality (5.1.11) for f as a result of the
corresponding inequalities for fy,. [ ]

We have incidentally also proved the following, which we state as a corollary.

Corollary 5.1.3.

Suppose f € L?(R"), and ¢1(f) € L?(R"), 1 < p < oo. Then f € LP(R"), and
A fllp < g (f)llp-

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



§5.1. Three approach functions and L? boundedness -159-

Remark 5.1.4. There are some very simple variants of the above that should be
pointed out:

(i) The results hold also with g, ( f) instead of g( f). The direct inequality || g, (f)|l, <
Apl| fllp is of course a consequence of the one for ¢g. The converse inequality is then
proved in the same way as that for g;.

(ii) For any integer k > 1, define

- 9 1/2
gi(f)(z) = (/0 yzkldy) :

Then the L? inequalities hold for g;, as well. Both (i) and (ii) are stated more sys-
tematically in [Ste70, Chapter IV, §7.2, p.112-113].

(iii) For later purpose, it will be useful to note that for each z, gx(f)(z) >
Arg1(f)(z) where the bound A, depends only on k.

It is easily verified from the Poisson integral formula thatif f € LP(R"), 1 < p <

o
W(% y)

oo, then
& u(x,y)

Dk — 0 foreachz, asy— oo,
Yy

which yields

oyk Osktl ¥k

By Schwarz’s inequality, we get
k 2 o0 2 o0
0 u(l;; ?J)‘ < / $2k s </ 82kd8>
dy y y
O+ lu(z, s) 2

1 o0
_ Y2
2k —1 (/y Osk+1

Hence, by Fubini’s theorem, we have

| gky
(@) = [ |5 )
U
2k—1Jy \J,
1 e.¢] S
w1, ()
1 oo | gk+1y,
ok 1/0 pi ()
1 2
=g () (@)
Thus, the assertion is proved by the induction on k.

ula,y) _ _/°° Mlu(z,s) yds
Y

OF+lu(x, s)
Dkt

2
kafldy

8k+1u

W(%S)

2
s%ds> dy

2

8k+1u
s2kds

Ewas

2
82k+1ds

z, )

The proof given for the L? inequalities of the g-function did not, in any essential
way, depend on the theory of harmonic functions, despite the fact that this function
was defined in terms of the Poisson integral. In effect, all that was really used are
the fact that the Poisson kernels are suitable approximations to the identity.

There is, however, another approach, which can be carried out without recourse
to the theory of singular integrals, but which leans heavily on characteristic prop-
erties of harmonic functions. We present it here (more precisely, we present that
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part which deals with 1 < p < 2, for the inequality (5.1.10)), because its ideas can
be adapted to other situations where the methods of Chapter 4 are not applicable.
Everything will be based on the following three observations.

Suppose u is harmonic and strictly positive. Then
AuP = p(p — 1)uP2|Vul?. (5.1.13)

Proof. The proof is straightforward. Indeed,
-1 2 —2 2 —192
Op,ul = puP™ Op;u, Oy uP = p(p — L)uP"*(0p,u)” + puP™ 95 u,
which implies by summation
Au? = p(p — 1)u?"*|Vul® + puf ™ Au = p(p — DuP~*|Vul?,
since Au = 0. [

Lemma 5.1.6. N

Suppose that F(z,y) € C(R) N €2(R}H!) satisfies AF > 0, and for some
e>0,|F|=0(r""%)and |[VF| = O(r—"" %) asr = |(z,y)| = co. Then

/+1 yAF(a:,y)dxdy:/ F(z,0)dx. (5.1.14)
R n

\.

Proof. We use Green’s theorem

ov ou
/D(uAv — vAu)dzdy = /BD (ua’N v&N) do

where D = B, NR'/*!, with B, the ball of radius r in R"*! centered at the origin,
and N is the outward normal vector. We take v = F', and u = y to obtain

B oOF oy
/D(yAF—FAy)d:Udy—/ < YN —FaN) do,

OF oy
yAFdxdy = / < — —F_= ) do + F(z,0)dx, (5.1.15)
/ BDO Yon ON R (,0)

dueto Ay =0in D and 2 ¢ = —1 on the boundary { x,y) € R”+1 Ty = 0} = R",
where 0D is the spherical part of the boundary of D. Since AF > 0, by Levi’s
monotone convergence theorem, we get

| vAF@ sy = [yAF@ woley)dody > [ yAF(y)dady. G116
D RY

ie.,

asr — 00. Let y = rsin @ on 0Dy with 6 € [0, 7], we have

oF 8y> / ( . OF . )
— - F do = rsinf—— — Fsin6 | do
/aDO < 8fN ON aDo ON

F
=r" /i (rsmGgN — Fs1n¢9> do

:0(r—€)/ sin fdo < %0(7«—6) -0, (5.1.17)

as 7 — oo. Thus, combining (5.1.15), (5.1.16) and (5.1.17), we obtain the desired
result (5.1.14). [ ]
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If u(z, y) is the Poisson integral of f, then

sup |u(z,y)| < M f(x). (5.1.18)
y>0

Proof. This is the same as the part (a) of Theorem 4.1.3. It can be proved with a
similar argument as in the proof of Theorem 3.2.12. |

Now we use these lemmas to give another proof for the inequality
lg(P)llp < Apllfllp, 1<p<2

Another proof of ||g(f)|l, < Apllfllpy 1 < p < 2. Suppose first 0 < f € Z(R")
(and at least f # 0 on a nonzero measurable set). Then the Poisson integral u of f,
u(x,y) = [gn Py(t)f(x —t)dt > 0, since P, > 0 for any x € R” and y > 0; and the
majorizations u?(z,y) = O(r~") and |VuP| = O(r~"71), as r = |(z,y)| — oo are
valid. We have, by Lemmas 5.1.5 and 5.1.7, and the hypothesis 1 < p < 2,

2 _ > ulz 27, 1 = w2 P AP
(9()(@)) —/0 yIVule,y)dy p(p—n/o YUt P AP dy
[Mf(@)*P [~
S /0 yAudy.
We can write this as
9(f) (@) < Cp(M f(2))EP/2(I(2))"/?, (5.1.19)

where I(z) = fooo yAuPdy. However, by Lemma 5.1.6,
/ I(x)dx = /IR"+1 yAuPdydr = /R uf (z,0)dz = || f||}. (5.1.20)
+

This immediately gives the desired result for p = 2.
Next, suppose 1 < p < 2. By (5.1.19), Holder’s inequality, Theorem 3.2.7 and
(5.1.20), we have, for 0 < f € Z(R"),

| an@rde<cp [ 0@y @)y

n

1/r 1/r ,
<cp ([ arr@ypar) ([ 1)<l =g

wherer =2/p € (1,2) and 1/r + 1/r' =1, then ' = 2/(2 — p).

Thus, [|g(f)llp < Apl|fllp, 1 < p <2, whenever 0 < f € Z(R").

For general f € LP(R") (which we assume for simplicity to be real-valued),
write f = fT — f~ as its decomposition into positive and negative part; then we
need only approximate in norm f* and f~, each by a sequences of positive func-

tions in Z(R™). We omit the routine details that are needed to complete the proof.
|

Unfortunately, the elegant argument just given is not valid for p > 2. There is,
however, a more intricate variant of the same idea which does work for the case
p > 2, but we do not intend to reproduce it here.

We shall, however, use the ideas above to obtain a significant generalization of
the inequality for the g-functions.
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Definition 5.1.8.

Define the positive function

o) An
(gi(f)(a:))gz/o /n (Wiy) \Vu(z —t,y) 2y "dtdy.  (5.1.21)

Before going any further, we shall make a few comments that will help to clarify
the meaning of the complicated expression (5.1.21).

First, g3(f)(«) will turn out to be a pointwise majorant of g(f)(z). To under-
stand this situation better we have to introduce still another quantity, which is
roughly midway between g and g3. It is defined as follows.

Definition 5.1.9. w

Let I be a fixed proper cone in R*! with vertex at the origin and which
contains (0, 1) in its interior. The exact form of I" will not really matter, but

for the sake of definiteness let us choose for I' the up circular cone:
I'={(t,y) eRY™:|t| <y,y>0}.

For any z € R", let I'(x) be the cone I' translated such that its vertex is at .

Now define the positive Lusin’s S-function S(f)(x) by

[S(f)(@)]* = /F ( )IVu(t,y)\le’”dydt = /F [Vu(z — t,y)?y' " dydt.
(5.1.22)

We assert, as we shall momentarily prove, that

Proposition 5.1.10.

9(f)(x) < CS(f)(x) < Cagr(f)(@)- (5.1.23)

What interpretation can we put on the in-
equalities relating these three quantities? A
hint is afforded by considering three corre-
sponding approaches to the boundary for har-
monic functions. A

(a) With u(z, y) the Poisson integral of f(z),
the simplest approach to the boundary point
x € R" is obtained by letting y — 0, (with x
fixed). This is the perpendicular approach, and
for it the appropriate limit exists almost everywhere, as we already know.

9 T
Figure 5.1: T'and I'(z) for n = 1

(b) Wider scope is obtained by allowing the variable point (¢,y) to approach
(x,0) through any cone I'(z) whose vertex is z. This is the nontangential approach
which will be so important for us later. As the reader may have already realized,
the relation of the S-function to the g-function is in some sense analogous to the
relation between the nontangential and the perpendicular approaches; we should
add that the S-function is of decisive significance in its own right, but we shall not
pursue that matter now.
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(c) Finally, the widest scope is obtained by allowing the variable point (¢,y) to
approach (z,0) in an arbitrary manner, i.e., the unrestricted approach. The func-
tion g} has the analogous role: it takes into account the unrestricted approach for
Poisson integrals.

Notice that g3 (z) depends on A. For each xz, the smaller A the greater g3 (z),
and this behavior is such that that L” boundedness of g} depends critically on the
correct relation between p and \. This last point is probably the main interest in g3,
and is what makes its study more difficult than g or S.

After these various heuristic and imprecise indications, let us return to firm
ground. The only thing for us to prove here is the assertion (5.1.23).

Proof of Proposition 5.1.10. The inequality S(f)(z) < Chgi(f)(x) is obvious, since
the integral (5.1.21) majorizes that part of the integral taken only over I', and

An
Y 1
7 2 P
<It| +y> 22

since || < y there. The non-trivial part of the assertion is:

9(f)(z) < CS(f)().

It suffices to prove this inequality for z = 0. Let us de-
note by B, the ball in R:"! centered at (0,y) and tangent

to the boundary of the cone I'; the radius of B, is then

proportional to y. Now the partial derivatives g—; and

% are, like u, harmonic functions. Thus, by the mean

value theorem of harmonic functions (i.e., Theorem 4.4.8

by noticing (0, y) is the center of B,), we get Figure 5.2: I and B,
0 1
u(0,y) _ du(z, s) dds
dy | By| B, OUs

where |B,| is the n + 1 dimensional measure of By, i.e., |By| = cy™*! for an appro-
priate constant c. By Schwarz’s inequality, we have

2 2
‘8u(0,y) < 1 2/ du(z, s) da:ds/ drds
dy | By| B, Os By
1 2
:/ du(z,s) dzds.
| By| By Js

If we integrate this inequality, we obtain
2
/°° y ou(0,y) dy < /°° Ly / du(z, s)
0 ay 0 By 0s
However, (z,s) € By clearly implies that ¢;s < y < ¢as, for two positive constants

c1 and cp. Thus, apart from a multiplicative factor by changing the order of the
double integrals, the last integral is majorized by

[SF] 2
/ (/ y_”dy) (%(;’S) dxds < c’/
I c18 S I

This is another way of saying that,

oo 2 2
/ y au(oa y) dy < C/// 6U($’ y) ’ ylindl’dy.
0 Jy r dy
Ou

The same is true for the derivatives 5*, j = 1, ...,n, and adding the correspond-
J
ing estimates proves our assertion. u

2
d13d5> dy.

ou(z, s)|?

s s dxds.
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We are now in a position to state the L” estimates concerning g3.

Theorem 5.1.11. N

Let A > 1 be a parameter. Suppose f € LP(R"). Then,

(a) For every z € R”, g(f)(z) < Cagi(f)(x).
(b)If 1 < p < oo,and p > 2/), then

||9§(f)”p < Ap)\Hpr- (5.1.24)

\.

Proof. The part (a) has already been proved in Proposition 5.1.10. Now, we prove
(b).

For the case p > 2, only the assumption A > 1 is relevant since 2/\ < 2 < p.

Let ¢/ denote a positive function on R", we claim that

[ @@z < ay [ @@P0r)@ds. 6129

n

The Lh.s. of (5.1.25) equals

> Y () An, —
y|Vul(t, y)|? [/ — "y x| dtdy,
I O | e e

so to prove (5.1.25), we must show that
ap | ¥(a)
y>0 Joern (|t — 2 +y)*"

However, we know by Theorem 3.2.12, that

igrg(zﬂ ) (t) < AMp(t)

y "y e < ANMY(t). (5.1.26)

for appropriate ¢, with p.(z) = ¢ "p(z/c). Here, we have in fact p(z) = (1 +
|z])~", & = y, and so with A > 1 the hypotheses of that theorem are satisfied. This
proves (5.1.26) and thus also (5.1.25).

The case p = 2 follows immediately from (5.1.25) by inserting in this inequality
the function ¢ = 1 (or by the definitions of g}(f) and g(f) directly), and using the
L? result for g.

Suppose now p > 2; let us set 1/¢ + 2/p = 1, and take the supremum of the
Lh.s. of (5.1.25) over all ¢ > 0, such that ¢y € L4(R") and ||¢||; < 1. Then, it gives
lg5(f)|3; Holder’s inequality yields an estimate for the right side:

Allg(H)IPIMY -

However, by the inequalities for the g-function, ||g(f)[, < A4,f|l,; and by the
theorem of the maximal function || M|, < Aql|¢|lq < Ay, since g > 1, if p < co. If
we substitute these in the above, we get the result:

19X (Dllp < Apallfllp, 2<p<oo, A>1

The inequalities for p < 2 will be proved by an adaptation of the reasoning used
for g. Lemmas 5.1.5 and 5.1.6 will be equally applicable in the present situation, but
we need more general version of Lemma 5.1.7, in order to majorize the unrestricted
approach to the boundary of a Poisson integral.

It is at this stage where results which depend critically on the L? class first make
their appearance. Matters will depend on a variant of the maximal function which
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we define as follows. Let u > 1, and write M, f(x) for

1 1/p
M, f(z) = (sup If(y)l“dy> : (5.1.27)

r>0 |B(LE7 T)’ B(z,r)

Then M f(z) = M f(z), and M, f(z) = ((M|f|*)(x))'/*. From the theorem of the
maximal function, it immediately follows that, for p > g,

1, f llp =l (1) @) # Ly = (1) @D

<CIFMN = Cl Al (5.1.28)

This inequality fails for p < p, as in the special case u = 1.
The substitute for Lemma 5.1.7 is as follows.

Lemma 5.1.12.

Let f € LP(R™), p > p > 1 and u(z, y) be the Poisson integral of f, then
uz — £) < A (1 + ’t’) MF(z), (5.1.29)
Yy
and more generally
It| n/p
lu(z —t,y)| < Ay <1 + y) M, f(x). (5.1.30)

We shall now complete the proof of the inequality (5.1.24) for the case 1 < p < 2,
with the restriction p > 2/A.

Let us observe that we can always find a ¢ € [1,p) such that if we set \' =
A — 2%1”, then one still has \' > 1. In fact, if © = p, then \ — 2%” > 1since A > 2/p;
this inequality can then be maintained by a small variation of p. With this choice of
i, we have by Lemma 5.1.12

n/u
Y
u(x —t, <A M, f(x). 5.1.31
o=t (X)) < AdMf(o) 6131)
We now proceed the argument with which we treated the function g.
(93(H)(x))?
=1/ yl_”( Y )Anu%p(x—t,y)Aup(w—t,y)dtdy
p(p —1) Jrrst y+ t]
1 2 2
< P(M, f(z))* PI*(z), 5.1.32
where
y XNn
I (x :/ 1‘”( ) AuP(x —t,y)dtdy.
() oV \y i ( y)didy
It is clear that

A'n
I"(z)dx = AuP(t,y)dxdtd
forae= [ [ i) 2o

:CX/ — yAup(t,y)dtdy,
+

where the last step follows from the fact that if X' > 1

y_n/ (y >)\nd:c :y_n/ < y )Andl‘
n \Y+ |t — 7] re \ Y + |z
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1 Nn
T=yz

pr— _— dz
Rn (1 + |Z|)

=Cy < 0.

So, by Lemma 5.1.6, we have

/ I*(2)dz = Cy / uP(t,0)dt = Cx |||, (5.133)
n Rn
Therefore, by (5.1.32), Holder’s inequality, (5.1.28) and (5.1.33), we obtain
lg5(D)llp < CIMf (@) P2 (@) 2], < CIMLFI 21 < Cl £l
which is the desired result. |
Finally, we prove Lemma 5.1.12.

Proof of Lemma 5.1.12. One notices that (5.1.29) is unchanged by the dilation
(x,t,y) — (6, dt, dy), it is then clear that it suffices to prove (5.1.29) with y = 1.

Setting y = 1 in the Poisson kernel, we have P;(z) = ¢,(1 + |z|>)~("*1/2, and
u(z —t,1) = (f = P1)(z — t), for each t. Theorem 3.2.12 shows that |u(x — t, 1)| <
Ay M f(z), where Ay = [ Qi(x)dz, and Q¢(z) is the smallest decreasing radial majo-
rant of Py (x — t), i.e.,

1
Qt(@ Cp SUp
@722 (14 |27 = t[2)n /2
For Q:(x), we have the easy estimates, Q;(z) < ¢, for |z| < 2t and Q¢(z) < A'(1 +
|2[2)~(+1)/2 for |x| > 2|t|, from which it is obvious that 4; < A(1+|¢|)" and hence

(56.1.29) is proved.
Since u(z — t,y) = [gn Py(s)f(x —t — s)ds, and [, Py(s)ds = 1, by Holder
inequality, we have

u(x = t.y) <||Py* fe =t = )l Py/* |l

<([ nola-i- s>|“ds)1/” = Uiz~ ty),
where U is the Poisson integral of | f|*. Apply (5.1.29) to U, it gives
[u(z — )] SAVE(L+ [t /y)™#(M(|f17) (@) H
=Au(L+ [8l/y)"" M, f (),
and the Lemma is established. [ |

§5.2 Mikhlin and Hérmander multiplier theorem

The first application of the theory of the functions g and g3 will be in the study of
multipliers. Our main tool when proving theorems for the Sobolev spaces, defined
in the following chapter, is the following theorem.

Theorem 5.2.1: Mikhlin multiplier theorem \

Suppose that m(¢) € €F(R" \ {0}) where k& > n/2 is an integer. Assume

o
also that for every differential monomial <a%) , a = (a1,a9,...,ap), With
la| = a1 + ag + ... + a,, we have Mikhlin’s condition

’(ai)am({)’ < Al¢|71 whenever |o| < k. (5.2.1)
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Thenm € M, 1 < p < 00, and

[[mlla, < CpnA.

The proof of the theorem leads to a generalization of its statement which we
formulate as a corollary.

Corollary 5.2.2: Hérmander multiplier theorem \

The assumption (5.2.1) can be replaced by the weaker assumptions, i.e., Hor-
mander’s condition

Im(§)] <A,
o\ 2 (5.2.2)

d§¢ <A, |a| <k
The theorem and its corollary will be consequences of the following lemma. Its

sup R2|an/
0<R<oo R<|€|1<2R

statement illuminates at the same time the nature of the multiplier transforms con-
sidered here, and the role played by the g-functions and their variants. We also
remark here that while the Mikhlin and Hérmander multiplier theorem provides
useful sufficient conditions for LP boundedness of Fourier multipliers, it is not dis-
cerning enough for a satisfactory theory; it does not distinguish between p so long
as 1 < p < oco. Note that 1 < p < oo here in contrast to the case in Theorem 2.6.5.

Lemma 5.2.3. )

Under the assumptions of Theorem 5.2.1 or Corollary 5.2.2, let us set for
feL*RY)

vl

P =Tt = ()" g e
Then
g1(F)(z) < Axgx(f)(z), where \ = 2k/n. (5.2.3)

Thus in view of the lemma, the g-functions and their variants are the charac-
terizing expressions which deal at once with all the multipliers considered. On the
other hand, the fact that the relation (5.2.3) is pointwise shows that to a large extent
the mapping 7, is “semi-local”.

Proof of Theorem 5.2.1 and Corollary 5.2.2. The conclusion is deduced from the
lemma as follows. Our assumption on k is such that A = 2k/n > 1. Thus, Theorem
5.1.11 shows us that

lgx(H)lp < Axp
However, by Corollary 5.1.3, AL || F'l|, < [lg1(F)||p, therefore by Lemma 5.2.3,
T fllp = 1F 1, < ANllgR(H)llp < Apllfllp, 12 <p<ooand f e L*N L.

fllpy 2<p<oo,if feL*NLP.

That is, m € M,, 2 < p < oo. By duality, i.e., (2.6.2), we have also m € M,,
1 < p < 2, which gives the assertion of the theorem. |

Now we shall prove Lemma 5.2.3.
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Proof of Lemma 5.2.3. Let u(z,y) denote the Poisson integral of f, and U(z,y)
the Poisson integral of F. Then with * denoting the Fourier transform w.r.t. the =
variable, we have

(€y) = e WF(E), and T(€y) = e PWE(E) = e “m(e) ().
Define M (x,y) (M) Jon €€ 198U (€)d¢. Tt is clear that

(""’)M T(e,y) = e “Sme),

and then

—n/2
s w P ~
U(&?/l +y2) = <|27T|> M(&ayl)u(f,?ﬂ), Yy=u +y27 Y1,Y2 > 0.
This can be written as

Ulz,y1 +y2) = [ M(t,y1)u(z —t,y2)dt.
RTL

We differentiate this relation & times w.r.t. y; and once w.r.t. y», and set y; = yo =
y/2. This gives us the identity

U Dz )= [ MP(t,y/2)uM (@ —t,y/2)dt. (5.2.4)
R
Here the superscripts denote the differentiation w.r.t. y.
Next, we translate the assumptions (5.2.1) (or (5.2.2)) on m in terms of M (z, y).

The result is
IM®)(t,y)] <Ay~ F, (5.2.5)
[ O ) P <ty 526

where A’ depends only on n and k.
In fact, from the definition of M and the condition |m(§)| < A4, it follows that

w\" W
M) < () o [ jeteshimeag
T Rn
<Aw,—1 <M> |w|k/ rkelwlry, =14
0

™

1\" >
=Aw,_1 <> y "k / e BRF14R
27'(' 0

1 n
=Awp,—1 (271_) D(k+4n)y "k,

which is (5.2.5).
To prove (5.2.6), let us show more particularly that

/\J:QM (z,y)Pdx < Aly™",

where |a| = k.
By Plancherel’s theorem and Proposition 2.1.2, we have

ool = (Y[ (2) epmiereeo)

Then we need to evaluate, by using Leibniz’ rule, that

(i)a“ﬁ"“m(@e"“&'y): > Cm( ) (Ie[Fm(€)) (jg)"’e—lwsly. (5.28)

Bty=a

(5.2.7)
2
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Case I: (5.2.1) = (5.2.6). By the hypothesis (5.2.1) and Leibniz’ rule again, we

have
‘(5’6)6 (elm(e))

(5¢) Getmiere <)
<C Y P wly) e <o ST el (e,

|Bl+1vI=k 0<r<k

< A'gfF 1l with |8] < .

Thus,

Since forr > 0
() [ e e —aoa () [ ROl
R" 0
=Wy 12~ 2r+n)<‘w’y) / Z27“+n—1€—zdz
0

—wp 1 (|w]y) 2" E T2 +n),

we get for |o| = k

2
3Ol < (51) wnca (ol ™ | 3 (202 42
g 0<r<k
gck,ny_n7

which proves the assertion (5.2.6) in view of (2.3.6).
Case II: (5.2.2) = (5.2.6). From (5.2.7) and (5.2.8), we have, by Leibniz’ rule
again and (5.2.2),

1) e
27‘(‘ 73/ 2
< ). Casm

|8'1+18" | +Iv1=k

2 2 1/2
a B . a 8" 2‘ | 2| ‘
/Rn <a£) |§| <(9§) m(g) e~ wa(|w|y) g
8 5// 2 1/2

= Z (‘W|y)|’y‘ Z/ 2(k_‘ﬂ/|) <> m(¢) 6—2\w€\ydf

1B/ |+18" |+|v|=k 2J<|g|<2g+1 o¢
¢ D (wiy Z(2j+1)2<k—\ﬁ’|)e—|w|2j+1y

|B/|+18" |+|v|=k jez

ﬁ” 2 1/2
odv-218"14n [ (0i\2l8"]-n 3)
(29) ((2) /2j<|§|<21+1 <a,5 m(€) dg)]

1/2
<cAVP2E Y (lwly) (Z 9 (91 )2r+n—1o= w2y )

0<r<k JEL

00 1/2
<CA1/22k Z (’w|y)r </ R2r+n—le—w|RydR>
0

0<r<k
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0o 1/2
:CA1/22k Z (|w‘y)fn/2 </ Z2T+nlezdz>
0

0<r<k
<SCAV2(lwly) /228 Y~ T12(2r 4 n),
0<r<k
which yields (5.2.6) in view of (2.3.6) again.

Now, we return to the identity (5.2.4), and for each y divide the range of integra-
tion into two parts, |t| < y/2 and [t| > y/2. In the first range, we use the estimate
(5.2.5) on M*) and in the second range, we use the estimate (5.2.6). This together
with Schwarz’ inequality gives immediately

[UEFD (2, )2 <Cy‘”‘2’“4< , M (z —t,y/2)2dt
Y

n Cyn/ W (z —t,y/2)|%dt
It|>y/2 |t]2k

=:I1(y) + I2(y).

Now

0

o0 2 00
(g1 (F)(x))? :/ T (2, )2y dy < Z/O L(y)y™+dy.
7=1

However, by a change of variable y/2 — v,

e oo
[ netay=c [ Oty Py
’ 0 Jit<y/2

<C /F Vu(z — t,y)|>y~"dtdy = C(S(f)(x))’

<CA(gA(f)(2))*.
Similarly, with nA = 2k,

/ L(y)y?*+dy <C / / Y~ 2 G2 — 1, y) Pty
0 0 [t|>y

<C(ga(f)(@))*.
This shows that gi1(F)(z) < Cagi(f)(z). However, by Remark 5.1.4 (iii) of g-
functions, we know that g1 (F)(z) < Crgi+1(F)(z). Thus, the proof of the lemma is
concluded. [

§5.3 The partial sums operators

We shall now develop the second main tool in the Littlewood-Paley theory, (the
first being the usage of the functions g and g*).

Let p denote an arbitrary rectangle in R". By rectangle we shall mean, in the
rest of this chapter, a possibly infinite rectangle with sides parallel to the axes, i.e.,
the Cartesian product of n intervals.

Definition 5.3.1.

For each rectangle p denote by S, the partial sum operator, that is the mul-
tiplier operator with m = x,, i.e., characteristic function of the rectangle p.
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So
5,7 =x,f, fe€L*R")NL(R"). (5.3.1)

For this operator, we immediately have the following theorem in view of the
Mikhlin multiplier theorem.

Theorem 5.3.2.

Let1 < p < oo, we have
1Spfllp < Apllfllps [ € LQ(RH) N LP(R™),

where the constant A4, does not depend on the rectangle p.

However, we shall need a more extended version of the theorem which arises
when we replace complex-valued functions by functions taking their value in a
Hilbert space.

Let H be the sequence Hilbert space,

H={(¢j)521 (Z lej*)/2 = |e] < oo}

Then we can represent a function f € LP(R", H) as sequences

f(x) = (Al@),--- (@), -,
where each f; is complex-valued and |f(z)| = (3252, |fi(z)[*)"/. Let R be a se-
quence of rectangle, ® = {p; }Joil Then we can define the operator Sy, mapping
L?*(R™, K) to itself, by the rule
Spf = (Spifro++Sp f5,-+), where f = (f1,-, fj,--). (5.3.2)
We first give a lemma, which will be used in the proof of the theorem or its

generalization. Recall the Hilbert transform f — H(f), which corresponds to the
multiplier —isgn (w) sgn (£) in one dimension.

Lemma 5.3.3. \

Let f(z) = (fi(z), -+, fi(x),---) € L3(R™, 30) N LP(R™, 3(). Denote ﬁf(x) =
(Hfi(x),---, Hfj(x), ). Then
||ﬁf"p <Al fllpy 1<p<oa,

where A, is the same constant as in the scalar case, i.e., when J{ is one-

dimensional.

Proof. We use the vector-valued version of the Hilbert transform, as is described
more generally in Sec. 4.7. Let the Hilbert spaces J{; and J{; be both identical
with H. Take in R, K(z) = I - 1/7z, where I is the identity mapping on H. Then
the kernel K (z) satisfies all the assumptions of Theorem 4.7.1 and Theorem 4.6.1.

Moreover,
lim [ K(y)f(z—y)dy = Hf(z),
70|yl >e
and thus the lemma is proved. u

The generalization of Theorem 5.3.2 is then as follows.
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Theorem 5.3.4.
Let f € L?(R",3) N LP(R"™, K). Then
[Sefllp < Apllfllp, 1 <p<oo, (5.3.3)

where A, does not depend on the family ¥ of rectangles.

\.

Proof. The theorem will be proved in four steps, the first two of which already
contain the essence of the matter.
Step 1: n = 1, and the rectangles py, pa, - - -, pj, - - - are the semi-infinite intervals

(—00,0).
It is clear that S(_. o) f = x(,oqo)/f = l_%n(é)/f, SO
I —isgn(w)H
Sy = BT (5.3.4)

where [ is the identity, and S_ ) is the partial sum operator corresponding to the
interval (—o0, 0).
Now if all the rectangles are the intervals (—oo, 0), then by (5.3.4),
I —isgn(w)H
2
and so by Lemma 5.3.3, we have the desired result.

Sy =

Step 2: n = 1, and the rectangles are the intervals (—o0,a1), (—00,a2), ---,
(—00,a;), - - -
Notice that f(z)e %% = f(¢ + a), therefore

H{e“waf(z)) = —isgn (w) sgn (€) F(€ + a),

and hence mmf(m)) = —isgn (w)sgn (€ — )?(f ). From this, we see that
f_,LS n W'LIG,JH efwzxaj .
(Slcooap fy) ) = L LM IHE TR T;) (535
If we now write symbolically e~ f for
(e—wizul fla L. ’e—wimaj fj7 . )
with f = (fi,---, f;,---), then (5.3.5) may be written as
o wix-a'_H" —wiz-a
g 4 i (@) H e ) 556

5 )
and so the result again follows in this case by Lemma 5.3.3.
Step 3: General n, but the rectangles p; are the half-spaces z1 < aj, ie., p; =
{z:z1 < aj}.
Let S((l) 00,5 denote the operator defined on L?*(R"), which acts only on the z;
variable, by the action given by S(_ 4,). We claim that

Sy, = S

j (—o0,a5)"

(5.3.7)
This identity is obvious for L? functions of the product form

f,(l'l)f”(l'% e 773”)7
since their linear span is dense in L?, the identity (5.3.7) is established.
We now use the L inequality, which is the result of the previous step for each
fixed o, x3, - -+, x,,. We raise this inequality to the pth power and integrate w.r.t.
xg, -+, Zn. This gives the desired result for the present case. Notice that the result
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holds as well if the half-space {z : 21 < a;}32,, is replaced by the half-space {x :
1 > aj }]9’11, or if the role of the x; axis is taken by the x5 axis, etc.

Step 4: Observe that every general finite rectangle of the type considered is
the intersection of 2n half-spaces, each half-space having its boundary hyperplane
perpendicular to one of the axes of R". Thus a 2n-fold application of the result of
the third step proves the theorem, where the family # is made up of finite rectan-
gles. Since the bounds obtained do not depend on the family ¥, we can pass to the
general case where Jt contains possibly infinite rectangles by an obvious limiting
argument. u

We state here the continuous analogue of Theorem 5.3.4. Let (I', dy) be a o-finite
measure space, and consider the Hilbert space J{ of square integrable functions on
T,ie., 3 = L?(T,dy). The elements

fe LP(R",30)
are the complex-valued functions f(z,v) = f,(z) on R" x I', which are jointly
measurable, and for which ([g. ([p |f(2,7)|2dy)P/2dz)YP = ||f|l, < oo, if p < oco.
Let ® = {p,},er, and suppose that the mapping v — p, is a measurable function
from I to rectangles; that is, the numerical-valued functions which assign to each

the components of the vertices of p, are all measurable.
Suppose f € L?*(R™, H). Then we define F = Sy f by the rule

Fz,7) = Sp, (f)(x),  (fy(2) = fz,7))-

Theorem 5.3.5.

It holds
[Snfllp < Apllfllp, 1 <p<oo, (5.3.8)

for f € L*>(R™, ) N LP(R", K), where the bound A, does not depend on the
measure space (I', d), or on the function v — p,,.

Proof. The proof of this theorem is an exact repetition of the argument given for
Theorem 5.3.4. The reader may also obtain it from Theorem 5.3.4 by a limiting
argument. n

§5.4 The dyadic decomposition

We shall now consider a decomposition of R" into rectangles.
First, in the case of R, we decompose it as the
union of the almost disjoint intervals (i.e., whose :
interiors are disjoint) [2F 2k, —00 < k < o0, and |
[—2k+1, —2F], —00 < k < oo. This double collec- !
tion of intervals, one collection for the positive half- :

line, the other for the negative half-line, will be the ===—1—HH
=

dyadic decomposition of R. A - iH i f—
Having obtained this decomposition of R, we : :
take the corresponding product decomposition for : :
: I
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R"™. Thus we write R" as the union of almost dis-
joint rectangles which are products of the intervals
occurring for the dyadic decomposition of each of
the axes. This is the dyadic decomposition of R".
The family of resulting rectangles will be de-
noted by A. We recall the partial sum operator S, defined in (5.3.1) for each rect-
angle. Now in an obvious sense, (e.g. L? convergence)
Z S, = Identity.
pPEA
Also in the L? case, the different blocks, S,f, p € A, behave as if they were
independent; they are of course mutually orthogonal. To put the matter precisely:
The L? norm of f can be given exactly in terms of the L? norms of S,f,ie.,
2 1o 115 = 1£13, (541)
pEA
(and this is true for any decomposition of R"). For the general L? case not as much

can be hoped for, but the following important theorem can nevertheless be estab-
lished.

Theorem 5.4.1: Littlewood-Paley square function theorem

Suppose f € LP(R"), 1 < p < co. Then
1O 185 f @121l ~ 11 £1lp-

pEA

The Rademacher functions provide a very useful device in the study of L”
norms in terms of quadratic expressions.

These functions, ro(t), r1(t), -+, rm(t), --- are 0
T
defined on the interval (0, 1) as follows: el e
1, 0<t<1/2,
ro(t) = SN
-1, 1/2<t<1, 2 t
1o is extended outside the unit interval by periodic- .. _ _.. ] e ro(t)

ity i.e., ro(t+1) = ro(t). In general, ry, (t) = ro(2"t).
The sequences of Rademacher functions are or-
thonormal (and in fact mutually independent) over
[0, 1]. In fact, for m < k, we have

1 1
/ Tm (t)""k (t)dt = / T0(2mt)7‘0(2kt)dt
0 0

Figure 5.4: ry(t) with dotted
line and 7 (¢) with solid line

om 1
:2_m/ To(S)To(Qk_mS)dS:/ ro(s)ro(Qk_ms)ds
0 0
1/2 1
:/ r0(2kms)ds—/ ro(28™s)ds
0 1
2k7m

/2
=om—k [ /0 ro(t)dt — /2 o ro(t)dt]
=271 [/01 ro(t)dt — /Olro(t)dt] =0,

thus, they are orthogonal. It is clear that they are normal since fol (1 (t))2dt = 1.

2k7mfl
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For our purposes, their importance arises from the following fact.
oo

Suppose Y°°_, lam|* < oo and set F(t) = 3°°°_, amrm(t). Then for every 1 <
p < 0o, we can prove F'(t) € LP[0,1] and

[e.e]
AlIE|y < NFN2 = (D lam)"? < Byl Flp, (5.4.2)
m=0
for two positive constants A, and B,,.
Thus, for functions which can be expanded in terms of the Rademacher func-
tions, all the L” norms, 1 < p < oo, are comparable.
We shall also need the n-dimensional form of (5.4.2). We consider the unit cube
QCR",Q={t=(ti,t2,-- ,tn) : 0 < t; < 1}. Let m be an n-tuple of non-negative
integers m = (my,ma,--- ,my). Define 1, (t) = 1, (t1)7my (t2) - - T, (tn). Write

F(t) = > amrm(t). With
1/p
7= [ 1Feae)
Q
we can show (5.4.2), whenever Y |a,,|> < co. We state these results as follows.

Lemma 5.4.2.

Let F(t) = > amrm(t) for t € R™ and m € N&. Suppose 3 |a,,|? < oco. Then
it holds

1/2

o0
IFllp ~IFl2=[ DY laml |  1<p<oo. (5.4.3)

|m|=0

Proof. We split the proof into four steps.

Step 1: Let n = 1 and p, ao, a1, -+, ay be real numbers. Then because the
Rademacher functions are mutually independent, we have, in view of their defini-
tion,

1 1 2m 1
/ euamrm(t)dt _ / e,uamro(gmt)dt —9-m / euamro(s)ds _ / euamro(s)ds
0 0 0 0

=271 (eHm 4 eHAm) = cosh futyy,.
and form < k
1 1
/ euamrm(t)euakrk(t) dt = / euamro(zmt)euakro@kt)dt
0 0

2m 1
—9—m / euamro(s) euakro(Qk’ms) ds = / euamro(s) euakro(Qk’ms) ds
0 0

1/2 1
k—m _ k—m
:/ eHam ohaTo(2 s)ds—i—/ e —Ham oparro(287"s) g
0 1

/2
:2m—k /
0

1 1 1
=971 (eHam 4 gHam) / ehaxrolt) gp — / eramrm(t) gy / erant(t) gt
0 0 0

Thus, by induction, we can verify

2k7m71 2k7m

eham gharo(t) g1 4 /

2k—m—1

e Ham gpagro(t) dt]

N

1 N 1
/ eM > meo @mTm (t) dt = H / e,uamrm(t) dt.
0 0

m=0
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If we now make use of this simple inequality coshz < e +* (since coshz =
Yoro ;f, <D ,:,k = ¢’ for |z| < oo by Taylor expansion), we obtain

1 N
/ e.u'F(t)dt — H COSh Uy, < H eM anL — e“ Z 7n7
0 m=0 m=0

with F(t) = 3207 amrm(t).
Step 2: n = 1. Let us make the normalizing assumption that YN _ a2 = 1.
Then, since eM ¥l < etF + ¢=HEF we have

1
/ POl gy < 9o,
0

Recall the distribution function F,(«) = [{t € [0,1] : |F(¢)| > a}|. If we take
p = a/2 in the above inequality, we have

2 2 2 o2

F.(a)= / dt <e % e2FOlgt < o= %5 2eT =27 7.
{IF®)|>a}n[0,1] {IF(®)|>a}n[0,1]

From Theorem 1.1.4, the above and changes of variables, it follows immediately

that
oo 1/p o o2 1/p
IFll, = (p / ale(oz)da) < (zp [Come da)
0 0
00 1/p
— (QPP/ Sp/2—16—sds> (set 5 — a2/4)
0

=2(pI'(p/2))"/7,

for 1 < p < oo, and so in general, we obtain

0 1/2
1Fllp < Cp <Z amP) , 1<p<oo. (5.4.4)
m=0

Step 3: We shall now extend the last inequality to several variables. The case of
two variables is entirely of the inductive procedure used in the proof of the general
case.

We can also limit ourselves to the situation when p > 2, since for the case p < 2
the desired inequality is a simple consequence of Holder’s inequality. (Indeed, for
p < 2 and some g > 2, we have

1F | zr0,1) < N1F N zao,n) 1Ll parsa-»r 0,1y < N1EF M| zago,1
by Holder’s inequality.)
We have
N N
F(tlatQ) = Z Z am1m2Tm1(t1)Tm2 t2 Z le tQ)Tml(tl)
m1=0mo=0 m1=0

where Fi,, (t2) = 3, Gmym,Tm, (t2). By(5.4.4), it follows

1 p/2
/0 [E(t1, 12)Pdty < Gy <Z | Erny (t2)\2> :
mi

Integrating this w.r.t. ¢», and using Minkowski’s inequality with p/2 > 1, we
have

1 p/2 p/2
/O<Z|Fm1(t2)l2> dty = <<Z|!|Fm1(t2)l2llp/z>
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p/2
= (Z Hle(D)HZ) :

However, Fin, (t2) = )., @mym,Tm, (t2), and therefore the case already proved
shows that

||Fm1 t2 C Zamlmg

Inserting this in the above gives

1 1 P/2
/0 /0 |F(t1, t2)Pdtydtz < G, (ZZafnlm) !

mi1 ma2

which leads to the desired inequality
[Ellp < Cpl|Fll2, 2 <p < o0,
Step 4: The converse inequality
1Ell2 < CollEllp, p>1

is a simple consequence of the direct inequality.
In fact, for any p > 1, (here we may assume p < 2) by Holder inequality

1/2
1Pl < IFI2IF1,
We already know that || F'[|,y < A7, ||Fl2, p’ > 2. We therefore get
1£]l2 < Gyl F1lp,
which is the required converse inequality. |
Now, let us return to the proof of the Littlewood-Paley square function theorem.

Proof of Theorem 5.4.1. It will be presented in five steps.
Step 1: We show here that it suffices to prove the inequality

/
(S 15, @P) | <Al 1<p <o, (5.45)

eA
r p

for f € L*(R") N LP(R™). To see this sufficiency, let g € L*(R™) N L (R™), and
consider the identity

> [ siSade= [ fads

pEA
which follows from (5.4.1) by polarization. By Schwarz’s inequality and then Holder’s

inequality, we get
/ fad| < / (ZSpfF) (Z|Spg|2) dx
(Z\Spf|2> (z|spg|2)
P » P

Taking the supremum over all such g with the additional restriction that ||g||,y <
1, it gives || f||, for the Lh.s. of the above inequality. The r.h.s. is majorized by

(Z|spf2)”2Hp,

N

p/
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since we assume (5.4.5) for all p. Thus, we have also

1/2
(Z S, f|2> . (5.4.6)
P P
To dispose of the additional assumption that f € L?, for f € L we take f; € L>NLP
such that || f; — f||, — 0 by density and use the inequality (5.4.5) and (5.4.6) for f;
and f; — f;; after a simple limiting argument, we get (5.4.5) and (5.4.6) for f as well.

Byl fllp <

Step 2: Here we shall prove the inequality (5.4.5) for n = 1.
We shall need first to introduce a little
more notations. In R, let A; be the family of o(€)
dyadic set I,, = [2™,2m ] U [-2mFL —2m] 1
with m € Z. For each I, € A1, we consider f .

the partial sum operator S;,,, and a modifica- } 1 2 3 ) I3
tion of it that we now define. Let ¢ € Z(R)

be a fixed function with the following prop- Figure 5.5: ¢(§)

erties:
)L 1<,
. { 0, [fl<1/2 orlgl >4
Define Sy, by
51, 1(6) = 0@ 7€) = om(©T(©). (5.47)

That is, S I,., like St , is a multiplier transform where the multiplier is equal to one
on the interval I,,; but unlike Sy,,, the multiplier of S 1,, is smooth. We observe that

S1uS 10 = St (5.4.8)
since Sy, has the multiplier as the characteristic function of 1,,,.
Now for each ¢ € [0, 1], consider the multiplier transform

Ty=Y rm(t)S,.

meZ

That is, for each t, T is the multiplier transform whose multiplier is 77: (), with
() = > rm(t)om(€)- (5.4.9)
MmEZ
By the definition of ¢,,, it is clear that for any £ at most five terms in the sum
(5.4.9) can be non-zero. Moreover, we also see easily that
dmy B
— )| < >
i | = e
where B is independent of t. Thus, by the Mikhlin multiplier theorem (Theorem
5.2.1)

[ (§)] < B, (5.4.10)

ITefllp < Apl fllp.  for f € L*N L7, (5.4.11)

and with A, independent of ¢. From this, it follows obviously that

I 1/p
(/O Hth!Zdt> < Al f

However, by Lemma 5.4.2 about the Rademacher functions,

1 - 1 _ »
/0||th|!,gdt=/0 /R‘Zrm(t)(SLnf)(:c) dedt
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B p/2
A /R (Z \sfmfm)?) d.

Thus, we have

1/2
(Z |§1m<f>12> < Byl fllp- (5.4.12)

p
Now using (5.4.8), applying the general theorem about partial sums, Theorem
5.3.4, with ® = A; here and (5.4.12), we get, for F' = (?1,,Lf)mez,

1/2 1/2
(Z |51mf2> = (Z |51m§1mf2> =152, Fllp
m p " p
1/2
<A Fllp = Ap (Z \gsz\Q) < ApBylIfllp = Coll fllps (5.4.13)

P
which is the one-dimensional case of the inequality (5.4.5), and this is what we had

set out to prove.
Step 3: We are still in the one-dimensional case, and we write 7; for the operator

T, =) rm(t)St,.

m

Our claim is that
ITefllp < Apllfllp, 1 <p<oo, (5.4.14)

with A4, independent of ¢, and f € L?> N LP.

Write TN = > m|<n T'm(t)S1,,, and it suffices to show that (5.4.14) holds, with
T} in place of T; (and A, independent of N and ). Since each Sy, is a bounded
operator on L2 and L?, we have that T}V f € L? N L? and so we can apply Lemma
542 toitforn =1.So

1/2

BllTN fllp < ||| D 1S5,/ < Cll £,

Im|<N
p

by using (5.4.13). Letting N — oo, we get (5.4.14).
Step 4: We now turn to the n-dimensional case and define Tt(ll), as the operator
T}, acting only on the z; variable. Then, by the inequality (5.4.14), we get

/ T far, 2, ) Py < AD / - an)Pda, (5.4.15)
R R

for almost every fixed 2, x3, - - - , &, since zy — f(x1, 22, -+ ,x,) € L2 (R)NLE, (R)
for almost every fixed xa, -+ ,x,, if f € L*(R™) N LP(R™). If we integrate (5.4.15)
w.r.t. zo, -, T,, Wwe obtain

T fllp < Apllfllps £ € 2N L2, (5.4.16)

with A, independent of ¢;. The same inequality of course holds with z; replaced
by x9, or x3, etc.

Step 5: We first describe the additional notation we shall need. With A rep-
resenting the collection of dyadic rectangles in R"”, we write any p € A, as p =
Ly X Ijpy X -+ X Iy, where I, represents the arbitrary dyadic set used above.
Thus, if m = (mqy,ma, -+ ,my,) € Z", we write pp, = L, X Iy X oo X Iy
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We now apply the operator Tt(ll) for the x; variable, and successively its ana-
logues for x5, x3, etc. The result is

ITefllp < Apllfllp- (5.4.17)

Here

T = Z Tm (t)Spm
pPmEA
with 7, (t) = 7, (t1) - - - T, (tn) as described in the previous. The inequality holds
uniformly for each (¢;,t2, - - - , ¢y) in the unit cube Q.
We raise this inequality to the p" power and integrate it w.r.t. ¢, making use of
the properties of the Rademacher functions, i.e., Lemma 5.4.2. We then get, as in
the analogous proof of (5.4.12), that

1/2

> 18, 1P < Apl fllps

pmGA
p

if f € L*(R™) N LP(R™). This together with the first step concludes the proof of
Theorem 5.4.1. n

§5.5 Marcinkiewicz multiplier theorem

We now present another multiplier theorem which is one of the most important
results of the whole theory. For the sake of clarity, we state first the one-dimensional
case whose proof is similar to the higher dimensional cases.

Theorem 5.5.1. )

Let m be a bounded function on R, which is of bounded variation on every
finite interval not containing the origin. Suppose

(@) Im(§)| < B, —00 < € < o0,

(b) [; |m(&)|d¢ < B, for every dyadic interval I.

Then m € M,,, 1 < p < oo; and more precisely, for f € LN rLp,

1T fllp < Apll flp,
where A, depends only on B and p.

To present the general theorem, we consider R as divided into its two half-
lines, R? as divided into its four quadrants, and generally R" as divided into its 2"
“octants”. Thus, the first octant in R™ will be the open “rectangle” of those ¢ all
of whose coordinates are strictly positive. We shall assume that m(¢) is defined on
each such octant and is there continuous together with its partial derivatives up to
and including order n. Thus m may be left undefined on the set of points where
one or more coordinate variables vanishes.

For every k < n, we regard RF embedded in R™ in the following obvious way:
R* is the subspace of all points of the form (&1,&2, -+ ,&,0,---,0).
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Theorem 5.5.2: Marcinkiewicz’ multiplier theorem \

Let m be a bounded function on R” that is " in all 2" “octants”. Suppose
also

(a) Im(¢)| < B,

(b) foreach0 < k < n

*m

081082 - - - O,

as p ranges over dyadic rectangles of R*. (If k = n, the “sup” sign is omitted.)

sup
Ekt1y5€n Jp

dy---dép < B

(c) The condition analogous to (b) is valid for every one of the n! permuta-
tions of the variables &1, &, -+ , &,

Then m € M, 1 < p < oco; and more precisely, for f € L?> N L?, || T fll, <
Apl| fllp, where A, depends only on B, p and n.

Proof. It will be best to prove Theorem 5.5.2 in the case n = 2. This case is already
completely typical of the general situation, and in doing only it we can avoid some
notational complications.

Let f € L2(R%) N LP(R?) and F = Ty, f, that is F(¢) = m(£)F(€).

Let A denote the family of dyadic rectangles, and for each p € A, we write
fo=5,f,F,=8,F,thus F, =T, f,.

In view of Theorem 5.4.1, it suffices to show that

(S )™, <al (5187, 651

The rectangles in A come from four sets, those in the first, the second, the third,
and the fourth quadrants, respectively. In estimating the 1.h.s. of (5.5.1), we con-
sider the rectangles of each quadrant separately and assume from now on that the
rectangles belong to the first quadrant.

We will express F), in terms of an integral involving f, and the partial sum
operators. That this is possible is the essential idea of the proof.

Fix p and assume p = {(&1,&) : 28 < & < 21 20 < & < 2M*1). Then, for
(&1,&2) € p, itis easy to verify the identity by the fundamental theorem of calculus

&1 82 tl t2 &1 o
= — 9!
m(&1,&2) /2 / 011015 —————dtdty + . ot lm(th )dty

- im(Qk to)dts + m(2F,20).
2l 8 2
Now let S; denote the multiplier transform corresponding to the rectangle {(&;, &2) :
2L > ¢ > ¢y, 24 > & >t} Similarly, let St(ll) denote the multiplier cor-

responding to the interval {& : 28+ > & > ¢}, similarly for Sff )

. Thus, in fact,
Sy = St(ll) . St(f ), Multiplying both sides of the above equation by the function Xp/f\
and taking inverse Fourier transforms yields, by changing the order of integrals

in view of Fubini’s theorem and the fact that S,7,,f = F),, and Sgll)Sp = St(ll),
25, = 5%, 5,5, = S, we have

F, =T,S,f =%~ (mxpf

_ |CU| n/z/ wix- 5 / /61 82 t17 t2 >
N (27r R2 ol Jok Ot10ts dtldt?Xp(f)f(f) d§

Lecture Notes on Harmonic Analysis Updated: April 28, 2020




-182- Chengchun HAO

n/2 7
<2o;) /R g / gl 2t (€76 de
w
s

< )n/2 /R2 et / —m (2", 2 dt?Xp(f)/J?(@}df

+.Z 7 m(2¥,2")x,() F(E)]
|w‘ n/2 izt ol+1 19k+1 52 (tljtg)
_<27T Rze ol /Qk WX[%&}(t1>X[2l,§z](t2)dt1dt2

Xp(6)f
2k+1

|w‘ "2 wix-& ~
( ) /R /2 aTlmtlv )Xk 1) (t1) At (€) f(€)dE

n/2 2H—1 ~
(IWI> /R2 wzzs/2 —m (2%, t2) X (o1 g3 (B2) dtox, () £ (€)dE
+m(2k )fp
n/2 ~
<M> / emEx Xt1,2k+1] (fl)X[tQ 20H1] (E2)x,p(€)F(€)dE
2! R2
a m(tlatQ)
. Wdtldtz

n/2 poktl . ~ o
)L L e e eon 7 €de gy mie, Fa
2k R2 1

| ‘ n/2 pol+l ' ~ )
( ) /2 /]RQ CWlx-£X[t272l+1](52)Xp(§)f(§)d§%m(2k’ t2)dts

+m(2k )fp
Pmlty,t 2ht
/Stfp ;81 2>dt1dt2+/2k t1 fp—m(tl, )dt1

2l+1

+/ 5§§)fp87m(2k,tz)dt2+m(2k,2’)fp.
2! 2

We apply the Cauchy-Schwarz inequality in the first three terms of the above w.r.t.
the measures |0, O, m(t1, t2)|dt1dta, |0, m(t1, 2Y)|dtr, |Or,m(2F, t2)|dts, respectively,
and we use the assumptions of the theorem to deduce

9%m 9%m
2 <
[Fl ~</p|5tfp| It,0t, dtldt?)( oot
2k+1

([ s

2l +1
2)
+ (Ll |St2 fp

+ [m(2%, 22| £, |2
2

dtldtg)

2k+1

m(tr.2 >\dtl>( [

2l+1

i) (|,

9 !
aitlm(tl, 2 )‘ dt1>

dtg)

(Qk tg) m(2k,t2)

8t Oty

6m(t1, 2l)

o0 “m
<B/ 2 / 1) 2
{ /p |Sefp 200, ‘dtldt2+ 1Sy, fol o0, dty
o |Om ok ,t
/|S<2) omlZ.12) dt2+\fp\2}

=3, + 97+ 90 + 97, WlthszlxIQ.

To estimate ||(3, |F,|?)"/?|,, we estimate separately the contributions of each of
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the four terms on the rh.s. of the above inequality by the use of Theorem 5.3.5.
To apply that theorem in the case of S, we take the first quadrant as I and dy =
]% |dt1dt, the functions v — p, are constant on the dyadic rectangles. Since

for every rectangle, we have

Jo=]

(;m)w <q, (;w)

2 3
P Sp

82m(t1, tg)

dtydty < B,
Ot10to 1o

then
1/2

The similar argument for & and 37 concludes the proof. |
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§6.1 Riesz potentials and fractional integrals

The Laplacian satisfies the following identity for all f € .(R"):
—AJ(6) = WEPT (). (6.1.1)

From this, we replace the exponent 2 in |wé|? by a general exponent s, and thus
to define (at least formally) the fractional power of the Laplacian by

(—A)2f = 77 (wlIE)*F(€))- (6.1.2)

Of special significance will be the negative powers s in the range —n < s < 0.
In general, with a slight change of notation, we can define

Definition 6.1.1.

Let s > 0. The Riesz potential of order s is the operator

I, = (=A)~/2, (6.1.3)
For 0 < s <nand f € L} (R"), I, is actually given in the form
1
I f(x :/ x —y| "5 f(y)dy, 6.1.4
@ =5 [ v (614

with
g ()2 g T(s/2)
””‘(2) =2

The formal manipulations have a precise meaning.
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Lemma 6.1.2.

Let0 < s <n.
(@) The Fourier transform of the function |z| "¢ is the function
7(s)(Jw|[€])~%, in the sense that

| lel e =) [ (lleh B 615

whenever ¢ € .¥.
(b) The identity I I.f &) = (Jwl|&]) 5 f (§ ) holds in the sense that

[ @i = [ e lleh5eg

whenever f,g € .7.

\.

Proof. Part (a) is merely a restatement of Lemma 4.4.17 since y(s) = |w|*70,s-
Part (b) follows immediately from part (a) by writing

Y ey = [ (elle) T =)
@) =g Sl iy = [ e Tl e
:/ ([l F(€)e e de = / (]l F(€)ewiewde,
R™ Rn

| @@= [ [ (i)~ Fee T  dggloa
= [ (eligh=Terateas

This completes the proof. n

SO

Now, we state two further identities which can be obtained from (6.1.2) or (6.1.3)
and which reflect essential properties of the potentials I:

L(Lf)=Isf, fE€7, s,t>0, s+t<n; (6.1.6)

A(Lsf) = Is(Af) = —Is_of, fe n=3, 2<s<n. (6.1.7)

The deduction of these two identities have no real difficulties, and these are best
left to the interested reader to work out.

A simple consequence of (6.1.6) is the n-dimensional variant of the Beta func-
tion,

. |—nts —n+t _ ’7(8)7(75) —n+(s+t) . /
/Rn lz —y[T" Ty Ty = 1D |z| in.7", (6.1.8)

with s,¢ > 0 and s + ¢t < n. Indeed, for any ¢ € ., we have, by the definition of
Riesz potentials and (6.1.6), that

// o =yl T dy (2 — @)dw
R™ xR"™
= et r—yl "oz —y— (- T
[yt [ sl == (@ = )dady
= [ W (e = 9y = O = O Trel2)

(s (®) 27 o0 — 2 de
7(8+t)/w‘| el
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We have considered the Riesz potentials formally and the operation for Schwartz
functions. But since the Riesz potentials are integral operators, it is natural to in-
quire about their actions on the spaces LP(R").

For this reason, we formulate the following problem. Given s € (0, n), for what
pairs p and ¢, is the operator f — I;f bounded from LP(R™) to LI(R™)? That is,
when do we have the inequality

s fllg < Allfllp? (6.1.9)

There is a simple necessary condition, which is merely a reflection of the homo-
geneity of the kernel (vy(s)) ~!|y|™""*. In fact, we have

Proposition 6.1.3.

If the inequality (6.1.9) holds for all f € % and a finite constant A, then
1/q=1/p—s/n.

Proof. Let us consider the dilation operator §°, defined by 6° f(z) = f(ex) fore > 0.
Then clearly, for ¢ > 0 and any f € .(R"), we have

(L5 0)@) === [ e =i ey

7(s)
Z:E:yg"’y(ls) / = et ()
=e °I;f(ex). (6.1.10)
Noticing that
16°Fllp = €l flps 11615 llg = ™I Lsf g (6.1.11)
by (6.1.9), we get

1 lly =€*116° 16° 1l = 49| 1.6°
A6 |l = AT £
If s+n/qg—n/p>01lete » 0% if s+n/qg—n/p <0,lete — oo, we always have
|IIsfllq = O for any f € .(R"™). However, if f # 0 is non-negative, then I,f > 0
everywhere and hence ||/, f||, > 0, thus we can conclude the desired relations
1/¢g=1/p—s/n. (6.1.12)
|

Now, we give the following Hardy-Littlewood-Sobolev theorem of fractional
integration. The result was first considered in one dimension on the circle by Hardy
and Littlewood and n-dimension by Sobolev.

Theorem 6.1.4: Hardy-Littlewood-Sobolev theorem

Let0O<s<mn,1<p<g<oo1l/g=1/p—s/n.

(a) If f € LP(R™), then the integral (6.1.4), defining I, f, converges absolutely
for almost every z.

(b) If, in addition, p > 1, then || I, f|q < Apqll fllp-

(@ If f € LY(R"), then |{x : |Isf(z)| > a}| < (Aa™ Y| f|1)4, for all @ > 0. That
is, the mapping I, is of weak type (1,¢), with1/¢g =1 — s/n.
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Proof. We first prove parts (a) and (b). Let us write
v(s)Lsf(z) =/ |z —y| ™" f(y)dy + / |z —y| 7" f(y)dy
B(z,6) R\ B(x,9)
::L(g(x) + H5($)
Divide the ball B(z, §) into the shells E; := B(z,2776)\B(z,270*1§),j =0,1,2,...,
we have
|Ls(x —yl 7" ()

Z / & — 7 £ () dy

< (2708 £ (y) |dy

< / (27U 5) =45 £ ()| dy
j;) B(z,2794)

(2-U+D§)=n+s| B(z,2796)|
|B(z,2776)] B(z,2-76)

y)|dy

0

0

J
(2—(j+1 ) n+sV (2 ](5)

d

B(z,299) /B(m,m 1 w)ldy

V 952"

'P”18

Il
o

J

V652"~ 822 SIM f(x) =
7=0

N

T Mf(z).

Now, we derive an estimate for Hs(x). By Holder’s inequality and the condition
1/p > s/n (i.e., ¢ < o0), we obtain

1/p’
<[ fllp </R ) |z — y| P dy>

. 1/p'
sl ([ [T taras)
1/p'
1/10 Hf”p </ r(fnJrs)p +n1d7,>

1/p'
Wn— n/p’'—(n—s s—n
:(() 5= £, = O, 5,0)0 | .

|Hs(x)

n—s)p—n
By the above two inequalities, we have
(s)Isf ()] < C(n,5)8°M f(2) + C(n, 5,p)8° /| fllp =: F(5).
Choose § = C(n,s,p)[||fll,/Mf]P/", such that the two terms of the rh.s. of the
above are equal, i.e., the minimizer of F'(4), to get
V(s) I f (@)] < C(M f(a) P fl1pem.

Therefore, by part (i) of Theorem 3.2.7 for maximal functions, i.e., M f is finite
almost everywhere if f € LP (1 < p < o0), it follows that |I; f(x)] is finite almost
everywhere, which proves part (a) of the theorem.

By part (iii) of Theorem 3.2.7, we know || M f]|, < A, || f|l, (1 < p < 00), thus

12 £llq < CUMFI P £157™ = Cllf -
This gives the proof of part (b).
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Finally, we prove (c). Since we also have |Hs(z)| < [|f]167""%, taking o =
| £ll1677F5, 1., 6 = (|| fll1/a)*=%), by part (ii) of Theorem 3.2.7, we get

{a : [ f (2)] > 2(7(s)) o}
<Hz : [Ls(z)| > a}| + o : [Hs(z)| > a}
<[{z:|C*Mf(x)| > a}[+0

c
Sl = CllIfll1/a]™ "= = Ol £l /).

This completes the proof of part (c). n

§6.2 Bessel potentials

While the behavior of the kernel (y(s))~!|z|~""% as |z| — 0 is well suited for
their smoothing properties, their decay as |z| — oo gets worse as s increases.

We can slightly adjust the Riesz potentials such that we maintain their essential
behavior near zero but achieve exponential decay at infinity. The simplest way to
achieve this is by replacing the “nonnegative” operator —A by the “strictly posi-
tive” operator I — A, where I = identity. Here the terms nonnegative and strictly
positive, as one may have surmised, refer to the Fourier transforms of these expres-
sions.

Definition 6.2.1. \

Let s > 0. The Bessel potential of order s is the operator
Jo=(I—A)=°/?

whose action on functions f is given by

W\ 1
Jsf = (27r> gil(Gsf) :Gs*fv

where

lwl

— " -1 2| ¢12\—s/2
Go) = (1) #+ i) o)

Now we give some properties of G,(x) and show why this adjustment yields
exponential decay for G at infinity.

Proposition 6.2.2.

Lets > 0.

1 = sondt
(a)GS(CL‘):WF(S/Q)/O e te a2 F

(b) Gs(z) >0, Vz € R" and G; € L*(R"™), precisely, [z, Gs(z)dz = 1.
(c) There exist two constants 0 < C(s,n),c(s,n) < oo such that

Gs(x) < C(s,n)e”#/2 when |z| > 2,

and

< c¢(s,n), when|z| <2,
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where Hj is a function satisfying
lz|*™" + 14 O(|z|*™""?), 0<s<n,

m@%=lﬁ7+1+mmﬁ, s=mn,

1+ O0(|z]*™), 5> n,
as |x| — 0.
(d) Gs € LY (R") for any 1 < p < coand s > n/p.

\.

Proof. (a) For A, s > 0, we have the I'-function identity

1 o0 dt
-s/2 _ —tAys/2 %Y
4 r<s/2>/o e

which we use to obtain

1 & 2 dt
1 2)¢12\—5/2 _ / —to—tlwE]®ys/270
(1 + P = gy | eTte e

Note that the above integral converges at both ends (as |{| — 0, or co). Now taking
the inverse Fourier transform in ¢ and using Theorem 2.1.9, we obtain

Nz AR /OO —t —tlwe|?,s/2 00
Gs(m)_<27r 11(5/2)Jg 0 ©° t t

_ M "2 1 /oo —t g—1 ( —t|wé|? s/th

_<27r T(s/2) J, © ¢ (e )t t

B 1 /°° ot e dt
N (47r)"/ 2F(S/ 2) Jo t

—n/2
(b) We have easily! [, Gs(z)dx = M / FG4(0) = 1. Thus, G € L'(R").
y R 2

(c) First, we suppose ]:n| 2. Then ¢ + 2 ‘ >t+1andalsot+ | > |z|. This
implies that
2 _t 1 af
—t - — < _____ —,
4t 2 2t 2
from which it follows that when |z| > 2
1 ® t 1 sndl _lsl _lzl
GS(ZL’) < WI‘(s/Q)/O e 2e 2ttt 2 ?6 2 <C(s,n)e 2,
2ls=nl/2D(|s—n
Where C(s,n) = W for s # n, and C(s,n) = WM fors =n
since

00 1 e’} e’}
/ 67%(37%@ é/ e21tdt—|—/ egdt:/ 671’@—#2671/2
0 t 0 t 1 1/2 (]

'Or use (a) to show it. From part (a), we know G(x) > 0. Since Jan el gy = t"/2, by
Fubini’s theorem, we have

_ R
RnGs(x)dx—/Rn (47r)"/2F(s/2)/ e e 1 dx

B o dt
L
) "/2F (s/2) / / Cdr T

et 1 [
A n/2 —t 5—1 4 _
! (4mt) =t /0 dt = 1.

(47T)"/2F(8/2) /0
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o
<2/ e Ydy +2 < 4.
1/2

Next, suppose that |z| < 2. Write Gs(z) = GL(z) + G2(z) + G2(x), where

1 & 212 s—n dt

Gl / —t Itttz —
@ =y, ¢ YT T
1 4 ER—
PRI R N
() (47r)”/2r(8/2) ‘x|2€ e At 2 ,
1 > 21?2 s—n dt
PRI S L
) = Jy ©C T

Since t|z|? < 16 in G1, we have e~ *I* = 14+ O(t|z|?) as || — 0; thus after changing
variables, we can write

Gale) = (477)‘3);‘ 25/2) / e G
‘x|s n 1 1 e dt O(‘$|sfn+2) 1 1 sem
:(47T)”/2F(8/2)/0 crtrE T <4w>n/2r<s/2>/o ot
n—s—2|,.|s—n 00 s n—s—4 s—n-+2 00 s
:(iw)n/2|1f(‘s/2) /1/4 Y C§/+ : (4@891?('3/2) )/ LY ;lg

:cin\xP*" +O(|z[*~"*?), as|z| — 0.

. . _ L=l
Since 0 < @ < 1and 0 <t <4inG? wehavee 17/4 < e='="2r < 1, thus as

|z| — 0, we obtain

‘x|3—n 9s—n+1
4 dt n—s  n—s s <n,
G2(x) ~ 22 = 2l 2 s=n
s t || ’
|CC|2 2s—n+l
P— s >n.

Finally, we have e~1/4 < 5 < 1in G2, which yields that G3(z) is bounded
above and below by fixed positive constants. Combining the estimates for G4 (),
we obtain the desired conclusion.

(d) For p = 1 and so p’ = oo, by part (c), we have ||Gs||oc < C for s > n.

Next, we assume that 1 < p < cocandso 1 < p’ < co. Again by part (c), we have,
for |z| > 2, that GZ < Ce 1212, and then the integration over this range |z| > 2 is
clearly finite.

On the range |z| < 2, it is clear that f ol<2 ( )dxz < C for s > n. For the case

s =nand n # 1, we also have fl <2 GY ( )dx < C by noticing that

2 2 2\ ¢
/ (ln> dr = C’/ (ln) r"ldr < C
|z <2 |z 0 r

for any ¢ > 0 since lim, o 7° In(2/r) = 0. For the case s = n = 1, we have

2 ya ’ Adr = 1 nl/r)dr
/xK?(ln) dx 2/0 (In2/r)d —4/0 (In1/r)d

|z

o
:4/ tle~tdt = 4T (¢ + 1)
0

for ¢ > 0 by changing the variable r = e*. For the final case s < n, we have

fog rl=mP e =lgr < Cif (s — n)p' +n > 0,ie., s > n/p.
Thus, we obtain |G|,y < C forany 1 < p < oo and s > n/p, which implies the
desired result. [
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We also have a result analogues to that of Riesz potentials for the operator J;.

Theorem 6.2.3. )

(a) Forall 0 < s < oo, the operator J; maps L"(R") into itself with norm 1
foralll1 <r < oo.

(b)Let0 < s <nand 1 < p < ¢ < oo satisty 1/¢ = 1/p — s/n. Then there
exists a constant C), 5, > 0 such that for all f € L?(R"), we have

(©) If f € LY(R™), then |{x : |Jsf(z)| > a}| < (Cnsa™ Y f]1)4, for all a > 0.
That is, the mapping J; is of weak type (1,q), with1/¢g =1 — s/n.

\.

Proof. By Young's inequality, we have ||Jsf|, = ||Gs * fll» < [|Gsll1llfllr = | f]lr-
This proves the result (a).

In the special case 0 < s < n, we have, from the above proposition, that the
kernel G, of J, satisfies

[ el <2
Gs(x) ~ { elal/2, |z > 2.

Then, we can write

Jsf(z) <Cp,s

)

/ |f(z — )|y~ dy + / |f(z - y)\@"y'”dy]
ly]<2 ly|=>2

<o 1) + [ 11—l 2.

We can use that the function e ¥/2 € " forall 1 < r < 00, Young’s inequality and
Theorem 6.1.4 to complete the proofs of (b) and (c). |

§6.3 Sobolev spaces

We start by weakening the notation of partial derivatives by the theory of dis-
tributions. The appropriate definition is stated in terms of the space Z(R").

Let 0 be a differential monomial, whose total order is |a|. Suppose we are
given two locally integrable functions on R", f and g. Then we say that 0°f = g
(in the weak sense), if

o F(@)8%p(x)dx = (—1)l - g(x)p(x)dz, Yo e D. (6.3.1)

Integration by parts shows us that this is indeed the relation that we would
expect if f had continuous partial derivatives up to order ||, and 0% f = g had the
usual meaning.

Of course, it is not true that every locally integrable function has partial deriva-
tives in this sense: consider, for example, f(x) = /11" However, when the partial
derivatives exist, they are determined almost everywhere by the defining relation
(6.3.1).

In this section, we study a quantitative way of measuring smoothness of func-
tions. Sobolev spaces serve exactly this purpose. They measure the smoothness of
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a given function in terms of the integrability of its derivatives. We begin with the
classical definition of Sobolev spaces.

Definition 6.3.1. \

Let k£ be a nonnegative integer and let 1 < p < oo. The Sobolev space
WHP(R™) is defined as the space of functions f in LP(R") all of whose distri-
butional derivatives 0° f are also in L”(R") for all multi-indices « that satis-
fies || < k. This space is normed by the expression

A llwes = D 10%fllp, (6.3.2)

EING

where 900 f = .

The index k indicates the “degree” of smoothness of a given function in W*?.
As k increases, the functions become smoother. Equivalently, these spaces form a
decreasing sequence

LPOWH S WP 5 ...
meaning that each W*+1P(R") is a subspace of W#?(R") in view of the Sobolev
norms.
We next observe that the space W"P(R") is complete. Indeed, if {f,} is a
Cauchy sequence in W*?, then for each a, {9%f,,} is a Cauchy sequence in L?,

la| < k. By the completeness of LP, there exist functions f(® such that f(®) =
lim,,, 0% f,, in LP, then clearly

(—1)'0‘| fm0%pdx = / 0% frmpdx — / F@odz,
R R~ R
for each ¢ € . Since the first expression converges to
(-nlel [ fo%pda,
Rn
it follows that the distributional derivative 9 f is f(®). This implies that f; — fin

WHP(R™) and proves the completeness of this space.
First, we generalize Riesz and Bessel potentials to any s € R by

rf =" (wéf). fe s R, 0¢ supp]f, (6.33)
T =F N1+ we)2),  fe SR, (6.3.4)
It is clear that /=° = I, and J=° = J, for s > 0 are exactly Riesz and Bessel po-

tentials, respectively. we also note that J* - J* = J5t! for any s,t € R from the
definition.

Observe that the condition 0 ¢ Supp/f in (6.3.3) induces that ||/° f||, does not
satisfy the condition of the norms when s € N, since for £ > m € N we have
I kP(a:) = 0in %’ for any P € &, where &, denotes the set of all polynomials of
degree less than or equal to m. Indeed, we have for any a € Nj with |a| = m < k
and any g € .

[ ey = [ ez

[ ) Ot e
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- ('2";'>/ (wiy ! [op (wel5)] © = 0.

It is not good to focus upon .#’(R") when we consider the homogeneous spaces.
We need to work on the quotient space ./ (R")/Z(R"), where & denotes the set
of all polynomials.

Definition 6.3.2. )

Define

F(RY) = {f e SR : /
which is a subspace of . (R") with the same topology.

zf(x)dx =0, Vo € Ng} , (6.3.5)

n

The main advantage of defining the class .# is that for given f € ., the function
given by g = .7 ~1[|¢|*f] is in .. In fact, for f € .7,

fe.s = (0°1)(0) =0, Va € Nj.

We have the following fundamental theorem.

Theorem 6.3.3.

The dual space of . (R") under the topology inherited from .7 (R™) is
S (RY) = 7' (R")/ P (R).

Proof. To identify the dual of . (R"™), we argue as follows. For each u € .7 (R"), let
J(u) = ul #(rn) De the restriction of u on the subspace S (R™) of .#(R"). Then J is
a linear mapping from .7’ (R") to .#" (R").

Firstly, we claim that the kernel of J is exactly &(R"). In fact, if (u, ¢) = 0 for
all ¢ € .7 (R"), then (4, §) = 0 for all ¢ € .#(R), i.e., (i, ) = 0 for all 1 € .7 (R")
supported in R™ \ {0}. It follows that u is supported at the origin and thus v must
be a polynomial by Corollary 2.4.25. This proves that the kernel of the mapping J
is Z(R"™).

We also claim that the range of J is the entire .#/(R™). Indeed, given v ¢
#'(R™), v is a linear functional on .%(R"), which is a subspace of the vector space
7, and |(v, p)| < p(¢p) for all p € .7, where p(¢p) is equal to a constant times a finite
sum of Schwartz seminorms of ¢. By the Hahn-Banach theorem, v has an extension
V on . such that [(V,®)| < p(®) for all ® € .. Then J(V) = v, and this shows
that J is surjective.

Combining these two facts, we conclude that there is an identification

S'(R")/P(R") = 7' (R"),
as claimed. [ |

In view of the identification in Theorem 6.3.3, we have that u; — u in " if and
only if u;, u are elements of ./ and

(uj, @) = (u, )
as j — oo for all ¢ € .. Note that convergence in . implies convergence in .7,
and consequently, convergence in .#” implies convergence in .7”.
The Fourier transform of . (R™) functions can be multiplied by |£]°, s € R, and
still be smooth and vanish to infinite order at zero.
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Indeed, let ¢ € .#(R"). Then, we show that 9;(|¢ ]5/¢5)(0) exists. Since every
Taylor polynomial of ® at zero is identically equal to zero, it follows from Taylor’s
theorem that \8(5 )| < O €M for every M € Z*, whenever ¢ lies in a compact set.
Consequently, if M > 1 — s,

lim 121" 00e) _
t—0 t
where ¢; is the vector with 1 in the jth entry and zero elsewhere. This shows that
all partial derivatives of |£ lsa(f ) at zero exist and are equal to zero.

By induction, we assume that 0(|¢ \Sa(é’ ))(0) = 0, and we need to prove that
0;0°(|€]°6(£))(0)

also exists and equals zero. Applying Leibniz’s rule, we express 0%(|{ 56(£)) as a
finite sum of derivatives of |{|® times derivatives of a;(f) But for each |5| < |af,
we have |8ﬂ$(§)| < Cpplé/M for all M € Z*+ whenever |¢| < 1. Picking M >
la| + 1 — s and using the fact that [0°~#(|¢|*)] < C4l¢|*~1*1H1Pl, we deduce that
0;0“(|¢ |5$(£ ))(0) also exists and equals zero.

We have now proved that 35*1(|§\5$(§)) € .7 for ¢ € .7 and all s € R. This
allows us to introduce the operation of multiplication by |£{|° on the Fourier trans-

forms of distributions modulo polynomials. For s € R and u € 7' (R™), we define
another distribution .Z~1(|¢|°@) € .#/(R") by setting for all ¢ € .7 (R™)

(F7H - 1*0),¢) = (u,] - [°9).

This definition is consistent with the corresponding operations on functions and

makes sense since ¢ € .# implies that | - |3$ also lies in . (R™), and thus the action
of u on this function is defined.

Next, we shall extend the spaces W#?(R") to the case where the number F is
real.

Definition 6.3.4. \

Lets € Rand 1 < p < oo. We write
1 gy = 11 Fllps 1 Wy = 1° -
Then, the homogeneous Sobolev space H; (R™) is defined by

R = {f € S'®"): |fllg; < oo}, (6.3.6)
and the non-homogeneous Sobolev space H,(R") is defined by
HS(R") = {f e S ®Y) : | fllms < oo} . (6.3.7)

If p = 2, we denote H3(R") by H*(R") and H3(R") by H*(R") for simplicity.

It is clear that the space H,;(R") is a normed linear space with the above norm.
Moreover, it is complete and therefore Banach space. To prove the completeness,
let { f,.} be a Cauchy sequence in H. Then, by the completeness of L?, there exists
a g € LP such that

I fm = T gllms = I7° fn — glly = 0, asm — oo.

Clearly, J=°g € .’ and thus H} is complete.
We give some elementary results about Sobolev spaces.
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Theorem 6.3.5. )

Lets e Rand 1 < p < oo, then we have

(a) S isdensein H,, 1 < p < oo.

(b) Hyte — Hy, Ve > 0.

(c) Hy = L, Vs >n/p.

(d) Suppose 1 < p < cc and s > 1. Then f € H,(R") if and only if f €
Hy~ L(R™) and for each j, 8—f € Hy~ L(R™). Moreover, the two norms are
equlvalent

17l ~ o

Hs 1 ’
(e) HF(R") = WFP(R™),1 < p < oo, Vk € N.

Proof. (a) Take f € H,,ie, J°f € LP. Since . is dense in L (1 < p < o), there
exists a g € . such that

1f =gl = [I7°f = glly
is smaller than any given positive number. Since J™°g € ., therefore .7 is dense
in H.
(b) Suppose that f € H;J“f . By part (a) in Theorem 6.2.3, we see that .J. maps LP
into L? with norm 1 for € > 0. Form this, we get the result since

ey = 17° fllp = 1T 72T fllp = (1 Fllp < 1T Fllp = 1|z

(c) By Young’s inequality, the definition of the kernel Gs(z) and part (d) of
Proposition 6.2.2, we get for s > 0

£l =1L+ o) 7720 + )2
n/2
—(50) 17 by
2

n/2
<(5)7 1 ety

=1Gs(@)llp [ 115 < ClSf |-
(d) From the Mikhlin multiplier theorem, we can get (w&;)(1 + |wé[?) ™12 € M,
for 1 < p < 0o, and thus

. R
‘ a?f =[l.Z (1 + Jwg[) D2 (wig;)
JlHES™?

U+ [we?) T2 (we) A + Jwe ) 2T

w — - s
- (' D) 110+ oty 2wty A,
<CIIfllp = Cllf | -
Combining with HfHH;fl < N[ ag, we get
of

J

< Ol f Nl -

s—1
HP

Now, we prove the converse inequality. We use the Mikhlin multiplier theorem
once more and an auxiliary function 0 < x € €*(R) with x(z) = 1 for |z| > 2 and
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x(x) = 0 for |x| < 1. We obtain
-1

L+ wgV2 [ 14D XENIEG | € My, x(&)IEET € My, 1< p < oo,
j=1

and then
£y =175 fllp = 17 QA + |we Y25 £

<ClZ 71+ 3 XEIGH T,

j—l
<O g~ 1+CZ (x(&)I&51¢; T 1‘9’0)
Jj=1 p
of
81'] H‘;_l )

Thus, we have obtained the desired result.
(e) It is obvious that Wo» = H, 0 = L? for k = 0. However, from part (d), if k > 1
then f € Hk if and only if f and af € Hk 1§ =1,...,n. Thus, we can extends the

identity of Wk’p = H} from k = O to kE=1,2,... |

We continue with the Sobolev embedding theorem.

Theorem 6.3.6: Sobolev embedding theorem

Letl < p < p; < ooand s,s1 € R. Assume that s — % = 5] — pﬂl. Then the
following conclusions hold
Hy — H3', H, < Hp.

p1?

Proof. It is trivial for the case p = p; since we also have s = s; in this case. Now,
we assume that p < p;. Since i =1_ s =21, by part (b) of Theorem 6.2.3, we get

P
1A e = N fllpe = IIJS1 S fllpr = 1s—s1T° Fllpy < CNT Fllp = Ol -
Similarly, we can show the homogeneous case. |

Theorem 6.3.7.

Let s,0 € Rand 1 < p < oco. Then J7 is an isomorphism between H, and
Hs,
p

Proof. It is clear from the definition. [ |

Corollary 6.3.8.

Lets € Rand 1 < p < co. Then
(H;)’ :Hp_,s.

Proof. It follows from the above theorem and that (L?)' = L¥,if 1 < p < oc. [

Finally, we give the connection between the homogeneous and the nonhomo-
geneous spaces, whose proof will be postponed to next section.
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Theorem 6.3.9. )

Suppose that f € ./(R") and 0 ¢ supp 7. Then
feH: e feHS VseR, 1<p<oc.
Moreover, for 1 < p < oo, we have
HS =LP N H3, Vs >0,
HS =L + [, Vs <0,
0_7p _ 770
HY =L” = HY.

§6.4 The smooth dyadic decomposition

For simplicity, let w = 1 in the definition of the Fourier transform and its inverse,
and we will use the following forms of them:

FFE) = F(€) =(2m) 8 / € f(2)da, (6.4.1)

n

F (o) =) =m)F [ eeg(e)de. (642

In this section, we will introduce smooth Littlewood-Paley dyadic decomposi-
tion, which is also a very basic way to carve up the phase space.

The dyadic decomposition with rectangles is very intuitionistic for the state-
ment, but it is not convenient to do some operations such as differentiation, multi-
plier and so on. Therefore, we use a smooth form of this decomposition.

Throughout, we shall call a ball any set {{ € R" : || < R} with R > 0 and an
annulus any set {£ € R" : R} < |€| < Re} with 0 < Ry < Rs.

Now, we give the fundamental Bernstein inequalities.

Proposition 6.4.1: Bernstein inequalities |

Letk € Ny, 1 < p < g < 0o, Abe an annulus and B be a ball. Then, we have
Vf € LP(R") with supp CAB = sup [|9°fy < CHHIAFGm)| 1),
|a|=k

Vf € LP(R™) with supp f C \A =
CTHIN I, < Sup 10° fllp < CEFINM £l

\.

Proof. Since f € .#' has a compact support, we have T € & in view of the argu-

ments below Definition 2.4.20. Then, it follows from Theorem 2.4.27 that ? e C*™
which implies that f coincides with a C* function by Fourier inversion in .7”.
Let ¢ be a function of Z(R") with value 1 near B and denote ¢,(&) = (/).
As f(&) = ¢a(&) f(§) point-wisely, we have
O°f = 0%+ f with gy = (2m)"23,.
Thus, gx(z) = )\”gvi)(Ax) = A\"g(Az), where we denote ¢ := g;.
Applying Young’s inequality with 1 := 1 — % + %, we get

10% fllg =110%gx = fllg < [10%gallr I fllp
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=N @) ) [ £l = A [0%g 1 £
n(1=1) aa
=\ =) 10%] | fllp-

The first assertion follows via

(2m)"|0%g]l,

<10 glloe + 0%l
1

<||0%g oo+/ 0%g|(1 + |z*)"———dx

0% gloe + [ 106101+ ) oy

1

<[10% oo + ||(1 + |22)"0%g OO/ S, 1

I glloe 10+ 00l || oy
<Cul(L+ 220 lloe = Call # 77 (1+ 1af)"0%9) o

<Cul Z (1 +12*)"0%) [ = Cull(1 = A)™((i€)*¢(€)) [

~Ch, ZCJ LA (D) < Cny CAIAT(E$())Ih
1 =0
<Cq sup 107(6*)07 ¢
0<|BI<al, 0<o|<2n—| 8]
<Cn sup 1€°07 llx

0<|BI< e, 0| <2n— B

<C,C* sup ||07¢|l1 (since ¢ is compactly supported)
0<o|<2n

k+1
oans

To prove the second assertion, we consider a function ¢ € 2(R" \ {0}) with
value 1 on a neighborhood of A. From the algebraic identity

€= > &8 =) aa(i&)(—i&)*,

11, dksSn || =k

for some integer constants a, and the fact that ? = 5?, we deduce that there exists
a family of integers (aq)aeny such that

F=Y hax0"f, with hg:=(21)""2aqF " <(7i§)a]§|_2k5(§)> €. — L.

|ae|l=k
For A > 0, we have

~ A N
Fe) = Y aa sl dem6e) F@) =3 Y a0 T Ge e
2Tl 2 TN
which implies that
F=AF) " Mha(A) «0°f.
|a|=k
Then by Young's inequality we get

11l <

AT halllo fllp < CFFATFR S 0% f |,

|loe|=k lo|=k

and the result follows from the first inequality.

),

Remark 6.4.2. When the frequency is localized, one can upgrade low Lebesgue
integrability to high Lebesgue integrability, at the cost of some powers of A\; when
the frequency A is very slow, this cost is in fact a gain, and it becomes quite suitable
to use Bernstein’s inequality whenever the opportunity arises.
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The following lemma describes the action of Fourier multipliers which behave
like homogeneous functions of degree m.

Lemma 6.4.3.

Let A be an annulus, m € R, and k£ > n/2 be an integer. Let o be a k-times
differentiable function on R™\ {0} satisfying that for any o € N} with |a| < k
there exists a constant C,, such that

0°0(£)| < Calé|™ 101, ve e R™.
Then, there exists a constant C, independent of )\, such that for any p € [1, x]
and any A > 0, we have, for any function f € L? with supp f C A,

lo(D)flly < CN"|[fllp,  witha(D)f = F o).

\.

Proof. Consider a smooth function # supported in an annulus and such that § = 1
on A. It is clear that we have

o(D)f =(2m) 25 x f = (2m) 2T THO(E/ N0 (€)) * .
Thus, we only need to prove §({)o(A) € M,(R™), or equivalently, 6(£)o(X) €
M, (R™). We can use the Bernstein multiplier theorem (i.e., Theorem 2.6.5) to prove
it. In fact, we have

10(€)a(A)ll2 < CollB(E)AE]™ [l = CoA™ [[0(£)I€]™ |2 < CA™,

and by Leibniz’s rule

k
198, (0(€)e (Al <D CRIOE 0N (9E,0)(AE) 2
/=0

<O’ Z 198 0)IAEI™ Iz
=0

k
<SCRA™ Y108 0©)1E™ Iz

<C\™.
Thus, we have [|0(§)a(A\§)[[a, < CA™ by the Bernstein multiplier theorem for any
p € [1,00]. Then, we obtain the desired result. [ |

Let a € (1,4/2) and ¢ : R* — [0, 1] be a real radial smooth bump function, e.g.,

L €l <o
¥(€) =< smooth, a~! < |¢| < a, (6.4.3)
0, €l > o
Let (&) be the function
p(€) = ¥(£/2) = ¥ (&)- (6:4.4)
Thus, ¢ is a bump function supported on the annulus
A={¢: a7 <¢ <2a}. (6.4.5)

By construction, we have

D 2R =1

kEZ

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



§6.4. The smooth dyadic decomposition -201-

for all ¢ # 0. Thus, we can partition unity into the functions (27%¢) for integers ,
each of which is supported on an annulus of the form |¢| ~ 2.
For convenience, we define the following functions

er(€) = p(277) = Y11 () —Pu(§), k€
Since supp ¢ C A, we have
supp o C2FA = {{ AT €| < 2’““(1} , kez,
(6.4.7)

supp ¥, C {5: €] < m}, kel

We now define the k-th homogeneous dyadic blocks A, and the homogeneous
low-frequency cut-off operators Sy, by
Aef =7 Nef), Sef=F ') = Y. Aif, ke (64.8)
i<k—1
Informally, Ay, is a frequency projection to the annulus {¢ : 2Fa~! < |¢] < 281},

while S, is a frequency projection to the ball {¢ : |¢| < 2¢a}. The non-homogeneous
dyadic blocks Ay, are defined by

Apf=0ifk < -2, A_if=Sof, and Apf=A,fifk>0
The non-homogeneous low-frequency cut-off operator S, is defined by

Sef= Y Af.
j<k—1
Obviously, S.f = 0if k < —1,and Spf = Spfif k>0

Observe that Sk+1 = S, + Ay from (6.4.6). Also, if f is an L? function, then
Sif — 0in L? as k — —oo, and Spf — fin L? as k — oo (this is an easy
consequence of Parseval’s theorem). By telescoping the series, we thus can write
the following (formal) Littlewood-Paley (or dyadic) decomposition

Id=) A, and Id=) A, (6.4.9)
keZ keZ
The homogeneous decomposition takes a single function and writes it as a super-
position of a countably infinite family of functions A, f, each one of which has
frequency of magnitude roughly 2*. Lower values of k represent low frequency
components of f; higher values represent high frequency components.

Both decompositions have advantages and drawbacks. The non-homogeneous
one is more suitable for characterizing the usual functional spaces whereas the
properties of invariance by dilation of the homogeneous decomposition may be
more adapted for studying certain PDEs or stating optimal functional inequalities
having some scaling invariance.

In the non-homogeneous cases, the above decomposition makes sense in . (R™).

Proposition 6.4.4.

Let f € .Z'(R™), then f = klirf S f in ' (R™).
—+o00

Proof. Note that (f — Sif,g) = (f,g — Skg) forall f € #'(R") and g € .(R"), so
it suffices to prove that g = i lirf Sig in . (R™). Because the Fourier transform is
—+00
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an automorphism of .#(R"), we can alternatively prove that ¢»(27%-)§ tends to § in
Z(R™). This can easily be verified, so we left it to the interested reader. |

We now state another result of convergence.

Proposition 6.4.5. .

Let {u;};en be a sequence of bounded functions such that supp@; C 274,
where A is a given annulus. Assume that for some N € N

lujlloe < C27N, Vj €N, (6.4.10)

then the series ) u; converges in .7,
J

\.

Proof. Taking ¢(¢) € 2(R" \ {0}) with value 1 near A, we have near A and any

keN,
@ = ST = Y a0 it S TE)
namely, o
=Y gox s, ga = (27) 207! [(“gjﬁiam]-

|a|=k

Similarly, on each 274, it holds

=2 a2 ygi/€2/f2|2;)g B(&/27)(i€)T5(€),
la|=k
that is,

uj =27 Y " 20, (27:) % 0% (6.4.11)
o=k
Forany f € ., we get

[z, S =277 D (uj, 27 ga (—27) % (=0)°f)

la|=k
<27 ugllooll2 ga(=27-) 0% fln
|a|=k
o270 Y N9 .
|a|l=k

It is clear that
fe} dx n+1| o
01 < | e s (14 a7 )

<C sup (1+ [z])" 10" f(x)].
TER™?

Taking k = N + 1, we have

Y (up H<C Y sup (L [z)" 0% f(x)].

jEN la|=N+1"<R"
which implies the series converges in .’ by the equivalent conditions of .. Thus,
the convergent series

(u, f) —hmz ujr, f)

/<j
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defines a tempered distribution. |

For the operators A;, and Sy, we can easily verify the following result:

Proposition 6.4.6.

Let o € (1,v/2), k, | € Z, and Ay, Sy, be defined as in (6.4.8). For any f €
Z'(R™), we have the following properties:

SeApf =0, ifl>1, (6.4.12)
AAif=0, iflk—1]>2. (6.4.13)

Remark 6.4.7. In these properties, we need the condition o < 2 which is the reason
that we requires o < v/2 in the beginning of the section.

When dealing with the Littlewood-Paley decomposition, it is convenient to in-
troduce the functions

~

(&) =v(€/2), B(E) = v-1(&) + wo(§) + ¢1(8) = ¥(§/4) — ¥(26).
as well as the operators
Sk =F P27 F = Spp1, N =F P27 Z.
It is clear that S, = S5y, and A, = ZkAk from Proposition 6.4.6.

By the Bernstein multiplier theorem, we can easily prove the following crucial
properties of the operators Ay and Sj:

Proposition 6.4.8: Boundedness of the operators

Forany 1 < p < ocoand k € Z, it holds

1Ak fllp < Clfllp,  1Sefllp < ClLf Ny,
for some constant C' independent of p.

We now study how the Littlewood-Paley pieces ALf (or Si.f) of a function are
related to the function itself. Specifically, we are interested in how the L? behavior
of the Ay, f relate to the L? behavior of f. One can already see this when p = 2, in
which case we have

1/2
I £ll2 ~ (Z ||Akf||%) : (6.4.14)

keZ
In fact, we square both sides and take Plancherel to obtain

| dera~S [ ja@Piere

keZ
Observe that for each £ # 0 there are only three values of ¢(£) which does not
vanish. That is, for £ € supp ¢y,

> len(© =07_1(&) + 07 (&) + 9741 (E)

kEZ

=(pe—1(&) + (&) + @e+1(£))?
= 2(pe-1(&)pe(§) + pe-1(§)wes1(8) + 0e(§)per1(€))
=1 = 2(pe-1(&) + e11(8))pe(€)
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=1 —2(1 — we(§))pe(§)
=1 —2¢(€) + 27 (€)
2

—5+2(3-9©)

1

which yields
<Y ek <1, VE£0.

The claim follows.
Another way to rewrite (6.4.14) is

1/2
1fll2 ~ (Z !Akf|2) : (6.4.15)

kEZ 9

, 1/2
The quantity (Z wez |Akf |2) is also known as the Littlewood-Paley square func-
tion. More generally, the Littlewood-Paley square function theorem is valid for this
smooth type decomposition:

Theorem 6.4.9: Littlewood-Paley square function theorem \

For any 1 < p < oo, we have

1/2
(Z |Akf12) ~ £l

keZ

p
with the implicit constant depending on p.

The proof of this theorem is very similar to that of Theorem 5.4.1, so we remain
it to the interested reader.

Now, we can give the proof of Theorem 6.3.9.
Proof of Theorem 6.3.9. Since 0 ¢ supp ?, we have ?(f ) = 0 in a neighborhood of
& = 0. Then there is some integer kg such that f =) k>ko ALf. Noting that

(1+ [wé?) 2 we| ™ Y~ pu(€) € M,

k>ko

by the Bernstein multiplier theorem, we see that for f € Hg (R™)

k>ko

Iflleg = |7 ((1 + [wE?) Pl 7 Y w(é)ﬁ?) <Ol
p

Conversely, if f € Hj;, then we note that |wé|*(1 + [w&[*) /23,5, @r(€) € M, in
view of Bernstein multiplier theorem. Thus,

k>ko

£l = |7 (wwl w2 S ms)fs?) < Ol fllm;.
p

We consider the case s > 0. If f € LP N H;’, then we obtain as above

11l < |77 ((1 + |w§2)5/2w682%($)f”7)
p

k>0
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! ((1 - \wa?)s/QZsok(f)?)

k<0

+ |7

p
<CUIfll 5 + 1£1lp).
Conversely, if f € H;, then clearly f € L? and

(wg L+ we?) 2 S gnle Js)

k=0
el 32" 77 (e Meree o) |

<C(HfHH; + 1 fllp) < CllF -

Now, we consider the case s < 0. If f € LP + H;, ie., f = f1 + fo for some
fieLPand f5 € H; with 0 ¢ supp E, then

1y < filleg + N foll g

=1 fillp + || F ((1 + [w ) w7 > sok@)@)
p

k>ko

£l <

p

<Ufilly + C

by Theorem 6.2.3 and the fact that (1 + [w&|?)*/?|w| ™ 35 1, @r(€) € M, for s < 0
by the Bernstein multiplier theorem. Conversely, if f € H,, then f =}, Apf +

Zk;o Ay f where 1> k<0 Akf”p < [Ifllp and || Zk;o Akf”f{; < ||f||H; by the first

conclusion since 0 € supp 7 (3_;~¢ Arf).
For the case s = 0, it is obviously from the definitions. [ |

§6.5 Besov spaces and Triebel-Lizorkin spaces

The Littlewood-Paley decomposition is very useful. For example, we can define
(independently of the choice of the initial function v) the following notations.

Definition 6.5.1. )

Lets € R, 1 <p, r < . For f € ./'(R"), we write

1£15,, = ( > (23’“\|Akfup)’”) , (65.1)

k=—o00

17155, =107l + (Z (2S’fr|Akfup)’”) . ©52)

k=0

Observe that (6.5.1) does not satisfy the condition of the norms, since we have
ApP(z) = 0in .’ forany P € Z. In fact,

ApP(z) =0in . <= (ALP,g) =0, Vg € 7.
It follows from 0 ¢ supp ¢y, for any k € Z that for any o € Nj

~—

/ a:aAkg(a:)d:c:/ a:aA/;;(az)d:c:/ e_m'oilal@g‘@(x)dx
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— A\ ol
n/2:|la A n/2 o ? a A
=(2m)"/24l [af Akg] (0) = (2m)™/2il <w) (08 (¢r9)] (0) = 0.
Thus, by the property of ¢, we obtain
/ (Apz®)g(z)dz = 0.

Now, we can use .# (R") to give the following definition.

Definition 6.5.2. w

Let s € R, 1 < p, r < co. The homogeneous Besov space B;r is defined by
By, —{F € S @) |flg <o},
and the non-homogeneous Besov space B, ,. is defined by

B;, = {f e 7' ®):Ifls;, <o}

For the sake of completeness, we also define the Triebel-Lizorkin spaces.

Definition 6.5.3. ~

LetseR,1<p<oo,1<r < oo. Wewrite

1

171155, = (Z (28’“|Akf|)’“> L Ve S®Y,

k=—o00

p
1

1£llg, =NSofllp + (Z(zs’fmkfr)’) . Ve SR,

k=0
p

The homogeneous Triebel-Lizorkin space F]ir is defined by
Ero={re ' ®:|fly, <o},
and the non-homogeneous Triebel-Lizorkin space F};, is defined by

Fy={re s @)1l < x}.

Remark 6.5.4. It is easy to see that the above quantities define a quasi-norm and a
norm in general, with the usual convention that » = oo in both cases corresponds
to the usual L* norm. On the other hand, we have not included the case r = oo
in the definition of Triebel-Lizorkin space because the L> norm has to be replaced
here by a more complicated Carleson measure.

Besov space and Triebel-Lizorkin space were constructed between 1960’s and
1980’s. Recently, they are widely applied to study PDEs. Roughly speaking, these
spaces are products of the function spaces ¢" (LP) or LP(¢") by combining the Littlewood-
Paley decomposition of phase space. The index s in the definition, describes the
regularity of the space.

From Theorem 6.4.9, we immediately have the following relations involving
Sobolev spaces and Triebel-Lizorkin spaces:
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Theorem 6.5.5.
Letse Rand 1 < p < co. Then
HY =F3,, Hj=F3,, (6.5.3)

with equivalent norms.

For simplicity, we use X to denote B or F'in the spaces, that is, Xy (X;’r, resp.)
denotes B, , (B, ,, resp.) or F7 . (F,,, resp.). But it will denote on@y one of them
in the same formula. We always assume that 1 < p < oo for B;’T (B;jyr, resp.) and
1 < p < oo for F,;, (F7,, resp.) if no other statement is declared. We have the

following embedding relations:

Theorem 6.5.6. )

Let X denote B or F. Then, we have the following embedding:
Xpr = Xp o X;,rl = X;,W if r <o,
X;te s X, ife >0,
;’min(w) — Fy, — B;vmax(p’r), if 1 <p< oo,
B} wminipr) = For = Bymax(ary, 1 <0 < 00.

Proof. It is clear that the first one is valid because of ¢" < ¢"*¢ for any a > 0. For
the second one, we notice that

N H - 1
Z 25kr2 ’ak ’1"2 < sup 2(s+a)k ‘ak‘ Z 2—akr2 5 sup 2(s+a)kz ’ak ’ )
k=0 k=0

k=0 k=0 Z
Taking aj, = ||Ax f]|p or ar, = |Agf|, we can get
Xpse = Xp o

which yields the second result in view of the first one.

For the third and last one, we separate into two cases and denote by, = 2°*|A, f|
and j = 0 for the third or j = —co for the last one.

Case I: » < p. In this case, we have ¢ — /P and

Sl =3 / by Pz = / S Jb () Pda
k=3 k=j R Rn pa
= [ N lde s [ 10 lfde
Rn R

which yields the second parts of embedding relations. Moreover, by Minkowski’s
inequality, we get

T

s -

k=j p k
-

>t
k=j

which yields the first parts of embedding relations.
Case II: p < r. By Minkowski’s inequality, we have

[e.9]

[oe)
1550e = S el
k=j

J

T

o o oo oo
> lbklly =D loklle < [0kl = { Dbk | -
k=j k=j k=j k=j

p
T

S =
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which yields the second parts of embedding relations.
In this case, we have /Z — ¢" and

1) ller Il S (0%) Nlew 1 = pr = lowl,

1
which yields the first parts of embedding relatlons. We complete the proof. [

From Theorems 6.5.5 and 6.5.6, we can get the following corollary.

Corollary 6.5.7. .

Let s € R. Then we have:

i) For1 < p < oo, Bp min(p2) Hj — Bp max(p,2) and Bp min(p,2) — Hj —

Bp,max(pg). In particular, H* = B3, = I';, and H® = 32’2 = F2’2.

ii) For1 <p< oo, By, < Hy — B, and B;l — H; — B;oo

\.

Proof. It obviously follows from Theorems 6.5.5 and 6.5.6 except the endpoint cases
p = 1 or oo in ii). For the proof of the endpoint cases, one can see [BL76, Chapter
6]. [ ]

Theorem 6.5.8. )

Let X denote B or F'. Then,

i) X;,and Xg,r are complete;
i) S (R") = X3, — ' (R"), S (R") = X5, = &' (R");

if 1 < p,r < oo; L(R") is dense in X5, if

iii) .7(R™) is dense in X3 ot

pr’
1< p,r < oo

\.

Proof. We only show the non-homogeneous cases and leave the homogeneous cases
to the interested reader (cf. [Jaw77, Saw18]). Clearly, X, is a normed linear space
with the norm [| - || x;  since either £"(LP) or LP(£") is a normed linear space. More-
over, it is complete and therefore Banach space which will be proved in the final.
Let’s first prove the second result. We divide the proofs into four steps.

Step 1: To prove ./ < Bj . In fact, for ¢ = max(s,0) and sufficiently large
L € No, we have for any f € ., from Proposition 6.4.1 and 6.4.8, that

1£1135... =11S0flp + sup 2°* | A fl,
’ k>0

<C|fllp + sup 2M)|(V=2) T Ak(V=2)" f

’Itis enough to assume that L > %. In fact,

~ 1/p o 1/p
||<1+|x|2>—an=c(/ T"_1(1+7"2)_Mdr) <ch(/0 rn_l(l—l—r)_QPLdr)
0
o0 1/p
<Co2* (/ (1 +r)*2p“”*1dr) < 2" (2pL —n)7V7,
0

where we assume that 2pL > n.
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S flap +sup 227 |(V=2)7 f|,

B k>0
D 1 flays + 1+ 2 (V=2 flloo S Zlfla,ﬁ
o

where |f|,,g is one of the semi-norm sequence of .. Thus, we obtam the result.
Step 2: To prove . < X ,. From Step 1, we know .# — B’ for any ¢ > 0.

From Theorem 6.5.6, we get B“’*+6 = B} inpr)  BprDVE Therefore, &/ — X ..
Step 3: To prove B; ,, < 5” ’. For simplicity, we denote A_; = 0 temporarily.

Forany f € B, ., and a € ./, we have, from Schwarz’ inequality, Proposition 6.4.8

and the result in Step 1, that

1(f, )| —y< SO+ZAk 50+ZAl)a>\
=0

<[ (Sof, SoOé) | + [ (Sof; Aoa) [ + | (Ao f; Soev) |

co 1
+3 0 AL, Apa) |

k=01=-1

00 1
Sl o+ D7 I1ARF ol Ak il

k=01=-1

00 1
k —sk
Ul o+ 2% Ak fllp2~F | Ak aarll
k=01=-1
oS

k —sk
SIFlplled] o +sup 2| A fllp Y~ 27 | Agad|
k>0 k=0

Sy el go+e
p ,00

Sy . on ().

Here, we can take « over a bounded set B of ., then py(a) < C. Thus, we have
proved the result.

Step 4: To prove X ;. — .#". From Theorem 6.5.6, we have X, — B} ax(p.)
By oo — S,

Finally, let us prove the completeness of B, .. The completeness of FJ, can be

(ﬁ

proved at a similar way. Let {f;}]° be a Cauchy sequence in B;,.. So does 1t in .’
in view of ii). Because . is a complete local convex topologlcal hnear space, there
exists a f € ./ such that f; — f according to the strong topology of .. On the
other hand, that {f;}7° is a Cauchy sequence implies that {Aj f;};°, is a Cauchy
sequence in LP. From the completeness of L?, there is a g, € L” such that

Ak f1 = grllp =0, 1 — oc. (6.5.4)
Since LP — .’ and Ay fi — Agf asl — oo in ., we get g, = Ay f. Hence, (6.5.4)
implies

1A (fi = F)llp =0, 1 — oc.

which yields supy s 2679 | A(fi — £)|l, = 0as — oo forany e > 0.
Similarly, we have

1So(fi = P)llp = 0, 1— oo
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Therefore,

I = fllBg, S Wfi— fllggee =0, 1 — o0

Similarly, we can obtain the density statement in iii). We omit the details. [ |

§6.6 Embedding and interpolation of spaces

Theorem 6.6.1: The embedding theorem |

Letl < p, p1,r, 1 < ooand s, s; € R. Assume that s — % =851 — pﬂl. Then

the following conclusions hold

s s oY) oY) .
B,,—= B, ., Bpr—=>B,,, Yp<p and r < rq;
s s s 81
By = Bplriy Fpp = Bplpyy WP <p1<oo.

\.

Proof. We only give the proof of the non-homogeneous cases, the homogeneous
cases can be treated in a similar way.

Let us prove the first conclusion. From the Bernstein inequality in Proposition
6.4.1, we immediately have

1

kn
1A oy S 27 AR s 1150 F 1l S 10 lips (6.6.1)

since 1 < p < p1 < oo. Thus, with the help of the embedding By, — B, for
r < r1in Theorem 6.5.6, we get

1£llss1,. =lS0fllp, + (Z (251201l ) )

k=0

1
1

1
0 r 1
<IS0f I + (Z (218071, ) ) = 1fll35,, S 17135,
k=0
This gives the first conclusion.
Next, we prove the second conclusion. In view of Theorem 6.5.6, we need only
prove I, < F}! ;. Without loss of generality, we assume || f|/rs . = 1 and con-
sider the norm

o0

> 2k ALf|

k=0

£l , = 1S0f Il +
1>

p1

We use the following equivalent norm (i.e., Theorem 1.1.4) on L? for 1 < p < oc:

I£1I5 = p/o Pz | f(2)] > t}|dt.

Thus, we have
p1

0o A s
Sotial| = [ o {w:2251’“lAkf(w>l >t} dt
k=0 0 k=0

P

dt

o0
+p1/ ¢t
A

=]+ 1II,

{I : Z2$1k|Akf(az)| > t}
k=0

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



§6.6. Embedding and interpolation of spaces -211-

where A > 1 is a constant which can be chosen as below. Noticing that p < p; and

n __ n 3
s—g—sl—p—lmplys>51,wehave

Z 2s1k|A f| < 2K 51—5) Sup28k|Akf| VK € NO' (662)
k=K
By taking K = 0 and noticing p < p; (which implies that =1 < AP—Pr—1 for
t < A), we get

A
I</ it
0
cA
</ 71

0

where the implicit constant depends on A, but it is a fixed constant.

dt

{:c s sup 2°%| Ay f ()] > ct}

P

p
dr <

{x:sup28k\Akf(a:)] >7’} sup 2°F| A f|
k>0 k>0

p

Now we estimate /1. By the Bernstein inequality in Proposition 6.4.1, we have

1Ak lloo < 2572 Agf]lp < 2K0H/P—)

sup 2°F| Ay, f|
k>0

p
Hence, for K € N, we obtain
K-1 K-1
D 2 IARSL S 3 2T fsup 2 Ay f|
k=0 F=0 “ P (6.6.3)
SR sup 2H A f | 20
k>0 ,

Taking K to be the largest natural number satisfying C25"/P1 < t/2, we have 25 ~
/n Tt is easy to see that such a K existsif ¢t > A > 1. Thus, fort > A and
S0 2K |(Agf)(z)| > t, we have, from (6.6.2) and (6.6.3), that

C2E = sup 2 F A f] > 37 27K |ALf| > 1/2. (6:6.4)
k>0

k=K
Hence, from (6.6.3) and (6.6.4), we get

I —p1/ P11 {x : ZQSlk\Akf(x)] > t}
A

k=0
00
</ =1
A

K-1
{:c 251K AL f () y>t/2} dt

k=0
+/ 1 {x: Z 25F AL f ()] > t/Q} dt
A k=K

g/oo P11 ‘{x . 02K/ t/2})dt

A
o0
+/ tpl—l
A

{:z: ssup 2°F| AL f ()] > ctpl/p}
k>0

dt

{93 : C2561=%) qup 25 | AL f ()| > t/Z} dt
k>0

dt

o0
</ 11
A
o0
< / Tp—l
!
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Slisup 2% [ALfIIF < 1.
k=0

That is,

oo

ootk A fll <L

k=0 P1
On the other hand, from (6.6.1), we have ||Sy f||,, < 1. Therefore, we have obtained
(Kl B, < 1 under the assumption || f||5; .. = 1. This completes the proof. [ |

Theorem 6.6.2.

Letl <p<oo,s>n/pand 1< r < oo. Let X, denote B, , or F,;,.. Then it
holds

s 0 00
Xpr < Bogq = L™

o0,

Proof. By Bernstein’s inequality and Theorem 6.5.6, we have

1l < D7 18kF oo S D 2" /PlALF N

k=—1 k=—1

< ( 3 2k<n/p—s>> 17135, S 1£11x3,.

k=—1
|

Now, we give some fractional Gagliardo-Nirenberg inequalities in homoge-
neous Besov spaces.

Theorem 6.6.3. )

Let 1 < p,po,p1,7,70,71 < 00, 8,850,851 € R, 0 < 6 < 1. Suppose that the
following conditions hold:

s—”=41—m<%-”>+e<a-">, (6.6.5)

p Pbo P

s< (1 —0)sg+0s1, (6.6.6)
1 1=, 9 (6.6.7)
T To T1

Then the fractional GN inequality of the following type
. 1-6 0
lulsg, S lullgd Nl 668)

holds for all u € B0 N Bs

Po,T0 p1,71°

\.

Proof. Let s* = (1—-0)sp+0s1,1/p* = (1—0)/po+6/p1and 1/r* = (1—0) /ro+6/r;.
By (6.6.6), we have s < s* and r* < r. Applying the convexity Holder inequality,
we have

o < FI1ASE 0. . 6.
Hf||B; < f] BpS,TOHf”Bpi,n (6.6.9)

* gk
T

Using the embedding B;:,r* — B;r, we get the conclusion. [

For the most general case, we give some fractional Gagliardo-Nirenberg in-
equalities in homogeneous Besov, Triebel-Lizorkin and Sobolev spaces without proofs
(cf. [HMOW11]).
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Theorem 6.6.4. \

Let1 < p,po,p1,7, 70,71 < 00, 8,850,851 €R,0 <6 < 1. Assume that

o) (o).

then the fractional Gagliardo-Nirenberg inequality of the following type
. < 1-0 0 s
I sy, < oo W W2

holds for all f € B;S;S,ro N Bf,}’rl if and only if one of the following conditions
holds: L 1.6 8
i)s<(1—0)sp+0s;and — < — +—;

r To 1
ii) po = p1and s = (1 — 0)sy + Os1 but sg # s1;
iii)so—ﬁ ;és—zands < (1 —0)so+ 0s;.

Po p

\.

Theorem 6.6.5. )

Let1 < p,pi,r < 00, 8,580,581 € R, 0 < 60 < 1. Then the fractional Gagliardo-
Nirenberg inequality of the following type

—0 0
1F1g5, S IS1E 1A%

holds if and only if

8—22(1—9)(80—£>+9<81—£>,
p bo h

s< (1 —0)so+0s1,
so # s1 if s =(1—6)sp+ Os;.

\.

Corollary 6.6.6.

Let1 < p,po,p1 < 00, s, s1 € R, 0 < 6 < 1. Then the fractional Gagliardo-
Nirenberg inequality of the following type

1-0 [4
1AW gy < Ao 1 s

holds if and only if

Now, we give the duality theorem:

Theorem 6.6.7: The duality theorem

Let s € R. Then we have
i) (By,) = B, 5., it 1< p, r<oo.
i) (Fy,) = F,ifl <p,r<oo

Proof. Please read [BL76, Tri83] for details. |
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§6.7 Differential-difference norm on Besov spaces

The next theorem points to an alternative definition of the Besov spaces B, ,
(s > 0) in terms of derivatives and moduli of continuity. The modulus of continuity
is defined by

wp'(t, f) = sup || a7 fllp,

lyl<t
where A7 is the m-th order difference operator:

ch f @+ ky).

Theorem 6.7.1. N

Assume that s > 0, and let m and NV be integers, such that m + N > s and
0< N < s.Then, with1 < p, r < o0,

; . aNf Tdt 1/r
N—s wm S, —
HfHB;,TN”f”er;(/O (t (t f‘%véV)) 'f> |

Proof. We note that wy' is an increasing function of ¢. Therefore, it is sufficient to

s Hfr|p+z<2<2“m (ng}j)))/

l=—00 J

\.

prove that

First, we assume that f € B p,r' It is clear that

o f o 5 LN
w2, ) = sup |[A) —5| = sup Con (1) —x (z + ky)
p 83:5»\7 lyl<2-¢ 4 8x§-v , <2t i Bxé-v )
N [ k k
= suwp || [ D Cn(=DFf(x + ky)
lyl<2=¢ || 95 \ ;2o v
N & k kgr—1/ ik
= SuP,e 6{1;7]\] Zcm( ].) ﬁ_ (GZ yff)
lyl<2 7 \k=0 P
N ag—1 S k k _iky- £
= sup (%—NJ ZCm(—l) e f
lyl<2 J k=0 »
oN 1 ) ~
= sup ||—F ((1—e¥E)ymf
<2t || 0 ( ) )

Denote p,(£) = (1 — %)™, By the Littlewood-Paley decomposition and the Bern-
stein inequalities, we have

N
et 2
Ox;
0o aN - R
= sup (SO +2Ak> aiNg ! (Py(f)f)
lyl<2¢ k=0 Ty »
< sup (2%)_”/2;\);*S0fH + sup 2kNH (2m) "/2 *Aka
lyl<2-¢ Pyl<emt 1.5
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Hence, it follows

E(E (e (5))

S (2 sup 2w 2y Sof

B ly|<2~¢
e 1/r
+ sup S0 2Rk om) 2 A f,) )
lyl<2=¢ 120

If we can prove that for all integers &
1(2m) /%57 % Sofllp S min(L, [y™) S Il (6.7.1)
and
12m) "5y % Apfllp S min(L, [y™2"™*) | Agflp- (6.7.2)

Then, we can obtain

S5 (v (54) )

SO0 (207 sup min(1, Jy™)l1Sof Il

l=—co ly|<2—*
= o (k) (s—N) ok k ™Y
+ sup 3 20PNk min(, Jy |2 |Acf ) )
lyl<2=¢ 19

S0 (M min( 2 yf],

{=—00

+ Z Q(Z—k)(S_N) min(l, 2_(£_k)m)2ks||Akf||p> )

SN min(1,275)) + (ag) ||
SN min(L, 275)) | (@) lle S 1111,

1/r

where the sequence ()22 with ag = 25%||Agf|, if k > 0, a1 = [|Sof], and
ag = 0if £ < —1, and we have used the Young inequality for a convolution of two
sequences. In addition, we have

11l SIS0 flls + > 1A%l

k=0
0o 1/7" 00 1/7‘
<SISoflp + (Z 28’”) <Z(2s’f||Akfllp)’"> Sfllss,
k=0 k=0

which implies the desired conclusion.
Now, we turn to prove (6.7.1) and (6.7.2). We only need to show p, € M, and
py( )y, )™ € M, for p € [1, 00] and

loyllae, < C5 loy( )y, )™ llm, < C, Yy # 0. (6.7.3)
In fact, from the definition of p,, we get
”,0 ”J\/[ :(27_‘_)—n/2 sup ”b; * f”p = sup ” Z;cn:O Cﬁl(_l)kf(m + ky)HP
o rer My fex 1£1lp
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<> Ch=2m
k=0
By Theorem 2.6.4, we have
12y (&) (5> €)™ I,y =II(1 — £ ™y, >’mHMp(Rn)
=[1((1 =) /m)™ I, =
<[[((1 ez")/n)llmp(R

since M), is a Banach algebra and the integer m > 1 in view of the conditions m +
N >sand0 < N < s.

In view of the Bernstein multiplier theorem (i.e., Theorem 2.6.5), we only need
to show ((1 — e)/n) € L*(R) and 9,((1 — ™) /n) € L*(R). We split the L? integral
into two parts [7| < 1 and |n| > 1. For |n| < 1, we can use |1 — ™| < || to get
|(1 — €™)/n| < 1; while for its first order derivative, we can use Taylor’s expansion

oo
ef= > %’T whenever |z| < oo (z € C) to get
k=0

Op((1 =€) /n) = —n~2(ine™ +1 — ™)
= (in)k & (in)”
=—n-2(mkzo<23 -t

(=Tt & (i)t
__”2<kzo ! _kzzo(kJrl)!)
> k‘m
Z(
(

k=1

>, (in)k- 1
S

which implies |9, ((1 — €™)/n)| < e, Then it is easy to get the bound of the L?
integral. Thus, ||((1 — ™)/ M, ®) < C by Theorem 2.6.5, which completes the
proof of (6.7.3).

Similarly, we can prove
1K/ lyl, )™ O)llav, < C, and [[y/lyl, )™ B(C)llne, < C,
which implies
1w Y™, < Clyl™, 1y, Y™ B2 ) v, < Cly[™27*,

Thus, we get

l@m) =255 % Sof lp SIS0 .

1(2m) ™25y % Sofllp =I1(2m) ™" F "oy () (y,€)™™) * F ({4, €)™ 6 ()) * Sof Iy

SIyl™ 150 f 1y,

which yields (6.7.1). In the same way, we have
12m) =25y % Aifllp 1Ak lp,

1(2m)~ ”/QV*Akap =[12m) T (F Ty (), ©)7™) * F T (5, )" B(27EE)) * Anfllp
Sly™ 2 | Ag £l

which yields (6.7.2).
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The converse inequality will follow if we can prove the estimate

_ oN
1Auflly < C2VEY /

, (6.7.4)
N
Jj=1 Oz

p
where pji, = p(y-+.;) With e; being the unit vector in the direction of the ¢;-axis and
py defined as the previous. In fact, if (6.7.4) is valid, we have, by noting ¢ € My,
that

pjk *

1/r
(o) . n a
i, S+ {3 | 2070 3 o5+ 5
k=0 =1 P

<Hpr+;<kzo <2k8 N, (2 i §$f>> >1/r7

which implies the desired inequality.
In order to prove (6.7.4), we need the following lemma.

Lemma 6.7.2.

Assume that n > 2 and take ¢ as in (6.4.4). Then there exist functions x; €
Z(R™) (1 < j < n),such that

ij =1 on suppy,
j=1

suppx; C {€€R™ &> (3vn) "'}, 1<ji<n

Proof. Choose x € .7 (R) with suppx = {£ € R : [¢] > (3y/n) "'} and with positive
values in the interior of supp x. Moreover, choose o € .7 (R"" 1) with suppo =
{¢ e R"1: |¢| < 3} and positive in the interior. Writing

5 = (fla"' agjflyé-j*Fla"' 7511)

and
Xi(§) = K(&)o 59/2 K(&)o 1<j<n,

where 37 k(&)o(€7) > 0 on supp ¢, only routine verification remains to com-
plete the proof of the lemma. [

We now complete the proof of the theorem, i.e., we prove (6.7.4). By the previ-
ous lemma, we obtain the formula

[PAV IS Z

23 et o) « 7 )

oM @G N e ) x 7T (Pakg:f)

oNf

n
—kN
52 Z p]() X]é. QDH p]k 8 N
j J

p

I

n
$2 kNZ 'Oyk
=1 p

OV
83’
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since, by Theorem 2.6.4 and 2.6.5, we have
(1—€e%)7x;(€)& N p(€) € My,
forl<j<nand1 <p< oo [ |

Now we give a corollary which is very convenient for nonlinear estimates in
PDEs.

Corollary 6.7.3. .

Assume that s > 0and s ¢ N. Let 1 < p, r < oo, then

n - 1/r
HfHB;,mufuw;(/o ( *sup o 95 fH) ) ,

where [s] denotes the integer part of the real number s and A}, denotes the
first order difference operator.

Similarly, we can get a equivalent norm for the homogeneous Besov space.

Theorem 6.7.4. N

Assume that s > 0, and let m and NV be integers, such that m + N > s and
0 < N < s. Then, with 1 < p, r < oo,

n r 1/r

> oNf dt

. NE: N—s, m -
Wz~ 2 </0 (t v (t’f')‘xéy)) t> |

In particular, if s > 0 and s ¢ N, then
n o rdt 1/r
Fllas ~ / t¥1=5 sup HA 89[03}fH — ;
s, ~ 2 o L

One of the following result is a straightforward consequence of Theorem 6.7.1
and Theorem 6.7.4, which indicates the relation between homogeneous and non-
homogeneous spaces.

Theorem 6.7.5. )

Suppose that f € .’ and 0 ¢ Supp 7. Then
feB,, s feB VseR, 1 <p,r<oo.

D
Moreover,
By, —LPDB;T,, Vs >0, 1<p,r< oo,
B, —Lp+B;,,, Vs <0, 1< p,r<oo.
Proof. One can see [BL76, Chapter 6]. |

§6.8 The realization of homogeneous Besov spaces for PDEs

When we consider partial differential equations, it is not conformable to work
on the quotient space. One of the reasons is that the quotient space does not give
us any information of the value of functions. Therefore, at least we want to go back
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to the subspace of .. Although the evaluation does not make sense in .7”’, we feel
that the situation becomes better in .’ than in .%" = .¥’//4?. Such a situation is
available when s is small enough.

Theorem 6.8.1. \

Let1 < p,r < 0co. Assume

5 < ﬁ, or s="andr=1. (6.8.1)
p p

0 oo
Then for all f € B;T, Z ALfis convergent in L* and Z Ay f is conver-
k=—00 k=1
gent in ..

Proof. From Bernstein’s inequality, we have || Ay f|loo < C2F/?|| A f]|,. Tt follows
that

0 0
<C Y NApflee <C Y 2Kmlabs A, 1,

k=—oc0 k=—0oc0

0
> Ars

k=—o00

o0
CHfHBf,,oo SCH]CHB;T’ if s <n/p,
h ClFNl g ifs=n/pandr =1.
p,1

The fact that Z A} f is convergent in .7 is a general fact. |
k=1
There is a way to modify the definition of homogeneous Besov spaces, regard-
ing of the regularity index. For convenience, we first define a subspace of ./ (R")
which will play an important role to study PDEs.

Definition 6.8.2. \

We denote by .7} (R") the space of tempered distributions f such that
)\lim 10(AD) fllooc =0, VO € 2(R"), (6.8.2)
—00

where the operator §(D) is defined by 6(D) f := .7 _1(0/]?), for a measurable
function f on R™ with at most polynomial growth at infinity.

Remark 6.8.3. We have the following facts about ./} (R™).

1) It holds
SR = {f e . (R"): kliffl Sif =0in y’(R”)} . (6.8.3)
Thus, we obtain
(R = {f e SR : f= ZAkf in y’(R”)} . (6.8.4)
keZ

In fact, since 1) € 2, we have Sy.f = (D) f =¢(27*D)f — 0in L® as k — —o0
if f satisfies (6.8.2). It also implies limjy_, Sif =0in.7". Conversely, for given
6 € 2, we may assume suppf C {& : [{| < C}. It follows that ¢ (§) = 0 if
2kl > /), ie., k > log, % Due to (6.8.4), it holds for any g € .7,

[(OAD) £, 9)| =|(F(€),0006)9)|
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= <Z¢k<£>?,w5>§>‘

keZ

:< > gok<5>?,0<A§>§>
k<

<|log, %]

- <S[log Q]Hf’ﬁ*gﬂ — 0as A — oo,

by (68.3) and the fact that (X7 * glloc < 800 |10 = 19119l by Young’s
inequality, i.e., 9()\ )*g is uniformly bounded w.r.t. A. Taking supremum over all
g € % with ||g||1 1, we obtain ||#(AD) f|lcc — 0as A — oc. For (6.8.4), noticing
Ay = Sk+1 Sy, and by Proposition 6.4.4 and (6.8.3), we have for any g € ./

<Z Akf,g> = <Z(5k+1f - Skf),g>

keZ kEZ
={ lim S — lim S
<kirfm5k+1f kimmskf;9>
=(f,9).

On the other hand, from Proposition 6.4.4 and (6.8.4), it follows that (6.8.3).

2) Itis clear that whether a tempered distribution f belongs to .} depends only on
low frequencies. If a tempered distribution f is such that its Fourier transform 7
is locally integrable near 0, then f € .} . In particular, the space &’ of compactly
supported distributions is included in .#}. In fact, for any g € .7, we get

[(Sifs 9| = [ (27* ) F(€), 5(€)] </ [FI15(¢)1dg

<2k

<C/ €)|d§ — 0, as k — —oo,
¢1<2%a

since 1 is locally integrable near 0. Thus, f € ..

3) fe SR <30 e Z2(R"),s.t. /\h_}n;o |6(AD) fllcoc = 0 and 6(0) # 0. Indeed, the
necessity is clear from the definition. For the sufficiency, by assumption, there is
an ¢ € Z small enough such that supp v, C supp 6, then

(et = {02470 2530 )|

<(2m) 2627 D) fllooﬂgZ < 221;;)

7 <W>
<C0(2*D) flloe — 0, as k — —oo,
since % €9 cC.s.
4) Obviously, f € & (R") < V0 € Z(R™) with value 1 near the origin, we have
lim [[0(AD)f||cc = 0.
A—00
5) If f € . satisfies §(D) f € L? for some p € [1, 00) and some function § € 2(R"™)

with 6(0) # 0, then f € .#}. In fact, as similar as in (6.8.5), we can also get for
any k < /{

8es.9)1 = [{oe 0. 2510
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—k
<ny 2100l | # (o)
—en) 1Oy 277 (i ) @) Tl
—(am) 22 o)1y |7 (s )| ol 0. ask —oc,
,

with the help of 6(2*-) — 6(0) # 0 as k — —oo and the uniform continuity of the
Fourier transform for L' functions.

6) A nonzero polynomial P does not belongs to .} because for any § € Z(R")
with value 1 near 0 and any A > 0, we may write §(AD)P = P. In fact, Va € Nj,
Vg € .7,

(BOAD)z®, g(x)) =(B(AE)Z3(€), §(€)) = (2, 000)F(E)) = (1, 2*FNE)H(E))
=(1, (—i0e)* (6(AE)F(E)))

= <(27T)"/25o(§), > 05(—%')\)5(85’39)(/\f)(—if’)’s)”ﬁ(é)>
a=f+v
=@m)"? Y CH=in(9]0)(0)(x79)(0)
a=pF+y
=(2m)"/2(1%)(0) = ((2m)"/?60, (a79)) = (1,2%g) = (2°,g(x)),
since (0°6)(0) = 0 for any 3 # 0. .

7) A non-zero constant function f does not belong to .} because Si.f = f, Vk € Z,
ie., limg,_ oo Sif # 0. We note that this example implies that .7} is not a closed
subspace of .’ for the topology of weak-* convergence, a fact which must be
kept in mind in the applications. For example, taking f € ./(R") with f(0) =1

and constructing the sequence
£ n n
@)= £ () € #®") C S @™,
we can prove
7 (R™) /(R
fr(x) ——=1¢ 7 (R"), as k — oo.
Now, we redefine homogeneous Besov spaces which can be used in the context
of PDEs.

Definition 6.8.4: Realization of homogeneous Besov spaces \

Lets € R, 1 < p, r < oo. The homogeneous Besov space 3% is defined by

By, = {F € AR Ifllng, = 1fll5,, < o0}

\.

Proposition 6.8.5. .

. S . . .
The space B; . endowed with || - HB;T is a normed space.

\.

Proof. It is clear that || - |4, is a semi-norm. Assume that for some f € .7}, we
p,r

have || f|l4. = 0. This implies that supp f C {0} and thus for any k € Z, we have

. p,r

Sef = f. As f € ./, we conclude that f = 0. [

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



-222- Chengchun HAO

Remark 6.8.6. The definition of the realized Besov space 359” is independent of the
function ¢ used for defining the blocks A, and changing ¢ yields an equivalent
norm. Indeed, if ¢ is another dyadic partition of unity, then an integer Ny exists
such that |k — k’| > Ny implies that supp $(27%-) N supp ¢(2~*-) = §. Thus,

25| a2 D) flp, =24 || > @@ *D)Apf

|k—k'|<No »

<C2NO|S| ZX[—No,No](k - k/)QkISHAk’fHPa
k/
which implies the result by Young’s inequality. We also note that the previous
embedding relations for B;T are valid for B ,..

The (realized) homogeneous Besov spaces have nice scaling properties. Indeed,
if f is a tempered distribution, then consider the tempered distribution fy defined
by fn := f(2V:). We have the following proposition.

Proposition 6.8.7. .

Let N € Ngand f € .} (R"). Then, || f||j. is finite if and only if || fx |4, is
p,T p,r
finite. Moreover, we have

N(s—
Iinlls, =2 (s n/p)”fﬂf‘;;,;

\.

Proof. By the definition of Ay, we get
Arf(@) =7 (p(27H6) F(2V2) (€)) (@)
=7 e r 2 Vi 2N (@)
=7 (p(2 " NEF(©)(2V2) = Ap_n f(2V0).
It turns out that HAkaHp = 2*"N/pHAk,Npr. We deduce from this that
2| Ag fvllp = 2V PR Ay £,
and the proposition follows immediately by summation. |

In contrast with the standard function spaces (e.g., Sobolev space H® or LP
spaces with p < 0), (realized) homogeneous Besov spaces contain nontrivial ho-
mogeneous distributions. This is illustrated by the following proposition.

Proposition 6.8.8.

Let o € (0,n). Then for any p € [1, o0, it holds
€ B (R™). (6.8.6)

||

Proof. By Proposition 6.6.1, it is enough to prove that p, := |- |77 € B’fgg In order
to do so, we introduce x € Z with value 1 near the unit ball, and write

po = po + p1, with po(z) := x(z)[z|™7 and p1(z) := (1 — x(z))|z["7.

It is obvious that py € L' and that p; € L? whenever ¢ > n/o. This implies that
po € /. The homogeneity of p, gives

Appo =(27)"Pp(27F)  py = (2m) /22B(28) % po
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=(2m) /RO 5 (25) = 247 (Ao ) (2.

Therefore, |Agpo |1 = 25~ ||Agps||1, which reduces the problem to proving that
Ay ps € L'. Dueto py € L', we have Ay po € L1 by the continuity of Ay on Lebesgue
spaces. By Bernstein’s inequality, we get

[Aop1]l1 < Ck sup [|0*Agpr]l1 < Ck sup [|0%p1 |1

|a|=k |a|=F

From Leibniz’s formula, 0%p; — (1 — x)0%ps € 2. Then we complete the proof by
choosing k such that k > n — 0. |

The following lemma provides a useful criterion for determining whether the
sum of a series belongs to a homogeneous Besov space.

Lemma 6.8.9.

Lets € R, 1 < p,r < oo and A be an annulus in R". Assume that { f; }xez is
a sequence of functions satisfying

swpp i 24, and |2},
If the series ), ., fi converges in ./’ to some f € .7}, then f € Bfm and
1lls, < C | £25 Sl

r(z)

Proof. It is clear that there exists some positive integer Ny such that A;f, = 0 for
|7 — k| = No. Hence,

1Aiflp = D Al <C D llflly

|7 —k|<No » lj—k|<No
Therefore, we obtain that
DA flly < C Yo 2UT2R filly = C 207 en ()27 el

li—kI<No kEZ

Thus, by Young’s inequality, we get

No—1
s <o 5 ) e, , <c e,

j=—No+1

As f € . by assumption, this proves the lemma. |

Remark 6.8.10. The above convergence assumption concerns { fx }x<o. We note that
if (s, p, r) satisfies the condition (6.8.1), i.e.,
5 < ﬁ, or s="andr = 1, (6.8.1)
p p
then, owing to Theorem 6.8.1, we have

lim z:fk—OmLOO

]—) [o.¢]
k<j

Hence, } ;.. fr converges to some f € .7/, and Sy, f tends to 0 when k goes to —oo.
In particular, we have f € .7}.
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Theorem 6.8.11.
Let s € R, p,r € [1,00]. Then Bf),T(R") is a Banach space when s < 7. In

addition, BIE 1(R™) is also a Banach space.

Proof. By Proposition 6.8.5, both j%fW(R") and B; 1 (R™) are normed spaces.
Step 1. To prove the embedding: Bf,’r(R") — J'fors < 7,and Bgl(Rn) — 7.
We know that B;T(R") C &' fors < 7 and TB;l(R”) C %' by the definition

of Besov spaces due to .} C ./, but the embedding relation in topological sense

needs to prove. From Bernstein’s inequality, it follows that
1Aulloe < C2°% || Agull,. (6.8.7)

n
Foru € B}, we have

. kﬂ .
lulloo < Y 1Akulloo < €Y 2% | Agully = Clull 5 .
kEeZ keZ p,1

which yields Bgl — L® — ..
For s < 7, we first consider the part of low frequencies k < 0. For any f € .7,

we get
[(Aru, )] </ Akullooll fllr < 287 | Agullpll £l
<0G lully,  sup (14 )™ £, (6558)
P:2° peRn™
Thus,
<2Aku,f> < Cllullg. sup (14 [z))"*|f(z)]. (6.8.9)
BT zeR™
k<0
For high frequencies k£ > 0, we can use, as in (6.4.11),
A= 278 3 gn(25) s A, g 1= (2m) a0 [ L i)
(6.8.10)

Then, it holds for I € Np and any f € .7,
(Agu, f) =275 (0%(2""ga(2") * Agu), f)
|a|=l
=275 % " (Agu), 2 ga (—2) # (=0)° f)
|a|=l
<O Agulloo2™ sup (1 4 |2])" (0% f ()]
et
<02 G ok Ayul, sup (1 -+ )™ 1joR £(2)].
T ERM

o=l

Thus, for large [ > % — s, it follows that

<Z Aku,f> < Cllullgy, sup (1+]a])™ [0 (z)].

k>0 e
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Therefore, we obtain

[, <D W Aku, £ < Clullg, sup (1+ |a))"H9°f(z)], Vf €., (6.811)
keZ , Taﬁnil
which implies i%;w — 7.
Step 2. To prove the completeness. Let {u}cn is a Cauchy sequence in Bf,,r,
where s < 2 or s = 2 and r = 1. Replacing u by u; — u; in (6.8.11), there exists a

u € .’ such that
ugiuGY', as { — oo.

Step 2.1. To show u € ./}. For s < %, by the assumption, it is clear that u, € ./}
for any ¢ € N. Similar to (6.8.8), we have forany / € Nand j € Z

(Sue Al < S Whgue Hl < S IAuellool £l

k<j—1 k<j—1

<2 G7) sup fugl s, 171

From uy 4y € .7, it follows that
(8, 1)l < 02 57) swp lul, 1711,V €7

Hence, we get
lim Sju=0, ie, u€c.7.

j——00

0

For the case s = 7 and r = 1, since {u,} is Cauchy in TBEJ — BOOJ, we have Ve > 0,

by e N,s.t.Vj € Zand { > ¢
> Akuclloo < D0 1Ak = ug)lloo + Y 1 Akug ]l

k<1 k<1 k<1
Sllue = ugllgo  + Y [Akugllos
kg1
£ .
k<j—1

We can choose jj so small that

A € . .
> 1Arug s < 3 Vi< o

E<j—1
Thus, it follows that for u, € ./, we have, Vj < jo, V£ > (g
ISjuelloe < D Akullo < e (6.8.12)

k<j—1
Since 351 — i%go’l — L™, {us}¢en is also a Cauchy sequence in L™, i.e., uy — u €
L*> as ¢ — oo. Taking ¢ — oo in (6.8.12) yields
HSJUHOO <€7 v.] §j0>
which indicates u € ..
Step 2.2. To show u € B;r. From the definition of Besov spaces, it follows that

for any fixed k, {AkUg}geN is a Cauchy sequence in L?. By the completeness of L?,
there exists 1, € LP such that

lim ||Agup — x|, = 0.
eg}}o\l ke — Ug|lp
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. y/ . e. . _ .
Since u; —— u as ¢ — 0o, we have Ajyuy =% Agu as ¢ — oco. Then, @y, = Aju. Thus,

lim QkSHAk’LLng = 2kSHAk’U,Hp, Vk € Z.
f—r00

For ¢ € N, {2%%||Aguy||,} is bounded in ¢7(Z), then so does {2°%||Agul|,}. It follows
that u € 3277, from Lemma 6.8.9.

Step 2.3. To show the convergence in Bj .. For any given K > 0, due to Agu,, —
Apuin LP as m — oo, we get

1

T

. T . T
> (2 1Ake —wlp) | = dim (DT (25 Ak~ wn)l)
k<K |k|<K

Noticing that {uy}ecn is Cauchy in 1'3;77“, thus, for any ¢ > 0, there exists an /) € N

independent of K such that for all £ > /y, we have

> (2 1A —wll) | <.

|k| <K
Taking K — oo, it yields that vy — u in 3;774 as { — oo. Thus, we complete the
proof. [ |

Remark 6.8.12. The realization 3%9” coincides with the general definition stm* when
s < mn/p,ors=mn/pand r = 1. However, if s > n/p (or s = n/p and r > 1), then
B;T is no longer a Banach space. This is due to a breakdown of convergence for
low frequencies, the so-called infrared divergence.

Example 6.8.13. Let x(£) € Z(R) with value 1 when [£] < 8/9 and supp x = {£ :
|€] < 9/10}. Define

R x(§) €| > o~k
Jr() = €mlel” T
0, otherwise.
Itis clear thatfor k > £ > 0
0, €l > 27",
Ri©) -7 = g 2 <lel<2
0, g <27k,

Thus, we have

©;(€)
En ¢

9 1/2
d§>

Ifie = fell e =sup 27214 (fi = fo)ll2 = sup 22 </
e ‘ 2~k <fgl <2

JEZL
|
< 2]/2 /
b T2 ( .

9 1/2
d§>
_ 1 ¢(€)
~ /In?2 (/R

5\ 1/2
= df) — 0, as k,f — oo,
namely, { fx} is Cauchy in B;/ 020 However, it holds
x(&)

klggo fe(§) = ] V¢ >0,

p(277¢)
§
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which is not integrable near {0}, therefore 11m fr ¢ and then hm fr ¢ fBl/ >

Finally, we give the dual of realized homogeneous Besov spaces. Observe that
in Littlewood-Paley theory, the duality on .} reads for ¢ € .7,

o) = ¥ G = [ Awl)d o
|k—j]<1 [k—j]<1

As for the LP space, we can estimate the norm in 3;7,, by duality.

Proposition 6.8.14.

Forall s € Rand p,r € [1, 0],
By, x B, — R

(%@H > (Agu,Ajg)

[k—jl<1

;,’Sr,. Let

Q;r = {(béyﬁg : ||¢||3;/ST/ <1}
If u € .}, then we have for p,r € (1, ],

luls, <C swp (u,@).
’ P€Q.”

defines a continuous bilinear functional on B . x B

\.

Proof. For |k — j| < 1, by Holder’s inequality, we have
(A, Ay < 291285 Ayl 2795 | A s
Again using Holder’s inequality, we deduce that
[, ) < Csllullg, M16ll5- -
In order to prove the second part, for N € N, let
Q= {(ak) € 0"(Z) : |(ag)ll,» <1, with ag = 0 for k| > N} .
By the definition of the Besov norm and the dual properties of ¢", we get
p = k)25 | A H
lullsy, = sup || (xman 821 Axul) ||,
=sup sup Z | Apull,2%ay  (by duality of ¢")
NEN (ap)eQn |k1<v
=sup sup Z 2k, sup (Apu, ), (by duality of LP).
NEN (ap)eQ k1< niﬁfil

By definition of supremum, for |k| < N and any € > 0, there is a ¢, € . with

|¢klly < 1such that
EQ—ks

b (Bt d) < R O o b

Il <1
Let

(I)N (= sup Z akaSAkgf)k.
(ar)EQN [k|<N
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Then, for 1’ € [1,00)

[N lg-s = ZQ_jSTI sup Z ar2" A Ay
p,T

€L (k) EQN |k|<N .
! 1/r
=[> 27| sup , D Xy (R)ar2b A Agey,
jez (o) EQY |k|<N p,
1/r’

<C 3y sup > ekl X1, (R)25D5 (g7
J€Z (o) EQY |k|<N
1/r

/

<C 3T/_1 Z sup Z |Oék|rl sup X[j—17j+1](k)2(k_j)sr

ez (@r)€QN \ k<N k|<N
<02|s| (3 ) 3,"/71)1/7‘/
<302k,
which is independent of N.
Thus, for any N,
| (Caren @25 1Akuly) || <tw@n)+ sup > 2oy 2t
o wocay gy A+l A+ kP
<(u, @) + €.
Therefore, we complete the proof. -

§6.9 Holder spaces

Definition 6.9.1. )

Let 0 < a < 1. Define the Hélder (or Lipschitz) space C as
C*={f e LZR") : |f(x — 1) = f(x)]loc < At}
The €% norm is then given by

1llen = 1 £llse + sup M@= = [(@lo

- (6.9.1)
[t|>0 ‘t‘

The first thing to observe is that the functions in C* may be taken to be continu-
ous, and so the relation |f(z — t) — f(x)| < A|t|* holds for every z. More precisely,

Proposition 6.9.2.

Every f € €% may be modified on a set of measure zero such that it becomes
continuous.

Proof. The proof can be carried out by using the device of regularization. Any
smooth regularization will do, and we shall use here that of the Poisson integral.
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Thus, we consider
. . o CnyYy
u(z,y) = /]R" Py(t)f(z —t)dt, Py(t) = (E T 2 e y > 0.
Then, since [p, P,(t)dt = 1, we have

u(,y) — f(z) = / Py(Of(x — 1) — f(x)ld,

n

and for0 < a < 1,

[u(z,y) — f(2)]loo < /Rn By f(z =) = f(2)]loodt
<Ac 14 dt
ACRY - (\t\2+y2)("+1)/2
t=ys o ‘8|a Al
ey /R (s o7 = AV
In particular, ||u(x,y1) — u(z,y2)|lc0c — 0, as y1 and y2 — 0, and since u(x,y) is
continuous in z, then u(z, y) converges uniformly to f(x) as y — 0. Therefore, f(x)
may be taken to be continuous. [

We begin by giving a characterization of f € C“ in terms of their Poisson inte-
grals u(z,y).

Proposition 6.9.3.

Suppose f € L*°(R") and 0 < a < 1. Then f € C*(R") if and only if
' Ou(z,y)

Ay
Remark 6.9.4. If A, is the smallest constant A for which (6.9.2) holds, then || f||o +
Ay and || f||ee give equivalent norms.

< Ay~ e, (6.9.2)

HOO

Proof. For Poisson kernel, we have
OPy(x) . (|22 + y2)(n+1)/2 _ ynT—H(|m|2 + y2)(n—1)/2 -2

oy " (|22 + g2t
24 .2 2 2 _
SN e ot el N . ’ 69.3)
(o2 + 2T~ M (a2 4 )25
and then
OPy(x) c
Differentiating [, Py(z)dz = 1 w.r.t. y, we obtain
P,
/ mdz =0, y>0. (6.9.5)
Thus, it follows
ou B OPy(t) B / OPy(t)
sown = [ T na = [ SR -1 - faat
Hence, by changing variables, we have
du(-y) / OBy (1) / [1*
ALV | B o agt < o
8y i, \||f||e N ay |t| dt C||f||@ an (‘t‘z T y2)(n+1)/2dt

1
<elfller | et
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t=ys —1lta 1 < —l+a
2 ooy | s < O ey

This proves the necessariness part.

For the sufficiency part, it is far more enlightening, as it reveals an essential
feature of the spaces in question, although it is not much more difficult. This insight
is contained in the lemma below and the comments that follow. Then we shall
return to the proof of the second part (to be continued). n

Lemma 6.9.5. N

Suppose f € L*(R") and 0 < a < 1. Then the single condition (6.9.2) is

equivalent with the n conditions

ou(zx,y)
&rj

<Ay 1t =1, n (6.9.6)

e}

Remark 6.9.6. The smallest A in (6.9.2) is comparable to the smallest A’ in (6.9.6).

Proof. From the Poisson kernel, we can derive
OPy(x) _ (n+1)cnyz; OP,(x) c
or; (el + 20 [ Tawy | S (a4 )0
For y = y1 + yo, it follows from Corollary 2.1.24 that P, = P, * P,,, with
y1,y2 > 0. Thus,

y>0. (6.9.7)

u(z,y) = Pyx f = Py, x Py, x f = Py, xu(z,y2),
and therefore, with y; = y2 = y/2, we get
Pu__ 0Py u(r,y/2)

8y8:cj N al‘j 28y2
By Young’s inequality, (6.9.7) and (6.9.2), we get
0% OPya || || Qulz,y/2)
0yox; ~ = Ox;j 1 20y9 o
dx
<C LT py e 6.9.8
e (P + g2 ayeoe 2 (059
a=yt/2 —2+a/ dt _ —2+4a
===CA =A .
P e (P02 T

However, by Young’s inequality and (6.9.7),
0 OP,
' aT:ju(x 2Y) o

= %*f < Y
0o 8Ij oo\ 6zj

0
%ju(x, y) =0, asy— oo,

c|lfll
1 £lloo < =7
| y

So

and therefore,

0o 92 /
i“(w’w — _/ Mdy’.
y

Ox; 0y'Ox
Then, for o < 1, (6.9.8) gives that
‘au < Al/ y/—2+ady/ < Azy—l—l-a‘
ax] 00 Y
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Conversely, suppose that (6.9.6) is satisfied. Reasoning as before, we get that
||%||Oo < Asy~?t®, j = 1,..,n. However, since u is harmonic, that is because
J

2 2 2 o .
271; = — Z?:1 ‘37%‘, we have || 273H00 < A4y~27*. Then, a similar integration argu-
ment shows that H%Z”O" < Agy~ it [ |

We can now prove the converse part of Proposition 6.9.3.

Proof of Proposition 6.9.3 (continue). Suppose ||a%u(:n,y)||oo < Ay~ 't Then
Lemma 6.9.5 also shows that ||a%ju(x, Y)|loo < Ay~ 1T We write

fx+1) = fz) =[u(z + t,y) — (@, y)] + [f(z + 1) = u(z + 1,y)]
= [f(@) = ul(z, y)].
Here y does not necessarily depend on ¢ but it is best to choose y = |t|. Now, we

have |u(x + t,y) — u(z,y)| < [ |Veu(x + s,y)|ds where L is the line segment (of
length |¢|) joining = with x + ¢. Thus, it follows

n
lu(@ +t,y) — u(z,y)| <11 lua, (2, 9)]lw < ClHIt71 = CJt)°
7=1

Since
Yo " og
flz+1t) —u(z+t,y)=— ; @U(ﬂf+t7y)dy,
we get
Y|l Ou / @ @
fa+n -+t < [0 @y <oy =ci

With a similar estimate for f(x) — u(z,y), the proof of the proposition is con-
cluded. [

Similar to Lemma 6.9.5, we can prove the following lemma, and remaind the
proof to interested readers.

Lemma 6.9.7.

Suppose f € L*(R"), and a > 0. Let k and [ be two integers, both greater

than «. Then the two conditions

Pua )| 4 ke ang | Pu(z,y)
Oy* s 0yl

are equivalent. Moreover, the smallest A;, and A4; holding in the above in-

equalities are comparable.

< Aly—l+a

The utility of this lemma will be apparent soon.
We now can define the space C“(R") for any o > 0. Suppose that k = [«a/] is the
smallest integer greater than ¢, i.e., the ceiling function of a.. We set

k
e = {f € L®(R") :

0
Tyku(ﬂﬁ Y)
If A, denotes the smallest A appearing in the inequality in (6.9.9), then we can

< Ay—k+a} . (6.9.9)
define the C® norm by
[ fllee = Il flloo + A (6.9.10)

According to Proposition 6.9.3, when 0 < o < 1, this definition is equivalent
with the previous one and the resulting norms are also equivalent. Lemma 6.9.7
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k
also shows us that we could have replaced the %

mate for where [ is any integer greater than a.
A remark about the condition in (6.9.9) is in order. The estimate
o] <o
Spulz,y)| < Aytre
oyk o

by the corresponding esti-
0'u(z.y)
oyt

is of interest only for y near zero, since the inequality H g—ykku(x, Y) H < Ay~* (which
is stronger away from zero) follows already from the fact thatoj" € L, (as the
argument of Lemma 6.9.5 shows). This observation allows us to assert the inclusion
Cr — ¥ ifa > .

In the case of 0 < a < 1, we considered the first order difference, next, we will
consider the case 0 < a < 2, it would be better to use the second order differences.
We recall the m-th order difference operator AT

AP f(x) = Op(=1)F f(w + k).
k=0

Thus, A? f(z) = f(x) — 2f(x +t) + f(z + 2t). But for simplicity, we denote
7 f(x) = fla —t) = 2f(2) + f(z + 1)

in this section.

Proposition 6.9.8.

Suppose 0 < a < 2. Then f € €% if and only if f € L>(R") and ||f(z —t) —
2f(z) + f(z +t)|loc < Alt|*. The expression
r—1t)—2f(x)+ f(x +1t)|co
o - sup 1@ =0 =206 + Sz + 0
[t|>0 |t|
is equivalent with the C* norm.

\.

Proof. Differentiating [, P,(t)dt = 1 twice w.r.t. y, we obtain

2
/ 0°hy(#) dt =0, y>0. (6.9.11)
n Oy?
From (6.9.3), we have
*Py(t) _ cn(n+ 1B —ny?)y
o T ()
and then
2 2p (_ 2
0°Py(t) _ 0°Py( t)’ 0°Py(t) < c . (6.9.12)
dy? dy? dy? ([t]> 4 y2)(n+2)/2
Thus, we get
0? 1 ok
Grt@n) =5 | S POf e~ 1) = 21 () + flx + ],

and so, for a < 2,

82

Ac
Tygu(w,y)

<7

y_”_Q/ |t|o‘dt—|—/ |t~ 2 edt
2 ltl<y [t]>y

y oo
gc |:y—n—2/0 ra-&-n—ldr_i_/ r—3+ozd7,,:|
)

<Cy_2+a.

HOO
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To prove the converse, we observe that if ' has two orders continuous deriva-
tives, then we have

[¢]
A2 F(x) = /0 / pF(% +t'T)drds, wheret' =t/|t|.

It follows immediately that

| 82 F(a)oo < WZ\
1,5

By the definition (6.9.9), it is clear that f € C* = f ¢ e where o < . If we
choose an o/ < 1, then by the results in Propositions 6.9.2 and 6.9.3, we get

0*F
BZEiaxj 00

(6.9.13)

|lu(z,y) — f(2)]lo = 0, and y|luy(z,y)|l — 0, asy — 0. (6.9.14)
Thus, the identity
v, 0 N, Ou
f@)=u(z,0)= | yHmulz,y)dy —y-(v,y) +u(z,y) (6.9.15)
o~ 9y Ay

is obtained by noticing that the derivative w.r.t. y of the extreme r.h.s. vanishes, and
by the use of the end-point conditions (6.9.14). However, the arguments of Lemma
6.9.5 and 6.9.7 show that the inequality || %?f;y) oo < Ay~2+2 implies the estimates

82u($7 y) A/ —2+4a 83U(.’E, y) A/y73+a
0x;0x; || Oy0x;0x; || i
Thus, by using(6.9.13) to the last two terms of the r.h.s. of (6.9.15),
I a7 flloo

Yy 2
<[ af | o 0 su(@, y)dy |loe + yll A7 @(;ﬁ Yoo + || A7 w(z,y)||
X t 0 ay/ 9 o0 t 8 9 o0 t ) o0

<t [V i + 17 3 U e
<C /0 Yy Ty + Ot lyy =+ y 7
<Cy® + C|t2y~2+e.
Taking y = |t| gives
182 flloo < Clt|*,  ifa >0,
which is the desired result. [

Proposition 6.9.9.

SuPPOSe a > 1. Then f € €% if and only if f € L* and %fj e el 4 =
;n. The norms || f||e~ and | f]loo + 325, IIBf | ea—1 are equivalent.

Proof. Let us suppose for simplicity that 1 < a < 2, the other cases can be argued
similarly.

We first prove that € L. We have || ||OO < Ay—3T% since f € €%, which
implies, as we know, H Emrrn Bz loo < Ay—3te, Equivalently, we see that H%Hoo <
Ay~ 178 where 0 < 8 < 1since 1 < a < 2. We restrict to 0 < y < 1, then an

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



-234- Chengchun HAO

integration in y gives

L 93 y—[ 9%u ] B 9%u
y 0y20z; Oyox; |, , dydx;’
and then
L 934 d%u
<Ccy P+
Hayaxj \/y 9y?0z;|| i [ay&’ﬂj]yl sy
Another integration,
vz 92y

0
ayijdy— %ju(xayQ) - 873,“(%@1)7

Y1
then shows that

0
ﬁU 2/2 %U(%yﬁ
J

\/ [Cy=? + Cldy = C’(y%_ﬁ —yi_ﬂ) + C(y2 — y1)-
Y1

Thus, {% (x,y)} is Cauchy in the L*° norm as y — 0, and so its limit can be taken

to be I f . The argument also gives the bound

< CAyH < CA< O fens

Ha%

ax]
since0 <y <landa > 1.
Since the (weak) derivative of f is 5, the Poisson integral of the latter is 88 u
But HW oo < Ay~3t®. Therefore, ij € €271, The converse implication is
proved in the same way. u

The last proposition reduces the study of the spaces C to those a such that
0 < a < 1. Concerning the space €%, 0 < a < 1, the following additional remark is
in order.

Remark 6.9.10. When 0 < a < 1, Proposition 6.9.8 shows that if f € L>, the two
conditions || f(z +t) — f(2)]|eo < Alt|* and || f(z —t) — 2f(x) + f(x + )]0 < A'[t]*
are equivalent. However, this is not the case when o = 1.
Example 6.9.11. There exists f € L°°(R") such that

17 =) = 27(@) + f( +8)loe < Alt], [t] >0,
but ||f(z+t) — f(z)]|ec < A'|¢| fails for all A

Solution. One can construct such f by lacunary series, and more particularly as
Hardy-Weierstrass non-differentiable functions. To do this, we consider the func-
tion of one variable z, given by f(z) = > 72, a~*e?mia* s Here q > 1, for simplicity,
we take a to be an integer and this makes f periodic. Now

f(l’ _ t) _ 2f( )_|_ f x +7f Za 27rza (z—t) 2627riaka: + 627riak(x+t)]

0o
ket —9miak ok ok _ ok
:§ :CL k[e 2mia®t 2+€27rm t]62ma T _ 2§ :CL k[COSQT['akt _ 1]e2ma T

Therefore, (assume |t| < 1 without loss of generalities)

[z =1) = 2f(z) + fz + 1)
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<2Z a " B(d*t)? +4Z

ak|t|<1 aklt|>1
2Bl Y df+a D) ot
k<[log, [t|~1] k>[log, [t|~1]
glloga lt71]+1 _ 4 o [loga It1] -1
<2B|t|? 4
1 -1 + 1—at
<Alt].

We have used merely the fact that | cos 2ra*t — 1| < min(B(a*t)?,2) with B = 27?2
since sinz < z for any x > 0.

However, if we had || f(z + t) — f(2)]|c < A’[t], then by Bessel’s inequality for
L? periodic functions we would get

1
(A']t])? > /0 @+ 1) — (o) e = /

oo
> Za—Zk’e%riakt . 1‘2 > Z a—2kz|€2m'akt . 1’2.
k=1

aklt|<1/2

2
—k 2ma _1]627riakx dz

In the range a*|t| < 1/2, we have |e2™@"t — 1|2 > 16(a*t)? due to the inequality
S > 2 forany x € (—m/2,7/2), and so we would arrive at the contradiction
(A2 = 162 Y- 1> 16t > 1,
aklt|<1/2 1<k<log, [t|-1/2]—1
which implies that A”? > 16 [log, |t|~'/2] — 16 and so A’ — oo as [t| — 0. |

Now, we give a relation between Holder spaces and Besov spaces.

Corollary 6.9.12.

Let s > 0. Then we have BS, ,, = €*.

Proof. By Theorem 6.7.1 with p = r = oo and m = 2, and Proposition 6.9.8, for
0 < s <1, wecan take N = 0 and then

11l Bsy oo ~ 1 Flloo +supt Wit ) = fles.

By Proposition 6.9.9, we can extend to any s > 1. This completes the proof. |
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§7.1 The sharp maximal functions and BMO spaces

Functions of bounded mean oscillation were introduced by F. John and L. Niren-
berg [JN61], in connection with differential equations.

Definition 7.1.1.

The mean oscillation of a locally integrable function f (i.e. a function be-
longing to L}

loc

(R™)) over a cube @ in R" is defined as the following integral:

|
fo= 151 /Q ()~ Ave Sl

where Avg f is the average value of f on the cube @, i.e.

1
Avg f = — dx.
Cggf |Q|/Qf(x) T

\.

Definition 7.1.2.

A BMO function is any function f belonging to L

1

1oe(R™) whose mean oscil-

lation has a finite supremum over the set of all cubes” () contained in R™. For
f € L} .(R"), we define the maximal BMO function or the sharp maximal
function

1
M f(a) = sup o [ 170~ Ave Fla,
@32 1@l Jg Q

where the supremum is take over all cubes @) in R" that contains the given
point z, and M# is called the sharp maximal operator. Then we denote the

norm of f in this space by || f||smo = ||M# f||c- The set
BMO(R") = {f € Lioe(R") : || fllpmo < o0}

is called the function space of bounded mean oscillation or the BMO space.

"The use of cubes @ in R" as the integration domains on which the mean oscillation is
calculated, is not mandatory: Wiegerinck (2001) uses balls instead and, as remarked by Stein
([Ste93], p. 140), in doing so a perfectly equivalent of definition of functions of bounded mean
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oscillation arises.

Several remarks are in order. First, it is a simple fact that BMO(R") is a linear
space, that is, if f,g € BMO(R") and A € C, then f + g and Af are also in BMO(R")
and

Ilf + gllBmo <|IfllBmo + [lgllBMmo,

IAfllBMo =M fllBMO-

But || - |[gmo is not a norm. The problem is that if | f|smo = 0, this does not
imply that f = 0 but that f is a constant. Moreover, every constant function ¢
satisfies |c[[pmo = 0. Consequently, functions f and f + ¢ have the same BMO
norms whenever c is a constant. In the sequel, we keep in mind that elements of
BMO whose difference is a constant are identified. Although | - ||gmo is only a
semi-norm, we occasionally refer to it as a norm when there is no possibility of
confusion.
We give a list of basic properties of BMO.

Proposition 7.1.3. |

The following properties of the space BMO(R") are valid:

(1) If | fllemo = O, then f is a.e. equal to a constant.
(2) L>*(R") < BMO(R") and || f||Bmo < 2[|f[oc-

(3) Suppose that there exists an A > 0 such that for all cubes ) in R" there
exists a constant cq such that

sup 1/ |f(z) — coldx < A. (7.1.1)
Q 1QlJq
Then f € BMO(R") and || f||smo < 2A4.
(4) Forall f € Li (R™), we have

1 1 .
§HfHBMO < Suplnf/ |f(z) — cqldz < || fllB™MO-
Q ’Q‘ «Q JQ

(5) If f € BMO(R™), h € R™ and 7"(f) is given by 7"(f)(x) = f(x — h), then
Th(f) is also in BMO(R"™) and

I7"(f)IBmo = || fllBMO-

(6) If f € BMO(R") and A > 0, then the function 6*( f) defined by §*(f)(z) =
f(Ax) is also in BMO(R"™) and
18*(F)llBymo = [ fllBmo-
(7) If f € BMO(R"), then so is |f|. Similarly, if f, g are real-valued BMO

functions, then so are max( f, g) and min(f, g). In other words, BMO is a
lattice. Moreover,

I/ IBMo <2 fllBMo,

3
| max(f, g)|lBmO <3 (Il fllemo + llgllBMmo) 5
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. 3
lmin(f, g)llemo <5 (1 fllsmo + [lgllmo) -
(8) For f € L{ (R™), define

1
17 lBMOw, = $Up — / f(z) — Avg fldz, (7.12)
B |BlJB B

where the supremum is taken over all balls B in R". Then there are
positive constants ¢, C, such that

cnll fllBmo < | flIBMOyu < CrllfllBMO-

Proof. To prove (1), note that f has to be a.e. equal to its average cy over every
cube [N, N]". Since [-N, N]" is contained in [-N — 1, N + 1]", it follows that
cn = cn41 for all N. This implies the required conclusion.

To prove (2), observe that

Avglf Avgfl Avg <|f|+|Aggf!> 2Avg\f| 2| floo-
For (3), note that
1
!f—Avgf<If—CQ!+|Ang—CQ!<|f—CQ!+/ |f(t) — cqldt.
Q Q QI Jg

Averaging over () and using (7.1.1), we obtain that || f||pmo < 2A4.

The lower inequality in (4) follows from (3) while the upper one is trivial. (5) is
immediate.

For (6), note that Avg SMNf) = Avg f and thus

— Avg 0N f - — A
|Q,/ ) — Ave (1)l = |w/ ) A

The first inequality in (7) is a consequence of the fact that

If(x)l—Agglf!|=|fx |Q|/|f \t\ ‘|@\ (f(a >—rf<>|>dt]

ol (!f(x)—f(t)l)dt‘

1 1
<= “A | |Avef - F)Id
< |Q|/Q\f<x> 5gf|+|Q|/QI ve f — o)l
<|f —Avg f| + Avg|f — Avg f].
Q Q Q

N

The second and the third inequalities in (7) follow from the first one in (7) and the
facts that

max(f,g) = W, min(f,g):f—i_g_2|f_g|.

We now turn to (8). Given any cube @ in R", let B be the smallest ball that
contains it. Then |B|/|Q| = 27"V,v/n" due to |Q| = (2r)" and | B| = V,,(y/nr)", and

1 B . |B| 1 . VF
ol /Q £(2) — Ave flds < [ 15)

— — Avg fldx <
QIIB P
It follows from (3) that
I fllBMo < 28" ViV || £l BMOya, -

HfHBMObaHS
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To obtain the reverse conclusion, given any ball B find the smallest cube @ that
contains it, with |B| = V,,r" and |Q| = (2r)", and argue similarly using a version of
(3) for the space BMOyp,js. |

Example 7.1.4. It is trivial that any bounded function is in BMO, i.e., L> — BMO.
The converse is false, that is, L>°(R") is a proper subspace of BMO(R"). A simple
example that already typifies some of the essential properties of BMO is given by
the function f(z) = In|z|. To check that this function is in BMO, for every z; € R”
and R > 0, we find a constant C, r such that the average of |In |z| — Cy, r| over
the ball B(0,R) = {z € R": |z — 29| < R} is uniformly bounded. The constant
Caro.r = In|zol| if |zo| > 2R and C;, g = In R if |xo| < 2R has this property. Indeed,
if |zg| > 2R, then

1 /
In || — Oy r| dz
Van |x,xo|<R‘ ‘ | 0 ’
1 / ||
= In dx
Vo R? |z—zo|<R |o|

<max ln§
~ 27

1
In=
'3)

since 3|zo| < |z| < 3|zo| when |z — 20| < R and |zo| > 2R. Also, if |2o| < 2R, then

=1n2,

1
In|x| — C4, r|ldr
Van |lz—zo|<R | | | o ‘
1 || 1 / |z|
= In —|dxr < In —|dx
Vi R"™ Jje—wo|<R R Vo R™ J101<3R R
1 _ 3
=— IIn|z|| dz = Wn-1 / " Hinr|dr
Vi Jlzi<3 Vo Jo

1 d 3
:n/ (—1)r”ln7‘r+n/ " nrdr
0 r 1
00 3
gn/ tentdt+nln3/ r"dr
0 1

1
=—4+3"In3.
n
Thus, In |z| is in BMO.

It is interesting to observe that an abrupt cutoff of a BMO function may not give
a function in the same space.

Example 7.1.5. The function h(z) = Xz>0In L is not in BMO(R). Indeed, the prob-
lem is at the origin. Consider the intervals (—¢,¢), where ¢ € (0,1/2). We have
that

1ofe 11 IRV 1 1+1Int
Avg h = — h(z)dr = — lndx—/ <ln+ln>dy_+n5,
(—e,6) 2 J_. 2¢ Jo = 2 Jo € Y 2

But then

1 fe I 1+l

L @) - Avghlde > = [ | Avg hlde =~ %,

2¢ J— (—22) 22 )= (-co) 4
and the latter is clearly unbounded as ¢ — 0.
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A useful related fact is the following, which describes the behavior of BMO
functions at infinity.

Theorem 7.1.6. \

Let f € BMO, then f(z)(1 + |z|**!)~! is integrable on R", and we have

|f(x) — AQvgf|
I = & <
/Rn 1+ [zt dz < C| fllBmo,

where C'is independent of f, and Qy = Q(0,1).

\.

Proof. Let Qk = Q(O, 2k), S = Qk \ Qk—l fork e N, So = Qo, and

|f($)*%vgf|
L= [ — % 4p keN,
k /Sk 1+ |z[rtl x 0

Then, we have

o
I=1Iy+ ZIk.
k=1

Since
|f(z)—AQvgf|
= — % <
" /Q L o] dﬂ”\/QO‘fU Ave fldz <[Qol /o

it suffices to prove I} < Ck||f|lsmo and Y, Cx < oc. For z € Sy, we have |z| > 22
and then
1+ ‘x’nJrl >1+ 2(k72)(n+1) > 4f(n+1)2k(n+1).

Hence,

I <127 [ () — Ave fldo
Qk Qo

<qntlg—k (n+1) / [|f(x) — Avg f| + | Avg f — Avg f||dz
Qk Qk Qk Qo
<412k D) 10 (1 fllsao + | Ave £ — Avg f])
Qk Qo
—qntlo=k(ntlokn (| fllpvio + | Avg f — Avg f]).
Qk

0

The second term can be controlled as follows:

| Avef— AQvgf|<Z|Avgf Avg f|

=1 Qz
< Avgf dx
Z ’Qz 1| |
— Avg fldx
, o / |f(x e fl
<k : 2n”fHBMO- (7.1.3)
Therefore,
I < 4n+12 k(n+1)2nk( +k2n)HfHBM07
where C), = Ck27% and 3", C) < co. This completes the proof. u
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Let us now look at some basic properties of BMO functions. As the same as in
(7.1.3), we observe that if a cube () is contained in a cube @5, then

A — A A A
Avef - Ave sl =i |/ fie — Avef| < o |/ 5~ Ave flds
< A d
<|Q1| o, |f — vgf\ x
< :82} T, (7.14)

The same estimate holds if the sets ()1 and ()5 are balls.

A version of this inequality is the first statement in the following proposition.
For simplicity, we denote by || f||gmo the expression given by || F'||gmo,,,, in (7.1.2),
since these quantities are comparable. For a ball B and a > 0, aB denotes the ball
that is concentric with B and whose radius is a times the radius of B.

Proposition 7.1.7. .

(i) Let f € BMO(R™). Given a ball B and a positive integer m, we have
|Ang AVgfl 2"m|| f|[Bmo- (7.1.5)

(ii) For any 6 > 0, there is a constant C), 5 such that for any ball B(xzg, R)

we have
| f(x) — Bz(Ang)f!
Ré/ - dz < Cp . 7.1.6
en (R |z — om0 " sllflByo (7.1.6)

An analogous estimate holds for cubes with center x( and side length
R.

(iii) There exists a constant C), such that for all f € BMO(R"), we have
sup Sup/ [f (@) = (P )W) Pe(z — y)de < Cull fllBpo. — (7.1.7)

yeR™ t>0
Here

P
Pt(x) = n+1 n+1
T2 (24 |zf?) 2
denotes the Poisson kernel.

(iv) Conversely, there is a constant C/, such that for all f € L} _(R") for
which

|f ()]
f e <o
we have [ * P; is well-defined and

Callllowo < supswp [ 17() = (P NP~ ). (719

>0

Proof. (i) We have the desired result as the same as (7.1.3).

(ii) In the proof below, we take B(xz¢, R) to be the ball B = B(0, 1) with radius
1 centered at the origin. Once this case is known, given a ball B(xz¢, R), we replace
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the function f by the function f(Rx + z¢). When B = B(0, 1), we have

f(z) — Avg f|

/de

o (1 [a])Fo

| f(z) — AVgfl fl}flg f!+|1]}ng Avgf\
g d 2 B 2 B d

/B (1 + ) n+6 “Z/WB\M (1 + [a])"+0 !
<[ 1@ Avgf|d:n+22 0 [ (1f) ~ Ave 7]+ Avg f - Ave o
B 2k+1B 2k+1 13 2k+1B

k=0
<VullfllBmo + Z 27 (1 4 27 (% + 1)) (25" Vil fllBno
k=0
=C,, 5|1 flIBmo-
(iii) The proof of (7.1.7) is a reprise of the argument given in (ii). Set By = B(y, ).
We first prove a version of (7.1.7) in which the expression (P; * f)(y) is replaced by
Avg f. For fixed y, t we have by (ii)

By
[ (ntl t|f(z) — Avg f|
() b dr <Y 7.1.9
T mxr 47 < |l flIBMO- (7.1.9)
T2 R (82 4 |z —y|?) 2

Moving the absolute value outside, this inequality implies

/n |(Py+ f)(y) — Ang f1P(z —y)dz =[(F = f)(y) — Agg fl

< / Py — y)|f () — Avg flda
R B

<Gyl fllsmo-

Combining this last inequality with (7.1.9) yields (7.1.7) with constant C,, = 2C},.
(iv) Conversely, let A be the expression on the right in (7.1.8). For |z —y| < ¢,
we have P;(z — y) > c,t(2t%)~("+1)/2 = ¢/ +~", which gives

C/

A> /n [f (@) = (B x £) ()| Pe(z — y)de > 2 [f (@) = (B * f)(y)lda.

B Syl
Proposition 7.1.3 (3) now implies that

IfllBmo < 24/(Vacy,).
This concludes the proof of the proposition. |

§7.2 John-Nirenberg theorem

Having set down some basic facts about BMO, we now turn to a deeper prop-
erty of BMO functions: their exponential integrability. We begin with a preliminary
example.

Example 7.2.1. Let f(z) = In|z|, I = (0,b), and
Ey={zel:|lnz—Avgf|>a},
I

then we have

Ey={zel:lnc—Avgf>a}lU{z el :lnz—Avgf < —a}
I I
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+A —a+Avg f
I

o vg f
={zel:z>e 1 }U{zel:xz<e

—a+Avg f
When « is large enough, the first set is an empty set and the second oneis (0, e ).

Thus
—a+Avg f
|Eol =€ T

By Jensen’s inequality, we get
Av,
. ve f < 1/elntdt_ ﬂ
1] Jr 2
Therefore,

1
[Eal < 51l

Although the above relation is obtained from the function In |z| over (0,b), it
indeed reflects an essential property for any BMO function in the BMO space.

Theorem 7.2.2: The John-Nirenberg theorem \

For all f € BMO(R™), for all cubes @, and all & > 0, we have

{reQ:|f(z)— Avg f| > a}| < e|Q|e A/ IlImno (7.2.1)
Q

with A = (27e)~ L.

\.

Proof. Since inequality (7.2.1) is not altered when we multiply both f and « by the
same constant, it suffices to assume that || f||gyo = 1. Let us now fix a closed cube
( and a constant b > 1 to be chosen later.

We apply the Calderén-Zygmund decomposition to the function f — Agg fin-

side the cube (). We introduce the following selection criterion for a cube R:
1
/ |f(z) — Avg fldz > b. (7.2.2)
R Jr Q
Since
1
o1 | 1@ = Aveide < 7o =1 <,
Q| Jg Q

the cube () does not satisfy the selection criterion (7.2.2). Set QY = Q and sub-
divide Q) into 2" equal closed subcubes of side length equal to half of the side
length of Q). Select such a subcube R if it satisfies the selection criterion (7.2.2). Now
subdivide all nonselected cubes into 2" equal subcubes of half their side length by
bisecting the sides, and select among these subcubes those that satisfy (7.2.2). Con-
tinue this process indefinitely. We obtain a countable collection of cubes {le) i
satisfying the following properties:
(A-1) The interior of every le) is contained in Q(©).

-1
(B-1) b < ‘Qg.”\ Sy | () = Ave fldz < 2",
J QU

(C-1) [Avg f — Avg f| < 2™.
oW QO
J

O-1) 5, Q] < £33, o £(2) - Ave fldz < QO]
J Q 0
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(E-1) |f — Avgf| ba.e. on the set Q(° \UJQSI)-

We call the cubes Q! ) Y of first generation. Note that the second inequality in (D-
1) requires (B-1) and the fact that Q(*) does not satisfy (7.2.2). We now fix a selected
first-generation cube le) and we introduce the following selection criterion for a
cube R:

I / |f(x Avg fldz > b. (7.2.3)

Observe that Qg-l) does not satisfy the selection criterion (7.2.3). We apply a similar
Calderén-Zygmund decomposition to the function

f—Avgf
QY

inside the cube le). Subdivide le) into 2n equal closed subcubes of side length

equal to half of the side length of Q;l) by bisecting the sides, and select such a sub-
cube R if it satisfies the selection criterion (7.2.3). Continue this process indefinitely.
Also repeat this process for any other cube QS.I) of the first generation. We obtain a

collection of cubes {Ql(2)}l of second generation each contained in some Qg-l) such
that versions of (A-1)-(E-1) are satisfied, with the superscript (2) replacing (1) and
the superscript (1) replacing (0). We use the superscript (k) to denote the genera-
tion of the selected cubes.

For a fixed selected cube Ql@) of second generation, introduce the selection cri-
terion

|R[ / |f(x Avg fldx > b. (7.2.4)

and repeat the previous process to obtam a collection of cubes of third generation
inside Ql@). Repeat this procedure for any other cube Ql(2) of the second generation.
Denote by {QS”)}S the thus obtained collection of all cubes of the third generation.
We iterate this procedure indefinitely to obtain a doubly indexed family of

) eop . .

cubes Q;" satisfying the following properties:

- e interior of ever " is contained in 0}, .
(A-k) The i . ¢ yQ(k). ned i Q(k 1)

-1
B4 b < |Q°| " g 17(x) — Avg flr < 2.
J
Q/

(C-k) [Avg f — Avg f

< 27
ok QD
J i’
-0 3, QP <5, @l Y.
(E-k) |f — Avg f]| <bae. onthesetle)\UJ ().
Q(llv 1
J

We prove (A-k)-(E-k). Note that (A-k) and the lower inequality in (B-k) are
satisfied by construction. The upper inequality in (B-£) is a consequence of the fact
that the unique cube Qg’;) with double the side length of Qg-k) that contains it was
not selected in the process. Now (C-k) follows from the upper inequality in (B-
k). (E-k) is a consequence of the Lebesgue differentiation theorem, since for every
point in ngil) \U; Q§k) there is a sequence of cubes shrinking to it and the averages
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of

|f — Avg f|
Q=D

]'/

over all these cubes is at most b. It remains to prove (D-k). We have

> jel] < Z Jy 00— v i
J

(k 1
3

*Z 3 /(M ~ Avg fldr

j' j corresp. to j/ B

Z/Q(k ) — Avg fldx

(k1)
Qj

<5 Z \Qﬁ-'f‘”\ 1fIBmo
J

:%Z QU
-

Having established (A-k)-(E-k) we turn to some consequences. Applying (D-k) suc-
cessively k£ — 1 times, we obtain

Z ]Qg.’“)] <bk ’Q(O)‘ . (7.2.5)

jl

For any fixed j we have that | Avg f — Avg f| < 2"band |f — Avg fl < bae. on
Q(l) Q(O) QJ

2 \ UlQl(Q). This gives
If —Avgf| <2°b+b  ae onQ\ QL

Q)
which, combined with (E-1), yields
If —Avg f| <2"2b ae. onQ©\ QY. (7.2.6)

QO

For every fixed [, we also have that |f — Avg f| < ba.e. on Ql \ USQgs), which

Q(Q)
combined with | Avg f— Avg fl < 2"band |Avg f— Avg [l < 2"byields
|f —Avg f| <2"3b a.e.on Ql(g) \ Ungg).

QO

In view of (7.2.6), the same estimate is valid on Q) \ USQgg). Continuing this
reasoning, we obtain by induction that for all £ > 1 we have

If —Avg f| <27kb  ae.on QY \ U,QP. (7.2.7)
QO
This proves the almost everywhere inclusion

{x €Q:|f(z)— Avg f| > 2”l<:b} c u;QY
Q

forall k =1,2,3,---. (This also holds when k& = 0.) We now use (7.2.5) and (7.2.7)
to prove (7.2.1). We fixan o > 0. If

2"kb < o < 2"(k + 1)b
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for some k > 0, then

<

{vaQ:\f(w)—Aggf! >Oé}

{:L‘ €qQ:|f(x) —Aggf| > 2”]{:()}
SR
J

:’Q‘e—klnb

<|Q|b€_alnb/(2nb),

since —k < 1 — 55;. Choosing b = e > 1 yields (7.2.1). |

Having proved the important distribution inequality (7.2.1), we are now in a
position to deduce from it a few corollaries.

Corollary 7.2.3. .

Every BMO function is exponentially integrable over any cube. More pre-
cisely, for any v < 1/(2"¢), for all f € BMO(R"), and all cubes (Q we have

1 vIf(@)—Aveg f1/IfllBMO 2me2
/ e Q o de <1+ #.
Q[ Jo 1—2"ey

\.

Proof. Using identity (1.1.2) with ¢(t) = e’ — 1, we write

1 h 1 h
— dx = — —1)d
|Q|/Qe PN Jl e
1+~ [ e e h@) > a}|da
1Ql Jo

for a measurable function h. Then we take h = ~|f(z) — Avg f|/||f|lBmo and we
Q

use inequality (7.2.1) with v < A = (2"¢) ™! to obtain

1 Yf(@)=Ave fI/ll fllBMmO
/ e Q dx
QI Jo

<1+ /°° 0 ee— A S Isn0) /T3 g,
0
2nely
1—2mey’
thus, we complete the proof. [

14 / 11/ goy — 1 4
0

Another important corollary is the following.

Corollary 7.2.4. .

Forall 1 < p < oo, there exits a finite constant B, ,, such that

1 1/p
I _A P < n
Sgp(|Q|/Q|f<f”) e dx) < Byl

fllBMO(RR)- (7.2.8)

\.

Proof. This result can be obtained from the one in the preceding corollary or di-
rectly in the following way:

1 p [ 4
= _A Py — L p
|Q|/Q|f<x) ve [P |Q|/O o
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o
<P 0] / P~ Te—Aa/lf o g,
Q| 0

(&
:pF(p)ﬁ”f”%Moa
where A = (2"e) L. Setting B,,,, = (»I'(p) &) /P = (pI'(p))/Pe! /P27, we conclude
the proof. [ |

Since the inequality in Corollary 7.2.4 can be reversed via Holder’s inequality,
we obtain the following important L? characterization of BMO normes.

Corollary 7.2.5. |

Forall1 < p < coand f € L _(R"), we have

loc

1 1/p
Slclgp (@ /Q |f(z) - Aggﬂpdx) ~ | fllBmo- (7.2.9)

\.

Proof. One direction follows from Corollary 7.2.4. Conversely, the supremum in
(7.2.9) is bigger than or equal to the corresponding supremum with p = 1, which is
equal to the BMO norm of f, by definition. [ |

§7.3 Non-tangential maximal functions and Carleson measures

We recall the definition of a cone over a point given in Definition 5.1.9.

Definition 7.3.1: Cone “

Let z € R™. We define the cone over x:
I(z) ={(y,t) eRT" : [w —y| < t}.

Definition 7.3.2: Non-tangential maximal function |

Let F : R™' — C and define the non-tangential maximal function of F:

M*F(z) = sup [|F(y,t)| € 0,00].
(y,t)el’(2)

Remark 7.3.3. (i) We observe that if M*F(z) = 0 for almost all x € R"”, then f is
identically equal to zero on R':*!. To establish this claim, suppose that | F (g, )| >
0 for some point (zo,t9) € R™ x R*. Then for all z with |z — x| < to, we have
(zo,t0) € I'(2), hence M*F(z) > |F(xo,t9)| > 0. Thus, M*F > 0 on the ball
B(zo,tp), which is a set of positive measure, a contradiction.

(ii) Given a Borel measure p on ]R’}fl, we can define the non-tangential maximal
function M;; w.r.t. 1 by replacing sup with ess sup. Note then that M is defined u-
a.e.

Proposition 7.3.4.

M*F is lower semi-continuous and hence Borel.
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Proof. Let & > 0 and =z € R" such that M*F(z) > a. Now, there exists a (y,t) €
I'(x) such that |F'(y,t)| > a. Therefore, for all z € B(y,t), we have (y,t) € I'(z) and
hence M*F(z) > |F(y,t)| > o. Thatis,z € B(y,t) C{z € R" : M*F(z) > «a}. 1

Definition 7.3.5: Tent )

Let B = B(zg,7) C R" be an open ball. We define the cylindrical tent over
B to be the "cylindrical set"

T(B)={(z,t) eRY™ :x€ B, 0<t<r}=Bx(0,r]
Similarly, for a cube @ in R, we define the tent over @ to be the cube

T(Q) = Q@ x (0,4Q)]-

\.

Definition 7.3.6: Carleson measure

A Carleson measure is a positive measure p on R’ such that there exists a
constant C' < oo for which

u(T(B)) < C|B]
for all B = B(z,r). We define the Carleson norm as

(T (B))
1Bl

|l lle = sup
B

Remark 7.3.7. In the definition of the Carleson norm, B and T'(B) can be replaced
by the cubes @ and T'(Q), respectively. One can easily verify that they are equiva-
lent.

The following measures are not Carleson measures.

Example 7.3.8. (i) The Lebesgue measure du(z,t) = dzdt since no such constant C
is possible for large balls.
(i) dp(z,t) = da? since (B =|B| [y % =
(iii) du(z,t) = d’”dt for a € R. Note that
lfa

|B| , 1—a>0,
wu(B x (0,7]) |B| — o

otherwise.

So we only need to consider the case o < 1 but in this case, we cannot get uniform
control via a constant C'.

The following are examples of Carleson measures.

Example 7.3.9. (i) du(z,t) = X[a (t)dw% where 0 < a < b < 0. Then, the constant
C=1In 9

(ii) dﬂ(y, t) = Xr(x) (y)dy%. Then,

w(B x (0,7]) / |Ba:t|— /rt”\B(0,1)|(ﬁ:W|B(0’l)|:|B|.
0 t n n

(iii) Let L be a line in R?. For measurable subsets A C R?, define u(A) to be
the linear Lebesgue measure of the set L N A. Then y is a Carleson measure on R? .
Indeed, the linear measure of the part of a line inside the box [z¢ — r, zg + ] % (0, r]
is at most equal to the diagonal of the box, i.e., NG
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Definition 7.3.10: Carleson function N

The Carleson function of the measure p is defined as

_ . MT(B))

Observe that || (1) ]|co = ||1t]]%-

€ [0, o).

\.

Theorem 7.3.11: Carleson’s Lemma N

There exists a dimensional constant C,, such that for all « > 0, all measure p
on ]Rff_“, and all y-measurable functions F : R’}fl — C, the set Q, = {z €
R™: M*F(x) > a} is open (thus M*F is Lebesgue measurable) and we have

p({(z,t) € RT | F(z, 1) > a}) < Cn/ C (1) (x)dx. (7.3.1)
{M*F>a}

In particular, if i is a Carleson measure, then
W{IF| > a}) < Cullullg{MF > a}]. (732)

€

\.

Proof. We first prove that for any pi-measurable function F, the set €2, is open, and
consequently, M*F is Lebesgue measurable. Indeed, if zy € Q,, then there exists
a (yo,to0) € I'(zg) = {(y,t) € R" x RY : |y — zg| < t} such that |F(yo,t0)| > a.
If dy is the distance from (yo, o) to the sphere formed by the intersection of the
hyperplane ¢, + R™ with the boundary of the cone I'(xy), then |zo — yo| = to — do.
It follows the open ball B(z,dy) C Q, since for z € B(zo,dp) we have |z — yo| <
|z — x| + |20 — yo| < do + to — do = to, hence M*F(2) = |F(yo, to)| > a.

Let {Q1} be the Whitney decomposition (i.e., Theorem 3.1.2) of the set €2,,. For
each z € ,, set §,(z) = dist (z,QE). Then for z € Qi we have

5o (2) < V/nl(Qy) + dist (Q, Q%) < 5v/nl(Qy) (7.3.3)
in view of Theorem 3.1.2 (iii). For each Q) (centered at zp), let By, be the smallest
ball that contains Q. Then By, is of radius \/nf(Qy)/2 and centered at zy. Combine
this observation with (7.3.3) to obtain that for any z € Qi and y € B(z,d4(2))

11
ly — 20| <y — 2| + |2 — 20| < 6a(z) + VNl(Qr)/2 < ?\/ﬁﬁ(Qk) < 1lrad(By),
namely,
z € Qr = B(z,04(2)) C 11By,.

This implies that
| T(B(z.6a(2))) € | JT(11By). (7.3.4)
2€Qq k
Next, we claim that
{IF| >a} C | T(B(26a(2))). (7.3.5)
ZGQ&

Indeed, let (z,t) € R’ such that |F(z,t)| > a. Then by the definition of M*F, we
have that M*F(y) > a for all y € R" satistying |z — y| < ¢. Thus, B(xz,t) C Q, and
50 0o () > t. This gives that (z,t) € T(B(z, do(x))), which proves (7.3.5).
Combining (7.3.4) and (7.3.5), we obtain
{|F| > a} c| JT(11By).
k
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Applying the measure ;. and using the definition of the Carleson function, we ob-
tain

p{|F] > a}) <Zu (11By))
< Z 1LBy| inf % (u)(x)
k

< ; 1118y xienfk‘f(u)(m) (- Qr C 11By)

| Bk|
<11” x)dz
2 1Qu] Jo, “1IE
<AW" | Eo(a)ds
Qo
This proves (7.3.1). It follows (7.3.2) in view of || €' (1t)||co = ||t %- [

Corollary 7.3.12.

For any Carleson measure y and every p-measurable function F on R,
we have

/ F(z,t)Pdp(z, £) < Colulle / M*F(r)Pde  (7.36)
R7+! R

forall p € [1,00).

\.

Proof. From (7.3.2), applying Theorem 1.1.4 twice, we get
[ F 0Pt =p [~ 0 u({F] > a})da
R+ 0

+

(o.0]
<CnHMH<gp/ o H{M*F > a}|da
0

—Cullulls /R (M*F(@)\dr.
[ |

A particular example of this situation arises when F(z,t) = f * ®(x) for some
nice integrable function ®. Here and in the sequel, ®;(z) = ¢t "®(¢t !z). For in-
stance, one may take ®; to be the Poisson kernel P;.

Theorem 7.3.13.

Let ® be a function on R that satisfies for some 0 < C,§ < oo,

C
) < —
NS T
Let 1 be a Carleson measure on R:i“. Then for every 1 < p < oo, thereis a
constant C), , (1) such that for all f € LP(R") we have

/ i [(@x (@) Pdu(z,t) < Cpnn) / |f (@)[Pda, (7.3.8)
RY n

where Gy, (1) < C(p,n)| |l

Conversely, suppose that ® is a non-negative function that satisfies
(7.3.7) and f| <1 ® (x)dz > 0. If p is a measure on R’?ﬁl such that for
some 1 < p < oo there is a constant C) (1) such that (7.3.8) holds for all

(7.3.7)
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f € LP(R"), then p is a Carleson measure with norm at most a multiple of
Cpn ().

Proof. If 1 is a Carleson measure, we may obtain (7.3.8) as a sequence of Corollary
7.3.12. Indeed, for F(x,t) = (P, * f)(x), we have
M*F(x) =sup sup |(®;* f)(y)]

t>0 yeRrn
ly—z|<t

<sup sup / |Pi(y — 2)||f(2)|dz
t>0 yeRr" n
ly—z|<t

—sup sup / @4y — z+ 7 — 2)||f(2)|d
t>0 yern n
ly—z|<t

<sup [ sup [Du(y —z+ )+ [f] | (z)
t>0 yERN
ly—z|<t

=sup(¥; | f|)(z),
>0

where

C, 7] <1
U(z) := sup |P(z —u)| < C
lul<1 [2] 3

by the condition (7.3.7). Thus, it is clear that [| || 1 (gn) < C (Vi +wy—1/6). It follows
from Theorem 3.2.12 that

M*F(z) < C(n,0) M (| f])(x).
Then, by Theorem 3.2.7, we obtain

| arF@yds<cms) [ ()@ < cosp [ 7@l

n

x| > 1,

Therefore, from Corollary 7.3.12, (7.3.8) follows.
Conversely, if (7.3.8) holds, then we fix a ball B = B(z, r) in R” with center z
and radius > 0. Then for (z,t) € T'(B), we have

@) = [ wle—pay= [ o)y

2B

> / By(y)dy = / B(y)dy = cn > 0,
B(0,t) B(0,1)

since B(0,t) C z — 2B(xz¢,r) whenever ¢t < r. Therefore, we have

uTE) = [ ety < [ chduten
T(B) T(B)
1
< [ g @) )
1
< fop (@ 0B @ P20
Cpm
<Gonlt) [ pyapteaute,
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_ 2"Cpn ()
b

This proves that 1 is a Carleson measure with ||z« [

|Bl.

§7.4 BMO functions and Carleson measures

We now turn to an interesting connection between BMO functions and Carleson
measures. We have the following.

Theorem 7.4.1. \

Let b € BMO(R") and ¥ € L'(R") with [p, ¥(z)dz = 0 satisfying
U ()] < AL+ [2)"° (7.4.1)
for some 0 < A,§ < co. Consider the dilation ¥; = t~"¥(¢~!z) and define

the Littlewood-Paley operators A;f = f % ¥,_;.
(i) Suppose that

sup Y [T(277¢))P < B? < o0 (7.4.2)
£eRn jez
and let d,; (t) be Dirac mass at the point t = 277, Then there is a constant
(s such that
=3 [(Ty-s b)(x) Pdwdy-; (t)dt
JEZ
is a Carleson measure on R’/ with norm at most C,, 5(4 + B)?||b||3y0-
(ii) Suppose that
A dt
sup / [W(t6)|>— < B? < oo. (7.4.3)
¢ern Jo t
Then the continuous version dv(x,t) of du(x,t) defined by
dt
dv(z,t) = |(Tg % b) (z) > d:c—
is a Carleson measure on R’'"! with norm at most Ch.s(A + B)?||b||3y o for
some constant C, 5.
(iii) Let 6, A > 0. Suppose that { K} }+¢ are functions on R" x R" that satisfy
At
Ki(z,y)| <
| t( y)’ (t-f-‘ﬂl‘—y’)n—’_&

forallt > 0 and all z,y € R™. Let R; be the linear operator

/ Kt I ?J dya

which is well-defined for all f € |J LP(R™). Suppose that R;(1) = 0 for
p€[l,00]
all ¢ > 0 and that there is a constant B > 0 such that

dxdt
[ [ IR@PEE < B e (7.4.5)
forall f € L?(R™). Then for all b € BMO the measure
dxdt
|Rt(b)($)\27

is Carleson with norm at most a constant multiple of (A + B)?||b||3y0-

(7.4.4)
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Proof. (i) The measure 4 is defined so that for every p-integrable function F' on

R"!, we have

/ F(x,t)du(z,t) Z/ (Woe;j  b)(x)|2F(x,277)dx, (7.4.6)
RT— JEZL "
since [y 0y (£)F (2, t)dt = F(z,27).

For a cube Q C R", let Q* be the cube with the same center and orientation

whose side length is 31/n/(Q), where ¢(Q) is the side length of ). Fix a cube Q) C
R™, take F = XT(Q)s and split b as

b= (b— Avgb)xg: + (b — Avgb)x(g+)c + Avgb.
Q Q Q

Since ¥ has mean value zero, Aj Avg b= Wy ; % Avg b = 0. Then (7.4.6) gives

= > /yAb )2da < 25 + 25,

2-7<0(Q)
where

5= / (10~ Aveb) o) (@)

JEZ
Yy = /\A ((b— Avgb) X(@+e) ()| da.
27 <U(Q
Using Plancherel’s theorem twice and (7.4.2), we obtain

B <swp Y @@ [ (- Avsbngr) o)y
3 JEZ R

<B? / b(z) — Ave b|2dz
* Q

<2B? / |b(x) — Avgb|*dz + 2B%|Q*|| Avgb — Avgb|?
- Q Q" Q

<28 || 1b(a) - Avebiids + 2B b0l

gCnBzanbHQBMO‘Q’a
in view of Proposition 7.1.7 (i) and Corollary 7.2.4. To estimate X5, we use the size

estimate (7.4.1) of the function ¥ to obtain
A27|b(y) — Avg|
Q

|(Wy—j * (b— Agg b)x (@) ()] < P Py T dy. (7.4.7)
Denote cg the center of ), then for z € @ and y € (Q*)¢, we get
Tt+lr -y \>!y—x! > |y —cql = leq — 7
>Leg — v+ 2Y4Q) ~leq — ) (- Iy — cal 2 @) = Y u(@)
>Leg -yl + 22 M (Q) - @)

—5 (lca—vl+ @(Q)) .
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Inserting this estimate in (7.4.7), integrating over ), and summing over j with
277 < £(Q), we obtain

|b(y) — Avgb| ?

5, <O, 920 / A / < dy | dz
? Z 0 n (U(Q) + |eg —y)n T Y

7277<0Q)

(Q)°Ib(y) — Avgbl  \°
Q

Q) + lcq — g5

<CrA%|Q)| A/

<CnsA%|Q1BlIEno
in view of (7.1.6). This proves that
S1 4 B2 < Cos(A% + BY)|Q|[1b]Eno
which implies that u(7(Q)) < Cy,.5(A? + B?)|Q||1b]3m0-
(ii) The proof can be obtained as similar fashion as in (i).

(iii) This is a generalization of (ii) and is proved likewise. We sketch its proof.
Write

b= (b—Avgb)xg: + (b — Avgb)x(g+)c + Avgb
Q Q Q
and note that R;(Avgb) = 0. We handle the term containing R;((b — Avgb)xo+)
Q Q

using an L? estimate over Q* and condition (7.4.5), while for the term containing
Ri((b — Avgb)x(g+):), we use an L' estimate and condition (7.4.4). In both cases,
Q

we obtain the required conclusion in a way analogous to that in (i). |
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