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PrefacePreface

Harmonic analysis, as a subfield of analysis, is particularly interested in the
study of quantitative properties on functions, and how these quantitative proper-
ties change when apply various operators. In the past two centuries, it has become
a vast subject with applications in areas as diverse as signal processing, quantum
mechanics, and neuroscience.

Most of the material in these notes are excerpted from the book of Stein [Ste70],
the book of Stein and Weiss [SW71], the books of Grafakos [Gra14a, Gra14b] and the
book of Wang-Huo-Hao-Guo [WHHG11], etc. with some necessary modification.

Please email me (hcc@amss.ac.cn) with corrections or suggested improvements
of any kinds.

Chengchun Hao
Beijing

April 28, 2020
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§ 1.1 The distribution function and weak Lp

In this chapter, we will consider general measurable functions in measurable
spaces instead of Rn only.

A σ-algebra on a set X is a collection of subsets of X that includes the empty
subset, is closed under complement, countable unions and countable intersections.
A measure space is a setX equipped with a σ-algebra of subsets of it and a function
µ from the σ-algebra to [0,∞] that satisfies µ(∅) = 0 and

µ

 ∞⋃
j=1

Bj

 =

∞∑
j=1

µ(Bj)

for any sequence {Bj} of pairwise disjoint elements of the σ-algebra. The function
µ is called a positive measure on X and elements of the σ-algebra of X are called
measurable sets. Measure spaces will be assumed to be complete, i.e., subsets of
the σ-algebra of measure zero also belong to the σ-algebra.

A measure spaceX is called σ-finite if there is a sequence of measurable subsets
Xn of it such that X =

⋃∞
n=1Xn and µ(Xn) < ∞. A real-valued function f on a

measure space is called measurable if the set {x ∈ X : f(x) > λ} is measurable for
all real numbers λ. A complex-valued function is measurable if and only if its real
and imaginary parts are measurable.

We adopt the usual convention that two functions are considered equal if they
agree except on a set of µ-measure zero. For p ∈ [1,∞), we denote by Lp(X, dµ) (or
simply Lp(dµ), Lp(X) or even Lp) the Lebesgue-space of (all equivalence classes of)
scalar-valued µ-measurable functions f on X , such that

‖f‖p =
(∫

X
|f(x)|pdµ

)1/p

is finite. For p = ∞, L∞ consists of all µ-measurable and bounded functions. Then
we write

‖f‖∞ = ess sup
X

|f(x)| = inf{B > 0 : µ({x : |f(x)| > B}) = 0}.
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It is well-known that Lp(X,µ) is a Banach space for any p ∈ [1,∞] (i.e., the
Riesz-Fisher theorem). For any p ∈ (1,∞), we define the Hölder conjugate number
p′ = p

p−1 . Moreover, we set 1′ = ∞ and ∞′ = 1, so that (p′)′ = p for all p ∈ [1,∞].
Hölder’s inequality says that for all p ∈ [1,∞] and all measurable function f , g on
(X,µ), we have

‖fg‖1 6 ‖f‖p‖f‖p′ .

It is also a well-known fact that the dual (Lp)′ of Lp is isometric to Lp
′

for all
p ∈ (1,∞) and also when p = 1 if X is σ-finite. Furthermore, the Lp norm of a
function can be obtained via duality when p ∈ (1,∞) as follows:

‖f‖p = sup
∥g∥p′=1

∣∣∣∣∫
X
fgdµ

∣∣∣∣ .
The endpoint cases p = 1,∞ also work if X is σ-finite.

It is often convenient to work with functions that are only locally in some Lp

space. We give the definition in the following.

Definition 1.1.1.

For p ∈ [1,∞), the space Lploc(X,µ) or simply Lploc(X) is the set of all
Lebesgue measurable functions f on Rn that satisfy∫

K
|f |pdµ <∞ (1.1.1)

for any compact subset K ⊂ X . Functions that satisfy (1.1.1) with p = 1 are
called locally integrable function on X .

The union of all Lp(X) spaces for p ∈ [1,∞] is contained in L1
loc(X). More

generally, for 1 6 p < q <∞, we have

Lq ↪→ Lqloc ↪→ Lploc.

We recall that a simple function is a finite linear combination of characteristic
functions of measurable subsets of X , these subsets may have infinite measure. A
finitely simple function has the canonical form

∑N
j=1 ajχBj where N < ∞, aj ∈ C,

and Bj are pairwise disjoint measurable sets with µ(Bj) <∞. If N = ∞, this func-
tion will be called countably simple. Finitely simple functions are exactly the inte-
grable simple functions. Every non-negative measurable function is the pointwise
limit of an increasing sequence of simple functions; if the space is σ-finite, these
simple functions can be chosen to be finitely simple. In particular, for p ∈ [1,∞),
the (finitely) simple functions are dense in Lp(X,µ). In addition, the space of sim-
ple functions (not necessarily with finite measure support) is dense in L∞(X,µ).

We shall now be interested in giving a concise expression for the relative size of
a function. Thus, we give the following concept.

Definition 1.1.2.

Let f(x) be a measurable function on (X,µ), then the function f∗ : [0,∞) 7→
[0,∞] defined by

f∗(α) = µ({x ∈ X : |f(x)| > α})
is called to be the distribution function of f .
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The distribution function f∗ provides information about the size of f but not
about the behavior of f itself near any given point. For instance, a function on Rn

and each of its translates have the same distribution function.
In particular, the decrease of f∗(α) as α grows describes the relative largeness

of the function; this is the main concern locally. The increase of f∗(α) as α tends to
zero describes the relative smallness of the function “at infinity”; this is its impor-
tance globally, and is of no interest if, for example, the function is supported on a
bounded set.

Now, we give some properties of distribution functions.

Proposition 1.1.3.

Let f and g be measurable functions on (X,µ). Then for all α, β > 0, we have

(i) f∗(α) is decreasing and continuous on the right.
(ii) If |f(x)| 6 |g(x)|, then f∗(α) 6 g∗(α).

(iii) (cf)∗(α) = f∗(α/|c|), for all c ∈ C \ {0}.
(iv) If |f(x)| 6 |g(x)|+ |h(x)|, then f∗(α+ β) 6 g∗(α) + h∗(β).
(v) (fg)∗(αβ) 6 f∗(α) + g∗(β).

(vi) For any p ∈ (0,∞) and α > 0, it holds

f∗(α) 6 α−p
∫
{x∈X:|f(x)|>α}

|f(x)|pdµ(x).

(vii) If f ∈ Lp, p ∈ [1,∞), then

lim
α→+∞

αpf∗(α) = 0 = lim
α→0

αpf∗(α).

(viii) If
∫∞
0 αp−1f∗(α)dα <∞, p ∈ [1,∞), then

αpf∗(α) → 0, as α→ +∞ and α→ 0, respectively.

(ix) If |f(x)| 6 lim inf
k→∞

|fk(x)| for a.e. x, then

f∗(α) 6 lim inf
k→∞

(fk)∗(α).

Proof. For simplicity, denote Ef (α) = {x ∈ X : |f(x)| > α} for α > 0.
(i) Let {αk} is a decreasing positive sequence which tends to α, then we have

Ef (α) = ∪∞
k=1Ef (αk). Since {Ef (αk)} is a increasing sequence of sets, it follows

lim
k→∞

f∗(αk) = f∗(α). This implies the continuity of f∗(α) on the right.

(v) Noticing that

{x ∈ X : |f(x)g(x)| > αβ} ⊂ {x ∈ X : |f(x)| > α} ∪ {x ∈ X : |g(x)| > β},

we have the desired result.
(vi) We have

f∗(α) =µ({x : |f(x)| > α})

=

∫
{x∈X:|f(x)|>α}

dµ(x)

6
∫
{x∈X:|f(x)|>α}

(
|f(x)|
α

)pdµ(x)

=α−p
∫
{x∈X:|f(x)|>α}

|f(x)|pdµ(x).
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(vii) From (vi), it follows

αpf∗(α) 6
∫
{x∈X:|f(x)|>α}

|f(x)|pdµ(x) 6
∫
Rn

|f(x)|pdµ(x).

Thus, µ({x ∈ X : |f(x)| > α}) → 0 as α→ +∞ and

lim
α→+∞

∫
{x∈X:|f(x)|>α}

|f(x)|pdµ(x) = 0.

Hence, αpf∗(α) → 0 as α→ +∞ since αpf∗(α) > 0.
For any 0 < α < β, we have, by noticing that 1 6 p <∞, that

lim
α→0

αpf∗(α) = lim
α→0

αp(f∗(α)− f∗(β))

= lim
α→0

αpµ({x ∈ X : α < |f(x)| 6 β})

6
∫
{x∈X:|f(x)|6β}

|f(x)|pdµ(x).

By the arbitrariness of β, it follows αpf∗(α) → 0 as α→ 0.
(viii) Since

∫ α
α/2(t

p)′dt = αp − (α/2)p and f∗(α) 6 f∗(t) for t 6 α, we have

f∗(α)α
p(1− 2−p) 6 p

∫ α

α/2
tp−1f∗(t)dt

which implies the desired result.
(ix) Let E = {x ∈ X : |f(x)| > α} and Ek = {x ∈ X : |fk(x)| > α}, k ∈ N. By

the assumption and the definition of inferior limit, i.e.,

|f(x)| 6 lim inf
k→∞

|fk(x)| = sup
ℓ∈N

inf
k>ℓ

|fk(x)|,

for x ∈ E, there exists an integer M such that for all k > M , |fk(x)| > α. Thus,
E ⊂

⋃∞
M=1

⋂∞
k=M Ek, and for any ` > 1,

µ

( ∞⋂
k=ℓ

Ek

)
6 inf

k>ℓ
µ(Ek) 6 sup

ℓ
inf
k>ℓ

µ(Ek) = lim inf
k→∞

µ(Ek).

Since {
⋂∞
k=M Ek}∞M=1 is an increasing sequence of sets, we obtain

f∗(α) = µ(E) 6 µ

( ∞⋃
M=1

∞⋂
k=M

Ek

)
= lim

M→∞
µ

( ∞⋂
k=M

Ek

)
6 lim inf

k→∞
(fk)∗(α).

For other ones, they are easy to verify. �
From this proposition, we can prove the following equivalent norm ofLp spaces.

Theorem 1.1.4: The equivalent norm of Lp

Let (X,µ) be a σ-finite measure space. Then for f ∈ Lp(X,µ), p ∈ [1,∞], we
have

(i) ‖f‖p =
(
p

∫ ∞

0
αp−1f∗(α)dα

)1/p

, if 1 6 p <∞,

(ii) ‖f‖∞ = inf {α : f∗(α) = 0}.

Moreover, for any increasing continuously differentiable functionϕ on [0,∞)

with ϕ(0) = 0 and every measurable function f on X with ϕ(|f |) integrable
on X , we have ∫

X
ϕ(|f |)dµ(x) =

∫ ∞

0
ϕ′(α)f∗(α)dα. (1.1.2)
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Proof. In order to prove (i), we first prove the following conclusion: If f(x) is finite
and f∗(α) <∞ for any α > 0, then∫

X
|f(x)|pdµ(x) = −

∫ ∞

0
αpdf∗(α). (1.1.3)

Indeed, the r.h.s. of the equality is well-defined from the conditions. For the inte-
gral in the l.h.s., we can split it into Lebesgue integral summation. Let 0 < ε < 2ε <

· · · < kε < · · · and

Ej = {x ∈ X : (j − 1)ε < |f(x)| 6 jε} , j = 1, 2, · · · ,
then, µ(Ej) = f∗((j − 1)ε)− f∗(jε), and∫

X
|f(x)|pdµ(x) = lim

ε→0

∞∑
j=1

(jε)pµ(Ej)

=− lim
ε→0

∞∑
j=1

(jε)p[f∗(jε)− f∗((j − 1)ε)]

=−
∫ ∞

0
αpdf∗(α),

since the measure space is σ-finite.
Now we return to prove (i). If the values of both sides are infinite, then it is

clearly true. If one of the integral is finite, then it is clear that f∗(α) < +∞ and f(x)
is finite almost everywhere. Thus (1.1.3) is valid.

If either f ∈ Lp(X) or
∫∞
0 αp−1f∗(α)dα < ∞ for 1 6 p < ∞ , then we always

have αpf∗(α) → 0 as α → +∞ and α → 0 from the property (vii) and (viii) in
Proposition 1.1.3.

Therefore, integrating by part, we have

−
∫ ∞

0
αpdf∗(α) =p

∫ ∞

0
αp−1f∗(α)dα− αpf∗(α)|+∞

0 = p

∫ ∞

0
αp−1f∗(α)dα.

Thus, i) is true. Identity (1.1.2) follows similarly, replacing the function αp by the
more general function ϕ(α) which has similar properties.

For (ii), we have

inf {α : f∗(α) = 0} = inf {α : µ({x ∈ X : |f(x)| > α}) = 0}
= inf {α : |f(x)| 6 α, a.e.}
= ess sup

x∈X
|f(x)| = ‖f‖∞.

We complete the proofs. �
Using the distribution function f∗, we now introduce the weak Lp-spaces de-

noted by Lp∗.

Definition 1.1.5.

For 1 6 p < ∞, the space Lp∗(X,µ), consists of all µ-measurable functions f
such that

‖f‖Lp
∗ = sup

α>0
αf

1/p
∗ (α) <∞.

In the limiting case p = ∞, we put L∞
∗ = L∞.

Two functions in Lp∗(X,µ) are considered equal if they are equal µ-a.e. Now, we
will show that Lp∗ is a quasi-normed linear space.
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1◦ If ‖f‖Lp
∗ = 0, then for any α > 0, it holds µ({x ∈ X : |f(x)| > α}) = 0, thus,

f = 0, µ-a.e.
2◦ From (iii) in Proposition 1.1.3, we can show that for any k ∈ C \ {0}

‖kf‖Lp
∗ = sup

α>0
α(kf)

1/p
∗ (α) = sup

α>0
αf

1/p
∗ (α/|k|)

=|k| sup
α>0

αf
1/p
∗ (α) = |k|‖f‖Lp

∗ ,

and it is clear that ‖kf‖Lp
∗ = |k|‖f‖Lp

∗ also holds for k = 0.
3◦ By the part (iv) in Proposition 1.1.3 and the triangle inequality of Lp norms,

we have

‖f + g‖Lp
∗ = sup

α>0
α(f + g)

1
p
∗ (α)

6 sup
α>0

α
(
f∗

(α
2

)
+ g∗

(α
2

)) 1
p

62 sup
α>0

α

2

(
f

1
p
∗

(α
2

)
+ g

1
p
∗

(α
2

))
62

(
sup
α>0

αf
1
p
∗ (α) + sup

α>0
αg

1
p
∗ (α)

)
62(‖f‖Lp

∗ + ‖g‖Lp
∗).

Thus, Lp∗ is a quasi-normed linear space for 1 6 p <∞.
The weak Lp spaces are larger than the usual Lp spaces. We have the following:

Theorem 1.1.6.

For any 1 6 p <∞, and any f ∈ Lp(X,µ), we have

‖f‖Lp
∗ 6 ‖f‖p.

Hence, Lp(X,µ) ↪→ Lp∗(X,µ).

Proof. From the part (vi) in Proposition 1.1.3, we have

αf
1/p
∗ (α) 6

(∫
{x∈X:|f(x)|>α}

|f(x)|pdµ(x)

)1/p

6 ‖f‖p,

which yields the desired result. �
The inclusion Lp ↪→ Lp∗ is strict for 1 6 p < ∞. For example, on Rn with the

usual Lebesgue measure, let h(x) = |x|−n/p. Obviously, h is not in Lp(Rn) due to∫
|x|−ndx = ωn−1

∫ ∞

0
r−nrn−1dr = ∞,

where ωn−1 = 2πn/2/Γ(n/2) is the surface area of the unit sphere Sn−1 in Rn, but h
is in Lp∗(Rn) and we may check easily that

‖h‖Lp
∗ = sup

α
αh

1/p
∗ (α) = sup

α
α(|{x : |x|−n/p > α}|)1/p

= sup
α
α(|{x : |x| < α−p/n}|)1/p = sup

α
α(α−pVn)

1/p

=V 1/p
n ,

where Vn = πn/2/Γ(1 + n/2) is the volume of the unit ball in Rn and Γ-function
Γ(z) =

∫∞
0 tz−1e−tdt for <z > 0.
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It is not immediate from their definition that the weak Lp spaces are complete
with respect to the quasi-norm ‖ · ‖Lp

∗ . For the completeness, we will state it later as
a special case of Lorentz spaces.

Next, we recall the notion of convergence in measure and give the relations of
some convergence notions.

Definition 1.1.7.

Let f , fn, n = 1, 2, · · · , be measurable functions on the measure space (X,µ).
The sequence {fn} is said to convergent in measure to f , denoted by fn

µ−→
f , if for all ε > 0, there exists an n0 ∈ Z+ such that

n > n0 =⇒ µ({x ∈ X : |fn(x)− f(x)| > ε}) < ε. (1.1.4)

Remark 1.1.8. The above definition is equivalent to the following statement:

lim
n→∞

µ({x ∈ X : |fn(x)− f(x)| > ε}) = 0, ∀ε > 0. (1.1.5)

Clearly, (1.1.5) implies (1.1.4). To see the converse, given ε > 0, pick 0 < δ < ε

and apply (1.1.4) for this δ. There exists an n0 ∈ Z+ such that

µ({x ∈ X : |fn(x)− f(x)| > δ}) < δ

holds for n > n0. Since

µ({x ∈ X : |fn(x)− f(x)| > ε}) 6 µ({x ∈ X : |fn(x)− f(x)| > δ}),

we conclude that

µ({x ∈ X : |fn(x)− f(x)| > ε}) < δ

for all n > n0. Let n→ ∞, we deduce that

lim sup
n→∞

µ({x ∈ X : |fn(x)− f(x)| > ε}) 6 δ. (1.1.6)

Since (1.1.6) holds for all δ ∈ (0, ε), (1.1.5) follows by letting δ → 0.

Convergence in measure is a weaker notion than convergence in either Lp or
Lp∗, 1 6 p 6 ∞, as the following proposition indicates:

Proposition 1.1.9.

Let p ∈ [1,∞] and fn, f ∈ Lp∗(X,µ).

(i) If fn, f ∈ Lp and fn → f in Lp, then fn → f in Lp∗.

(ii) If fn → f in Lp∗, then fn
µ−→ f .

Proof. For p ∈ [1,∞), Proposition 1.1.6 gives that

‖fn − f‖Lp
∗ 6 ‖fn − f‖p,

which implies (i) for the case p ∈ [1,∞). The case p = ∞ is trivial due to L∞
∗ = L∞.

For (ii), given ε > 0, there exists an n0 such that for n > n0,

‖fn − f‖Lp
∗ = sup

α>0
αµ({x ∈ X : |fn(x)− f(x)| > α})

1
p < ε

1+ 1
p .

Taking α = ε, we obtain the desired result. �
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Example 1.1.10. Note that there is no general converse of statement (ii) in the above
proposition. Fix p ∈ [1,∞) and on [0, 1] we define the functions

fk,j = k1/pχ( j−1
k
, j
k
), 1 6 j 6 k.

Consider the sequence {f1,1, f2,1, f2,2, f3,1f3,2, f3,3, · · · }. Observe that

|{x : fk,j(x) > 0}| = 1/k → 0, as k, j → ∞.

Therefore, fk,j
µ−→ 0. Similarly, we have

‖fk,j‖Lp
∗ = sup

α>0
α|{x : fk,j(x) > α}|1/p

= sup
α>0

α|{x : k1/pχ( j−1
k
, j
k
)(x) > α}|1/p

= sup
α>0

α

∣∣∣∣{x ∈
(
j − 1

k
,
j

k

)
: k1/p > α

}∣∣∣∣1/p
= sup

0<α<k1/p
α(1/k)1/p

> sup
k>1

(
1− 1

k2

)1/p

(taking α = (k − 1/k)1/p)

=1,

which implies that fk,j does not converge to 0 in Lp∗.

It is useful fact that a function f ∈ Lp(X,µ) ∩ Lq(X,µ) with p < q implies
f ∈ Lr(X,µ) for all r ∈ (p, q). The usefulness of the spaces Lp∗ can be seen from the
following sharpening of this statement:

Proposition 1.1.11.

Let 1 6 p < q 6 ∞ and f ∈ Lp∗(X,µ) ∩ Lq∗(X,µ), where X is a σ-finite
measure space. Then f ∈ Lr(X,µ) for all r ∈ (p, q) (i.e., θ ∈ (0, 1)) and

‖f‖r 6
(

r

r − p
+

r

q − r

)1/r

‖f‖1−θ
Lp
∗
‖f‖θLq

∗
, (1.1.7)

with the interpretation that 1/∞ = 0, where
1

r
=

1− θ

p
+
θ

q
.

Proof. We first consider the case q < ∞. From Theorem 1.1.4 and the definition of
the distribution function, it follows that

‖f‖rr =r
∫ ∞

0
αr−1f∗(α)dα (1.1.8)

6r
∫ ∞

0
αr−1 min

(
‖f‖p

Lp
∗

αp
,
‖f‖q

Lq
∗

αq

)
dα.

We take suitable α such that
∥f∥p

L
p
∗

αp 6
∥f∥q

L
q
∗

αq , i.e., α 6
(

∥f∥q
L
q
∗

∥f∥p
L
p
∗

) 1
q−p

=: B. Then, we

get

‖f‖rr 6r
∫ B

0
αr−1−p‖f‖p

Lp
∗
dα+ r

∫ ∞

B
αr−1−q‖f‖q

Lq
∗
dα

=
r

r − p
‖f‖p

Lp
∗
Br−p +

r

q − r
‖f‖q

Lq
∗
Br−q (due to p < r < q)
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=

(
r

r − p
+

r

q − r

)
‖f‖r(1−θ)

Lp
∗

‖f‖rθLq
∗
.

For the case q = ∞, due to f∗(α) = 0 for α > ‖f‖∞, we only use the inequality
f∗(α) 6 α−p‖f‖p

Lp
∗

for α 6 ‖f‖∞ for the integral in (1.1.8) to get

‖f‖rr 6r
∫ ∥f∥∞

0
αr−1−p‖f‖p

Lp
∗
dα

=
r

r − p
‖f‖p

Lp
∗
‖f‖r−p∞ ,

which implies the result since p = r(1− θ) and L∞
∗ = L∞ in this case. �

Remark 1.1.12. From the Hölder inequality, we easily know that (1.1.7) holds with
constant 1 if Lp∗ and Lq∗ are replaced by Lp and Lq, respectively.

§ 1.2 Complex method: Riesz-Thorin and Stein interpolation theorems

§ 1.2.1 Riesz-Thorin interpolation theorem

In this section, scalars are supposed to be complex numbers.
Let T be a linear mapping from Lp = Lp(X, dµ) to Lq = Lq(Y, dν). This means

that T (αf + βg) = αT (f) + βT (g). We shall write

T : Lp → Lq

if in addition T is bounded, i.e.,

A = sup
{f :∥f∥p ̸=0}

‖Tf‖q
‖f‖p

= sup
∥f∥p=1

‖Tf‖q <∞.

The number A is called the norm of the mapping T .
It will also be necessary to treat operators T defined on several Lp spaces simul-

taneously.

Definition 1.2.1.

We define Lp1 + Lp2 to be the space of all functions f , such that f = f1 + f2,
with f1 ∈ Lp1 and f2 ∈ Lp2 .

Suppose now p1 < p2. Then we observe that

Lp ↪→ Lp1 + Lp2 , ∀p ∈ [p1, p2].

In fact, let f ∈ Lp and let γ be a fixed positive constant. Set

f1(x) =

{
f(x), |f(x)| > γ,

0, |f(x)| 6 γ,

and f2(x) = f(x)− f1(x). Then∫
|f1(x)|p1dµ(x) =

∫
|f1(x)|p|f1(x)|p1−pdµ(x) 6 γp1−p

∫
|f(x)|pdµ(x),

since p1 − p 6 0. Similarly, due to p2 > p,∫
|f2(x)|p2dµ(x) =

∫
|f2(x)|p|f2(x)|p2−pdµ(x) 6 γp2−p

∫
|f(x)|pdµ(x),

so f1 ∈ Lp1 and f2 ∈ Lp2 , with f = f1 + f2.
Now, we have the following well-known Riesz-Thorin interpolation theorem.
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Theorem 1.2.2: The Riesz-Thorin interpolation theorem

Let (X,µ) and (Y, ν) be a pair of σ-finite measure spaces. Let T be a linear
operator with domain (Lp0 + Lp1)(X, dµ), p0, p1, q0, q1 ∈ [1,∞]. Assume that

‖Tf‖Lq0 (Y,dν) 6 A0‖f‖Lp0 (X,dµ), if f ∈ Lp0(X, dµ),

and

‖Tf‖Lq1 (Y,dν) 6 A1‖f‖Lp1 (X,dµ), if f ∈ Lp1(X, dµ),

for some p0 6= p1 and q0 6= q1. Suppose that for a certain 0 < θ < 1

1

p
=

1− θ

p0
+

θ

p1
,

1

q
=

1− θ

q0
+
θ

q1
. (1.2.1)

Then

‖Tf‖Lq(Y,dν) 6 Aθ‖f‖Lp(X,dµ), if f ∈ Lp(X, dµ),

with

Aθ 6 A1−θ
0 Aθ1. (1.2.2)

Remark 1.2.3. 1) (1.2.2) means that Aθ is logarithmi-
cally convex, i.e., lnAθ is convex.
2) The geometrical meaning of (1.2.1) is that the points
(1/p, 1/q) are the points on the line segment between
(1/p0, 1/q0) and (1/p1, 1/q1).
3) One can only assume the boundedness of T for
all finitely simple functions f on X , and obtain the
boundedness for all finitely simple functions. When
p < ∞, by density, T has a unique bounded exten-
sion from Lp(X,µ) to Lq(Y, ν) when p and q are as in
(1.2.1).

(1, 1)

( 1
p0
, 1
q0
)

( 1
p1
, 1
q1
)

(1p ,
1
q )

1
p

1
q

O

In order to prove the Riesz-Thorin interpolation theorem, we first give the fol-
lowing three lines theorem, which is the basis for the proof and the complex inter-
polation method, and we will give its proof later. For convenience, let S = {z ∈ C :

0 6 <z 6 1} be the closed strip, S̊ = {z ∈ C : 0 < <z < 1} be the open strip, and
∂S = {z ∈ C : <z ∈ {0, 1}}. We have the following.

Theorem 1.2.4: Hadamard three lines theorem

Assume that f(z) is analytic on S̊ and bounded and continuous on S. Then

sup
t∈R

|f(θ + it)| 6
(

sup
t∈R

|f(it)|
)1−θ (

sup
t∈R

|f(1 + it)|
)θ

,

for every θ ∈ [0, 1].

We now prove the Riesz-Thorin interpolation theorem with the help of the
Hadamard three lines theorem.

Proof of Theorem 1.2.2. Denote

〈h, g〉 =
∫
Y
h(y)g(y)dν(y)
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and 1/q′ = 1− 1/q. Then we have, by the dual,

‖h‖q = sup
∥g∥q′=1

|〈h, g〉|, and Aθ = sup
∥f∥p=∥g∥q′=1

|〈Tf, g〉|.

Noticing that Cc(X) is dense in Lp(X,µ) for 1 6 p < ∞, we can assume
that f and g are bounded with compact supports since p, q′ < ∞.1 Thus, we
have |f(x)| 6 M < ∞ for all x ∈ X , and supp f = {x ∈ X : f(x) 6= 0} is com-
pact, i.e., µ( supp f) < ∞ which implies

∫
X |f(x)|ℓdµ(x) =

∫
supp f |f(x)|

ℓdµ(x) 6
M ℓµ( supp f) <∞ for any ` > 0. So g does.

For 0 6 <z 6 1, we set
1

p(z)
=

1− z

p0
+

z

p1
,

1

q′(z)
=

1− z

q′0
+
z

q′1
,

and

η(z) =η(x, z) = |f(x)|
p

p(z)
f(x)

|f(x)|
, x ∈ {x ∈ X : f(x) 6= 0}; η(z) = 0 otherwise,

ζ(z) =ζ(y, z) = |g(y)|
q′

q′(z)
g(y)

|g(y)|
, y ∈ {y ∈ Y : g(y) 6= 0}; ζ(z) = 0 otherwise.

Now, we prove η(z), η′(z) ∈ Lpj for j = 0, 1. Indeed, we have

|η(z)| =
∣∣∣|f(x)| p

p(z)

∣∣∣ = ∣∣∣|f(x)|p( 1−z
p0

+ z
p1

)
∣∣∣ = ∣∣∣|f(x)|p( 1−ℜz

p0
+ℜz

p1
)+ip(ℑz

p1
−ℑz

p0
)
∣∣∣

=|f(x)|p(
1−ℜz
p0

+ℜz
p1

)
= |f(x)|

p
p(ℜz) .

Thus,

‖η(z)‖pjpj =
∫
X
|η(x, z)|pjdµ(x) =

∫
X
|f(x)|

ppj
p(ℜz)dµ(x) <∞.

We have

η′(z) =|f(x)|
p

p(z)

[
p

p(z)

]′ f(x)
|f(x)|

ln |f(x)|

=p

(
1

p1
− 1

p0

)
|f(x)|

p
p(z)

f(x)

|f(x)|
ln |f(x)|.

On one hand, we have lim|f(x)|→0+ |f(x)|α ln |f(x)| = 0 for any α > 0, i.e., ∀ε > 0,
∃δ > 0 s.t. ||f(x)|α ln |f(x)|| < ε if |f(x)| < δ. On the other hand, if |f(x)| > δ, then
we have

||f(x)|α ln |f(x)|| 6Mα |ln |f(x)|| 6Mα max(| lnM |, | ln δ|) <∞.

Thus, ||f(x)|α ln |f(x)|| 6 C. Hence,

|η′(z)| =p
∣∣∣∣ 1p1 − 1

p0

∣∣∣∣ ∣∣∣|f(x)| p
p(z)

−α
∣∣∣ |f(x)|α |ln |f(x)||

6C
∣∣∣|f(x)| p

p(z)
−α
∣∣∣ = C|f(x)|

p
p(ℜz)

−α
,

which yields

‖η′(z)‖pjpj 6 C

∫
X
|f(x)|(

p
p(ℜz)

−α)pjdµ(x) <∞.

Therefore, η(z), η′(z) ∈ Lpj for j = 0, 1. So ζ(z), ζ ′(z) ∈ Lq
′
j for j = 0, 1 in the same

way. By the linearity of T , it holds (Tη)′(z) = Tη′(z). It follows that Tη(z) ∈ Lqj ,
and (Tη)′(z) ∈ Lqj with 0 < <z < 1, for j = 0, 1. This implies the existence of

F (z) = 〈Tη(z), ζ(z)〉, 0 6 <z 6 1.

1Otherwise, it will be p0 = p1 = ∞ if p = ∞, or θ = 1−1/q0
1/q1−1/q0

> 1 if q′ = ∞.
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Since
dF (z)

dz
=
d

dz
〈Tη(z), ζ(z)〉 = d

dz

∫
Y
(Tη)(y, z)ζ(y, z)dν(y)

=

∫
Y
(Tη)z(y, z)ζ(y, z)dν(y) +

∫
Y
(Tη)(y, z)ζz(y, z)dν(y)

=〈(Tη)′(z), ζ(z)〉+ 〈Tη(z), ζ ′(z)〉,

F (z) is analytic on the open strip 0 < <z < 1. Moreover, it is easy to see that F (z)
is bounded and continuous on the closed strip 0 6 <z 6 1.

Next, we note that for j = 0, 1

‖η(j + it)‖pj = ‖f‖
p
pj
p = 1.

Similarly, we also have ‖ζ(j + it)‖q′j = 1 for j = 0, 1. Thus, for j = 0, 1

|F (j + it)| =|〈Tη(j + it), ζ(j + it)〉| 6 ‖Tη(j + it)‖qj‖ζ(j + it)‖q′j
6Aj‖η(j + it)‖pj‖ζ(j + it)‖q′j = Aj .

Using Hadamard’s three line theorem, reproduced as Theorem 1.2.4, we get the
conclusion

|F (θ + it)| 6 A1−θ
0 Aθ1, ∀t ∈ R.

Taking t = 0, we have |F (θ)| 6 A1−θ
0 Aθ1. We also note that η(θ) = f and ζ(θ) = g,

thus F (θ) = 〈Tf, g〉. That is, |〈Tf, g〉| 6 A1−θ
0 Aθ1. Therefore, Aθ 6 A1−θ

0 Aθ1. �
Before proving the three line theorem, we recall the following theorem.

Theorem 1.2.5: Phragmen-Lindelöf theorem/Maximum principle

Assume that f(z) is analytic on S̊ and bounded and continuous on S. Then

sup
z∈S

|f(z)| 6 max
(

sup
t∈R

|f(it)|, sup
t∈R

|f(1 + it)|
)
.

Proof. First, assume that f(z) → 0 as |=z| → ∞. Consider the mapping h : S → C
defined by

h(z) =
eiπz − i

eiπz + i
, z ∈ S. (1.2.3)

Then h is a bijective mapping from S onto U = {z ∈ C : |z| 6 1} \ {±1}, that is
analytic in S̊ and maps ∂S onto {|z| = 1} \ {±1}. Therefore, g(z) := f(h−1(z)) is
bounded and continuous on U and analytic in the interior Ů . Moreover, because of
lim|ℑz|→∞ f(z) = 0, limz→±1 g(z) = 0 and we can extend g to a continuous function
on {z ∈ C : |z| 6 1}. Hence, by the maximum modulus principle, we have

|g(z)| 6 max
|ω|=1

|g(ω)| = max
(

sup
t∈R

|f(it)|, sup
t∈R

|f(1 + it)|
)
,

which implies the statement in this case.
Next, if f is a general function as in the assumption, then we consider

fδ,z0(z) = eδ(z−z0)
2
f(z), δ > 0, z0 ∈ S̊.

Since |eδ(z−z0)2 | 6 eδ(x
2−y2) with z − z0 = x + iy, −1 6 x 6 1 and y ∈ R, we have

fδ,z0(z) → 0 as |=z| → ∞. Therefore,

|f(z0)| =|fδ,z0(z0)| 6 max
(

sup
t∈R

|fδ,z0(it)|, sup
t∈R

|fδ,z0(1 + it)|
)
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6eδ max
(

sup
t∈R

|f(it)|, sup
t∈R

|f(1 + it)|
)
.

Passing to the limit δ → 0, we obtain the desired result since z0 ∈ S is arbitrary. �

Proof of Theorem 1.2.4. Denote

A0 := sup
t∈R

|f(it)|, A1 := sup
t∈R

|f(1 + it)|.

Let λ ∈ R and define

Fλ(z) = eλzf(z).

Then by Theorem 1.2.5, it follows that |Fλ(z)| 6 max(A0, e
λA1). Hence,

|f(θ + it)| 6 e−λθ max(A0, e
λA1)

for all t ∈ R. Choosing λ = ln A0
A1

such that eλA1 = A0, we complete the proof. �
Now, we shall give a rather simple application of the Riesz-Thorin interpolation

theorem.

Theorem 1.2.6: Young’s inequality for convolutions

If f ∈ Lp(Rn) and g ∈ Lq(Rn), 1 6 p, q, r 6 ∞ and 1
r = 1

p +
1
q − 1, then

‖f ∗ g‖r 6 ‖f‖p‖g‖q.

Proof. Fix f ∈ Lp, p ∈ [1,∞], then we will apply the Riesz-Thorin interpolation
theorem to the mapping g 7→ f ∗ g. Our endpoints are Hölder’s inequality which
gives

|f ∗ g(x)| 6 ‖f‖p‖g‖p′

and thus g 7→ f ∗ g maps Lp
′
(Rn) to L∞(Rn) and the simpler version of Young’s

inequality (proved by Minkowski’s inequality) which tells us that if g ∈ L1, then

‖f ∗ g‖p 6 ‖f‖p‖g‖1.

Thus g 7→ f ∗ g also maps L1 to Lp. Thus, this map also takes Lq to Lr where
1

q
=

1− θ

1
+
θ

p′
, and

1

r
=

1− θ

p
+

θ

∞
.

Eliminating θ, we have 1
r = 1

p + 1
q − 1. Thus, we obtain the stated inequality for

precisely the exponents p, q and r in the hypothesis. �

Remark 1.2.7. 1) The sharp form of Young’s inequality for convolutions can be
found in [Bec75, Theorem 3], we just state it as follows. Under the assumption of
Theorem 1.2.6, we have

‖f ∗ g‖r 6 (ApAqAr′)
n‖f‖p‖g‖q,

where Am = (m1/m/m′1/m′
)1/2 for m ∈ (1,∞), A1 = A∞ = 1 and primes always

denote Hölder conjugate numbers, i.e., 1/m+ 1/m′ = 1.
2) The Riesz-Thorin interpolation theorem is valid for a sublinear operator, i.e.,

T satisfying for measurable functions f and g:

|T (αf)| =|α||T (f)|, ∀α ∈ C,
|T (f + g)| 6|T (f)|+ |T (g)|.

One can see [CZ56] for details.
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§ 1.2.2 Stein interpolation theorem

The Riesz-Thorin interpolation theorem can be extended to the case where the
interpolated operators allowed to vary. In particular, if a family of operators de-
pends analytically on a parameter z, then the proof of this theorem can be adapted
to work in this setting.

We now describe the setup for this theorem. Suppose that for every z in the
closed strip S there is an associated linear operator Tz defined on the space of sim-
ple functions on X and taking values in the space of measurable functions on Y

such that ∫
Y
|Tz(χA)χB|dν <∞ (1.2.4)

whenever A and B are subsets of finite measure of X and Y , respectively. The
family {Tz}z is said to be analytic if the function

z →
∫
Y
Tz(f)gdν (1.2.5)

is analytic in the open strip S̊ and continuous on its closure S. Finally, the analytic
family is of admissible growth if there is a constant 0 < a < π and a constant Cf,g
such that

e−a|ℑz| ln
∣∣∣∣∫
Y
Tz(f)gdν

∣∣∣∣ 6 Cf,g <∞ (1.2.6)

for all z ∈ S.
Note that if there is a ∈ (0, π) such that for all measurable subsets A of X and B

of Y of finite measure there is a constant c(A,B) such that

e−a|ℑz| ln
∣∣∣∣∫
B
Tz(χA)dν

∣∣∣∣ 6 c(A,B), (1.2.7)

then (1.2.6) holds for f =
∑M

k=1 akχAk
and g =

∑N
j=1 bjχBj and

Cf,g = ln(MN) +
M∑
k=1

N∑
j=1

(c(Ak, Bj) + |ln |akbj ||) .

In fact, by the linearity of Tz , (1.2.7) and the increasing of ln, we get

ln
∣∣∣∣∫
Y
Tz(f)gdν

∣∣∣∣ = ln

∣∣∣∣∣∣
∫
Y
Tz

(
M∑
k=1

akχAk

)
N∑
j=1

bjχBjdν

∣∣∣∣∣∣
= ln

∣∣∣∣∣∣
M∑
k=1

N∑
j=1

akbj

∫
Bj

Tz (χAk
) dν

∣∣∣∣∣∣
6 ln

M∑
k=1

N∑
j=1

|akbj |

∣∣∣∣∣
∫
Bj

Tz (χAk
) dν

∣∣∣∣∣
6 ln

[
MN max

k,j

(
|akbj | exp

(
c(Ak, Bj)e

a|ℑz|
))]

6 ln(MN) + max
k,j

∣∣∣ln [(|akbj | exp
(
c(Ak, Bj)e

a|ℑz|
))]∣∣∣

6 ln(MN) + max
k,j

[
|ln |akbj ||+ c(Ak, Bj)e

a|ℑz|
]

6 ln(MN) +

M∑
k=1

N∑
j=1

[
|ln |akbj ||+ c(Ak, Bj)e

a|ℑz|
]
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6

ln(MN) +
M∑
k=1

N∑
j=1

(|ln |akbj ||+ c(Ak, Bj))

 ea|ℑz|.
Then, we have an extension of the three lines theorem.

Lemma 1.2.8.

Let F be analytic on the open strip S̊ = {z ∈ C : 0 < <z < 1} and continuous
on its closure S such that for some A <∞ and 0 6 a < π, we have

ln |F (z)| 6 Aea|ℑz| (1.2.8)

for all z ∈ S. Then

|F (x+ iy)| 6 exp
{

sinπx
2

∫ ∞

−∞

[
ln |F (it+ iy)|

coshπt− cosπx +
ln |F (1 + it+ iy)|
coshπt+ cosπx

]
dt

}
,

whenever 0 < x < 1, and y is real.

Before we give the proof of Lemma 1.2.8, we first recall the Poisson-Jensen for-
mula from [Rub96, pp.21].

Theorem 1.2.9: The Poisson-Jensen formula

Suppose that f is meromorphic in the disk DR = {z ∈ C : |z| < R}, r < R.
Then for any z = reiθ in DR, we have

ln |f(reiθ)| = 1

2π

∫ π

−π
ln |f(Reiφ)| R2 − r2

|Reiφ − reiθ|2
dϕ+

∑
|zν |<R

ln |BR(z : zν)|

−
∑

|wν |<R

ln |BR(z : wν)| − k ln R
r
,

where B is the Blaschke factor defined by

BR(z : a) =
R(z − a)

R2 − āz
and the zν are the zeros of f , the wν are the poles of f , and k is the order of
the zero or pole at the origin.

Proof of Lemma 1.2.8. It is not difficult to verify that

h(ζ) =
1

πi
ln
(
i
1 + ζ

1− ζ

)
is a conformal map from D = {z : |z| < 1} onto the strip S̊ = (0, 1) × R. Indeed,
i(1 + ζ)/(1 − ζ) lies in the upper half-plane and the preceding complex logarithm
is a well-defined holomorphic function that takes the upper half-plane onto the
strip R× (0, π). Since F ◦ h is a holomorphic function on D, by the Poisson-Jensen
formula, we have

ln |F (h(z))| 6 1

2π

∫ π

−π
ln |F (h(Reiφ))| R2 − ρ2

|Reiφ − ρeiθ|2
dϕ (1.2.9)

when z = ρeiθ and |z| = ρ < R. We observe that for R < |ζ| = 1 the hypothesis on
F implies that

ln |F (h(Reiφ))| 6Aea
∣∣∣ℑ 1

πi
ln
(
i 1+Rζ
1−Rζ

)∣∣∣ (let ζ = eiφ, h(Rζ) =
1

πi
ln
(
i
1 +Rζ

1−Rζ

)
)

6Ae
a
π

∣∣∣ln∣∣∣ 1+Rζ
1−Rζ

∣∣∣∣∣∣
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=A exp
{
a

π

∣∣∣∣∣ln
√

(1 +R cosϕ)2 + (R sinϕ)2
(1−R cosϕ)2 + (R sinϕ)2

∣∣∣∣∣
}

(the square root is > 1 if cosϕ > 0 and < 1 otherwise)

=A

(
1 +R2 + 2R| cosϕ|
1 +R2 − 2R| cosϕ|

) a
2π

.

Since

1 +R2 − 2R| cosϕ| =(R− | cosϕ|)2 + sin2 ϕ > sin2 ϕ,

1 +R2 + 2R| cosϕ| 6(1 +R)2 6 4,

we get

ln |F (h(Reiφ))| 6 A

(
4

sin2 ϕ

) a
2π

6 A2
a
π | sinϕ|−

a
π .

Now, ∫ π

−π
| sinϕ|−

a
π dϕ =4

∫ π
2

0
sin− a

π ϕdϕ = 4

∫ π
2

0
sin2( 1

2
− a

2π )−1 ϕ cos2·
1
2
−1 ϕdϕ

=2B

(
1

2
,
1

2
− a

2π

)
<∞,

since a < π and the fact that the Beta function

B(α, β) =

∫ 1

0
xα−1(1− x)β−1dµ(x) = 2

∫ π
2

0
sin2β−1 ϕ cos2α−1 ϕdϕ

converges for α, β > 0. Moreover, for 1 > R > 1
2(ρ+ 1), it holds

R2 − ρ2

|Reiφ − ρeiθ|2
=

R2 − ρ2

R2 − 2Rρ cos(θ − ϕ) + ρ2
6 R2 − ρ2

R2 − 2Rρ+ ρ2

=
(R− ρ)(R+ ρ)

(R− ρ)2
=
R+ ρ

R− ρ
6 2

1
2(ρ+ 1)− ρ

6 4

1− ρ
.

Thus, (1.2.9) is uniformly bounded w.r.t. R ∈ (12(ρ+ 1), 1).
We will now use the following consequence of Fatou’s lemma: suppose that

FR 6 G, whereG > 0 is integrable, then lim supR→∞
∫
FRdϕ 6

∫
lim supR→∞ FRdϕ.

Letting R ↑ 1 in (1.2.9) and using this convergence result, we obtain

ln |F (h(ρeiθ))| 6 1

2π

∫ π

−π
ln |F (h(eiφ))| 1− ρ2

1− 2ρ cos(θ − ϕ) + ρ2
dϕ. (1.2.10)

Setting x = h(ρeiθ), we obtain that

ρeiθ =h−1(x) =
eπix − i

eπix + i
=

cosπx+ i sinπx− i

cosπx+ i sinπx+ i

=
(cosπx+ i(sinπx− 1))(cosπx− i(sinπx+ 1))

| cosπx+ i(sinπx+ 1)|2

=− i
cosπx

1 + sinπx =

(
cosπx

1 + sinπx

)
e−

π
2
i,

from which it follows that ρ = (cosπx)/(1 + sinπx) and θ = −π/2 when x ∈ (0, 12 ],
while ρ = −(cosπx)/(1 + sinπx) and θ = π/2 when x ∈ [12 , 1). In either case, we
have ρ = ( sgn (12 −x))(cosπx)/(1+sinπx) and θ = −( sgn (12 −x))π/2 for x ∈ (0, 1).
We easily deduce that

1− ρ2

1− 2ρ cos(θ − ϕ) + ρ2
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=
1− cos2 πx

(1+sinπx)2

1− 2( sgn (12 − x)) cosπx
1+sinπx cos(( sgn (12 − x))π2 + ϕ) + cos2 πx

(1+sinπx)2

=
(1 + sinπx)2 − cos2 πx

(1 + sinπx)2 + 2(1 + sinπx) cosπx sinϕ+ cos2 πx

=
2 sinπx+ 2 sin2 πx

2(1 + sinπx)(1 + cosπx sinϕ)

=
sinπx

1 + cosπx sinϕ.

Using this we write (1.2.10) as

ln |F (x)| 6 1

2π

∫ π

−π

sinπx
1 + cosπx sinϕ ln |F (h(eiφ))|dϕ. (1.2.11)

We now change variables. On the interval [−π, 0), we use the change of variables
it = h(eiφ) or, equivalently,

eiφ =h−1(it) =
e−πt − i

e−πt + i
=

(e−πt − i)2

e−2πt + 1
=
e−2πt − 1− 2ie−πt

e−2πt + 1

=
e−πt − eπt − 2i

e−πt + eπt
= − tanhπt− i sechπt.

Observe that as ϕ ranges from −π to 0, t ranges from +∞ to −∞. Furthermore,
dϕ = −π sechπt dt. We have

1

2π

∫ 0

−π

sinπx
1 + cosπx sinϕ ln |F (h(eiφ))|dϕ

=
1

2

∫ ∞

−∞

sinπx
coshπt− cosπx ln |F (it)|dt. (1.2.12)

On the interval (0, π], we use the change of variables 1+it = h(eiφ) or, equivalently,

eiφ =h−1(1 + it) =
eπi(1+it) − i

eπi(1+it) + i
=
eπie−πt − i

eπie−πt + i
=

(eπie−πt − i)(e−πie−πt − i)

e−2πt + 1

=
e−2πt − 1− ie−πt(e−πi + eπi)

1 + e−2πt
=
e−πt − eπt + 2i

eπt + e−πt

=− tanhπt+ i sechπt.
Observe that as ϕ ranges from 0 to π, t ranges from −∞ to +∞. Furthermore,
dϕ = π sechπt dt. Similarly, we obtain

1

2π

∫ π

0

sinπx
1 + cosπx sinϕ ln |F (h(eiφ))|dϕ

=
1

2

∫ ∞

−∞

sinπx
coshπt+ cosπx ln |F (1 + it)|dt. (1.2.13)

Adding (1.2.12), (1.2.13) and using (1.2.11), we conclude the proof when y = 0.
We now consider the case when y 6= 0. Fix y 6= 0 and define the function

G(z) = F (z + iy). Then G is analytic on the open strip S̊ = {z ∈ C : 0 < <z < 1}
and continuous on its closure S. Moreover, for someA <∞ and a ∈ [0, π), we have

ln |G(z)| = ln |F (z + iy)| 6 Aea|ℑz+y| 6 Aea|y|ea|ℑz|

for all z ∈ S. Then the case y = 0 for G (with A replaced by Aea|y|) yields

|G(x)| 6 exp
{

sinπx
2

∫ ∞

−∞

[
ln |G(it)|

coshπt− cosπx +
ln |G(1 + it)|

coshπt+ cosπx

]
dt

}
,

which yields the required conclusion for any real y, sinceG(x) = F (x+ iy), G(it) =
F (it+ iy), and G(1 + it) = F (1 + it+ iy). �
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The extension of the Riesz-Thorin interpolation theorem is now stated.

Theorem 1.2.10: Stein interpolation theorem

Let (X,µ) and (Y, ν) be a pair of σ-finite measure spaces. Let Tz be an analytic
family of linear operators of admissible growth. Let 1 6 p0, p1, q0, q1 6 ∞
and suppose that M0 and M1 are real-valued functions such that

sup
t∈R

e−b|t| lnMj(t) <∞ (1.2.14)

for j = 0, 1 and some 0 < b < π. Let 0 < θ < 1 satisfy
1

p
=

1− θ

p0
+

θ

p1
, and

1

q
=

1− θ

q0
+
θ

q1
. (1.2.15)

Suppose that

‖Tit(f)‖q0 6M0(t)‖f‖p0 , ‖T1+it(f)‖q1 6M1(t)‖f‖p1 (1.2.16)

for all finitely simple functions f on X . Then

‖Tθ(f)‖q 6M(θ)‖f‖p, when 0 < θ < 1 (1.2.17)

for all simple finitely functions f on X , where

M(θ) = exp
{

sinπθ
2

∫ ∞

−∞

[
lnM0(t)

coshπt− cosπθ +
lnM1(t)

coshπt+ cosπθ

]
dt

}
.

By density, Tθ has a unique extension as a bounded operator from Lp(X,µ)

into Lq(Y, ν) for all p and q as in (1.2.15).

The proof of the Stein interpolation theorem can be obtained from that of the
Riesz-Thorin theorem simply “by adding a single letter of the alphabet”. Indeed,
the way the Riesz-Thorin theorem is proven is to study an expression of the form

F (z) = 〈Tη(z), ζ(z)〉,

the Stein interpolation theorem proceeds by instead studying the expression

F (z) = 〈Tzη(z), ζ(z)〉.

One can then repeat the proof of the Riesz-Thorin theorem more or less verbatim to
obtain the Stein interpolation theorem. For convenience, we give the proof for this
version of finitely simple functions.

Proof of Theorem 1.2.10. Fix θ ∈ (0, 1) and finitely simple functions f on X and
g on Y such that ‖f‖p = ‖g‖q′ = 1. Note that since θ ∈ (0, 1), we must have
p, q ∈ (1,∞). Let

f =
m∑
k=1

ake
iαkχAk

and g =
n∑
j=1

bje
iβjχBj ,

where ak > 0, bj > 0, αk, βj are real, Ak are pairwise disjoint subsets of X with
finite measure, and Bj are pairwise disjoint subsets of Y with finite measure for all
k, j. Let

P (z) =
p

p0
(1− z) +

p

p1
z, Q(z) =

q′

q′0
(1− z) +

q′

q′1
z. (1.2.18)

For z ∈ S, define

fz =
m∑
k=1

a
P (z)
k eiαkχAk

, gz =
n∑
j=1

b
Q(z)
j eiβjχBj , (1.2.19)
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and

F (z) =

∫
Y
Tz(fz)gzdν. (1.2.20)

Linearity gives that

F (z) =

m∑
k=1

n∑
j=1

a
P (z)
k b

Q(z)
j eiαkeiβj

∫
Y
Tz(χAk

)(x)χBj (x)dν(x),

and the condition (1.2.4) together with the fact that {Tz}z is an analytic family imply
that F (z) is a well-defined analytic function on the unit strip that extends continu-
ously to its boundary.

Since {Tz}z is a family of admissible growth, (1.2.7) holds for some c(Ak, Bj)
and a ∈ (0, π) and this combined with the facts that

|aP (z)
k | 6 (1 + ak)

p
p0

+ p
p1 , |bQ(z)

j | 6 (1 + bj)
q′
q′0

+ q′
q′1

for all z ∈ S̊, implies (1.2.8) with a as in (1.2.7) and

A = ln(mn) +
m∑
k=1

n∑
j=1

[
c(Ak, Bj) +

(
p

p0
+

p

p1

)
ln(1 + ak) +

(
q′

q′0
+
q′

q′1

)
ln(1 + bj)

]
.

Thus, F satisfies the hypotheses of Lemma 1.2.8. Moreover, the calculations in the
proof of Theorem 1.2.2 show that (even when p0 = p1 = ∞, q0 = q1 = 1) for j = 0, 1

‖fj+iy‖pj = ‖f‖
p
pj
p = 1 = ‖g‖

q′
q′j
q′ = ‖gj+iy‖q′j , when y ∈ R. (1.2.21)

Hölder’s inequality, (1.2.21) and the hypothesis (1.2.16) give

|F (j + iy)| 6 ‖Tj+iy(fj+iy)‖qj‖gj+iy‖q′j 6Mj(y)‖fj+iy‖pj‖gj+iy‖q′j =Mj(y)

for all y real and j = 0, 1. These inequalities and the conclusion of Lemma 1.2.8
yield

|F (θ)| 6 exp
{

sinπθ
2

∫ ∞

−∞

[
lnM0(t)

coshπt− cosπθ +
lnM1(t)

coshπt+ cosπθ

]
dt

}
=M(θ)

for all θ ∈ (0, 1). But notice that

F (θ) =

∫
Y
Tθ(f)gdν. (1.2.22)

Taking absolute values and the supremum over all finitely simple functions g on
Y with Lq

′
norm equal to one, we conclude the proof of (1.2.17) for finitely simple

functions f with Lp norm one. Then (1.2.17) follows by replacing f by f/‖f‖p. �

§ 1.3 The decreasing rearrangement and Lorentz spaces

The spaces Lp∗ are special cases of the more general Lorentz spaces Lp,q. In
their definition, we use yet another concept, i.e., the decreasing rearrangement of
functions.

Definition 1.3.1.

If f is a measurable function on X , the decreasing rearrangement of f is the
function f∗ : [0,∞) 7→ [0,∞] defined by

f∗(t) = inf {α > 0 : f∗(α) 6 t} ,
where we use the convention that inf∅ = ∞.
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Now, we first give some examples of distribution function and decreasing rear-
rangement. The first example establish some important relations between a simple
function, its distribution function and decreasing rearrangement.

Example 1.3.2. (Decreasing rearrangement of a simple function) Let f be a simple
function of the following form

f(x) =

k∑
j=1

ajχAj (x)

where a1 > a2 > · · · > ak > 0,Aj = {x ∈ R : f(x) = aj} and χA is the characteristic
function of the set A (see Figure (a)). Then

f∗(α) = |{x : |f(x)| > α}| =

∣∣∣∣∣∣
x :

k∑
j=1

ajχAj (x) > α


∣∣∣∣∣∣ =

k∑
j=1

bjχBj (α),

where bj =
∑j

i=1 |Ai|, Bj = [aj+1, aj) for j = 1, 2, · · · , k and ak+1 = 0 which shows
that the distribution function of a simple function is a simple function (see Figure
(b)). We can also find the decreasing rearrangement (by denoting b0 = 0)

f∗(t) = inf{α > 0 : f∗(α) 6 t} = inf

α > 0 :
k∑
j=1

bjχBj (α) 6 t


=

k∑
j=1

ajχ[bj−1,bj)(t)

which is also a simple function (see Figure (c)).

A1 A2A3 A4 A5

a1

a2
a3

a4

a5

b1

b2
b3

b4
b5

a1a2a3a4a5x

f(x) f∗(α)

α b1 b2 b3 b4b5

a1

a2
a3

a4

a5

t

f∗(t)

(a) (b) (c)

Example 1.3.3. Let f : [0,∞) 7→ [0,∞) be

f(x) =

{
1− (x− 1)2, 0 6 x 6 2,

0, x > 2.

It is clear that f∗(α) = 0 for α > 1 since |f(x)| 6 1. For α ∈ [0, 1], we have

f∗(α) =|{x ∈ [0,∞) : 1− (x− 1)2 > α}|
=|{x ∈ [0,∞) : 1−

√
1− α < x < 1 +

√
1− α}| = 2

√
1− α.

That is,

f∗(α) =

{
2
√
1− α, 0 6 α 6 1,

0, α > 1.
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The decreasing rearrangement f∗(t) = 0 for t > 2 since f∗(α) 6 2 for any α > 0.
For t 6 2, we have

f∗(t) = inf{α > 0 : 2
√
1− α 6 t}

= inf{α > 0 : α > 1− t2/4} = 1− t2/4.

Thus,

f∗(t) =

{
1− t2/4, 0 6 t 6 2,

0, t > 2.

1 2

1

2

1 2

1

2

1 2

1

2

x

f f∗

α

f∗

t

(a) (b) (c)

Observe that the integral over f , f∗ and f∗ are all the same, i.e.,∫ ∞

0
f(x)dx =

∫ 2

0
[1− (x− 1)2]dx =

∫ 1

0
2
√
1− αdα =

∫ 2

0
(1− t2/4)dt = 4/3.

Example 1.3.4. We define an extended function f : [0,∞) 7→ [0,∞] as

f(x) =



0, x = 0,

ln 1
1−x , 0 < x < 1,

∞, 1 6 x 6 2,

ln 1
x−2 , 2 < x < 3,

0, x > 3.

Even if f is infinite over some interval the distribution function and the decreasing
rearrangement are still defined and can be calculated, for any α > 0

f∗(α) =µ

({
x ∈ [1, 2] : ∞ > α}

⋃
{x ∈ (0, 1) : ln( 1

1− x
) > α

}
⋃{

x ∈ (2, 3) : ln( 1

x− 2
) > α

})
=1 + |(1− e−α, 1)|+ |(2, e−α + 2)|
=1 + 2e−α,

and

f∗(t) =


∞, 0 6 t 6 1,

ln( 2
t−1), 1 < t < 3,

0, t > 3.

1 2 3

1

2

3

4

5

1 2 3

1

2

3

4

5

1 2 3

1

2

3

4

5
f

x

f∗

α

f∗

t

(a) (b) (c)
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Example 1.3.5. Consider the function f(x) = x for all x ∈ [0,∞). Then f∗(α) =

|{x ∈ [0,∞) : x > α}| = ∞ for all α > 0, which implies that f∗(t) = inf{α > 0 :

∞ 6 t} = ∞ for all t > 0.

Example 1.3.6. Consider f(x) = x
1+x for x > 0. It is clear that f∗(α) = 0 for α > 1

since |f(x)| < 1. For α ∈ [0, 1), we have

f∗(α) =

∣∣∣∣{x ∈ [0,∞) :
x

1 + x
> α

}∣∣∣∣
=

∣∣∣∣{x ∈ [0,∞) : x >
α

1− α

}∣∣∣∣ = ∞.

That is,

f∗(α) =

{
∞, 0 6 α < 1,

0, α > 1.

Thus, f∗(t) = inf{α > 0 : f∗(α) 6 t} = 1.

1 2

1

f

f ∗

The following are some properties of the function f∗.

Proposition 1.3.7.

The decreasing rearrangement f∗ of the measurable function f on (X,µ) has
the following properties:

(i) f∗(t) is a non-negative and non-increasing function on [0,∞).
(ii) f∗(t) is right continuous on [0,∞).

(iii) (kf)∗ = |k|f∗ for k ∈ C.
(iv) |f | 6 |g| a.e. implies that f∗ 6 g∗.
(v) (f + g)∗(t1 + t2) 6 f∗(t1) + g∗(t2).

(vi) (fg)∗(t1 + t2) 6 f∗(t1)g
∗(t2).

(vii) |f | 6 lim infk→∞ |fk| a.e. implies that f∗ 6 lim infk→∞ f∗k .
(viii) |fk| ↑ |f | a.e. implies that f∗k ↑ f∗.

(ix) f∗(f∗(α)) 6 α whenever f∗(α) <∞.
(x) f∗(f∗(t)) = µ({|f | > f∗(t)}) 6 t 6 µ({|f | > f∗(t)}) if f∗(t) <∞.

(xi) f∗(t) > α if and only if f∗(α) > t.
(xii) f∗ is equi-measurable with f , that is, (f∗)∗(α) = f∗(α) for any α > 0.

(xiii) (|f |p)∗(t) = (f∗(t))p for 1 6 p <∞.
(xiv) ‖f∗‖p = ‖f‖p for 1 6 p <∞.
(xv) ‖f‖∞ = f∗(0).

(xvi) supt>0 t
sf∗(t) = supα>0 α(f∗(α))

s for 0 < s <∞.

Proof. (v) Assume that f∗(t1) + g∗(t2) < ∞, otherwise, there is nothing to prove.
Then for α1 = f∗(t1) and α2 = g∗(t2), by (x), we have f∗(α1) 6 t1 and g∗(α2) 6 t2.
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From (iv) in Proposition 1.1.3, it holds

(f + g)∗(α1 + α2) 6 f∗(α1) + g∗(α2) 6 t1 + t2.

Using the definition of the decreasing rearrangement, we have

(f + g)∗(t1 + t2) = inf{α : (f + g)∗(α) 6 t1 + t2} 6 α1 + α2 = f∗(t1) + g∗(t2).

(vi) Similar to (v), by (v) in Proposition 1.1.3, it holds that (fg)∗(α1α2) 6 f∗(α1)+

g∗(α2) 6 t1 + t2. Then, we have

(fg)∗(t1 + t2) = inf{α : (fg)∗(α) 6 t1 + t2} 6 α1α2 = f∗(t1)g
∗(t2).

(xi) If f∗(α) > t, then by the decreasing of f∗, we have α < inf{β : f∗(β) 6 t} =

f∗(t). Conversely, if f∗(t) > α, i.e., inf{β : f∗(β) 6 t} > α, we get f∗(α) > t by the
decreasing of f∗ again.

(xii) By the definition and (xi), we have

(f∗)∗(α) = µ({t > 0 : f∗(t) > α}) = µ({t > 0 : f∗(α) > t}) = f∗(α).

(xiii) For α ∈ [0,∞), we have

(|f |p)∗(t) = inf{α > 0 : µ({x : |f(x)|p > α}) 6 t}
= inf{σp > 0 : µ({x : |f(x)| > σ}) 6 t} = (f∗(t))p,

where σ = α1/p.
(xiv) From Theorem 1.1.4 and (xii), we have

‖f∗(t)‖pp =
∫ ∞

0
|f∗(t)|pdt = p

∫ ∞

0
αp−1(f∗)∗(α)dα

=p

∫ ∞

0
αp−1f∗(α)dα = ‖f‖pp.

We remain the proofs of others to interested readers. �

Having disposed of the basic properties of the decreasing rearrangement of
functions, we proceed with the definition of the Lorentz spaces.

Definition 1.3.8.

Given f a measurable function on a measure space (X,µ) and 1 6 p, q 6 ∞,
define

‖f‖Lp,q =


(∫ ∞

0

(
t
1
p f∗(t)

)q dt
t

) 1
q

, q <∞,

sup
t>0

t
1
p f∗(t), q = ∞.

The set of all f with ‖f‖Lp,q < ∞ is denoted by Lp,q(X,µ) and is called the
Lorentz space with indices p and q.

As in Lp and in weak Lp, two functions in Lp,q will be considered equal if they
are equal almost everywhere. Observe that the previous definition implies that
Lp,∞ = Lp∗ in view of (xvi) in Proposition 1.3.7 and Lp,p = Lp in view of (xiv) in
Proposition 1.3.7 for 1 6 p < ∞. By (i) and (xv) in Proposition 1.3.7, we have
‖f‖L∞,∞ = supt>0 f

∗(t) = f∗(0) = ‖f‖∞ which implies that L∞,∞ = L∞ = L∞
∗ .

Thus, we have
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Theorem 1.3.9.

Let 1 6 p 6 ∞. Then it holds, with equality of norms, that

Lp,p = Lp, Lp,∞ = Lp∗.

Remark 1.3.10. For the Lorentz space Lp,q, the case when p = ∞ and 1 6 q < ∞
is not of any interest. The reason is that ‖f‖L∞,q < ∞ implies that f = 0 a.e. on
X . In fact, assume that L∞,q is a non-trivial space, there exists a nonzero function
f ∈ L∞,q on a nonzero measurable set, that is, there exists a constant c > 0 and a set
E of positive measure such that |f(x)| > c for all x ∈ E. Then, by (iv) in Proposition
1.3.7, we have

‖f‖qL∞,q =

∫ ∞

0
(f∗(t))q

dt

t
>
∫ ∞

0
[(fχE)

∗(t)]q
dt

t
>
∫ µ(E)

0
cq
dt

t
= ∞,

since (fχE)
∗(t) = 0 for t > µ(E). Hence, we have a contradiction. Thus, f = 0 a.e.

on X .

The next result shows that for any fixed p, the Lorentz spaces Lp,q increase as
the exponent q increases.

Theorem 1.3.11.

Let 1 6 p 6 ∞ and 1 6 q < r 6 ∞. Then,

‖f‖Lp,r 6 Cp,q,r‖f‖Lp,q , (1.3.1)

where Cp,q,r = (q/p)1/q−1/r. In other words, Lp,q ↪→ Lp,r.

Proof. We may assume p < ∞ since the case p = ∞ is trivial. Since f∗ is non-
creasing, we have

‖f‖Lp,q =

{∫ ∞

0
[s1/pf∗(s)]q

ds

s

}1/q

>
{∫ t

0
[s1/pf∗(s)]q

ds

s

}1/q

> f∗(t)

{∫ t

0
sq/p

ds

s

}1/q

=f∗(t)

(
p

q
tq/p
)1/q

= f∗(t)t1/p
(
p

q

)1/q

.

Hence, taking the supremum over all t > 0, we obtain

‖f‖Lp,∞ 6
(
q

p

)1/q

‖f‖Lp,q . (1.3.2)

This establishes (1.3.1) in the case r = ∞. Finally, when q < r < ∞, we have by
(1.3.2)

‖f‖Lp,r =

{∫ ∞

0
[t1/pf∗(t)]r−q+q

dt

t

}1/r

6 sup
t>0

[t1/pf∗(t)](r−q)/r
{∫ ∞

0
[t1/pf∗(t)]q

dt

t

} 1
q
· q
r

=‖f‖(r−q)/rLp,∞ ‖f‖q/rLp,q 6
(
q

p

) r−q
rq

‖f‖Lp,q .

This completes the proof. �
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In general, Lp,q is a quasi-normed space, since the functional ‖ · ‖Lp,q satisfies
the conditions of normed spaces except the triangle inequality. In fact, by (v) in
Proposition 1.3.7, it holds

‖f + g‖Lp,q 6 21/p(‖f‖Lp,q + ‖g‖Lp,q). (1.3.3)

However, is this space complete with respect to its quasi-norm? The next theorem
answers this question.

Theorem 1.3.12.

Let (X,µ) be a measure space. Then for all 1 6 p, q 6 ∞, the spaces
Lp,q(X,µ) are complete with respect to their quasi-norms, and they are there-
fore quasi-Banach spaces.

Proof. The proof is standard, we omit the details. One can see [Gra14, p.54, Theo-
rem 1.4.11] for details. �

For the dual of Lorentz spaces, we have

Theorem 1.3.13.

Suppose that (X,µ) is a non-atomic σ-finite measure space. Let 1 < p, q <∞,
1/p+ 1/p′ = 1 and 1/q + 1/q′ = 1. Then we have

(Lp,q)′ = Lp
′,q′ , (L1,1)′ = (L1)′ = L∞, (L1,q)′ = {0}, (Lp,1)′ = Lp

′,∞.

Proof. See [Gra14, p. 57-60, Theorem 1.4.16]. �
For more results, one can see [Gra14, Kri02].

§ 1.4 Real method: Marcinkiewicz’ interpolation theorem

We first introduce the definition of quasi-linear operators.

Definition 1.4.1.

An operator T mapping functions on a measure space into functions on an-
other measure space is called quasi-linear if T (f + g) is defined whenever
Tf and Tg are defined and if |T (λf)(x)| 6 κ|λ||Tf(x)| and |T (f + g)(x)| 6
K(|Tf(x)| + |Tg(x)|) for a.e. x, where κ and K is a positive constant inde-
pendent of f and g.

The idea we have used, in Definition 1.2.1, of splitting f into two parts accord-
ing to their respective size, is the main idea of the proof of the theorem that follows.
There, we will also use two easily proved inequalities, which are well-known re-
sults of Hardy’s (see [HLP88, p. 245–246]):

Lemma 1.4.2: Hardy inequalities

If q > 1, r > 0 and g is a measurable, non-negative function on (0,∞), then(∫ ∞

0

(∫ t

0
g(y)dy

)q
t−r

dt

t

)1/q

6q
r

(∫ ∞

0
(yg(y))qy−r

dy

y

)1/q

, (1.4.1)
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(∫ ∞

0

(∫ ∞

t
g(y)dy

)q
tr
dt

t

)1/q

6q
r

(∫ ∞

0
(yg(y))qyr

dy

y

)1/q

. (1.4.2)

Proof. To prove (1.4.1), we use Jensen’s inequality with the convex function ϕ(x) =
xq on (0,∞). Then(∫ t

0
g(y)dy

)q
=

(
1∫ t

0 y
r/q−1dy

∫ t

0
g(y)y1−r/qyr/q−1dy

)q (∫ t

0
yr/q−1dy

)q
6
(∫ t

0
yr/q−1dy

)q−1 ∫ t

0

(
g(y)y1−r/q

)q
yr/q−1dy

=
(q
r
tr/q
)q−1

∫ t

0
(yg(y))q yr/q−1−rdy.

By integrating both sides over (0,∞) and use the Fubini theorem, we get that∫ ∞

0

(∫ t

0
g(y)dy

)q
t−r−1dt

6
(q
r

)q−1
∫ ∞

0
t−1−r/q

(∫ t

0
(yg(y))q yr/q−1−rdy

)
dt

=
(q
r

)q−1
∫ ∞

0
(yg(y))q yr/q−1−r

(∫ ∞

y
t−1−r/qdt

)
dy

=
(q
r

)q ∫ ∞

0
(yg(y))q y−1−rdy,

which yields (1.4.1) immediately.
To prove (1.4.2), we denote f(x) = g(1/x)/x2. Then by taking t = 1/s and

y = 1/x, and then applying (1.4.1) and changing variable again by x = 1/y, we
obtain (∫ ∞

0

(∫ ∞

t
g(y)dy

)q
tr−1dt

)1/q

=

(∫ ∞

0

(∫ ∞

1/s
g(y)dy

)q
s−r−1ds

)1/q

=

(∫ ∞

0

(∫ s

0
g(1/x)/x2dx

)q
s−r−1ds

)1/q

=

(∫ ∞

0

(∫ s

0
f(x)dx

)q
s−r−1ds

)1/q

6q
r

(∫ ∞

0
(xf(x))qx−r−1dx

)1/q

=
q

r

(∫ ∞

0
(g(1/x)/x)qx−r−1dx

)1/q

=
q

r

(∫ ∞

0
(g(y)y)qyr−1dy

)1/q

.

Thus, we complete the proofs. �
Now, we give the Marcinkiewicz interpolation theorem and its proof due to

Hunt and Weiss in [HW64].

Theorem 1.4.3: Marcinkiewicz interpolation theorem

Let (X,µ) and (Y, ν) be a pair of σ-finite measure spaces. Assume that 1 6
pi 6 qi 6 ∞, p0 < p1, q0 6= q1 and T is a quasi-linear mapping, defined on
Lp0(X)+Lp1(X), which is simultaneously of weak types (p0, q0) and (p1, q1),
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i.e.,
‖Tf‖Lq0,∞(Y ) 6A0‖f‖p0 , ∀f ∈ Lp0(X),

‖Tf‖Lq1,∞(Y ) 6A1‖f‖p1 , ∀f ∈ Lp1(X).
(1.4.3)

If 0 < θ < 1, and
1

p
=

1− θ

p0
+

θ

p1
,

1

q
=

1− θ

q0
+
θ

q1
,

then T is of type (p, q), namely

‖Tf‖q 6 A‖f‖p, f ∈ Lp(X).

Here A = A(Ai, pi, qi, θ), but it does not otherwise depend on either T or f .

Proof. Let σ be the slope of the line segment in R2 joining (1/p0, 1/q0) with (1/p1, 1/q1).
Since (1/p, 1/q) lies on this segment, we can denote the slope of this segment by

σ =
1/q0 − 1/q

1/p0 − 1/p
=

1/q − 1/q1
1/p− 1/p1

,

which may be positive or negative, but is not either 0 or ∞ since q0 6= q1 and p0 < p1.
For any t > 0, we split an arbitrary function f ∈ Lp as follows:

f = f t + ft

where

f t(x) =

{
f(x), |f(x)| > f∗(tσ),

0, otherwise,

and ft = f − f t.
Then we can verify that

(f t)∗(y)

{
6 f∗(y), 0 6 y 6 tσ,

= 0, y > tσ,

(ft)
∗(y) 6

{
f∗(tσ), 0 6 y 6 tσ,

f∗(y), y > tσ.

(1.4.4)

In fact, by (iv) in Proposition 1.3.7, |f t| 6 |f | implies (f t)∗(y) 6 f∗(y) for all
y > 0. Moreover, since for 0 6 α 6 f∗(tσ)

(f t)∗(α) =µ({x : |f t(x)| > α}) = µ({x : |f(x)| > f∗(tσ), and |f(x)| > α})
=µ({x : |f(x)| > f∗(tσ)}) = f∗(f

∗(tσ)),

by the definition of f t and (x) in Proposition 1.3.7, we have

(f t)∗(α) 6 (f t)∗(f
∗(tσ)) = f∗(f

∗(tσ)) 6 tσ, ∀α > 0.

Thus, for y > tσ, we get (f t)∗(y) = 0.
Similarly, by (iv) in Proposition 1.3.7, we have (ft)

∗(y) 6 f∗(y) for any y > 0

since |ft| 6 |f |. On the other hand, for y > 0, we have (ft)∗(y) 6 (ft)
∗(0) = ‖ft‖∞ 6

f∗(tσ) with the help of the non-increasing of (ft)∗(y) and (xv) in Proposition 1.3.7.
Thus, (ft)∗(y) 6 min(f∗(y), f∗(tσ)) for any y > 0 which implies (1.4.4).

Suppose p1 <∞. Notice that p 6 q, because pi 6 qi. DenoteKp,q = K(p/q)1/p−1/q.
By Theorems 1.3.9 and 1.3.11, (1.4.3), (1.4.4) and then by a change of variables,
Hardy’s inequalities (1.4.1) and (1.4.2), and (xiv) in Proposition 1.3.7, we get

‖Tf‖q 6 K(‖Tf t‖q + ‖Tft‖q) = K(‖Tf t‖Lq,q + ‖Tft‖Lq,q)
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6K(p/q)1/p−1/q(‖Tf t‖Lq,p + ‖Tft‖Lq,p)

=Kp,q

{(∫ ∞

0

[
t1/q(Tf t)∗(t)

]p dt
t

)1/p

+

(∫ ∞

0

[
t1/q(Tft)

∗(t)
]p dt

t

)1/p
}

6Kp,q

{
A0

(∫ ∞

0

[
t1/q−1/q0‖f t‖p0

]p dt
t

)1/p

+ A1

(∫ ∞

0

[
t1/q−1/q1‖ft‖p1

]p dt
t

)1/p
}

6Kp,q

A0

(∫ ∞

0

[
t1/q−1/q0

(
1

p0

)1−1/p0

‖f t‖Lp0,1

]p
dt

t

)1/p

+A1

(∫ ∞

0

[
t1/q−1/q1

(
1

p1

)1−1/p1

‖ft‖Lp1,1

]p
dt

t

)1/p


6Kp,q

A0

(
1

p0

)1−1/p0
(∫ ∞

0

[
t1/q−1/q0

(∫ tσ

0
y1/p0f∗(y)

dy

y

)]p
dt

t

)1/p

+A1

(
1

p1

)1−1/p1 (∫ ∞

0

[
t1/q−1/q1

(∫ ∞

tσ
y1/p1f∗(y)

dy

y

)]p dt
t

)1/p

+ A1

(
1

p1

)1−1/p1
(∫ ∞

0

[
t1/q−1/q1

(∫ tσ

0
y1/p1f∗(tσ)

dy

y

)]p
dt

t

)1/p


=Kp,q|σ|−
1
p

{
A0

(
1

p0

)1−1/p0 (∫ ∞

0
s−p(1/p0−1/p)

(∫ s

0
y1/p0f∗(y)

dy

y

)p ds
s

)1/p

+A1

(
1

p1

)1−1/p1 (∫ ∞

0
sp(1/p−1/p1)

(∫ ∞

s
y1/p1f∗(y)

dy

y

)p ds
s

)1/p

+ A1

(
1

p1

)1−1/p1 (∫ ∞

0
sp(1/p−1/p1)

(∫ s

0
y1/p1f∗(s)

dy

y

)p ds
s

)1/p
}

6Kp,q|σ|−
1
p

{
A0

(
1

p0

)1−1/p0 1

(1/p0 − 1/p)

(∫ ∞

0

(
y1/pf∗(y)

)p dy
y

)1/p

+A1

(
1

p1

)1−1/p1 1

(1/p− 1/p1)

(∫ ∞

0

(
y1/pf∗(y)

)p dy
y

)1/p

+A1

(
1

p1

)1−1/p1 (∫ ∞

0
s1−p/p1(p1s

1/p1f∗(s))p
ds

s

)1/p
}

=Kp,q|σ|−1/p


A0

(
1
p0

)1−1/p0

1
p0

− 1
p

+
A1

(
1
p1

)1−1/p1

1
p −

1
p1

+A1p
1/p1
1

 ‖f‖p

=A‖f‖p.

For the case p1 = ∞, the proof is the same except for the use of the estimate
‖ft‖∞ 6 f∗(tσ), we can get

A = Kp,q|σ|−1/p


A0

(
1
p0

)1−1/p0

1
p0

− 1
p

+A1

 .
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Thus, we complete the proof. �
A less superficial generalization of the theorem can be given in terms of the no-

tation of Lorentz spaces, which unifies and generalizes the usual Lp spaces and the
weak-type spaces. For a discussion of this more general form of the Marcinkiewicz
interpolation theorem see [SW71, Chapter V] and [BL76, Chapter 5].
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In this chapter, we introduce the Fourier transform and study its more elemen-
tary properties, and extend the definition to the space of tempered distributions.
We also give some characterizations of operators commuting with translations.

§ 2.1 Fourier transform of L1 functions

§ 2.1.1 The definition and properties

Now, we first consider the Fourier transform of L1 functions.

Definition 2.1.1.

Let ω ∈ R\{0} be a constant. If f ∈ L1(Rn), then its Fourier transform is Ff

or f

∨

: Rn → C defined by

f

∨

(ξ) =

(
|ω|
2π

)n/2 ∫
Rn

e−ωix·ξf(x)dx (2.1.1)

for all ξ ∈ Rn.

We now continue with some properties of the Fourier transform. Before doing
this, we shall introduce some notations. For a measurable function f on Rn, x ∈ Rn

and a 6= 0 we define the translation and dilation of f by

τyf(x) =f(x− y), (2.1.2)

δaf(x) =f(ax), (2.1.3)

f

∼

(x) =f(−x).
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Proposition 2.1.2.

Given f, g ∈ L1(Rn), x, y, ξ ∈ Rn, α multi-index, a, b ∈ C, ε ∈ R and ε 6= 0,
we have

(i) Linearity: (af + bg)

∨

= af

∨

+ bg

∨.

(ii) Translation: τyf

∨

(ξ) = e−ωiy·ξf

∨

(ξ).

(iii) Modulation: (eωix·yf(x))

∨

(ξ) = τyf

∨

(ξ).

(iv) Scaling: δεf

∨

(ξ) = |ε|−nδε−1
f

∨

(ξ).

(v) Differentiation: ∂αf

∨

(ξ) = (ωiξ)αf

∨

(ξ), ∂αf

∨

(ξ) = ((−ωix)αf(x))

∨

(ξ).

(vi) Convolution:
(
|ω|
2π

)n/2
f ∗ g

∨

(ξ) = f

∨

(ξ)g

∨

(ξ) and fg

∨

=
(
|ω|
2π

)n/2
f

∨

∗ g∨.

(vii) Transformation: f ◦A

∨

(ξ) = f

∨

(Aξ), where A is an orthogonal matrix and
ξ is a column vector.

(viii) Conjugation: f

∨

= f

∨
∼

.

Proof. These results are easy to be verified. We only prove (vii). In fact,

F (f ◦A)(ξ) =
(
|ω|
2π

)n/2 ∫
Rn

e−ωix·ξf(Ax)dx

=

(
|ω|
2π

)n/2 ∫
Rn

e−ωiA
−1y·ξf(y)dy

=

(
|ω|
2π

)n/2 ∫
Rn

e−ωiA
⊤y·ξf(y)dy

=

(
|ω|
2π

)n/2 ∫
Rn

e−ωiy·Aξf(y)dy

=f

∨

(Aξ),

where we used the change of variables y = Ax and the fact that A−1 = A⊤ and
|detA| = 1. �

Corollary 2.1.3.

(i) The Fourier transform of a radial function is radial.

(ii) Products and convolutions of radial functions are radial.

Proof. Let ξ, η ∈ Rn with |ξ| = |η|. Then there exists some orthogonal matrix A
such that Aξ = η. Since f is radial, we have f = f ◦A. Then, it holds

f

∨

(η) = f

∨

(Aξ) = f ◦A

∨

(ξ) = f

∨

(ξ),

by (vii) in Proposition 2.1.2. Products and convolutions of radial functions are eas-
ily seen to be radial. �

It is easy to establish the following results:

Theorem 2.1.4: Uniform continuity

(i) ‖f

∨

‖∞ 6
(
|ω|
2π

)n/2
‖f‖1.
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(ii) If f ∈ L1(Rn), then f

∨

is uniformly continuous.

Proof. (i) is obvious. We now prove (ii). By

f

∨

(ξ + h)− f

∨

(ξ) =

(
|ω|
2π

)n/2 ∫
Rn

e−ωix·ξ[e−ωix·h − 1]f(x)dx,

we have

|f

∨

(ξ + h)− f

∨

(ξ)|

6
(
|ω|
2π

)n/2 ∫
Rn

|e−ωix·h − 1||f(x)|dx

6
(
|ω|
2π

)n/2 ∫
|x|6r

|e−ωix·h − 1||f(x)|dx+ 2

(
|ω|
2π

)n/2 ∫
|x|>r

|f(x)|dx

6
(
|ω|
2π

)n/2 ∫
|x|6r

|ω|r|h||f(x)|dx+ 2

(
|ω|
2π

)n/2 ∫
|x|>r

|f(x)|dx

=:I1 + I2,

since for any θ > 0

|eiθ − 1| =
√
(cos θ − 1)2 + sin2 θ =

√
2− 2 cos θ = 2| sin(θ/2)| 6 |θ|.

Given any ε > 0, we can take r so large that I2 < ε/2. Then, we fix this r and take
|h| small enough such that I1 < ε/2. In other words, for given ε > 0, there exists
a sufficiently small δ > 0 such that |f

∨

(ξ + h) − f

∨

(ξ)| < ε when |h| 6 δ, where ε is
independent of ξ. �

Example 2.1.5. Suppose that a signal consists of a single rectangular pulse of width
1 and height 1. Let’s say that it gets turned on at x = −1

2 and turned off at x = 1
2 .

The standard name for this “normalized” rectangular pulse is

Π(x) ≡ rect(x) :=

{
1, if − 1

2 < x < 1
2 ,

0, otherwise. −1
2

1
2

1

x

It is also called, variously, the normalized boxcar function, the top hat function, the
indicator function, or the characteristic function for the interval (−1/2, 1/2). The
Fourier transform of this signal is

Π

∨

(ξ) =

(
|ω|
2π

)1/2 ∫
R
e−ωixξΠ(x)dx =

(
|ω|
2π

)1/2 ∫ 1/2

−1/2
e−ωixξdx

=

(
|ω|
2π

)1/2 e−ωixξ

−ωiξ

∣∣∣∣1/2
−1/2

=

(
|ω|
2π

)1/2 2

ωξ
sin ωξ

2

when ξ 6= 0. When ξ = 0, Π

∨

(0) =
(
|ω|
2π

)1/2 ∫ 1/2
−1/2 dx =

(
|ω|
2π

)1/2
. By l’Hôpital’s rule,

lim
ξ→0

Π

∨

(ξ) =

(
|ω|
2π

)1/2

lim
ξ→0

2
sin ωξ

2

ωξ
=

(
|ω|
2π

)1/2

lim
ξ→0

2
ω
2 cos ωξ2
ω

=

(
|ω|
2π

)1/2

= Π

∨

(0),

so Π

∨

(ξ) is continuous at ξ = 0. There is a standard function called “sinc” that is
defined by sinc(ξ) = sin ξ

ξ for ξ 6= 0 and sinc(0) = 1 for the unnormalized version.

In this notation Π

∨

(ξ) = sincωξ2 . Here is the graph of Π

∨

(ξ).
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1

ξ2π
ω

−2π
ω

Remark 2.1.6. The above definition of the Fourier transform in (2.1.1) extends im-
mediately to finite Borel measures: if µ is such a measure on Rn, we define Fµ by
letting

Fµ(ξ) =

(
|ω|
2π

)n/2 ∫
Rn

e−ωix·ξdµ(x).

Theorem 2.1.4 is valid for this Fourier transform if we replace the L1 norm by the
total variation of µ.

§ 2.1.2 Riemann-Lebesgue lemma

The following theorem plays a central role in Fourier Analysis. It takes its name
from the fact that it holds even for functions that are integrable according to the
definition of Lebesgue.

Theorem 2.1.7: Riemann-Lebesgue lemma

If f ∈ L1(Rn), then lim
|ξ|→∞

f

∨

(ξ) = 0; thus, in view of the last result, we can

conclude that f

∨

∈ C0(Rn) of all continuous functions vanishing at infinity.

The Riemann-Lebesgue lemma states that the integral of a
function like the left is small. The integral will approach zero
as the number of oscillations increases.

Proof. We first consider the case when f ∈ D(Rn) := C∞
c (Rn) of all C∞ functions

with compact support. Integrating by parts gives |ωξ|2f

∨

(ξ) = −∆f

∨

(ξ) for each

ξ ∈ Rn \ {0}, where ∆f :=
n∑
j=1

∂2j f . Hence,

|f

∨

(ξ)| 6 |∆f

∨

(ξ)|
|ωξ|2

6
(
|ω|
2π

)n/2 ‖∆f‖1
|ωξ|2

, ∀ξ ∈ Rn \ {0}, (2.1.4)

from which it is clear that lim
|ξ|→∞

f

∨

(ξ) = 0 in this case.

Consider now the case when f is an arbitrary function inL1(Rn). Since D(Rn) is
dense in L1(Rn), for each fixed ε > 0, there exists a g ∈ D(Rn) such that ‖f − g‖1 <(
|ω|
2π

)−n/2
ε
2 . Then, there is an M such that |g∨(ξ)| < ε

2 for |ξ| > M , since g∨(ξ) → 0 as
|ξ| → ∞. It follows that

|f

∨

(ξ)| 6 |f

∨

(ξ)− g

∨

(ξ)|+ |g∨(ξ)| 6
(
|ω|
2π

)n/2
‖f − g‖1 + |g∨(ξ)| < ε

2
+
ε

2
,

provided |ξ| > M by Theorem 2.1.4. This implies that |f

∨

(ξ)| → 0 as |ξ| → ∞. �
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Theorem 2.1.7 gives a necessary condition for a function to be a Fourier trans-
form. However, that belonging to C0 is not a sufficient condition for being the
Fourier transform of an integrable function. See the following example.

Example 2.1.8. Suppose, for simplicity, that n = 1. Let

g(ξ) =


1

ln ξ , ξ > e,

ξ

e
, 0 6 ξ 6 e,

g(ξ) =− g(−ξ), ξ < 0.

It is clear that g(ξ) is uniformly continuous on R and g(ξ) → 0 as |ξ| → ∞.

Assume that there exists an f ∈ L1(R) such that f

∨

(ξ) =
(
|ω|
2π

)1/2
g(ξ), i.e.,

g(ξ) =

∫ ∞

−∞
e−ωixξf(x)dx.

Since g(ξ) is an odd function, we have

g(ξ) =

∫ ∞

−∞
e−ωixξf(x)dx = −i

∫ ∞

−∞
sin(ωxξ)f(x)dx =

∫ ∞

0
sin(ωxξ)F (x)dx,

where F (x) = i[f(−x)− f(x)] ∈ L1(R). Integrating g(ξ)
ξ over (0, N) yields∫ N

0

g(ξ)

ξ
dξ =

∫ ∞

0
F (x)

(∫ N

0

sin(ωxξ)
ξ

dξ

)
dx

=

∫ ∞

0
F (x)

(∫ ωxN

0

sin t
t
dt

)
dx.

Noticing that∣∣∣∣∫ b

a

sin t
t
dt

∣∣∣∣ 6 C,

∫ ∞

0

sin t
t
dt =

π

2
(i.e. Dirichlet integral),

and by Lebesgue dominated convergence theorem,we get that the integral of r.h.s.
is convergent as N → ∞. That is,

lim
N→∞

∫ N

0

g(ξ)

ξ
dξ =

π

2

∫ ∞

0
F (x)dx <∞,

which yields
∫∞
e

g(ξ)
ξ dξ <∞ since

∫ e
0
g(ξ)
ξ dξ = 1. However,

lim
N→∞

∫ N

e

g(ξ)

ξ
dξ = lim

N→∞

∫ N

e

dξ

ξ ln ξ = ∞.

This contradiction indicates that the assumption was invalid.

§ 2.1.3 Approximate identities

We now turn to the problem of inverting the Fourier transform. That is, we shall
consider the question: Given the Fourier transform f

∨

of an integrable function f ,
how do we obtain f back again from f

∨

? The reader, who is familiar with the
elementary theory of Fourier series and integrals, would expect f(x) to be equal to
the integral

C

∫
Rn

eωix·ξf

∨

(ξ)dξ. (2.1.5)
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Unfortunately, f

∨

need not be integrable, for example, let n = 1 and f be the charac-
teristic function of a finite interval, as in Example 2.1.5, we have∫ ∞

0
|sinc(x)|dx =

∫ ∞

0

∣∣∣∣sinxx
∣∣∣∣ dx =

∞∑
k=0

∫ (k+1)π

kπ

∣∣∣∣sinxx
∣∣∣∣ dx

=
∞∑
k=0

∫ π

0

sinx
kπ + x

dx >
∞∑
k=0

∫ π

0

sinx
(k + 1)π

dx

=
∞∑
k=0

2

(k + 1)π
= ∞.

In order to get around this difficulty, we shall use certain summability methods
for integrals. We first introduce the Abel method of summability, whose analog for
series is very well-known. For each ε > 0, we define the Abel means Aε = Aε(f) to
be the integral

Aε(f) = Aε =

∫
Rn

e−ε|x|f(x)dx. (2.1.6)

It is clear that if f ∈ L1(Rn) then lim
ε→0

Aε(f) =
∫
Rn f(x)dx. On the other hand,

these Abel means are well-defined even when f is not integrable (e.g., if we only
assume that f is bounded, then Aε(f) is defined for all ε > 0). Moreover, their limit

lim
ε→0

Aε(f) = lim
ε→0

∫
Rn

e−ε|x|f(x)dx (2.1.7)

may exist even when f is not integrable. A classical example of such a case is
obtained by letting f(x) = sinc(x) when n = 1, as a similar way as in Example
2.1.8. Whenever the limit in (2.1.7) exists and is finite, we say that

∫
Rn fdx is Abel

summable to this limit.
A somewhat similar method of summability is Gauss summability. This method

is defined by the Gauss (sometimes called Gauss-Weierstrass) means

Gε(f) =

∫
Rn

e−ε|x|
2
f(x)dx. (2.1.8)

We say that
∫
Rn fdx is Gauss summable (to l) if

lim
ε→0

Gε(f) = lim
ε→0

∫
Rn

e−ε|x|
2
f(x)dx (2.1.7’)

exists and equals the number `.
We see that both (2.1.7) and (2.1.7’) can be put in the form

Mε,Φ(f) =Mε(f) =

∫
Rn

Φ(εx)f(x)dx, (2.1.9)

where Φ ∈ C0 and Φ(0) = 1. Then
∫
Rn f(x)dx is summable to ` if limε→0Mε(f) = `.

We shall call Mε(f) the Φ means of this integral.
We shall need the Fourier transforms of the functions e−ε|x|

2
and e−ε|x|. The first

one is easy to calculate.

Theorem 2.1.9.

For all a > 0, we have

Fe−a|ωx|
2
(ξ) = (2|ω|a)−n/2e−

|ξ|2
4a . (2.1.10)
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Proof. The integral in question is(
|ω|
2π

)n/2 ∫
Rn

e−ωix·ξe−a|ωx|
2
dx.

Notice that this factors as a product of one variable integrals. Thus it is sufficient to
prove the case n = 1. It is clear that∫ ∞

−∞
e−ωixξe−aω

2x2dx =e−
ξ2

4a

∫ ∞

−∞
e−a(ωx+iξ/(2a))

2
dx.

We observe that the function

F (ξ) =

∫ ∞

−∞
e−a(ωx+iξ/(2a))

2
dx, ξ ∈ R,

defined on the line is constant (and thus equal to
∫∞
−∞ e−a(ωx)

2
dx), since its deriva-

tive is
d

dξ
F (ξ) =− i

∫ ∞

−∞
(ωx+ iξ/(2a))e−a(ωx+iξ/(2a))

2
dx

=
i

2aω

∫ ∞

−∞

d

dx
e−a(ωx+iξ/(2a))

2
dx = 0.

It follows that F (ξ) = F (0) and∫ ∞

−∞
e−ωixξe−aω

2x2dx =|ω|−1e−
ξ2

4a

∫ ∞

−∞
e−ax

2
dx

=|ω|−1e−
ξ2

4a

√
π/a

∫ ∞

−∞
e−πy

2
dy

=
( π

aω2

)1/2
e−

ξ2

4a ,

where we used the formula for the integral of a Gaussian, i.e., the Euler-Poisson
integral:

∫
R e

−πx2dx = 1 at the next to last one. �
For the special cases, we have a fixed point for special definitions of the Fourier

transform.

Corollary 2.1.10.

It holds

e−
|ω||x|2

2

∨

(ξ) =e−
|ω||ξ|2

2 . (2.1.11)

Proof. It is clear by taking a = 1/(2|ω|) in (2.1.10). �
The second one is somewhat harder to obtain:

Theorem 2.1.11.

For all a > 0, we have

e−a|ωx|

∨

(ξ) =

(
|ω|
2π

)−n/2 cna

(a2 + |ξ|2)(n+1)/2
, cn =

Γ((n+ 1)/2)

π(n+1)/2
. (2.1.12)

Proof. By a change of variables, i.e.,

F (e−a|ωx|) =

(
|ω|
2π

)n/2 ∫
Rn

e−ωix·ξe−a|ωx|dx =

(
|ω|
2π

)n/2
(a|ω|)−n

∫
Rn

e−ix·ξ/ae−|x|dx,
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we see that it suffices to show this result when a = 1. In order to show this, we
need to express the decaying exponential as a superposition of Gaussians, i.e.,

e−γ =
1√
π

∫ ∞

0

e−η
√
η
e−γ

2/4ηdη, γ > 0. (2.1.13)

Then, using (2.1.10) to establish the third equality,∫
Rn

e−ix·te−|x|dx =

∫
Rn

e−ix·t
(

1√
π

∫ ∞

0

e−η
√
η
e−|x|2/4ηdη

)
dx

=
1√
π

∫ ∞

0

e−η
√
η

(∫
Rn

e−ix·te−|x|2/4ηdx

)
dη

=
1√
π

∫ ∞

0

e−η
√
η

(
(4πη)n/2e−η|t|

2
)
dη

=2nπ(n−1)/2

∫ ∞

0
e−η(1+|t|2)η

n−1
2 dη

=2nπ(n−1)/2
(
1 + |t|2

)−n+1
2

∫ ∞

0
e−ζζ

n+1
2

−1dζ

=2nπ(n−1)/2Γ

(
n+ 1

2

)
1

(1 + |t|2)(n+1)/2
.

Thus,

F (e−a|ωx|) =

(
|ω|
2π

)n/2 (a|ω|)−n(2π)ncn
(1 + |ξ/a|2)(n+1)/2

=

(
|ω|
2π

)−n/2 cna

(a2 + |ξ|2)(n+1)/2
.

Consequently, the theorem will be established once we show (2.1.13). In fact, by
changes of variables, we have

1√
π
eγ
∫ ∞

0

e−η
√
η
e−γ

2/4ηdη

=
2
√
γ

√
π

∫ ∞

0
e−γ(σ−

1
2σ

)2dσ (by η = γσ2)

=
2
√
γ

√
π

∫ ∞

0
e−γ(σ−

1
2σ

)2 1

2σ2
dσ (by σ 7→ 1

2σ
)

=

√
γ

√
π

∫ ∞

0
e−γ(σ−

1
2σ

)2
(
1 +

1

2σ2

)
dσ (by averaging the last two formula)

=

√
γ

√
π

∫ ∞

−∞
e−γu

2
du (by u = σ − 1

2σ
)

=1, (by
∫
R
e−πx

2
dx = 1)

which yields the desired identity (2.1.13). �

We shall denote the Fourier transform of
(
|ω|
2π

)n/2
e−a|ωx|

2
and

(
|ω|
2π

)n/2
e−a|ωx|,

a > 0, by W and P , respectively. That is,

W (ξ, a) = (4πa)−n/2e−
|ξ|2
4a , P (ξ, a) =

cna

(a2 + |ξ|2)(n+1)/2
. (2.1.14)

The first of these two functions is called the Weierstrass (or Gauss-Weierstrass)
kernel while the second is called the Poisson kernel.
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Theorem 2.1.12: The multiplication formula

If f, g ∈ L1(Rn), then ∫
Rn

f

∨

(ξ)g(ξ)dξ =

∫
Rn

f(x)g

∨

(x)dx.

Proof. Using Fubini’s theorem to interchange the order of the integration on R2n,
we obtain the identity. �

Theorem 2.1.13.

If f and Φ belong to L1(Rn), ϕ = Φ

∨

and ϕε(x) = ε−nϕ(x/ε), then∫
Rn

eωix·ξΦ(εξ)f

∨

(ξ)dξ =

∫
Rn

ϕε(y − x)f(y)dy

for all ε > 0. In particular,(
|ω|
2π

)n/2 ∫
Rn

eωix·ξe−ε|ωξ|f

∨

(ξ)dξ =

∫
Rn

P (y − x, ε)f(y)dy,

and (
|ω|
2π

)n/2 ∫
Rn

eωix·ξe−ε|ωξ|
2
f

∨

(ξ)dξ =

∫
Rn

W (y − x, ε)f(y)dy.

Proof. From (iii) and (iv) in Proposition 2.1.2, it implies (Feωix·ξΦ(εξ))(y) = ϕε(y−
x). The first result holds immediately with the help of Theorem 2.1.12. The last two
follow from (2.1.10), (2.1.12) and (2.1.14). �

Lemma 2.1.14.

(i)
∫
Rn W (x, ε)dx = 1 for all ε > 0.

(ii)
∫
Rn P (x, ε)dx = 1 for all ε > 0.

Proof. By a change of variable, we first note that∫
Rn

W (x, ε)dx =

∫
Rn

(4πε)−n/2e−
|x|2
4ε dx =

∫
Rn

W (x, 1)dx,

and ∫
Rn

P (x, ε)dx =

∫
Rn

cnε

(ε2 + |x|2)(n+1)/2
dx =

∫
Rn

P (x, 1)dx.

Thus, it suffices to prove the lemma when ε = 1. For the first one, we use a change
of variables and the formula for the integral of a Gaussian:

∫
R e

−πx2dx = 1 to get∫
Rn

W (x, 1)dx =

∫
Rn

(4π)−n/2e−
|x|2
4 dx =

∫
Rn

(4π)−n/2e−π|y|
2
2nπn/2dy = 1.

For the second one, we have∫
Rn

P (x, 1)dx = cn

∫
Rn

1

(1 + |x|2)(n+1)/2
dx.

Letting r = |x|, x′ = x/r (when x 6= 0), Sn−1 = {x ∈ Rn : |x| = 1}, dx′ the element of
surface area on Sn−1 whose surface area is denoted by ωn−1 and, finally, putting r =
tan θ, we have
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θ

Sn

Sn−1
x1

xn+1

1si
n
θ

cos θ
O

∫
Rn

1

(1 + |x|2)(n+1)/2
dx =

∫ ∞

0

∫
Sn−1

1

(1 + r2)(n+1)/2
dx′rn−1dr

=ωn−1

∫ ∞

0

rn−1

(1 + r2)(n+1)/2
dr

=ωn−1

∫ π/2

0
sinn−1 θdθ.

But ωn−1 sinn−1 θ is clearly the surface area of the
sphere of radius sin θ obtained by intersecting
Sn with the hyperplane x1 = cos θ. Thus, the
area of the right half of Sn is obtained by sum-
ming these (n−1) dimensional areas as θ ranges
from 0 to π/2, that is,

ωn−1

∫ π/2

0
sinn−1 θdθ =

ωn
2
,

which is the desired result by noting that 1/cn = ωn/2. �

Theorem 2.1.15.

Suppose ϕ ∈ L1(Rn) with
∫
Rn ϕ(x)dx = 1 and let ϕε(x) = ε−nϕ(x/ε) for

ε > 0. If f ∈ Lp(Rn), 1 6 p < ∞, or f ∈ C0(Rn) ⊂ L∞(Rn), then for
1 6 p 6 ∞

‖f ∗ ϕε − f‖p → 0, as ε→ 0.

In particular, the Poisson integral of f :

u(x, ε) =

∫
Rn

P (x− y, ε)f(y)dy

and the Gauss-Weierstrass integral of f :

s(x, ε) =

∫
Rn

W (x− y, ε)f(y)dy

converge to f in the Lp norm as ε→ 0.

Proof. By a change of variables, we have∫
Rn

ϕε(y)dy =

∫
Rn

ε−nϕ(y/ε)dy =

∫
Rn

ϕ(y)dy = 1.

Hence,

(f ∗ ϕε)(x)− f(x) =

∫
Rn

[f(x− y)− f(x)]ϕε(y)dy.

Therefore, by Minkowski’s inequality for integrals and a change of variables, we
get

‖f ∗ ϕε − f‖p 6
∫
Rn

‖f(x− y)− f(x)‖pε−n|ϕ(y/ε)|dy

=

∫
Rn

‖f(x− εy)− f(x)‖p|ϕ(y)|dy.

We point out that if f ∈ Lp(Rn), 1 6 p < ∞, and denote ‖f(x − t) − f(x)‖p =

∆f (t), then ∆f (t) → 0, as t → 0. In fact, if f1 ∈ D(Rn), the assertion in that case
is an immediate consequence of the uniform convergence f1(x − t) → f1(x), as
t → 0. In general, for any σ > 0, we can write f = f1 + f2, such that f1 is as
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described and ‖f2‖p 6 σ, since D(Rn) is dense in Lp(Rn) for 1 6 p < ∞. Then,
∆f (t) 6 ∆f1(t) + ∆f2(t), with ∆f1(t) → 0 as t → 0, and ∆f2(t) 6 2σ. This shows
that ∆f (t) → 0 as t→ 0 for general f ∈ Lp(Rn), 1 6 p <∞.

For the case p = ∞ and f ∈ C0(Rn), the same argument gives us the result since
D(Rn) is dense in C0(Rn) (cf. [Rud87, p.70, Proof of Theorem 3.17]).

Thus, by the Lebesgue dominated convergence theorem (due to ϕ ∈ L1 and the
fact ∆f (εy)|ϕ(y)| 6 2‖f‖p|ϕ(y)|) and the fact ∆f (εy) → 0 as ε→ 0, we have

lim
ε→0

‖f ∗ ϕε − f‖p 6 lim
ε→0

∫
Rn

∆f (εy)|ϕ(y)|dy =

∫
Rn

lim
ε→0

∆f (εy)|ϕ(y)|dy = 0.

This completes the proof. �

With the same argument, we have

Corollary 2.1.16.

Let 1 6 p 6 ∞. Suppose ϕ ∈ L1(Rn) and
∫
Rn ϕ(x)dx = 0, then ‖f ∗ ϕε‖p → 0

as ε→ 0 whenever f ∈ Lp(Rn), 1 6 p <∞, or f ∈ C0(Rn) ⊂ L∞(Rn).

Proof. Once we observe that

(f ∗ ϕε)(x) =(f ∗ ϕε)(x)− f(x) · 0 = (f ∗ ϕε)(x)− f(x)

∫
Rn

ϕε(y)dy

=

∫
Rn

[f(x− y)− f(x)]ϕε(y)dy,

the rest of the argument is precisely that used in the last proof. �

In particular, we also have

Corollary 2.1.17.

Suppose ϕ ∈ L1(Rn) with
∫
Rn ϕ(x)dx = 1 and let ϕε(x) = ε−nϕ(x/ε) for

ε > 0. Let f ∈ L∞(Rn) be continuous at {0}. Then,

lim
ε→0

∫
Rn

f(x)ϕε(x)dx = f(0).

Proof. Since
∫
Rn f(x)ϕε(x)dx − f(0) =

∫
Rn(f(x) − f(0))ϕε(x)dx, then we may as-

sume without loss of generality that f(0) = 0. Since f is continuous at {0}, then for
any σ > 0, there exists a δ > 0 such that

|f(x)| < σ

‖ϕ‖1
,

whenever |x| < δ. Noticing that |
∫
Rn ϕ(x)dx| 6 ‖ϕ‖1, we have∣∣∣∣∫

Rn

f(x)ϕε(x)dx

∣∣∣∣ 6 σ

‖ϕ‖1

∫
|x|<δ

|ϕε(x)|dx+ ‖f‖∞
∫
|x|>δ

|ϕε(x)|dx

6 σ

‖ϕ‖1
‖ϕ‖1 + ‖f‖∞

∫
|y|>δ/ε

|ϕ(y)|dy

=σ + ‖f‖∞Iε.

But Iε → 0 as ε→ 0. This proves the result. �
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§ 2.1.4 Fourier inversion

From Theorems 2.1.13 and 2.1.15, we obtain the following solution to the Fourier
inversion problem:

Theorem 2.1.18.

If both Φ and its Fourier transform ϕ = Φ

∨

are integrable and
∫
Rn ϕ(x)dx = 1,

then the Φ means of the integral
(
|ω|
2π

)n/2 ∫
Rn e

ωix·ξf

∨

(ξ)dξ converges to f(x)

in the L1 norm. In particular, the Abel and Gauss means of this integral
converge to f(x) in the L1 norm.

We have singled out the Gauss-Weierstrass and the Abel methods of summa-
bility. The former is probably the simplest and is connected with the solution of
the heat equation; the latter is intimately connected with harmonic functions and
provides us with very powerful tools in Fourier analysis.

Since s(x, ε) =
(
|ω|
2π

)n/2 ∫
Rn e

ωix·ξe−ε|ωξ|
2
f

∨

(ξ)dξ converges in L1 to f(x) as ε > 0

tends to 0, we can find a sequence εk → 0 such that s(x, εk) → f(x) for a.e. x. If
we further assume that f

∨

∈ L1(Rn), the Lebesgue dominated convergence theorem
gives us the following pointwise equality:

Theorem 2.1.19: Fourier inversion theorem

If both f and f

∨

are integrable, then

f(x) =

(
|ω|
2π

)n/2 ∫
Rn

eωix·ξf
∨

(ξ)dξ, ∀x a.e.

Remark 2.1.20. We know from Theorem 2.1.4 that f

∨

is continuous. If f

∨

is integrable,

the integral
(
|ω|
2π

)n/2 ∫
Rn e

ωix·ξf

∨

(ξ)dξ also defines a continuous function (in fact, it

equals f

∨∨

(−x)). Thus, by changing f on a set of measure 0, we can obtain equality
in Theorem 2.1.19 for all x.

It is clear from Theorem 2.1.18 that if f

∨

(ξ) = 0 for all ξ then f(x) = 0 a.e.
Applying this to f = f1 − f2, we obtain the following uniqueness result for the
Fourier transform:

Corollary 2.1.21: Uniqueness

If f1 and f2 belong to L1(Rn) and f

∨

1(ξ) = f

∨

2(ξ) for ξ ∈ Rn, then f1 = f2 a.e.

We will denote the inverse operation to the Fourier transform by F−1 or ·∧. If
f ∈ L1, then we have

f

∧

(x) =

(
|ω|
2π

)n/2 ∫
Rn

eωix·ξf(ξ)dξ. (2.1.15)

We give a very useful result.
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Theorem 2.1.22.

Suppose f ∈ L1(Rn) and f

∨

> 0. If f is continuous at 0, then

f(0) =

(
|ω|
2π

)n/2 ∫
Rn

f

∨

(ξ)dξ.

Moreover, we have f

∨

∈ L1(Rn) and

f(x) =

(
|ω|
2π

)n/2 ∫
Rn

eωix·ξf

∨

(ξ)dξ,

for almost every x.

Proof. By Theorem 2.1.13, we have(
|ω|
2π

)n/2 ∫
Rn

e−ε|ωξ|f

∨

(ξ)dξ =

∫
Rn

P (y, ε)f(y)dy.

From Lemma 2.1.14, we get, for any δ > 0,∣∣∣∣∫
Rn

P (y, ε)f(y)dy − f(0)

∣∣∣∣ = ∣∣∣∣∫
Rn

P (y, ε)[f(y)− f(0)]dy

∣∣∣∣
6
∣∣∣∣∣
∫
|y|<δ

P (y, ε)[f(y)− f(0)]dy

∣∣∣∣∣+
∣∣∣∣∣
∫
|y|>δ

P (y, ε)[f(y)− f(0)]dy

∣∣∣∣∣
=I1 + I2.

Since f is continuous at 0, for any given σ > 0, we can choose δ small enough such
that |f(y)− f(0)| 6 σ when |y| < δ. Thus, I1 6 σ by Lemma 2.1.14. For the second
term, we have, by a change of variables, that

I2 6‖f‖1 sup
|y|>δ

P (y, ε) + |f(0)|
∫
|y|>δ

P (y, ε)dy

=‖f‖1
cnε

(ε2 + δ2)(n+1)/2
+ |f(0)|

∫
|y|>δ/ε

P (y, 1)dy → 0,

as ε → 0. Thus,
(
|ω|
2π

)n/2 ∫
Rn e

−ε|ωξ|f

∨

(ξ)dξ → f(0) as ε → 0. On the other hand,

by Levi monotone convergence theorem due to 0 6 e−ε|ωξ|f

∨

(ξ) ↑ f

∨

(ξ) as ε ↓ 0, we
obtain (

|ω|
2π

)n/2 ∫
Rn

f

∨

(ξ)dξ =

(
|ω|
2π

)n/2
lim
ε→0

∫
Rn

e−ε|ωξ|f

∨

(ξ)dξ = f(0),

which implies f

∨

∈ L1(Rn) due to f

∨

> 0. Therefore, from Theorem 2.1.19, it follows
the desired result. �

An immediate consequence is

Corollary 2.1.23.

i)
∫
Rn

eωix·ξW (ξ, ε)dξ = e−ε|ωx|
2
.

ii)
∫
Rn

eωix·ξP (ξ, ε)dξ = e−ε|ωx|.
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Proof. Noticing that

W (ξ, ε) = F

((
|ω|
2π

)n/2
e−ε|ωx|

2

)
, and P (ξ, ε) = F

((
|ω|
2π

)n/2
e−ε|ωx|

)
,

we have the desired results by Theorem 2.1.22. �
We also have the semigroup properties of the Weierstrass and Poisson kernels.

Corollary 2.1.24.

If α1 and α2 are positive real numbers, then

(i) W (ξ, α1 + α2) =

∫
Rn

W (ξ − η, α1)W (η, α2)dη.

(ii) P (ξ, α1 + α2) =

∫
Rn

P (ξ − η, α1)P (η, α2)dη.

Proof. It follows, from Corollary 2.1.23 and the Fubini theorem, that

W (ξ, α1 + α2) =

(
|ω|
2π

)n/2
(Fe−(α1+α2)|ωx|2)(ξ)

=

(
|ω|
2π

)n/2
F (e−α1|ωx|2e−α2|ωx|2)(ξ)

=

(
|ω|
2π

)n/2
F

(
e−α1|ωx|2

∫
Rn

eωix·ηW (η, α2)dη

)
(ξ)

=

(
|ω|
2π

)n ∫
Rn

e−ωix·ξe−α1|ωx|2
∫
Rn

eωix·ηW (η, α2)dηdx

=

∫
Rn

(
|ω|
2π

)n(∫
Rn

e−ωix·(ξ−η)e−α1|ωx|2dx

)
W (η, α2)dη

=

∫
Rn

W (ξ − η, α1)W (η, α2)dη.

A similar argument can give the other equality. �
Finally, we give an example of the semigroup about the heat equation.

Example 2.1.25. Consider the Cauchy problem to the heat equation

ut −∆u = 0, u(0) = u0(x), t > 0, x ∈ Rn.

Taking the Fourier transform, we have

u

∨

t + |ωξ|2u∨= 0, u

∨

(0) = u

∨

0(ξ).

Thus, it follows, from Theorem 2.1.9, that

u =F−1e−|ωξ|2tFu0 = (F−1e−|ωξ|2t) ∗ u0 = (2|ω|t)−n/2e−|x|2/4t ∗ u0
=W (x, t) ∗ u0 =: H(t)u0.

Then, we obtain

H(t1 + t2)u0 =W (x, t1 + t2) ∗ u0 =W (x, t1) ∗W (x, t2) ∗ u0
=W (x, t1) ∗ (W (x, t2) ∗ u0) =W (x, t1) ∗H(t2)u0

=H(t1)H(t2)u0,

i.e., H(t1 + t2) = H(t1)H(t2).
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§ 2.2 Fourier transform on Lp for 1 < p 6 2

The integral defining the Fourier transform is not defined in the Lebesgue sense
for the general function in L2(Rn); nevertheless, the Fourier transform has a natural
definition on this space and a particularly elegant theory.

If, in addition to being integrable, we assume f to be square-integrable then f

∨

will also be square-integrable. In fact, we have the following basic result:

Theorem 2.2.1: Plancherel theorem

If f ∈ L1(Rn) ∩ L2(Rn), then

‖f

∨

‖2 = ‖f‖2.

Proof. Let g(x) = f(−x) ∈ L1(Rn). Then, h = f ∗ g ∈ L1(Rn) by Theorem 1.2.6 and

h

∨

=
(
|ω|
2π

)−n/2
f

∨

g

∨by Proposition 2.1.2. But g∨= f

∨

, thus h

∨

=
(
|ω|
2π

)−n/2
|f

∨

|2 > 0. In
addition, h is continuous at {0}, since

|h(x)− h(0)| =
∣∣∣∣∫

Rn

f(x− y)g(y)dy −
∫
Rn

f(−y)g(y)dy
∣∣∣∣

=

∣∣∣∣∫
Rn

(f(x− y)− f(−y))f(−y)dy
∣∣∣∣

6∆f (x)‖f‖2,
by the Hölder inequality, where ∆f (x) = ‖f(x + ·) − f‖2 → 0 as x → 0 in view
of the proof of Theorem 2.1.15. Thus, applying Theorem 2.1.22, we have h(0) =(
|ω|
2π

)n/2 ∫
Rn h

∨
(ξ)dξ and h

∨
∈ L1(Rn). It follows that∫

Rn

|f

∨

(ξ)|2dξ =
(
|ω|
2π

)n/2 ∫
Rn

h

∨

(ξ)dξ = h(0)

=

∫
Rn

f(x)g(0− x)dx =

∫
Rn

f(x)f(x)dx

=

∫
Rn

|f(x)|2dx,

which completes the proof. �
Since L1∩L2 is dense in L2, there exists a unique bounded extension, F , of this

operator to all of L2. F will be called the Fourier transform on L2; we shall also
use the notation f

∨

= Ff whenever f ∈ L2(Rn).
A linear operator on L2(Rn) that is an isometry and maps onto L2(Rn) is called

a unitary operator. It is an immediate consequence of Theorem 2.2.1 that F is an
isometry. Moreover, we have the additional property that F is onto:

Theorem 2.2.2.

F is a unitary operator on L2(Rn).

Proof. Since F is an isometry, its range is a closed subspace of L2(Rn). If this sub-
space were not all of L2(Rn), we could find a function g such that

∫
Rn f

∨

gdx = 0 for
all f ∈ L2 and ‖g‖2 6= 0. Theorem 2.1.12 obviously extends to L2; consequently,∫
Rn fg

∨

dx =
∫
Rn f

∨

gdx = 0 for all f ∈ L2. But this implies that g∨(x) = 0 for almost
every x, contradicting the fact that ‖g∨‖2 = ‖g‖2 6= 0 in view of Theorem 2.2.1. �
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Theorem 2.2.2 is a major part of the basic theorem in the L2 theory of the Fourier
transform:

Theorem 2.2.3.

The inverse of the Fourier transform, F−1 or ·∧, can be obtained by letting

f

∧

(x) = f

∨

(−x)
for all f ∈ L2(Rn).

Having set down the basic facts concerning the action of the Fourier transform
on L1 and L2, we extend its definition on Lp for 1 < p < 2. Given a function
f ∈ Lp(Rn) with 1 < p < 2, we define f

∨

= f1

∨

+ f2

∨

, where f1 ∈ L1(Rn), f2 ∈ L2(Rn),
and f = f1 + f2; we may take, for instance, f1 = fχ|f |>1 and f2 = fχ|f |61. The
definition of f

∨

is independent of the choice of f1 and f2, since if f1+f2 = h1+h2 for
f1, h1 ∈ L1(Rn) and f2, h2 ∈ L2(Rn), we have f1 − h1 = h2 − f2 ∈ L1(Rn)∩L2(Rn).
Since these functions are equal on L1(Rn) ∩ L2(Rn), their Fourier transforms are
also equal, and we obtain f1

∨

− h1

∨

= h2

∨

− f2

∨

, which yields f1 + f2

∨

= h1 + h2

∨

. We
have the following result concerning the action of the Fourier transform on Lp.

Theorem 2.2.4: Hausdorff-Young inequality

Let 1 6 p 6 2 and 1/p + 1/p′ = 1. Then the Fourier transform defined as in
(2.1.1) satisfies

‖Ff‖p′ 6
(
|ω|
2π

)n(1/p−1/2)

‖f‖p. (2.2.1)

Proof. It follows from using the Riesz-Thorin interpolation theorem between the

L1-L∞ result ‖Ff‖∞ 6
(
|ω|
2π

)n/2
‖f‖1 (cf. Theorem 2.1.4) and Plancherel’s theorem

‖Ff‖2 = ‖f‖2 (cf. Theorem 2.2.1). �

Remark 2.2.5. Unless p = 1 or 2, the constant in the Hausdorff-Young inequality is
not the best possible; indeed the best constant is found by testing Gaussian func-
tions. This is much deeper and is due to Babenko [Bab61] when p′ is an even integer
and to Beckner [Bec75] in general.

Remark 2.2.6. The p′ can not be replaced by some q in (2.2.1). Namely, if it holds

‖f

∨

‖q 6 C‖f‖p, ∀f ∈ Lp(Rn), (2.2.2)

then we must have q = p′. In fact, we can use the dilation to show it. For λ > 0, let
fλ(x) = λ−nf(x/λ), then

‖fλ‖p = λ−n
(∫

Rn

|f(x/λ)|pdx
)1/p

= λ−n
(∫

Rn

λn|f(y)|pdy
)1/p

= λ
− n

p′ ‖f‖p.

(2.2.3)

By the property of the Fourier transform, we have fλ

∨

= λ−nδλ
−1
f

∨

= δλf

∨

and

‖fλ

∨

‖q =
(∫

Rn

|f

∨

(λξ)|qdξ
)1/q

= λ
−n

q ‖f

∨

‖q.
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Thus, (2.2.2) implies λ−
n
q ‖f

∨

‖q 6 Cλ
− n

p′ ‖f‖p, i.e., ‖f

∨

‖q 6 Cλ
n
q
− n

p′ ‖f‖p, then q = p′

by taking λ tending to 0 or ∞.

Remark 2.2.7. Except in the case p = 2 the inequality (2.2.1) is not reversible, in
the sense that there is no constant C such that ‖f

∨

‖p′ > C‖f‖p when f ∈ D . Equiv-
alently (in view of the inversion theorem) the result can not be extended to the
case p > 2. In order to show it, we take ω = 2π for simplicity, and fλ(x) =

φ(x)e−π(1+iλ)|x|
2
, where φ ∈ D is fixed and λ is a large positive number. Then,

‖fλ‖p is independent of λ for any p. By the Plancherel theorem, ‖fλ

∨

‖2 is also in-
dependent of λ. On the other hand, fλ

∨

is the convolution of φ

∨

, which is in L1,
with (1+ iλ)−n/2e−π(1+iλ)

−1|x|2 (cf. [Gra14, Ex.2.3.13, p.133] or [BCD11, Proposition
1.28]), which has L∞ norm (1 + λ2)−n/4. Accordingly, if p ∈ [1, 2) then

‖fλ

∨

‖p′ 6 ‖fλ

∨

‖
2
p′
2 ‖fλ

∨

‖
1− 2

p′
∞ 6 C(1 + λ2)

−n
2
( 1
2
− 1

p′ ).

Since ‖fλ‖p is independent of λ, this show that when p ∈ [1, 2) there is no constant
C such that C‖f

∨

‖p′ > ‖f‖p for all f ∈ D .

As an application of the Marcinkiewicz interpolation theorem, we present a
generalization of the Hausdorff-Young inequality due to Paley. The main differ-
ence between the theorems being that Paley introduced a weight function into his
inequality and resorted to the theorem of Marcinkiewicz. Let w be a weight func-
tion on Rn, i.e., a positive and measurable function on Rn. Then we denote by
Lp(w) the Lp-space with respect to wdx. The norm on Lp(w) is

‖f‖Lp(w) =

(∫
Rn

|f(x)|pw(x)dx
)1/p

.

With this notation we have the following theorem.

Theorem 2.2.8: Hardy-Littlewood-Paley theorem on Rn

Assume p ∈ [1, 2]. Then

‖Ff‖Lp(|ξ|−n(2−p)) 6 Cp‖f‖p.

Proof. We consider the mapping (Tf)(ξ) = |ξ|nf

∨

(ξ). By Plancherel theorem, we
have

‖Tf‖L2
∗(|ξ|−2n) 6 ‖Tf‖L2(|ξ|−2n) = ‖f

∨

‖2 = ‖f‖2,
which implies that T is of weak type (2, 2). We now work towards showing that T
is of weak type (1, 1). Thus, the Marcinkiewicz interpolation theorem implies the
theorem.

Now, consider the set Eα = {ξ : |ξ|n|f

∨

(ξ)| > α}. For simplicity, we let ν denote

the measure |ξ|−2ndξ and assume that ‖f‖1 = 1. Then, |f

∨

(ξ)| 6
(
|ω|
2π

)n/2
. For

ξ ∈ Eα, we therefore have α <
(
|ω|
2π

)n/2
|ξ|n. Consequently,

(Tf)∗(α) = ν(Eα) =

∫
Eα

|ξ|−2ndξ 6
∫
|ξ|n>

(
|ω|
2π

)−n/2
α
|ξ|−2ndξ 6 Cα−1.

Thus, we prove that

α · (Tf)∗(α) 6 C‖f‖1,
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which implies T is of weak type (1, 1). Therefore, we complete the proof. �

§ 2.3 The class of Schwartz functions

We recall the space D(Rn) ≡ C∞
c (Rn) of all smooth functions with compact

support, and C∞(Rn) of all smooth functions on Rn.
Distributions (generalized functions) D ′(Rn), which consists of continuous lin-

ear functionals on the space D(Rn), aroused mostly due to Dirac and his delta func-
tion δ0. The Dirac delta gives a description of a point of unit mass (placed at the
origin). The mass density function satisfies that it vanishes if it is integrated on a set
not containing the origin, but it is 1 if the set does contain the origin. No function
(in the traditional sense) can have this property because we know that the value of
a function at a particular point does not change the value of the integral.

The basic idea in the theory of distributions is to consider them as linear func-
tionals on some space of “regular” functions – the so-called “testing functions”.
The space of testing functions is assumed to be well-behaved with respect to the
operations (differentiation, Fourier transform, convolution, translation, etc.) we
have been studying, and this is then reflected in the properties of distributions.

The multiplication formula (Theorem 2.1.12) might suggest defining the Fourier
transform of a distribution based on duality. However, there is a serious impedi-
ment in doing so. Specifically, while for every ϕ ∈ D(Rn) we have ϕ∨∈ C∞(Rn)
from the definition of the Fourier transform directly, and ϕ

∨decays at infinity. We
nonetheless have

F (D(Rn)) 6⊂ D(Rn). (2.3.1)

In fact, we claim that

ϕ ∈ D(Rn) and ϕ∨∈ D(Rn) =⇒ ϕ = 0. (2.3.2)

To prove it, suppose ϕ ∈ D(Rn) is such that ϕ∨has compact support in Rn, and pick
an arbitrary point y = (y1, · · · , yn) ∈ Rn. Define the function Φ : C → C by

Φ(z) :=

(
|ω|
2π

)n/2 ∫
Rn

e−ωi(zx1+
∑n

j=2 yjxj)ϕ(x1, · · · , xn)dx1 · · · dxn, for z ∈ C.

(2.3.3)

Then, Φ is analytic in C and Φ(t) = ϕ

∨

(t, y2, · · · , yn) for each t ∈ R. Given that ϕ∨has
compact support, this implies that Φ vanishes on R \ [−R,R] if R > 0 is suitably
large. The identity theorem for ordinary analytic functions of one complex variable
then forces Φ = 0 everywhere in C. In particular, ϕ∨(y) = Φ(y1) = 0. Since y ∈ Rn

has been chosen arbitrary, we conclude that ϕ∨= 0 in Rn.
To overcome the difficulty highlighted in (2.3.1), we introduce a new (topolog-

ical vector) space of functions, S , that contains D(Rn), is invariant under F , and
that has a dual that is a subspace of D ′(Rn). Then, it would certainly have to consist
of functions that are indefinitely differentiable; this, in view of part (v) in Proposi-
tion 2.1.2, indicates that each function in S , after being multiplied by a polynomial,
must still be in S . We therefore make the following definition:
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Definition 2.3.1.

The Schwartz class S (Rn) of rapidly decaying functions is defined as

S (Rn) =
{
ϕ ∈ C∞(Rn) : ρα,β(ϕ) ≡ |ϕ|α,β

:= sup
x∈Rn

|xα∂βϕ(x)| <∞, ∀α, β ∈ Nn0
}
, (2.3.4)

where N0 = N ∪ {0}.

If ϕ ∈ S , then |ϕ(x)| 6 Cm(1 + |x|)−m for any m ∈ N0. The second part of next
example shows that the converse is not true.

Example 2.3.2. ϕ(x) = e−ε|x|
2
, ε > 0, belongs to S ; on the other hand, ϕ(x) = e−ε|x|

fails to be differential at the origin and, therefore, does not belong to S .

Example 2.3.3. ϕ(x) = e−ε(1+|x|2)γ belongs to S for any ε, γ > 0.

Example 2.3.4. The function f(x) = 1
(1+|x|2)k /∈ S for any k ∈ N since |x|2kf(x) 6→ 0

as |x| → ∞.

Example 2.3.5. Sometimes S (Rn) is called the space of rapidly decaying functions.
But observe that the function f(x) = e−x

2 sin(ex2) /∈ S (R) since f ′(x) 6→ 0 as
|x| → ∞. Hence, rapid decay of the value of the function alone does not assure the
membership in S (R).

Example 2.3.6. S contains the space D(Rn).

Remark 2.3.7. But it is not immediately clear that D is nonempty. To find a function
in D , consider the function

f(t) =

{
e−1/t, t > 0,

0, t 6 0.

Then, f ∈ C∞, is bounded and so are all its derivatives. Let ϕ(t) = f(1 + t)f(1− t),
then ϕ(t) = e−2/(1−t2) if |t| < 1, is zero otherwise. It clearly belongs to D = D(R).
We can easily obtain n-dimensional variants from ϕ. For examples,

(i) For x ∈ Rn, define ψ(x) = ϕ(x1)ϕ(x2) · · ·ϕ(xn), then ψ ∈ D(Rn);
(ii) For x ∈ Rn, define ψ(x) = e−2/(1−|x|2) for |x| < 1 and 0 otherwise, then ψ ∈

D(Rn);
(iii) If η ∈ C∞ and ψ is the function in (ii), then ψ(εx)η(x) defines a function in

D(Rn); moreover, e2ψ(εx)η(x) → η(x) as ε→ 0.

Remark 2.3.8. We observe that the order of multiplication by powers of x1, · · · , xn
and differentiation, in (2.3.4), could have been reversed. That is, for ϕ ∈ C∞,

ϕ ∈ S (Rn) ⇐⇒ sup
x∈Rn

|∂β(xαϕ(x))| <∞,∀α, β ∈ Nn0 .

This shows that if P is a polynomial in n variables and ϕ ∈ S then P (x)ϕ(x) and
P (∂)ϕ(x) are again in S , where P (∂) is the associated differential operator (i.e., we
replace xα by ∂α in P (x)).
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Remark 2.3.9. The following alternative characterization of Schwartz functions is
very useful. For ϕ ∈ C∞,

ϕ ∈ S (Rn) ⇐⇒ sup
x∈Rn

[(1 + |x|)N |∂αϕ(x)|] <∞, ∀N ∈ N0,∀α ∈ Nn0 , |α| 6 N.

(2.3.5)

Indeed, it follows from the observation that for each N ∈ N0 there exists C ∈
[1,∞) such that

C−1|x|N 6
∑
|γ|=N

|xγ | 6 C|x|N , ∀x ∈ Rn. (2.3.6)

The second inequality in (2.3.6) is seen by noting that ∀α ∈ Nn0 and ∀x ∈ Rn, we
have

|xα| = |x1|α1 · · · |xn|αn 6 |x|α1 · · · |x|αn = |x||α|. (2.3.7)

To justify the first inequality in (2.3.6), we consider the function g(x) :=
∑

|γ|=N
|xγ |

for x ∈ Rn. Then its restriction to Sn−1 attains a positive minimum since it has no
zeros on Sn−1, and the desired inequality follows by scaling.

For the three spaces, we have the following relations:

D(Rn) ⊂ S (Rn) ⊂ C∞(Rn).

Definition 2.3.10.

We define convergence of sequences in these spaces. We say that

fk → f in C∞ ⇐⇒fk, f ∈ C∞ and

lim
k→∞

sup
|x|6N

|∂α(fk − f)(x)| = 0, ∀α ∈ Nn0 ,∀N ∈ N.

fk → f in S ⇐⇒fk, f ∈ S and

lim
k→∞

sup
x∈Rn

|xα∂β(fk − f)(x)| = 0, ∀α, β ∈ Nn0 .

fk → f in D ⇐⇒fk, f ∈ D ,∃B compact, s.t. supp fk ⊂ B for all k,

and lim
k→∞

‖∂α(fk − f)‖∞ = 0, ∀α ∈ Nn0 .

It follows that convergence in D(Rn) implies convergence in S (Rn), which in
turn implies convergence in C∞(Rn).

The space C∞(Rn) is equipped with the family of seminorms

ρα,N (f) = sup
|x|6N

|(∂αf)(x)|, (2.3.8)

where α ranges over all multi-indices in Nn0 and N ranges over N0. It can be shown
that C∞(Rn) is complete with respect to this countable family of seminorms, i.e., it
is a Frèchet space. However, it is true that D(Rn) is not complete with respect to
the topology generated by this family of seminorms.

The topology of D given in Definition 2.3.10 is the inductive limit topology, and
under this topology it is complete. Indeed, letting D(B(0, k)) be the space of all
smooth functions with support in B(0, k), then D(Rn) is equal to

⋃∞
k=1 D(B(0, k))

and each space D(B(0, k)) is complete with respect to the topology generated by
the family of seminorms ρα,N , hence so is D(Rn). Nevertheless, D(Rn) is not
metrizable by the Baire category theorem.
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Theorem 2.3.11.

S is contained in and dense in C0(Rn) and Lp(Rn) for 1 6 p <∞.

Proof. S ⊂ C0 is obvious by (2.3.4). The Lp norm of ϕ ∈ S is bounded by a finite
linear combination of L∞ norms of terms of the form xαϕ(x). In fact, by (2.3.4), we
have (∫

Rn

|ϕ(x)|pdx
)1/p

6
(∫

|x|61
|ϕ(x)|pdx

)1/p

+

(∫
|x|>1

|ϕ(x)|pdx

)1/p

6‖ϕ‖∞

(∫
|x|61

dx

)1/p

+ ‖|x|2n|ϕ(x)|‖∞

(∫
|x|>1

|x|−2npdx

)1/p

=
(ωn−1

n

)1/p
‖ϕ‖∞ +

(
ωn−1

(2p− 1)n

)1/p ∥∥|x|2n|ϕ|∥∥∞ <∞.

For the proof of the density, it follows from the fact that D is dense in those
spaces1 and D ⊂ S . �

Remark 2.3.12. The density is not valid for p = ∞. Indeed, for a nonzero constant
function f ≡ c0 6= 0 and for any function ϕ ∈ D(Rn), we have

‖f − ϕ‖∞ > |c0| > 0.

Hence we cannot approximate any function fromL∞(Rn) by functions from D(Rn).
This example also indicates that S is not dense in L∞ since lim

|x|→∞
|ϕ(x)| = 0 for all

ϕ ∈ S .

From part (v) in Proposition 2.1.2, we immediately have

Theorem 2.3.13.

If ϕ ∈ S , then ϕ∨∈ S .

1For convenience, we review the proof of the fact that D is dense in Lp(Rn) for 1 6 p < ∞, and
leave the case of C0 to the interested reader.

We will use the fact that the set of finite linear combinations of characteristic functions of bounded
measurable sets in Rn is dense in Lp(Rn), 1 6 p < ∞. This is a well-known fact from functional
analysis.

Let E ⊂ Rn be a bounded measurable set and let ε > 0. Then, there exists a closed set F and an
open set Q such that F ⊂ E ⊂ Q and |Q \ F | < εp (or only |Q| < εp if there is no closed set F ⊂ E).
Here µ is the Lebesgue measure in Rn. Next, let φ be a function from D such that suppφ ⊂ Q,
φ|F ≡ 1 and 0 6 φ 6 1. Then,

∥φ− χE∥pp =

∫
Rn

|φ(x)− χE(x)|pdx 6
∫
Q\F

dx = |Q \ F | < εp

or
∥φ− χE∥p < ε,

where χE denotes the characteristic function of E. Thus, we may conclude that D(Rn) = Lp(Rn)

with respect to Lp measure for 1 6 p < ∞.
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We can define the inverse Fourier transform for Schwartz functions as for L2

functions. Given f ∈ S (Rn), we define

f

∧

(x) = f

∨

(−x),
for all x ∈ Rn. The operation

F−1 : f 7→ f

∧

is called the inverse Fourier transform.
It is straightforward that the inverse Fourier transform shares the same proper-

ties as the Fourier transform. We now give the relation between the Fourier trans-
form and the inverse Fourier transform and leave proofs to the reader.

Theorem 2.3.14.

Given f , g, and h in S (Rn), we have

(1) Multiplication formula:
∫
Rn

f

∨

(x)g(x)dx =

∫
Rn

f(x)g

∨

(x)dx;

(2) Fourier inversion: f

∨∧

= f = f

∧∨

;

(3) Parseval’s relation:
∫
Rn

f(x)h̄(x)dx =

∫
Rn

f

∨

(ξ)h

∨

(ξ)dξ;

(4) Plancherel’s identity: ‖f‖2 = ‖f

∨

‖2 = ‖f

∧

‖2;

(5)
∫
Rn

f(x)h(x)dx =

∫
Rn

f

∨

(x)h

∧

(x)dx.

If ϕ,ψ ∈ S , then Theorem 2.3.13 implies that ϕ∨, ψ

∨

∈ S . Therefore, ϕ∨ψ

∨

∈ S . By

part (vi) in Proposition 2.1.2, i.e., F (ϕ ∗ ψ) =
(
|ω|
2π

)−n/2
ϕ

∨
ψ

∨
, an application of the

inverse Fourier transform shows that

Theorem 2.3.15.

If ϕ,ψ ∈ S , then ϕ ∗ ψ ∈ S .

The space S (Rn) is not a normed space because |ϕ|α,β is only a semi-norm for
multi-indices α and β, i.e., the condition

|ϕ|α,β = 0 if and only if ϕ = 0

fails to hold, for example, for constant function ϕ. But the space (S , ρ) is a metric
space if the metric ρ is defined by

ρ(ϕ,ψ) =
∑

α,β∈Nn
0

2−|α|−|β| |ϕ− ψ|α,β
1 + |ϕ− ψ|α,β

.

Theorem 2.3.16: Completeness

The space (S , ρ) is a complete metric space, i.e., every Cauchy sequence
converges.

Proof. Let {ϕk}∞k=1 ⊂ S be a Cauchy sequence. For any σ > 0 and any γ ∈ Nn0 ,
let ε = 2−|γ|σ

1+2σ , then there exists an N0(ε) ∈ N such that ρ(ϕk, ϕm) < ε when k,m >
N0(ε) since {ϕk}∞k=1 is a Cauchy sequence. Thus, we have

|ϕk − ϕm|0,γ
1 + |ϕk − ϕm|0,γ

<
σ

1 + σ
,
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and then

sup
x∈K

|∂γ(ϕk − ϕm)| < σ

for any compact set K ⊂ Rn. It means that {ϕk}∞k=1 is a Cauchy sequence in the
Banach space C |γ|(K). Hence, there exists a function ϕ ∈ C |γ|(K) such that

lim
k→∞

ϕk = ϕ, in C |γ|(K).

Thus, we can conclude that ϕ ∈ C∞(Rn). It only remains to prove that ϕ ∈ S . It is
clear that for any α, β ∈ Nn0

sup
x∈K

|xα∂βϕ| 6 sup
x∈K

|xα∂β(ϕk − ϕ)|+ sup
x∈K

|xα∂βϕk|

6Cα(K) sup
x∈K

|∂β(ϕk − ϕ)|+ sup
x∈K

|xα∂βϕk|.

Taking k → ∞, we obtain

sup
x∈K

|xα∂βϕ| 6 lim sup
k→∞

|ϕk|α,β <∞.

The last inequality is valid since {ϕk}∞k=1 is a Cauchy sequence, so that |ϕk|α,β is
bounded. The last inequality doesn’t depend on K either. Thus, |ϕ|α,β < ∞ and
then ϕ ∈ S . �

Moreover, some easily established properties of S (Rn) and its topology, are the
following:

Proposition 2.3.17.

i) The mapping ϕ(x) 7→ xα∂βϕ(x) is continuous.
ii) If ϕ ∈ S (Rn), then limh→0 τ

hϕ = ϕ.
iii) Suppose ϕ ∈ S (Rn) and h = (0, · · · , hi, · · · , 0) lies on the i-th coordi-

nate axis of Rn, then the difference quotient [ϕ−τhϕ]/hi tends to ∂ϕ/∂xi
as |h| → 0.

iv) The Fourier transform is a homeomorphism of S (Rn) onto itself.
v) S (Rn) is separable.

Finally, we describe and prove a fundamental result of Fourier analysis that is
known as the uncertainty principle discovered by W. Heisenberg in 1927. It says
that the position and the momentum of an object cannot both be measured exactly,
at the same time, even in theory. In the context of harmonic analysis, the uncer-
tainty principle implies that one cannot at the same time localize the value of a
function and its Fourier transform. The exact statement is as follows.

Theorem 2.3.18: The Heisenberg uncertainty principle

Suppose ψ is a function in S (R). Then

‖xψ‖2‖ξψ

∨

‖2 >
‖ψ‖22
2|ω|

,

and equality holds if and only if ψ(x) = Ae−Bx
2

where B > 0 and A ∈ R.
Moreover, we have

‖(x− x0)ψ‖2‖(ξ − ξ0)ψ

∨

‖2 >
‖ψ‖22
2|ω|
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for every x0, ξ0 ∈ R.

Proof. The last inequality actually follows from the first one by replacing ψ(x) by
e−ωixξ0ψ(x + x0) (whose Fourier transform is eωix0(ξ+ξ0)ψ

∨

(ξ + ξ0) by parts (ii) and
(iii) in Proposition 2.1.2) and changing variables. To prove the first inequality, we
argue as follows.

Since ψ ∈ S , we know that ψ and ψ′ are rapidly decreasing. Thus, an integra-
tion by parts gives

‖ψ‖22 =
∫ ∞

−∞
|ψ(x)|2dx = −

∫ ∞

−∞
x
d

dx
|ψ(x)|2dx

=−
∫ ∞

−∞

(
xψ′(x)ψ(x) + xψ′(x)ψ(x)

)
dx.

The last identity follows because |ψ|2 = ψψ. Therefore,

‖ψ‖22 6 2

∫ ∞

−∞
|xψ(x)||ψ′(x)|dx 6 2‖xψ‖2‖ψ′‖2,

where we have used the Cauchy-Schwarz inequality. By part (v) in Proposition
2.1.2, we have F (ψ′)(ξ) = ωiξψ

∨

(ξ). It follows, from the Plancherel theorem, that

‖ψ′‖2 = ‖F (ψ′)‖2 = |ω|‖ξψ

∨

‖2.
Thus, we conclude the proof of the inequality in the theorem.

If equality holds, then we must also have equality where we applied the Cauchy-
Schwarz inequality, and as a result, we find that ψ′(x) = βxψ(x) for some constant
β. The solutions to this equation are ψ(x) = Aeβx

2/2, where A is a constant. Since
we want ψ to be a Schwartz function, we must take β = −2B < 0. �

§ 2.4 The class of tempered distributions

The collection S ′ of all continuous linear functionals on S is called the space
of tempered distributions. That is

Definition 2.4.1.

The functional T : S → C is a tempered distribution if
(i) T is linear, i.e., 〈T, αϕ + βψ〉 = α〈T, ϕ〉 + β〈T, ψ〉 for all α, β ∈ C and
ϕ,ψ ∈ S .
(ii) T is continuous on S , i.e., there exist n0 ∈ N0 and a constant c0 > 0 such
that

|〈T, ϕ〉| 6 c0
∑

|α|,|β|6n0

|ϕ|α,β

for any ϕ ∈ S .

In addition, for Tk, T ∈ S ′, the convergence Tk → T in S ′ means that 〈Tk, ϕ〉 →
〈T, ϕ〉 in C for all ϕ ∈ S .

Remark 2.4.2. Since D ⊂ S , the space of tempered distributions S ′ is more nar-
row than the space of distributions D ′, i.e., S ′ ⊂ D ′. Another more narrow distri-
bution space E ′ which consists of continuous linear functionals on the (widest test
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function) space C∞(Rn). In short, D ⊂ S ⊂ C∞ implies that

E ′ ⊂ S ′ ⊂ D ′.

By definition of the topologies on the dual spaces, we have

Tk → T in D ′ ⇐⇒ Tk, T ∈ D ′ and Tk(f) → T (f) for all f ∈ D .

Tk → T in S ′ ⇐⇒ Tk, T ∈ S ′ and Tk(f) → T (f) for all f ∈ S .

Tk → T in E ′ ⇐⇒ Tk, T ∈ E ′ and Tk(f) → T (f) for all f ∈ C∞.

Definition 2.4.3.

Elements of the space D ′(Rn) are called distributions. Elements of S ′(Rn)
are called tempered distributions. Elements of the space E ′(Rn) are called
distributions with compact support.

Before we discuss some examples, we give alternative characterizations of dis-
tributions, which are very useful from the practical point of view. The action of a
distribution u on a test function f is represented in either one of the following two
ways:

〈u, f〉 = u(f).

There exists a simple and important characterization of distributions:

Theorem 2.4.4.

(1) A linear functional u on D(Rn) is a distribution if and only if for every
compact K ⊂ Rn, there exist C > 0 and an integer m such that

|〈u, f〉| 6 C
∑

|α|6m
‖∂αf‖∞, ∀f ∈ C∞ with support in K. (2.4.1)

(2) A linear functional u on S is a tempered distribution if and only if there
exists a constant C > 0 and integers ` and m such that

|〈u, ϕ〉| 6 C
∑

|α|6ℓ,|β|6m
ρα,β(ϕ), ∀ϕ ∈ S . (2.4.2)

(3) A linear functional u on C∞(Rn) is a distribution with compact support if
and only if there exist C > 0 and integers N , m such that

|〈u, f〉| 6 C
∑

|α|6m
ρα,N (f), ∀f ∈ C∞(Rn). (2.4.3)

The seminorms ρα,β and ρα,N are defined in (2.3.4) and (2.3.8), respectively.

Proof. We prove only (2), since the proofs of (1) and (3) are similar. It is clear that
the existence of C, `, m implies the continuity of u.

Suppose u is continuous. It follows from the definition of the metric that a basis
for the neighborhoods of the origin in S is the collection of sets Nε,ℓ,m = {ϕ :∑

|α|6ℓ,|β|6m |ϕ|α,β < ε}, where ε > 0 and ` and m are integers, because ϕk → ϕ as
k → ∞ if and only if |ϕk − ϕ|α,β → 0 for all (α, β) in the topology induced by this
system of neighborhoods and their translates. Thus, there exists such a set Nε,ℓ,m

satisfying |〈u, ϕ〉| 6 1 whenever ϕ ∈ Nε,ℓ,m.
Let ‖ϕ‖ =

∑
|α|6ℓ,|β|6m |ϕ|α,β for all ϕ ∈ S . If σ ∈ (0, ε), then ψ = σϕ/‖ϕ‖ ∈
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Nε,ℓ,m if ϕ 6= 0. From the linearity of u, we obtain
σ

‖ϕ‖
|〈u, ϕ〉| = |〈u, ψ〉| 6 1.

But this is the desired inequality with C = 1/σ. �

Example 2.4.5. Let f ∈ Lp(Rn), 1 6 p 6 ∞, and define T = Tf by letting

〈T, ϕ〉 = 〈Tf , ϕ〉 =
∫
Rn

f(x)ϕ(x)dx

for ϕ ∈ S . It is clear that Tf is a linear functional on S . To show that it is continu-
ous, therefore, it suffices to show that it is continuous at the origin. Then, suppose
ϕk → 0 in S as k → ∞. From the proof of Theorem 2.3.11, we have seen that
for any q > 1, ‖ϕk‖q is dominated by a finite linear combination of L∞ norms of
terms of the form xαϕk(x). That is, ‖ϕk‖q is dominated by a finite linear combi-
nation of semi-norms |ϕk|α,0. Thus, ‖ϕk‖q → 0 as k → ∞. Choosing q = p′, i.e.,
1/p+1/q = 1, Hölder’s inequality shows that |〈T, ϕk〉| 6 ‖f‖p‖ϕk‖p′ → 0 as k → ∞.
Thus, T ∈ S ′.

Example 2.4.6. We consider the case n = 1. Let f(x) =
∑m

k=0 akx
k be a polynomial,

then f ∈ S ′ since

|〈Tf , ϕ〉| =

∣∣∣∣∣
∫
R

m∑
k=0

akx
kϕ(x)dx

∣∣∣∣∣
6

m∑
k=0

|ak|
∫
R
(1 + |x|)−1−ε(1 + |x|)1+ε|x|k|ϕ(x)|dx

6C
m∑
k=0

|ak||ϕ|k+1+ε,0

∫
R
(1 + |x|)−1−εdx,

so that the condition ii) of the definition is satisfied for ε = 1 and n0 = m+ 2.

Example 2.4.7. The Dirac mass at the origin δ0. This is defined for ϕ ∈ S by

〈δ0, ϕ〉 = ϕ(0).

Then, δ0 ∈ S ′. The Dirac mass at a point x0 ∈ Rn is defined similarly by

〈δx0 , ϕ〉 = ϕ(x0).

The tempered distributions of Examples 2.4.5-2.4.7 are called functions or mea-
sures. We shall write, in these cases, f and δ0 instead of Tf and Tδ0 . These functions
and measures may be considered as embedded in S ′. If we put on S ′ the weakest
topology such that the linear functionals T → 〈T, ϕ〉 (ϕ ∈ S ) are continuous, it is
easy to see that the spaces Lp(Rn), 1 6 p 6 ∞, are continuously embedded in S ′.
The same is true for the space of all finite Borel measures on Rn, i.e., B(Rn).

Suppose that f and g are Schwartz functions and α a multi-index. Integrating
by parts |α| times, we obtain∫

Rn

(∂αf)(x)g(x)dx = (−1)|α|
∫
Rn

f(x)(∂αg)(x)dx. (2.4.4)

If we wanted to define the derivative of a tempered distribution u, we would have
to give a definition that extends the definition of the derivative of the function and
that satisfies (2.4.4) for g ∈ S ′ and f ∈ S if the integrals in (2.4.4) are interpreted as
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actions of distributions on functions. We simply use (2.4.4) to define the derivative
of a distribution.

Definition 2.4.8.

Let u ∈ S ′ and α a multi-index. Define

〈∂αu, f〉 = (−1)|α|〈u, ∂αf〉. (2.4.5)

If u is a function, the derivatives of u in the sense of distributions are called
distributional derivatives.

In view of Theorem 2.3.14, it is natural to give the following:

Definition 2.4.9.

Let u ∈ S ′. We define the Fourier transform u

∨and the inverse Fourier trans-
form u

∧of a tempered distribution u by

〈u∨, f〉 = 〈u, f

∨

〉 and 〈u∧, f〉 = 〈u, f

∧

〉, (2.4.6)

for all f in S , respectively.

Example 2.4.10. For ϕ ∈ S , we have

〈δ0

∨

, ϕ〉 = 〈δ0,Fϕ〉 = ϕ

∨

(0) =

(
|ω|
2π

)n/2 ∫
Rn

e−ωix·0ϕ(x)dx = 〈
(
|ω|
2π

)n/2
, ϕ〉.

Thus, δ0

∨

=
(
|ω|
2π

)n/2
in S ′. More generally, since

〈∂αδ0

∨

, ϕ〉 =〈∂αδ0, ϕ∨〉 = (−1)|α|〈δ0, ∂αϕ∨〉 = 〈δ0,F [(ωiξ)αϕ]〉

=〈δ0

∨

, (ωiξ)αϕ〉 = 〈
(
|ω|
2π

)n/2
(ωiξ)α, ϕ〉,

we have ∂αδ0

∨

=
(
|ω|
2π

)n/2
(ωiξ)α. This calculation indicates that ∂αδ0

∨

can be identi-

fied with the function
(
|ω|
2π

)n/2
(ωiξ)α.

Example 2.4.11. Since for any ϕ ∈ S ,

〈1

∨

, ϕ〉 =〈1, ϕ∨〉 =
∫
Rn

ϕ

∨

(ξ)dξ =

(
|ω|
2π

)−n/2( |ω|
2π

)n/2 ∫
Rn

eωi0·ξϕ

∨

(ξ)dξ

=

(
|ω|
2π

)−n/2
ϕ

∨∧

(0) =

(
|ω|
2π

)−n/2
ϕ(0) =

(
|ω|
2π

)−n/2
〈δ0, ϕ〉,

we have

1

∨

=

(
|ω|
2π

)−n/2
δ0, in S ′.

Moreover, δ0

∧

=
(
|ω|
2π

)n/2
.

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



- 58 - Chengchun HAO

Now observe that the following are true whenever f , g are in S .∫
Rn

g(x)f(x− t)dx =

∫
Rn

g(x+ t)f(x)dx,∫
Rn

g(ax)f(x)dx =

∫
Rn

g(x)a−nf(a−1x)dx,∫
Rn

g̃(x)f(x)dx =

∫
Rn

g(x)f̃(x)dx,

(2.4.7)

for all t ∈ Rn and a > 0, where˜denotes the reflection. Motivated by (2.4.7), we
give the following:

Definition 2.4.12.

The translation τ tu, the dilation δau, and the reflection ũ of a tempered dis-
tribution u are defined as follows:

〈τ tu, f〉 =〈u, τ−tf〉,

〈δau, f〉 =〈u, a−nδ1/af〉,
〈ũ, f〉 =〈u, f̃〉,

for all t ∈ Rn and a > 0. Let A be an invertible matrix. The composition of a
distribution u with an invertible matrix A is the distribution

〈uA, ϕ〉 = |detA|−1〈u, ϕA−1〉,

where ϕA
−1
(x) = ϕ(A−1x).

It is easy to see that the operations of translation, dilation, reflection, and differ-
entiation are continuous on tempered distributions.

Example 2.4.13. The Dirac mass at the origin δ0 is equal to its reflection, while
δaδ0 = a−nδ0 for a > 0. Also, τxδ0 = δx for any x ∈ Rn.

Now observe that for f , g and h in S , we have∫
Rn

(h ∗ g)(x)f(x)dx =

∫
Rn

g(x)(h̃ ∗ f)(x)dx. (2.4.8)

Motivated by this identity, we define the convolution of a function with a tempered
distribution as follows:

Definition 2.4.14.

Let u ∈ S ′ and h ∈ S . Define the convolution h ∗ u by

〈h ∗ u, f〉 = 〈u, h̃ ∗ f〉, f ∈ S . (2.4.9)

Example 2.4.15. Let u = δx0 and f ∈ S . Then f ∗ δx0 is the function τx0f , since for
h ∈ S , we have

〈f ∗ δx0 , h〉 = 〈δx0 , f̃ ∗ h〉 = (f̃ ∗ h)(x0) =
∫
Rn

f(x− x0)h(x)dx = 〈τx0f, h〉.

It follows that convolution with δ0 is the identity operator by taking x0 = 0.

We now define the product of a function and a distribution.
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Definition 2.4.16.

Let u ∈ S ′ and let h be a C∞ function that has at most polynomial growth at
infinity and the same is true for all of its derivatives. This means that for all
α it satisfies |(∂αh)(x)| 6 Cα(1 + |x|)kα for some Cα, kα > 0. Then define the
product hu of h and u by

〈hu, f〉 = 〈u, hf〉, f ∈ S . (2.4.10)

Note that hf ∈ S and thus (2.4.10) is well defined. The product of an arbi-
trary C∞ function with a tempered distribution is not defined.

Example 2.4.17. Let T ∈ S ′ and ϕ ∈ D(Rn) with ϕ(0) = 1. Then the product
ϕ(x/k)T is well-defined in S ′ by

〈ϕ(x/k)T, ψ〉 := 〈T, ϕ(x/k)ψ〉,

for all ψ ∈ S . If we consider the sequence Tk := ϕ(x/k)T , then

〈Tk, ψ〉 ≡ 〈T, ϕ(x/k)ψ〉 → 〈T, ψ〉

as k → ∞ since ϕ(x/k)ψ → ψ in S . Thus, Tk → T in S ′ as k → ∞. Moreover,
Tk has compact support as a tempered distribution in view of the compactness of
ϕk = ϕ(x/k).

Next, we give a proposition that extends the properties of the Fourier transform
to tempered distributions.

Proposition 2.4.18.

Given u, v ∈ S ′(Rn), fj , f ∈ S , y ∈ Rn, b ∈ C, α ∈ Nn0 , and a > 0, we have

(i) u+ v

∨

= u

∨

+ v

∨,
(ii) bu

∨

= bu

∨,
(iii) u

∼∨

= u

∨
∼

,
(iv) τyu

∨

(ξ) = e−ωiy·ξu

∨

(ξ),

(v) eωix·yu(x)

∨

= τyu

∨,
(vi) δau

∨

= (u

∨

)a = a−nδa
−1
u

∨,
(vii) ∂αu

∨

(ξ) = (ωiξ)αu

∨

(ξ),
(viii) ∂αu∨= (−ωix)αu(x)

∨

,
(ix) u∨

∧

= u,

(x) f ∗ u

∨

=
(
|ω|
2π

)−n/2
f

∨

u

∨,

(xi) fu

∨

=
(
|ω|
2π

)n/2
f

∨

∗ u∨.

Proof. All the statements can be proved easily using duality and the corresponding
statements for Schwartz functions. �

Now, we give a property of convolutions. It is easy to show that this convolu-
tion is associative in the sense that (u ∗ f) ∗ g = u ∗ (f ∗ g) whenever u ∈ S ′ and
f , g ∈ S . The following result is a characterization of the convolution we have just
described.
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Theorem 2.4.19.

If u ∈ S ′ and ϕ ∈ S , then ϕ ∗ u is a C∞ function and

(ϕ ∗ u)(x) = 〈u, τxϕ̃〉, (2.4.11)

for all x ∈ Rn. Moreover, for all multi-indices α there exist constantsCα, kα >
0 such that

|∂α(ϕ ∗ u)(x)| 6 Cα(1 + |x|)kα . (2.4.12)

Proof. We first prove (2.4.11). Let ψ ∈ S (Rn). We have

〈ϕ ∗ u, ψ〉 =〈u, ϕ̃ ∗ ψ〉

=u

(∫
Rn

ϕ̃(· − y)ψ(y)dy

)
=u

(∫
Rn

(τyϕ̃)(·)ψ(y)dy
)

(2.4.13)

=

∫
Rn

〈u, τyϕ̃〉ψ(y)dy,

where the last step is justified by the continuity of u and by the fact that the Rie-
mann sums of the inner integral in (2.4.13) converge uniformly to that integral in
the topology of S , a fact that will be justified later. This calculation implies (2.4.11).

We now show that ϕ∗u is a C∞ function. Let ej = (0, · · · , 1, · · · , 0) with 1 in the
jth entry and zero elsewhere. Then by part iii) in Proposition 2.3.17,

τ−hejτxϕ̃− τxϕ̃

h
→ ∂jτ

xϕ̃ = τx∂jϕ̃,

in S as h→ 0. Thus, since u is linear and continuous, we have

τ−hej (ϕ ∗ u)(x)− (ϕ ∗ u)(x)
h

= u

(
τ−hej (τxϕ̃)− τxϕ̃

h

)
→ 〈u, τx(∂jϕ̃)〉

as h → 0. The same calculation for higher-order derivatives show that ϕ ∗ u ∈ C∞

and that ∂γ(ϕ ∗ u) = (∂γϕ) ∗ u for all multi-indices γ. It follows from Theorem 2.4.4
that for some C, m and k we have

|∂α(ϕ ∗ u)(x)| 6C
∑

|γ|6m
|β|6k

sup
y∈Rn

|yγτx(∂α+βϕ̃)(y)|

=C
∑

|γ|6m
|β|6k

sup
y∈Rn

|(x+ y)γ(∂α+βϕ̃)(y)| (change variables: y − x→ y)

6Cm
∑
|β|6k

sup
y∈Rn

|(1 + |x|m + |y|m)(∂α+βϕ̃)(y)|

6Cm,k,α sup
y∈Rn

1 + |x|m + |y|m

(1 + |y|)N
(taking N > m)

6Cm,k,α(1 + |x|m),

which clearly implies that ∂α(ϕ ∗ u) grows at most polynomially at infinity.
Next, we return to the point left open concerning the convergence of the Rie-

mann sums in (2.4.13) in the topology of S (Rn). For each N = 1, 2, · · · , consider
a partition of [−N,N ]n into (2N2)n cubes Qm of side length 1/N and let ym be the
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center of each Qm. For multi-indices α, β, we must show that

DN (x) =

(2N2)n∑
m=1

xα∂βx ϕ̃(x− ym)ψ(ym)|Qm| −
∫
Rn

xα∂βx ϕ̃(x− y)ψ(y)dy

converges to zero in L∞(Rn) as N → ∞. We have by the mean value theorem

xα∂βx ϕ̃(x− ym)ψ(ym)|Qm| −
∫
Qm

xα∂βx ϕ̃(x− y)ψ(y)dy

=

∫
Qm

xα[∂βx ϕ̃(x− ym)ψ(ym)− ∂βx ϕ̃(x− y)ψ(y)]dy

=

∫
Qm

xα(y − ym) · (∇(∂βx ϕ̃(x− ·)ψ))(ξ)dy

=

∫
Qm

xα(y − ym) · (−∇∂βx ϕ̃(x− ·)ψ +∇ψ∂βx ϕ̃(x− ·))(ξ)dy

for some ξ = y+ θ(ym− y), where θ ∈ [0, 1]. We see that |y− ym| 6
√
n/2N and the

last integrand

|xα(y − ym) · (−∇∂βx ϕ̃(x− ξ)ψ(ξ) +∇ψ(ξ)∂βx ϕ̃(x− ξ))|

6C|x||α|
√
n

2N

1

(2 + |ξ|)M
1

(1 + |x− ξ|)M/2
(for M large)

6C|x||α|
√
n

N

1

(2 + |ξ|)M/2

1

(1 + |x|)M/2

6C|x||α|
√
n

N

1

(1 + |y|)M/2

1

(1 + |x|)M/2
,

since (1 + |x − ξ|)(2 + |ξ|) > 1 + |x − ξ| + |ξ| > 1 + |x|, and |y| 6 |ξ| + θ|y − ym| 6
|ξ| +

√
n/2N 6 |ξ| + 1 for N > √

n/2. Inserting the estimates obtained for the
integrand, we obtain

|DN (x)| 6
C

N

|x||α|

(1 + |x|)M/2

∫
[−N,N ]n

dy

(1 + |y|)M/2
+

∫
([−N,N ]n)c

|xα∂βx ϕ̃(x− y)ψ(y)|dy.

The first integral in the preceding expression is bounded by

ωn−1

∫ √
nN

0

rn−1dr

(1 + r)M/2
6 ωn−1

∫ √
nN

0

dr

(1 + r)
M
2
−n+1

6 2ωn−1

M − 2n
,

where we pick M > 2n, while the second integral is bounded by∫
([−N,N ]n)c

C|x||α|

(1 + |x− y|)M/2

dy

(1 + |y|)M

6 C|x||α|

(1 + |x|)M/2

∫
([−N,N ]n)c

dy

(1 + |y|)M/2

6Cωn−1

∫ ∞

N

rn−1dr

(1 + r)M/2
6 C

2ωn−1

M − 2n
Nn−M/2,

for M > max(2n, 2|α|) since (1 + |x− y|)(1 + |y|) > 1+ |x− y|+ |y| > 1+ |x|. From
these estimates, it follows that

sup
x∈Rn

|DN (x)| 6 C(
1

N
+

1

N
M
2
−n

) → 0, as N → ∞.

Therefore, lim
N→∞

sup
x∈Rn

|DN (x)| = 0. �
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We observe that if a function g is supported in a set K, then for all f ∈ D(Kc)

we have ∫
Rn

f(x)g(x)dx = 0. (2.4.14)

Moreover, the support of g is the intersection of all closed sets K with the property
(2.4.14) for all f in D(Kc). Motivated by this observation we give the following:

Definition 2.4.20.

Let u ∈ D ′(Rn). The support of u ( suppu) is the intersection of all closed sets
K with the property

ϕ ∈ D(Rn), suppϕ ⊂ Rn \K =⇒ 〈u, ϕ〉 = 0. (2.4.15)

Example 2.4.21. supp δx0 = {x0}.

Along the same lines, we give the following definition:

Definition 2.4.22.

We say that a distribution u ∈ D ′(Rn) coincides with the function h on an
open set Ω if

〈u, f〉 =
∫
Rn

f(x)h(x)dx ∀f ∈ D(Ω). (2.4.16)

When (2.4.16) occurs we often say that u agrees with h away from Ωc.

This definition implies supp (u− h) ⊂ Ωc.

Example 2.4.23. The distribution |x|2 + δa1 + δa2 , where a1, a2 ∈ Rn, coincides with
the function |x|2 on any open set not containing the points a1 and a2.

We have the following characterization of distributions supported at a single
point.

Proposition 2.4.24.

If u ∈ S ′(Rn) is supported in the singleton {x0}, then there exists an integer
k and complex numbers aα such that

u =
∑
|α|6k

aα∂
αδx0 .

Proof. Without loss of generality, we may assume that x0 = 0. By (2.4.2), we have
that for some C, m, and k,

|〈u, f〉| 6 C
∑

|α|6m
|β|6k

sup
x∈Rn

|xα(∂βf)(x)| ∀f ∈ S (Rn).

We now prove that if ϕ ∈ S satisfies

(∂αϕ)(0) = 0 ∀|α| 6 k, (2.4.17)

then 〈u, ϕ〉 = 0. To see this, fix a ϕ satisfying (2.4.17) and let ζ(x) be a smooth
function on Rn that is equal to 1 when |x| > 2 and equal to zero for |x| 6 1. Let
ζε(x) = ζ(x/ε).Then using (2.4.17) and the continuity of the derivatives of ϕ at the
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origin, it is not hard to show that ρα,β(ζεϕ − ϕ) → 0 as ε → 0 for all |α| 6 m and
|β| 6 k. Then

|〈u, ϕ〉| 6|〈u, ζεϕ〉|+ |〈u, ζεϕ− ϕ〉|

60 +
∑

|α|6m
|β|6k

ρα,β(ζ
εϕ− ϕ) → 0

as ε→ 0. This proves our assertion.
Now, let f ∈ S (Rn). Let η be a D(Rn) function on Rn that is equal to 1 in a

neighborhood of the origin. Write

f(x) = η(x)

∑
|α|6k

(∂αf)(0)

α!
xα + h(x)

+ (1− η(x))f(x), (2.4.18)

where h(x) = O(|x|k+1) as |x| → 0. Then ηh satisfies (2.4.17) and hence 〈u, ηh〉 = 0

by the claim. Also,

〈u, ((1− η)f)〉 = 0

by our hypothesis. Applying u to both sides of (2.4.18), we obtain

〈u, f〉 =
∑
|α|6k

(∂αf)(0)

α!
〈u, xαη(x)〉 =

∑
|α|6k

aα∂
α(δ0)(f),

with aα = (−1)|α|〈u, xαη(x)〉/α!. This proves the results. �
An immediate consequence is the following result.

Corollary 2.4.25.

Let u ∈ S ′(Rn). If u∨is supported in the singleton {ξ0}, then u is a finite
linear combination of functions (−ωiξ)αeωiξ·ξ0 , where α ∈ Nn0 . In particular,
if u∨is supported at the origin, then u is a polynomial.

Proof. Proposition 2.4.24 gives that u∨is a linear combination of derivatives of Dirac
masses at ξ0, i.e.,

u

∨

=
∑
|α|6k

aα∂
αδξ0 .

Then, Proposition 2.4.18 yields

u =
∑
|α|6k

aα∂
αδξ0

∧

=
∑
|α|6k

aα∂
αδξ0

∨
∼

=
∑
|α|6k

aα(ωiξ)
αδξ0

∨
∼

=

(
|ω|
2π

)n/2 ∑
|α|6k

aα(ωiξ)
αe−ωiξ·ξ0

∼

=

(
|ω|
2π

)n/2 ∑
|α|6k

aα(−ωiξ)αeωiξ·ξ0 .

�

Proposition 2.4.26.

Distributions with compact support are exactly those whose support is a
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compact set, i.e.,

u ∈ E ′(Rn) ⇐⇒ suppu is compact.

Proof. To prove this assertion, we start with a distribution u with compact support
as defined in Definition 2.4.3. Then there exist C,N,m > 0 such that (2.4.3) holds.
For a C∞ function f whose support is contained in B(0, N)c, the expression on the
right in (2.4.3) vanishes and we must therefore have 〈u, f〉 = 0. This shows that
the support of u is contained in B(0, N) hence it is bounded, and since it is already
closed (as an intersection of closed sets), it must be compact.

Conversely, if the support of u as defined in Definition 2.4.20 is a compact set,
then there exists an N > 0 such that suppu ⊂ B(0, N). We take η ∈ D that is equal
to 1 onB(0, N) and vanishes offB(0, N+1). Then for h ∈ D , the support of h(1−η)
does not meet the support of u, and we must have

〈u, h〉 = 〈u, hη〉+ 〈u, h(1− η)〉 = 〈u, hη〉.

The distribution u can be thought of as an element of E ′ by defining for f ∈ C∞(Rn)

〈u, f〉 = 〈u, fη〉.

Taking m to be the integer that corresponds to the compact set K = B(0, N + 1)

in (2.4.1), and using that the L∞ norm of ∂α(fη) is controlled by a finite sum of
seminorms ρα,N+1(f) with |α| 6 m, we obtain the validity of (2.4.3) for f ∈ C∞. �

For distributions with compact support, we have the following important re-
sult.

Theorem 2.4.27.

If u ∈ E ′(Rn), then u∨is a real analytic function on Rn. In particular, u∨∈ C∞.
Furthermore, u∨and all of its derivatives have polynomial growth at infinity.
Moreover, u∨has a holomorphic extension on Cn.

Proof. Since u ∈ E ′ ⊂ S ′, we have for f ∈ S

〈u∨, f〉 =〈u, f

∨

〉 =
(
|ω|
2π

)n/2
u

(∫
Rn

e−ωix·ξf(x)dx

)
=

(
|ω|
2π

)n/2 ∫
Rn

u
(
e−ωix·(·)

)
f(x)dx,

provided that we can justify the passage of u inside the integral. The reason for
this is that the Riemann sums of the integral of e−ωix·ξf(x) over Rn converge to it in
the topology of C∞, and thus the linear functional u can be interchanged with the
integral. To justify it, we argue as in the proof of Theorem 2.4.19. For each N ∈ N,
we consider a partition of [−N,N ]n into (2N2)n cubes Qm of side length 1/N and
let ym be the center of each Qm. For α ∈ Nn0 , let

DN (ξ) =

(2N2)n∑
m=1

e−ωiym·ξ(−ωiym)αf(ym)|Qm| −
∫
Rn

e−ωix·ξ(−ωix)αf(x)dx.

We must show that for every M > 0, sup
|ξ|6M

|DN (ξ)| converges to zero as N → ∞.
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Setting g(x) = (−ωix)αf(x) ∈ S , we write

DN (ξ) =

(2N2)n∑
m=1

∫
Qm

[e−ωiym·ξg(ym)− e−ωix·ξg(x)]dx−
∫
([−N,N ]n)c

e−ωix·ξg(x)dx.

Using the mean value theorem, we bound the absolute value of the expression
inside the square brackets by

(|∇g(zm)|+ |ω||ξ||g(zm)|)
√
n

2N
6 CK(1 + |ξ|)

(2 + |zm|)K

√
n

N
,

for some point zm = x+ θ(ym− x) in the cube Qm where θ ∈ [0, 1]. Since 2+ |zm| >
1 + |x| if N >

√
n/2, and then for |ξ| 6M ,

(2N2)n∑
m=1

∫
Qm

CK(1 + |ξ|)
(2 + |zm|)K

dx 6
(2N2)n∑
m=1

∫
Qm

CK(1 + |ξ|)
(1 + |x|)K

dx

6CK(1 +M)

∫ √
nN

0

rn−1dr

(1 + r)K
6 CK(1 +M) <∞

provided K > n, and for L > n,∫
([−N,N ]n)c

dy

(1 + |y|)L

6ωn−1

∫ ∞

N

rn−1dr

(1 + r)L
6 ωn−1

L− n
Nn−L,

it follows that sup
|ξ|6M

|DN (ξ)| → 0 as N → ∞ by noticing g ∈ S .

Let p(ξ) be a polynomial, then the action of u ∈ E ′ on the C∞ function ξ 7→
p(ξ)e−ωix·ξ is a well-defined function of x, which we denote by u(p(·)e−ωix·(·)). Here
x ∈ Rn but the same assertion is valid if x ∈ Rn is replaced by z ∈ Cn. In this case,

we define the dot product of ξ and z via ξ · z =
n∑
k=1

ξkzk.

It is straightforward to verify that the function of z

F (z) =

(
|ω|
2π

)n/2
u(e−ωiz·(·))

defined on Cn is holomorphic, in fact entire. Indeed, the continuity and linearity of
u and the fact that (e−ωiξjh − 1)/h → −ωiξj in C∞(Rn) as h → 0, h ∈ C, imply that
F is holomorphic in every variable and its derivative with respect to zj is the action
of the distribution u to the C∞ function

ξ 7→ (−ωiξj)e−ωi
∑n

j=1 zjξj .

By induction, it follows that for all α ∈ Nn0 , we have

∂α1
z1 · · · ∂αn

zn F = u
(
(−ωi(·))αe−ωi

∑n
j=1 zj(·)j

)
.

Since F is entire, its restriction on Rn, i.e., F (x1, · · · , xn), where xj = <zj , is real
analytic. Also, an easy calculation using (2.4.3) and Leibniz’s rule yields that the
restriction F on Rn and all of its derivatives have polynomial growth at infinity.

Therefore, we conclude that the tempered distribution u

∨

(x) can be identified
with the real analytic function F (x) whose derivatives have polynomial growth at
infinity. �

Finally, we finish this section by giving a density result.
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Theorem 2.4.28: Density

Let T ∈ S ′, then there exists a sequence {Tk}∞k=0 ⊂ S such that

〈Tk, ϕ〉 =
∫
Rn

Tk(x)ϕ(x)dx→ 〈T, ϕ〉, as k → ∞,

where ϕ ∈ S . In short, S is dense in S ′ with respect to the topology on S ′.

Proof. Let now ψ ∈ D(Rn) with
∫
Rn ψ(x)dx = 1 and ψ(−x) = ψ(x). Let ζ ∈ D(Rn)

with ζ(0) = 1. Denote ψk−1(x) := knψ(kx). For any T ∈ S ′, denote Tk := ψk−1 ∗T ′
k,

where T ′
k = ζ(x/k)T . From the definition, we know that 〈ψk−1 ∗T ′

k, ϕ〉 = 〈T ′
k, ψk−1

∼

∗
ϕ〉 for ϕ ∈ S .

Let us prove that these Tk meet the requirements of the theorem. In fact, we
have

〈Tk, ϕ〉 ≡〈ψk−1 ∗ T ′
k, ϕ〉 = 〈T ′

k, ψk−1

∼

∗ ϕ〉 = 〈ζ(x/k)T, ψk−1 ∗ ϕ〉
=〈T, ζ(x/k)(ψk−1 ∗ ϕ)〉 → 〈T, ϕ〉, as k → ∞,

by the fact ψk−1 ∗ ϕ → ϕ in S as k → ∞ in view of Theorem 2.1.15, and the fact
ζ(x/k) → 1 pointwise as k → ∞ since ζ(0) = 1 and ζ(x/k)ϕ→ ϕ in S as k → ∞.

Finally, since ζ ∈ D(Rn), it follows from Proposition 2.4.26 that T ′
k is a tem-

pered distribution with compact support, then due to ψk−1 , Tk is C∞ function with
compact support by Theorem 2.4.19, namely, Tk ∈ D(Rn) ⊂ S (Rn). �

Remark 2.4.29. From the proof, it follows that D(Rn) is also dense in S ′(Rn) with
respect to the topology on S ′(Rn).

§ 2.5 Characterization of operators commuting with translations

Having set down these facts of distribution theory, we shall now apply them to
the study of the basic class of linear operators that occur in Fourier analysis: the
class of operators that commute with translations.

Definition 2.5.1.

A vector spaceX of measurable functions on Rn is called closed under trans-
lations if for f ∈ X we have τyf ∈ X for all y ∈ Rn. Let X and Y be vector
spaces of measurable functions on Rn that are closed under translations. Let
also T be an operator from X to Y . We say that T commutes with transla-
tions or is translation invariant if

T (τyf) = τy(Tf)

for all f ∈ X and all y ∈ Rn.

It is automatic to see that convolution operators commute with translations.
One of the main goals of this section is to prove the converse, i.e., every bounded
linear operator that commutes with translations is of convolution type. We have
the following:
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Theorem 2.5.2.

Let 1 6 p, q 6 ∞. Suppose T is a bounded linear operator from Lp(Rn)
into Lq(Rn) that commutes with translations. Then there exists a unique
tempered distribution u such that

Tf = u ∗ f a.e., ∀f ∈ S .

The theorem will be a consequence of the following lemma.

Lemma 2.5.3.

Let 1 6 p 6 ∞. If f ∈ Lp(Rn) has derivatives in the Lp norm of all orders
6 n+1, then f equals almost everywhere a continuous function g satisfying

|g(0)| 6 C
∑

|α|6n+1

‖∂αf‖p,

where C depends only on the dimension n and the exponent p.

Proof. Let ξ ∈ Rn. Then there exists a C ′
n such that (cf. (2.3.6))

(1 + |ξ|2)(n+1)/2 6 (1 + |ξ1|+ · · ·+ |ξn|)n+1 6 C ′
n

∑
|α|6n+1

|ξα|.

Let us first suppose p = 1, we shall show f

∨

∈ L1. By part (v) in Proposition 2.1.2
and part (i) in Theorem 2.1.4, we have

|f

∨

(ξ)| 6C ′
n(1 + |ξ|2)−(n+1)/2

∑
|α|6n+1

|ξα||f

∨

(ξ)|

=C ′
n(1 + |ξ|2)−(n+1)/2

∑
|α|6n+1

|ω|−|α||F (∂αf)(ξ)|

6C ′′(1 + |ξ|2)−(n+1)/2
∑

|α|6n+1

‖∂αf‖1.

Since (1 + |ξ|2)−(n+1)/2 defines an integrable function on Rn, it follows that f

∨

∈
L1(Rn) and, letting C ′′′ = C ′′ ∫

Rn(1 + |ξ|2)−(n+1)/2dξ, we get

‖f

∨

‖1 6 C ′′′
∑

|α|6n+1

‖∂αf‖1.

Thus, by Theorem 2.1.19, f equals almost everywhere a continuous function g and
by Theorem 2.1.4,

|g(0)| 6 ‖f‖∞ 6
(
|ω|
2π

)n/2
‖f

∨

‖1 6 C
∑

|α|6n+1

‖∂αf‖1.

Suppose now that p > 1. Choose ϕ ∈ D(Rn) such that ϕ(x) = 1 if |x| 6 1 and
ϕ(x) = 0 if |x| > 2. Then, it is clear that fϕ ∈ L1(Rn). Thus, fϕ equals almost
everywhere a continuous function h such that

|h(0)| 6 C
∑

|α|6n+1

‖∂α(fϕ)‖1.

By Leibniz’ rule for differentiation, we have ∂α(fϕ) =
∑

µ+ν=α
α!
µ!ν!∂

µf∂νϕ, and
then

‖∂α(fϕ)‖1 6
∫
|x|62

∑
µ+ν=α

α!

µ!ν!
|∂µf ||∂νϕ|dx
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6
∑

µ+ν=α

C sup
|x|62

|∂νϕ(x)|
∫
|x|62

|∂µf(x)|dx

6A
∑

|µ|6|α|

∫
|x|62

|∂µf(x)|dx 6 AB
∑

|µ|6|α|

‖∂µf‖p,

where A > C ′‖∂νϕ‖∞, |ν| 6 |α|, and B depends only on p and n. Thus, we can find
a constant K such that

|h(0)| 6 K
∑

|α|6n+1

‖∂αf‖p.

Since ϕ(x) = 1 if |x| 6 1, we see that f is equal almost everywhere to a continu-
ous function g in the sphere of radius 1 centered at 0, moreover,

|g(0)| = |h(0)| 6 K
∑

|α|6n+1

‖∂αf‖p.

But, by choosing ϕ appropriately, the argument clearly shows that f equals almost
everywhere a continuous function on any sphere centered at 0. This proves the
lemma. �

Now, we turn to the proof of the previous theorem.

Proof of Theorem 2.5.2. We first prove that

∂βTf = T∂βf, ∀f ∈ S (Rn). (2.5.1)

In fact, if h = (0, · · · , hj , · · · , 0) lies on the j-th coordinate axis, we have

τh(Tf)− Tf

hj
=
T (τhf)− Tf

hj
= T

(
τhf − f

hj

)
,

since T is linear and commuting with translations. By part iii) in Proposition 2.3.17,
τhf−f
hj

→ − ∂f
∂xj

in S as |h| → 0 and also in Lp norm due to the density of S in

Lp. Since T is bounded operator from Lp to Lq, it follows that τh(Tf)−Tf
hj

→ −∂Tf
∂xj

in Lq as |h| → 0. By induction, we get (2.5.1). By Lemma 2.5.3, Tf equals almost
everywhere a continuous function gf satisfying

|gf (0)| 6C
∑

|β|6n+1

‖∂β(Tf)‖q = C
∑

|β|6n+1

‖T (∂βf)‖q

6C‖T‖
∑

|β|6n+1

‖∂βf‖p.

From the proof of Theorem 2.3.11, we know that the Lp norm of f ∈ S is bounded
by a finite linear combination of L∞ norms of terms of the form xαf(x). Thus, there
exists an m ∈ N such that

|gf (0)| 6 C
∑

|α|6m,|β|6n+1

‖xα∂βf‖∞ = C
∑

|α|6m,|β|6n+1

|f |α,β.

Then, by Theorem 2.4.4, the mapping f 7→ gf (0) is a continuous linear functional
on S , denoted by u1. We claim that u = u1

∼

is the linear functional we are seeking.
Indeed, if f ∈ S , using Theorem 2.4.19, we obtain

(u ∗ f)(x) =〈u, τxf

∼

〉 = 〈u, τ−xf

∼

〉 = 〈u

∼

, τ−xf〉 = 〈u1, τ−xf〉
=(T (τ−xf))(0) = (τ−xTf)(0) = Tf(x).

We note that it follows from this construction that u is unique. The theorem is
therefore proved. �
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Combining this result with Theorem 2.4.19, we obtain the fact that Tf , for
f ∈ S , is almost everywhere equal to a C∞ function which, together with all its
derivatives, is slowly increasing.

Now, we give a characterization of operators commuting with translations in
L1(Rn).

Theorem 2.5.4.

Let T be a bounded linear operator mapping L1(Rn) to itself. Then T com-
mutes with translations if and only if there exists a finite Borel measure
µ ∈ B(Rn) such that Tf = µ∗f , for all f ∈ L1(Rn). We also have ‖T‖ = ‖µ‖,
where ‖µ‖ is the total variation of the measure µ.

Proof. We first prove the sufficiency. Suppose that Tf = µ ∗ f for a measure µ ∈
B(Rn) and all f ∈ L1(Rn). Since B ⊂ S ′, by Theorem 2.4.19, we have

τh(Tf)(x) =(Tf)(x− h) = 〈µ, τx−hf

∼

〉 = 〈µ(y), f(−y − x+ h)〉

=〈µ, τxτhf

∼

〉 = (µ ∗ τhf)(x) = T (τhf)(x),

i.e., τhT = Tτh. On the other hand, we have ‖Tf‖1 = ‖µ ∗ f‖1 6 ‖µ‖‖f‖1 which
implies ‖T‖ 6 ‖µ‖.

Now, we prove the necessariness. Suppose that T commutes with translations
and ‖Tf‖1 6 ‖T‖‖f‖1 for all f ∈ L1(Rn). Then, by Theorem 2.5.2, there exists a
unique tempered distribution µ such that Tf = µ ∗ f for all f ∈ S . The remainder
is to prove µ ∈ B(Rn).

We consider the family of L1 functions µε = µ ∗W (·, ε) = TW (·, ε), ε > 0. Then
by assumption and Lemma 2.1.14, we get

‖µε‖1 6 ‖T‖‖W (·, ε)‖1 = ‖T‖.

That is, the family {µε} is uniformly bounded in the L1 norm. Let us consider
L1(Rn) as embedded in the Banach space B(Rn). B(Rn) can be identified with
the dual of C0(Rn) by making each ν ∈ B corresponding to the linear functional
assigning to ϕ ∈ C0 the value

∫
Rn ϕ(x)dν(x). Thus, the unit sphere of B is compact

in the weak* topology by the Banach-Alaoglu theorem. In particular, we can find a
ν ∈ B and a null sequence {εk} such that µεk → ν as k → ∞ in this topology. That
is, for each ϕ ∈ C0,

lim
k→∞

∫
Rn

ϕ(x)µεk(x)dx =

∫
Rn

ϕ(x)dν(x). (2.5.2)

We now claim that ν, consider as a distribution, equals µ.
Therefore, we must show that 〈µ, ψ〉 =

∫
Rn ψ(x)dν(x) for all ψ ∈ S . Let ψε =

W (·, ε) ∗ ψ. Then, for all α ∈ Nn0 , we have ∂αψε = W (·, ε) ∗ ∂αψ. It follows from
Theorem 2.1.15 that ∂αψε(x) converges to ∂αψ(x) uniformly in x. Thus, ψε → ψ in
S as ε→ 0 and this implies that 〈µ, ψε〉 → 〈µ, ψ〉. But, since W (·, ε) =W (·, ε)

∼

,

〈µ, ψε〉 = 〈µ,W (·, ε) ∗ ψ〉 = 〈µ ∗W (·, ε), ψ〉 =
∫
Rn

µε(x)ψ(x)dx.

Thus, putting ε = εk, letting k → ∞ and applying (2.5.2) with ϕ = ψ, we obtain the
desired equality 〈µ, ψ〉 =

∫
Rn ψ(x)dν(x). Hence, µ ∈ B.
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Next, (2.5.2) implies that for all ϕ ∈ C0, it holds∣∣∣∣∫
Rn

ϕ(x)dµ(x)

∣∣∣∣ 6 ‖ϕ‖∞ sup
k

‖µεk‖1 6 ‖ϕ‖∞‖T‖. (2.5.3)

The Riesz representation theorem gives that the norm of the functional

g 7→
∫
Rn

ϕ(x)dµ(x)

on C0 is exactly ‖µ‖. It follows from (2.5.3) that ‖T‖ > ‖µ‖. Thus, combining with
the previous reverse inequality, we conclude that ‖T‖ = ‖µ‖. This completes the
proof. �

Let µ be a finite Borel measure. The operator h 7→ h ∗ u maps Lp(Rn) to itself
for all p ∈ [1,∞]. But there exists bounded linear operators T on L∞ that commute
with translations for which there does not exist a finite Borel measure µ such that
Th = h ∗ µ for all h ∈ L∞(Rn). The following example captures such a behavior,
which also implies that the restriction of T on S does not uniquely determine T on
the entire L∞.

Example 2.5.5. Let (X, ‖·‖∞) be the space of all complex-valued bounded functions
on the real line such that

Tf = lim
R→∞

1

R

∫ R

0
f(t)dt

exists. Then, T is a bounded linear functional onX with norm 1 and has a bounded
extension T

∼

on L∞ with norm 1, by the Hahn-Banach theorem. We may think of T

∼

as a bounded linear operator from L∞(R) to the space of constant functions, which
is contained in L∞(R). We note that T

∼
commutes with translations, since for all

f ∈ L∞(R) and x ∈ R, we have

T

∼

(τxf)− τx(T

∼

f) = T

∼

(τxf)− T

∼

f = T

∼

(τxf − f) = T (τxf − f) = 0,

where the last two equalities follow from the fact that for L∞ functions f and R >

|x|,
1

R

∫ R

0
(f(t− x)− f(t)) dt =

1

R

(∫ R−x

−x
f(t)dt−

∫ R

0
f(t)dt

)
=

1

R

(∫ 0

−x
f(t)dt−

∫ R

R−x
f(t)dt

)
62|x|

R
‖f‖∞ → 0, as R→ ∞.

If Tϕ = ϕ ∗ u for some u ∈ S ′(R) and all ϕ ∈ S (R), since T vanishes on S , i.e.,
|Tϕ| 6 lim

R→∞
∥φ∥1
R = 0, the uniqueness in Theorem 2.5.2 yields that u = 0. Hence,

if there existed a finite Borel measure µ such that T

∼

h = h ∗ µ for all h ∈ L∞, in
particular we would have 0 = Tϕ = ϕ ∗ µ for all ϕ ∈ S , thus µ would be the zero
measure. But obviously, this is not the case, since T is not the zero operator on X .

For the case p = 2, we have a very simple characterization of these operators.

Theorem 2.5.6.

Let T be a bounded linear transformation mapping L2(Rn) to itself. Then T
commutes with translation if and only if there exists an m ∈ L∞(Rn) such
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that Tf = u ∗ f with u

∨

=
(
|ω|
2π

)n/2
m, for all f ∈ L2(Rn). We also have

‖T‖ = ‖m‖∞.

Proof. If v ∈ S ′ and ψ ∈ S , we define their product, vψ, to be the element of S ′

such that 〈vψ, ϕ〉 = 〈v, ψϕ〉 for all ϕ ∈ S . With the product of a distribution with a
testing function so defined we first observe that whenever u ∈ S ′ and ϕ ∈ S , then

F (u ∗ ϕ) =
(
|ω|
2π

)−n/2
u

∨

ϕ

∨

. (2.5.4)

To see this, we must show that 〈F (u ∗ ϕ), ψ〉 =
(
|ω|
2π

)−n/2
〈u∨ϕ∨, ψ〉 for all ψ ∈ S .

It follows immediately, from (2.4.9), part (vi) in Proposition 2.1.2 and the Fourier
inversion formula, that

〈F (u ∗ ϕ), ψ〉 =〈u ∗ ϕ,ψ

∨

〉 = 〈u, ϕ

∼

∗ ψ

∨

〉 = 〈u∨,F−1(ϕ

∼

∗ ψ

∨

)〉

=
〈
u

∨

, (F (ϕ

∼

∗ ψ

∨

))(−ξ)
〉

=

〈
u

∨

,

(
|ω|
2π

)−n/2
(Fϕ

∼

)(−ξ)(Fψ

∨

)(−ξ)

〉

=

(
|ω|
2π

)−n/2
〈u∨, ϕ∨(ξ)ψ(ξ)〉

=

(
|ω|
2π

)−n/2
〈u∨ϕ∨, ψ〉.

Thus, (2.5.4) is established.
Now, we prove the necessariness. Suppose that T commutes with translations

and ‖Tf‖2 6 ‖T‖‖f‖2 for all f ∈ L2(Rn). Then, by Theorem 2.5.2, there exists a
unique tempered distribution u such that Tf = u ∗ f for all f ∈ S . The remainder
is to prove u∨∈ L∞(Rn).

Let ϕ0 = e−
|ω|
2
|x|2 , then, we have ϕ0 ∈ S and ϕ∨0 = ϕ0 by Corollary 2.1.10. Thus,

Tϕ0 = u ∗ ϕ0 ∈ L2 and therefore Φ0 := F (u ∗ ϕ0) =
(
|ω|
2π

)−n/2
u

∨

ϕ

∨

0 ∈ L2 by (2.5.4)
and the Plancherel theorem. Let m(ξ) = Φ0(ξ)/ϕ

∨

0(ξ).
We claim that

F (u ∗ ϕ) = mϕ

∨ (2.5.5)

for all ϕ ∈ S . By (2.5.4), it suffices to show that 〈u∨ϕ∨, ψ〉 =
(
|ω|
2π

)n/2
〈mϕ∨, ψ〉 for all

ψ ∈ D since D is dense in S . But, if ψ ∈ D , then (ψ/ϕ

∨

0)(ξ) = ψ(ξ)e
|ω|
2
|ξ|2 ∈ D ; thus,

〈u∨ϕ∨, ψ〉 =〈u∨, ϕ∨ψ〉 = 〈u∨, ϕ∨ϕ∨0ψ/ϕ

∨

0〉 = 〈u∨ϕ∨0, ϕ

∨

ψ/ϕ

∨

0〉

=

(
|ω|
2π

)n/2 ∫
Rn

Φ0(ξ)ϕ

∨

(ξ)ψ(ξ)e
|ω|
2
|ξ|2dξ

=

(
|ω|
2π

)n/2 ∫
Rn

m(ξ)ϕ

∨

(ξ)ψ(ξ)dξ =

(
|ω|
2π

)n/2
〈mϕ∨, ψ〉.

It follows immediately that u∨=
(
|ω|
2π

)n/2
m. In fact, we have just shown that

〈u∨, ϕ∨ψ〉 =
(
|ω|
2π

)n/2
〈mϕ∨, ψ〉 =

(
|ω|
2π

)n/2
〈m,ϕ∨ψ〉 for all ϕ ∈ S and ψ ∈ D . Selecting
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ϕ such that ϕ∨(ξ) = 1 for ξ ∈ suppψ, this shows that 〈u∨, ψ〉 =
(
|ω|
2π

)n/2
〈m,ψ〉 for all

ψ ∈ D . Thus, u∨=
(
|ω|
2π

)n/2
m.

Due to

‖mϕ∨‖2 =‖F (u ∗ ϕ)‖2 = ‖u ∗ ϕ‖2 6 ‖T‖‖ϕ‖2 = ‖T‖‖ϕ∨‖2
for all ϕ ∈ S , it follows that∫

Rn

(
‖T‖2 − |m|2

)
|ϕ∨|2dξ > 0,

for all ϕ ∈ S . This implies that ‖T‖2 − |m|2 > 0 for almost all x ∈ Rn. Hence,
m ∈ L∞(Rn) and ‖m‖∞ 6 ‖T‖.

Finally, we can show the sufficiency easily. If u∨=
(
|ω|
2π

)n/2
m ∈ L∞(Rn), the

Plancherel theorem and (2.5.4) immediately imply that

‖Tf‖2 = ‖u ∗ f‖2 = ‖mf

∨

‖2 6 ‖m‖∞‖f‖2
which yields ‖T‖ 6 ‖m‖∞.

Thus, if m =
(
|ω|
2π

)−n/2
u

∨∈ L∞, then ‖T‖ = ‖m‖∞. �
For further results, one can see [SW71, p.30] and [Gra14, p.153-155].

§ 2.6 Fourier multipliers on Lp

We have characterized all convolution operators that map L1 to L1 or L2 to L2.
In this section, we introduce briefly the Fourier multipliers on Lp.

Definition 2.6.1.

Let 1 6 p 6 ∞ and m ∈ S ′. m is called a Fourier multiplier on Lp(Rn) if the
convolution m∧∗ f ∈ Lp(Rn) for all f ∈ S (Rn), and if

‖m‖Mp(Rn) =

(
|ω|
2π

)n/2
sup

∥f∥p=1
‖m∧∗ f‖p

is finite. The linear space of all such m is denoted by Mp(Rn).

Since S is dense in Lp (1 6 p <∞), the mapping from S to Lp: f 7→ m

∧∗ f can
be extended to a mapping from Lp to Lp with the same norm. We write m∧∗ f also
for the values of the extended mapping.

For p = ∞ (as well as for p = 2) we can characterize Mp. Considering the map:

f 7→ m

∧∗ f for f ∈ S ,

we have

m ∈M∞ ⇔ |(m∧∗ f)(0)| 6 C‖f‖∞, f ∈ S . (2.6.1)

Indeed, if m ∈M∞, we have

|(m∧∗ f)(0)| 6 ‖m∧∗ f‖∞
‖f‖∞

‖f‖∞ 6 C‖f‖∞.

On the other hand, if |(m∧∗ f)(0)| 6 C‖f‖∞, we can get

‖m∧∗ f‖∞ = sup
x∈Rn

|(m∧∗ f)(x)| = sup
x∈Rn

|[m∧∗ (f(x+ ·))](0)|

6C‖f(x+ ·)‖∞ = C‖f‖∞,
which yields m ∈M∞.
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But (2.6.1) also means that m∧is a bounded measure on Rn. Thus, M∞ is equal
to the space of all Fourier transforms of bounded measures. Moreover, ‖m‖M∞ is
equal to the total mass of m∧. In view of the inequality above and the Hahn-Banach
theorem, we may extend the mapping f 7→ m

∧∗ f from S to L∞ to a mapping from
L∞ to L∞ without increasing its norm. We also write the extended mapping as
f 7→ m

∧∗ f for f ∈ L∞.

Theorem 2.6.2.

Let 1 6 p 6 ∞ and 1/p+ 1/p′ = 1, then we have

Mp(Rn) = Mp′(Rn) (equal norms). (2.6.2)

Moreover,
M1(Rn) =

{
m ∈ S ′(Rn) : m∧is a bounded measure on Rn

}
,

‖m‖M1(Rn) =

(
|ω|
2π

)n/2
‖m∧‖1,

(2.6.3)

and

M2(Rn) = L∞(Rn) (equal norms). (2.6.4)

For the norms (1 6 p0, p1 6 ∞),

‖m‖Mp(Rn) 6 ‖m‖1−θ
Mp0 (Rn)‖m‖θMp1 (Rn), ∀m ∈ Mp0(Rn) ∩Mp1(Rn), (2.6.5)

if 1/p = (1 − θ)/p0 + θ/p1 (0 6 θ 6 1). In particular, the norm ‖ · ‖Mp(Rn)

decreases with p in the interval 1 6 p 6 2, and

M1 ↪→ Mp ↪→ Mq ↪→ M2, (1 6 p 6 q 6 2). (2.6.6)

Proof. Let f ∈ Lp, g ∈ Lp
′

and m ∈ Mp. Then, we have(
|ω|
2π

)−n/2
‖m‖Mp′

= sup
∥g∥p′=1

‖m∧∗ g‖p′ = sup
∥f∥p=∥g∥p′=1

|〈m∧∗ g, f̃〉|

= sup
∥f∥p=∥g∥p′=1

|(m∧∗ g ∗ f)(0)| = sup
∥f∥p=∥g∥p′=1

|(m∧∗ f ∗ g)(0)|

= sup
∥f∥p=∥g∥p′=1

|〈m∧∗ f, g̃〉|

= sup
∥f∥p=1

‖m∧∗ f‖p =
(
|ω|
2π

)−n/2
‖m‖Mp .

The assertion (2.6.3) has already been established because of M1 = M∞. The
Plancherel theorem immediately gives (2.6.4). In fact,

‖m‖M2 =

(
|ω|
2π

)n/2
sup

∥f∥2=1
‖m∧∗ f‖2

=

(
|ω|
2π

)n/2
sup

∥f∥2=1
‖m∧∗ f

∨

‖2

= sup
∥f∥2=1

‖mf̂‖2

6‖m‖∞.

On the other hand, for any given ε > 0, let

Eε = {ξ : |ξ| 6 1/ε and |m(ξ)| > ‖m‖∞ − ε} .
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Then Eε has positive and finite measure, and let f ∈ L2 be such that supp f

∨

⊂ Eε.
Hence, we can obtain(

|ω|
2π

)n
‖m∧∗ f‖22 =‖mf

∨

‖22 =
∫
Eε

|m(ξ)f

∨

(ξ)|2dξ

>(‖m‖∞ − ε)2
∫

|f

∨

(ξ)|2dξ

=(‖m‖∞ − ε)2‖f‖22.
It follows that ‖m‖M2 > ‖m‖∞, and then the equality holds.

Invoking the Riesz-Thorin theorem, (2.6.5) follows, since the mapping f 7→ m

∧∗f
maps Lp0 → Lp0 with norm ‖m‖Mp0

and Lp1 → Lp1 with norm ‖m‖Mp1
.

Since 1/q = (1− θ)/p+ θ/p′ for some θ and p 6 q 6 2 6 p′, by using (2.6.5) with
p0 = p, p1 = p′, we see that

‖m‖Mq 6 ‖m‖Mp ,

from which (2.6.6) follows. �

Proposition 2.6.3.

Let 1 6 p 6 ∞. Then Mp(Rn) is a Banach algebra under pointwise multipli-
cation.

Proof. It is clear that ‖ · ‖Mp is a norm. Note also that Mp is complete. Indeed, let
{mk} be a Cauchy sequence in Mp. So does it in L∞ because of Mp ⊂ L∞. Thus,
it is convergent in L∞ and we denote the limit by m. From L∞ ⊂ S ′, we have
m

∧
k ∗ f → m

∧∗ f for any f ∈ S in sense of the strong topology on S ′. On the
other hand, {m∧k ∗ f} is also a Cauchy sequence in Lp ⊂ S ′, and converges to a
function g ∈ Lp. By the uniqueness of limit in S ′, we know that g = m

∧∗ f . Thus,
‖mk −m‖Mp → 0 as k → ∞. Therefore, Mp is a Banach space.

Let m1 ∈ Mp and m2 ∈ Mp. For any f ∈ S , we have(
|ω|
2π

)n/2
‖(m1m2)

∧

∗ f‖p =
(
|ω|
2π

)n
‖m1

∧∗m2

∧∗ f‖p

6
(
|ω|
2π

)n/2
‖m1‖Mp‖m2

∧∗ f‖p

6‖m1‖Mp‖m2‖Mp‖f‖p,
which implies m1m2 ∈ Mp and

‖m1m2‖Mp 6 ‖m1‖Mp‖m2‖Mp .

Thus, Mp is a Banach algebra. �
The next theorem says that Mp(Rn) is isometrically invariant under affine trans-

forms2 of Rn.

Theorem 2.6.4.

Let a : Rn → Rk be a surjective affine transform with n > k, andm ∈ Mp(Rk).

2An affine transform of Rn is a map F : Rn → Rn of the form F (p) = Ap + q for all p ∈ Rn,
where A is a linear transform of Rn and q ∈ Rn.
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Then

‖m ◦ a‖Mp(Rn) = ‖m‖Mp(Rk).

In particular, we have

‖δcm‖Mp(Rn) =‖m‖Mp(Rn), ∀c > 0, (2.6.7)

‖m̃‖Mp(Rn) =‖m‖Mp(Rn), (2.6.8)

‖m(〈x, ·〉)‖Mp(Rn) =‖m‖Mp(R), ∀x 6= 0, (2.6.9)

where 〈x, ξ〉 =
∑n

i=1 xiξi.

Proof. It suffices to consider the case that a : Rn → Rk is a linear transform. Make
the coordinate transform

ηi = ai(ξ), 1 6 i 6 k; ηj = ξj , k + 1 6 j 6 n, (2.6.10)

which can be written as η = A−1ξ or ξ = Aη where detA 6= 0. Let A⊤ be the
transposed matrix of A, η′ = (η1, · · · , ηk) and η′′ = (ηk+1, · · · , ηn). It is easy to see,
for any f ∈ S (Rn), that

F−1(m(a(ξ))f

∨

)(x) =

(
|ω|
2π

)n/2 ∫
Rn

eωix·ξm(a(ξ))f

∨

(ξ)dξ

=|detA|
(
|ω|
2π

)n/2 ∫
Rn

eωix·Aηm(η′)f

∨

(Aη)dη

=|detA|
(
|ω|
2π

)n/2 ∫
Rn

eωiA
⊤x·ηm(η′)f

∨
(Aη)dη

=

(
|ω|
2π

)n/2 ∫
Rn

eωiA
⊤x·ηm(η′)f((A⊤)−1·)

∨

(η)dη

=

(
|ω|
2π

)k/2 ∫
Rk

eωi(A
⊤x)′·η′m(η′)((

|ω|
2π

)(n−k)/2 ∫
Rn−k

eωi(A
⊤x)′′·η′′f((A⊤)−1·)

∨

(η′, η′′)dη′′

)
dη′

=

(
|ω|
2π

)k/2 ∫
Rk

eωi(A
⊤x)′·η′m(η′)

(
F−1
η′′ [f((A

⊤)−1·)

∨

]
)
(η′, (A⊤x)′′)dη′

=

(
|ω|
2π

)k/2 ∫
Rk

eωi(A
⊤x)′·η′m(η′)

(
[Fx′(f((A

⊤)−1·))]
)
(η′, (A⊤x)′′)dη′

=F−1
η′

[
m(η′)

(
[Fx′(f((A

⊤)−1·))]
)
(η′, (A⊤x)′′)

]
((A⊤x)′)

=

(
|ω|
2π

)k/2 ∫
Rk

m

∧

(y′)f((A⊤)−1((A⊤x)′ − y′, (A⊤x)′′))dy′.

It follows from m ∈ Mp(Rk) that for any f ∈ S (Rn)(
|ω|
2π

)np/2
‖F−1(m(a(ξ))) ∗ f‖pLp(Rn)

=‖F−1(m(a(ξ))f

∨

)‖pLp(Rn)

=

(
|ω|
2π

)kp/2 ∥∥∥∥∫
Rk

m

∧

(y′)f((A⊤)−1((A⊤x)′ − y′, (A⊤x)′′))dy′
∥∥∥∥p
Lp(Rn)
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=

(
|ω|
2π

)kp/2
|detA|−1

∥∥∥∥∫
Rk

m

∧

(y′)f((A⊤)−1(x′ − y′, x′′))dy′
∥∥∥∥p
Lp(Rn)

6|detA|−1‖m‖p
Mp(Rk)

∥∥∥‖f((A⊤)−1(x′, x′′))‖p
Lp(Rk)

∥∥∥p
Lp(Rn−k)

=|detA|−1‖m‖p
Mp(Rk)

‖f((A⊤)−1(x))‖pLp(Rn)

=‖m‖p
Mp(Rk)

‖f‖pLp(Rn).

Thus, we have

‖m(a(·))‖Mp(Rn) 6 ‖m‖Mp(Rk). (2.6.11)

Taking f((A⊤)−1x) = f1(x
′)f2(x

′′), one can conclude that the reverse inequality
(2.6.11) also holds. �

Now we give a simple but very useful theorem for Fourier multipliers.

Theorem 2.6.5: Bernstein multiplier theorem

Assume that k > n/2 is an integer, and that ∂αxjm ∈ L2(Rn), j = 1, · · · , n and
0 6 α 6 k. Then we have m ∈ Mp(Rn) for 1 6 p 6 ∞, and

‖m‖Mp . ‖m‖1−n/2k2

 n∑
j=1

‖∂kxjm‖2

n/2k

.

Proof. Let t > 0 and J(x) =
∑n

j=1 |xj |k. By the Cauchy-Schwarz inequality and the
Plancherel theorem, we obtain∫

|x|>t
|m∧(x)|dx =

∫
|x|>t

J(x)−1J(x)|m∧(x)|dx . tn/2−k
n∑
j=1

‖∂kxjm‖2.

Similarly, we have ∫
|x|6t

|m∧(x)|dx . tn/2‖m‖2.

Choosing t such that ‖m‖2 = t−k
∑n

j=1 ‖∂kxjm‖2, we infer, with the help of Theo-
rem 2.6.2, that

‖m‖Mp 6‖m‖M1 =

(
|ω|
2π

)n/2 ∫
Rn

|m∧(x)|dx . ‖m‖1−n/2k2

 n∑
j=1

‖∂kxjm‖2

n/2k

.

This completes the proof. �

Remark 2.6.6. 1) From the proof of Theorem 2.6.5, we see that m∧∈ L1, in other
words, it is equivalent to the Young inequality for convolution, i.e., ‖m∧∗ f‖p 6
‖m∧‖1‖f‖p for any 1 6 p 6 ∞.

2) It is not valid if the r.h.s. of the inequality is equal to zero because such
a t ∈ (0,∞) does not exist in this case in view of the proof. For example, one
can consider the rectangular pulse function and the sinc function introduced in
Example 2.1.5.
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§ 3.1 Two covering lemmas

Lemma 3.1.1: Finite version of Vitali covering lemma

Suppose B = {B1, B2, · · · , BN} is a finite collection of open balls in Rn.
Then, there exists a disjoint sub-collection Bj1 , Bj2 , · · · , Bjk of B such that

m

(
N⋃
ℓ=1

Bℓ

)
6 3n

k∑
i=1

µ(Bji).

Proof. The argument we give is constructive and relies on the following simple ob-
servation:

B̃

B

B′

Figure 1: The balls B and B̃
Figure 3.1: The balls B
and B̃

Suppose B and B′ are a pair of balls that intersect, with
the radius of B′ being not greater than that of B. Then B′

is contained in the ball B̃ that is concentric with B but
with 3 times its radius. (See Fig 3.1.)

As a first step, we pick a ball Bj1 in B with maximal
(i.e., largest) radius, and then delete from B the ball Bj1
as well as any balls that intersect Bj1 . Thus, all the balls
that are deleted are contained in the ball B̃j1 concentric
with Bj1 , but with 3 times its radius.

The remaining balls yield a new collection B′, for
which we repeat the procedure. We pick Bj2 and any ball
that intersects Bj2 . Continuing this way, we find, after at
most N steps, a collection of disjoint balls Bj1 , Bj2 , · · · , Bjk .

Finally, to prove that this disjoint collection of balls satisfies the inequality in
the lemma, we use the observation made at the beginning of the proof. Let B̃ji
denote the ball concentric with Bji , but with 3 times its radius. Since any ball B in
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B must intersect a ballBji and have equal or smaller radius thanBji , we must have
∪B∩Bji

̸=∅B ⊂ B̃ji , thus

m

(
N⋃
ℓ=1

Bℓ

)
6 m

(
k⋃
i=1

B̃ji

)
6

k∑
i=1

µ(B̃ji) = 3n
k∑
i=1

µ(Bji).

In the last step, we have used the fact that in Rn a dilation of a set by δ > 0 results
in the multiplication by δn of the Lebesgue measure of this set. �

For the infinite version of Vitali covering lemma, one can see the textbook [Ste70,
the lemma on p.9].

The decomposition of a given set into a disjoint union of cubes (or balls) is a
fundamental tool in the theory described in this chapter. By cubes, we mean closed
cubes; by disjoint we mean that their interiors are disjoint. We have in mind the
idea first introduced by Whitney and formulated as follows.

Theorem 3.1.2: Whitney covering lemma

Let F be a non-empty closed set in Rn and Ω be its complement. Then there
exists a countable collection of cubes F = {Qk}∞k=1 whose sides are parallel
to the axes, such that
(i)
⋃∞
k=1Qk = Ω = F c;

(ii) Q̊j ∩ Q̊k = ∅ if j 6= k, where Q̊ denotes the interior of Q;
(iii) there exist two constants c1, c2 > 0 independent of F (In fact we may
take c1 = 1 and c2 = 4.), such that

c1 diam (Qk) 6 dist (Qk, F ) 6 c2 diam (Qk).

Proof.
62 Chapter 4 Calderón-Zygmund Decomposition

O 1 2 3

M0
M1

M−1

F

Ωk+1

Ωk

Mk
Mk

Q

Fig. 4.1 Meshes and layers: M0 with dashed (green) lines; M1 with dotted lines; M−1 with solid (blue) lines

diam (Q) 6 dist (Q, F) 6 4 diam (Q), Q ∈ F0. (4.1)

Let us prove (4.1) first. Suppose Q ∈ Mk; then diam (Q) =
√

n2−k. Since Q ∈ F0, there exists an
x ∈ Q ∩ Ωk. Thus dist (Q, F) 6 dist (x, F) 6 c2−k+1, and dist (Q, F) > dist (x, F) − diam (Q) >
c2−k − √n2−k. If we choose c = 2

√
n we get (4.1).

Then by (4.1) the cubes Q ∈ F0 are disjoint from F and clearly cover Ω. Therefore, (i) is also
proved.

Notice that the collection F0 has all our required properties, except that the cubes in it are not
necessarily disjoint. To finish the proof of the theorem, we need to refine our choice leading to F0,
eliminating those cubes which were really unnecessary.

We require the following simple observation. Suppose Q1 and Q2 are two cubes (taken respectively
from the mesh Mk1 and Mk2 ). Then if Q1 and Q2 are not disjoint, one of the two must be contained
in the other. (In particular, Q1 ⊂ Q2, if k1 > k2.)

Start now with any cube Q ∈ F0, and consider the maximal cube in F0 which contains it. In
view of the inequality (4.1), for any cube Q′ ∈ F0 which contains Q ∈ F0, we have diam (Q′) 6
dist (Q′, F) 6 dist(Q, F) 6 4 diam (Q). Moreover, any two cubes Q′ and Q′′ which contain Q have
obviously a non-trivial intersection. Thus by the observation made above each cube Q ∈ F0 has
a unique maximal cube in F0 which contains it. By the same taken these maximal cubes are also
disjoint. We let F denote the collection of maximal cubes of F0. Then obviously

(i)
⋃

Q∈F Q = Ω,
(ii) The cubes of F are disjoint,
(iii) diam (Q) 6 dist (Q, F) 6 4 diam (Q), Q ∈ F .
Therefore, we complete the proof. ut

4.2 Calderón-Zygmund Fundamental Lemma

Now, we give an important theorem in harmonic analysis.

Figure 3.2: Meshes and layers: M0 with dashed lines;
M1 with dotted lines; M−1 with solid lines

Consider the lattice of points
in Rn whose coordinates
are integers. This lattice de-
termines a mesh M0, which
is a collection of cubes:
namely all cubes of unit
length, whose vertices are
points of the above lat-
tice. The mesh M0 leads
to a two-way infinite chain
of such meshes {Mk}∞−∞,
with Mk = 2−kM0.

Thus, each cube in the
mesh Mk gives rise to 2n

cubes in the mesh Mk+1 by
bisecting the sides. The cubes in the mesh Mk each have sides of length 2−k and
are thus of diameter

√
n2−k.

In addition to the meshes Mk, we consider the layers Ωk, defined by

Ωk =
{
x : c2−k < dist (x, F ) 6 c2−k+1

}
,

where c is a positive constant which we shall fix momentarily. Obviously, Ω =⋃∞
k=−∞Ωk.

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



§3.2. Hardy-Littlewood maximal function - 81 -

Now we make an initial choice of cubes, and denote the resulting collection by
F0. Our choice is made as follows. We consider the cubes of the mesh Mk, (each
such cube is of size approximately 2−k), and include a cube of this mesh in F0 if it
intersects Ωk, (the points of the latter are all approximately at a distance 2−k from
F ). Namely,

F0 =
⋃
k

{Q ∈ Mk : Q ∩ Ωk 6= ∅} .

For appropriate choice of c, we claim that

diam (Q) 6 dist (Q,F ) 6 4diam (Q), Q ∈ F0. (3.1.1)

Let us prove (3.1.1) first. Suppose Q ∈ Mk; then diam (Q) =
√
n2−k. Since Q ∈

F0, there exists an x ∈ Q ∩ Ωk. Thus, dist (Q,F ) 6 dist (x, F ) 6 c2−k+1, and
dist (Q,F ) > dist (x, F ) − diam (Q) > c2−k −

√
n2−k. If we choose c = 2

√
n, we

get (3.1.1). Then by (3.1.1) the cubes Q ∈ F0 are disjoint from F and clearly cover
Ω. Therefore, (i) is also proved.

Notice that the collection F0 has all our required properties, except that the
cubes in it are not necessarily disjoint. To finish the proof of the theorem, we need
to refine our choice leading to F0, eliminating those cubes which were really un-
necessary.

We require the following simple observation. SupposeQ1 andQ2 are two cubes
(taken respectively from the mesh Mk1 and Mk2). Then if Q1 and Q2 are not dis-
joint, one of the two must be contained in the other. (In particular, Q1 ⊂ Q2, if
k1 > k2.)

Start now with any cube Q ∈ F0, and consider the maximal cube in F0 which
contains it. In view of the inequality (3.1.1), for any cube Q′ ∈ F0 which contains
Q ∈ F0, we have diam (Q′) 6 dist (Q′, F ) 6 dist (Q,F ) 6 4diam (Q). Moreover,
any two cubesQ′ andQ′′ which containQ have obviously a non-trivial intersection.
Thus, by the observation made above each cubeQ ∈ F0 has a unique maximal cube
in F0 which contains it. By the same taken these maximal cubes are also disjoint.
We let F denote the collection of maximal cubes of F0. Then obviously,

(i)
⋃
Q∈FQ = Ω,

(ii) The cubes of F are disjoint,
(iii) diam (Q) 6 dist (Q,F ) 6 4diam (Q), Q ∈ F.
Therefore, we complete the proof. �

§ 3.2 Hardy-Littlewood maximal function

Maximal functions appear in many forms in harmonic analysis. One of the
most important of these is the Hardy-Littlewood maximal function. They play an
important role in understanding, for example, the differentiability properties of
functions, singular integrals and partial differential equations. They often provide
a deeper and more simplified approach to understanding problems in these areas
than other methods.

First, we consider the differentiation of the integral for one-dimensional func-
tions. If f is given on [a, b] and integrable on that interval, we let

F (x) =

∫ x

a
f(y)dy, x ∈ [a, b].
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To deal with F ′(x), we recall the definition of the derivative as the limit of the
quotient F (x+h)−F (x)

h when h tends to 0, i.e.,

F ′(x) = lim
h→0

F (x+ h)− F (x)

h
.

We note that this quotient takes the form (say in the case h > 0)

1

h

∫ x+h

x
f(y)dy =

1

|I|

∫
I
f(y)dy,

where we use the notation I = (x, x+ h) and |I| for the length of this interval.
At this point, we pause to observe that the above expression in the “average”

value of f over I , and that in the limit as |I| → 0, we might expect that these
averages tend to f(x). Reformulating the question slightly, we may ask whether

lim
|I|→0
x∈I

1

|I|

∫
I
f(y)dy = f(x)

holds for suitable points x. In higher dimensions we can pose a similar question,
where the averages of f are taken over appropriate sets that generalize the intervals
in one dimension.

In particular, we can take the sets involved as the open ball B(x, r) of radius r,
centered at x, and denote its measure by µ(B(x, r)). It follows

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

f(y)dy = f(x), for a.e. x? (3.2.1)

Let us first consider a simple case, when f is continuous at x, the limit does
converge to f(x). Indeed, given ε > 0, there exists a δ > 0 such that |f(x)−f(y)| < ε

whenever |x− y| < δ. Since

f(x)− 1

µ(B(x, r))

∫
B(x,r)

f(y)dy =
1

µ(B(x, r))

∫
B(x,r)

(f(x)− f(y))dy,

we find that whenever B(x, r) is a ball of radius r < δ, then∣∣∣∣∣f(x)− 1

µ(B(x, r))

∫
B(x,r)

f(y)dy

∣∣∣∣∣ 6 1

µ(B(x, r))

∫
B(x,r)

|f(x)− f(y)|dy < ε,

as desired.

§ 3.2.1 Hardy-Littlewood maximal operator

In general, for this “averaging problem” (3.2.1), we shall have an affirmative
answer. In order to study the limit (3.2.1), we consider its quantitative analogue,
where “limr→0” is replaced by “supr>0”, this is the (centered) maximal function.
Since the properties of this maximal function are expressed in term of relative size
and do not involve any cancellation of positive and negative values, we replace f
by |f |.

Definition 3.2.1.

If f is locally integrable on Rn, we define its maximal function Mf : Rn →
[0,∞] by

Mf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f(y)|dy, x ∈ Rn, (3.2.2)
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where the supremum takes over all open balls B(x, r) centered at x. More-
over, M is also called as the centered Hardy-Littlewood maximal operator.

The maximal function that we consider arose first in the one-dimensional situa-
tion treated by Hardy and Littlewood. It is to be noticed that nothing excludes the
possibility that Mf(x) is infinite for any given x.

It is immediate from the definition that

Theorem 3.2.2.

If f ∈ L∞(Rn), then Mf ∈ L∞(Rn) and

‖Mf‖∞ 6 ‖f‖∞.

By the previous statements, if f is continuous at x, then we have

|f(x)| = lim
r→0

1

µ(B(x, r))

∫
B(x,r)

|f(y)|dy

6 sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f(y)|dy =Mf(x).

Thus, we have proved

Proposition 3.2.3.

If f ∈ C(Rn), then |f(x)| 6Mf(x) for all x ∈ Rn.

Sometimes, we will define the maximal function with cubes in place of balls. If
Q(x, r) is the cube [xi − r, xi + r]n, define

M ′f(x) = sup
r>0

1

(2r)n

∫
Q(x,r)

|f(y)|dy, x ∈ Rn. (3.2.3)

When n = 1, M and M ′ coincide. If n > 1, then

Vn2
−nMf(x) 6M ′f(x) 6 Vn2

−nnn/2Mf(x). (3.2.4)

Thus, the two operators M and M ′ are essentially interchangeable, and we will use
whichever is more appropriate, depending on the circumstances.

In addition, we can define a more general maximal function

M ′′f(x) = sup
Q∋x

1

µ(Q)

∫
Q
|f(y)|dy, (3.2.5)

where the supremum is taken over all cubes containing x. Again, M ′′ is point-wise
equivalent to M , indeed, Vn2−nMf(x) 6M ′′f(x) 6 Vnn

n/2Mf(x). One sometimes
distinguishes between M ′ and M ′′ by referring to the former as the centered and
the latter as the non-centered maximal operator.

Alternatively, we could define the non-centered maximal function with balls
instead of cubes:

M

∼

f(x) = sup
B∋x

1

µ(B)

∫
B
|f(y)|dy

at each x ∈ Rn. Here, the supremum is taken over all open balls B in Rn which
contain the point x and µ(B) denotes the measure of B (in this case a multiple of
the radius of the ball raised to the power n).
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Clearly, Mf 6M

∼

f 6 2nMf and the boundedness properties of M

∼

are identical
to those of M .

Example 3.2.4. Let f : R → R, f(x) = χ(0,1)(x). Then

Mf(x) =M ′f(x) =


1
2x , x > 1,

1, 0 < x < 1,
1

2(1−x) , x 6 0,

M

∼

f(x) =M ′′f(x) =


1
x , x > 1,

1, 0 < x < 1,
1

1−x , x 6 0.

In fact, for x > 1, we get

Mf(x) =M ′f(x) = sup
h>0

1

2h

∫ x+h

x−h
χ(0,1)(y)dy

=max
(

sup
x−h>0

1− x+ h

2h
, sup
x−h60

1

2h

)
=

1

2x
,

M

∼

f(x) =M ′′f(x) = sup
h1,h2>0

1

h1 + h2

∫ x+h2

x−h1
χ(0,1)(y)dy

=max
(

sup
0<x−h1<1

1− x+ h1
h1

, sup
x−h160

1

h1

)
=

1

x
.

For 0 < x < 1, it follows

Mf(x) =M ′f(x) = sup
h>0

1

2h

∫ x+h

x−h
χ(0,1)(y)dy

=max
(

sup
0<x−h<x+h<1

2h

2h
, sup
0<x−h<16x+h

1− x+ h

2h
,

sup
x−h60<x+h<1

x+ h

2h
, sup
x−h60<16x+h

1

2h

)

=max
(
1, 1, 1,

1

2
min

(
1

x
,

1

1− x

))
= 1,

M

∼

f(x) =M ′′f(x) = sup
h1,h2>0

1

h1 + h2

∫ x+h2

x−h1
χ(0,1)(y)dy

=max
(

sup
0<x−h1<x+h2<1

h1 + h2
h1 + h2

, sup
x−h1<0<x+h2<1

x+ h2
h1 + h2

,

sup
0<x−h1<1<x+h2

1− x+ h1
h1 + h2

, sup
x−h1<0<1<x+h2

1

h1 + h2

)
=1.

For x 6 0, we have

Mf(x) =M ′f(x) =max
(

sup
0<x+h<1,h>0

x+ h

2h
, sup
x+h>1

1

2h

)
=

1

2(1− x)
,

M

∼

f(x) =M ′′f(x) =max
(

sup
h1,h2>0,0<x+h2<1

x+ h2
h1 + h2

, sup
h1>0,x+h2>1

1

h1 + h2

)
=

1

1− x
.
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Observe that f ∈ L1(R), but Mf,M ′f,M ′′f,M

∼

f /∈ L1(R).

Remark 3.2.5. (i) Mf is defined at every point x ∈ Rn and if f = g a.e., then
Mf(x) =Mg(x) at every x ∈ Rn.

(ii) It may be well that Mf = ∞ for every x ∈ Rn. For example, let n = 1 and
f(x) = x2.

(iii) There are several definitions in the literature which are often equivalent.

Next, we state some immediate properties of the maximal function. The proofs
are left to interested readers.

Proposition 3.2.6.

Let f, g ∈ L1
loc(Rn). Then

(i) Positivity: Mf(x) > 0 for all x ∈ Rn.

(ii) Sub-linearity: M(f + g)(x) 6Mf(x) +Mg(x).

(iii) Homogeneity: M(αf)(x) = |α|Mf(x), α ∈ R.

(iv) Translation invariance: M(τyf) = (τyMf)(x) =Mf(x− y).

With the Vitali covering lemma, we can state and prove the main results for the
maximal function.

Theorem 3.2.7: The maximal function theorem

Let f be a given function defined on Rn.

(i) If f ∈ Lp(Rn), p ∈ [1,∞], then the function Mf is finite a.e.

(ii) If f ∈ L1(Rn), then for every α > 0, M is of weak type (1, 1), i.e.,

µ({x :Mf(x) > α}) 6 3n

α
‖f‖1.

(iii) If f ∈ Lp(Rn), p ∈ (1,∞], then Mf ∈ Lp(Rn) and

‖Mf‖p 6 Ap‖f‖p,
where Ap = 3np/(p− 1) + 1 for p ∈ (1,∞) and A∞ = 1.

Proof. We first prove the second one, i.e., (ii). Since Mf 6 M

∼

f 6 2nMf , we only
need to prove it for M

∼

. Denote for α > 0

Eα =
{
x :M

∼

f(x) > α
}
,

we claim that the set Eα is open. Indeed, from the definitions of M

∼

f and the supre-
mum, for each x ∈ Eα and 0 < ε < M

∼

f(x)− α, there exists a r > 0 such that

1

µ(Bx)

∫
Bx

|f(y)|dy > M

∼

f(x)− ε > α,

where we denote by Bx the open balls contains x. Then for any z ∈ Bx, we have
M

∼

f(z) > α, and so Bx ⊂ Eα. This implies that Eα is open.
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Therefore, for each open ball Bx, we have

µ(Bx) <
1

α

∫
Bx

|f(y)|dy. (3.2.6)

Fix a compact subset K of Eα. Since K is covered by ∪x∈EαBx, by the Heine-Borel
theorem, we may select a finite subcover of K, say K ⊂

⋃N
ℓ=1Bℓ. Lemma 3.1.1

guarantees the existence of a sub-collection Bj1 , · · · , Bjk of disjoint balls with

µ

(
N⋃
ℓ=1

Bℓ

)
6 3n

k∑
i=1

µ(Bji). (3.2.7)

Since the balls Bj1 , · · · , Bjk are disjoint and satisfy (3.2.6) as well as (3.2.7), we find
that

µ(K) 6µ
(

N⋃
ℓ=1

Bℓ

)
6 3n

k∑
i=1

µ(Bji) 6
3n

α

k∑
i=1

∫
Bji

|f(y)|dy

=
3n

α

∫
⋃k

i=1Bji

|f(y)|dy 6 3n

α

∫
Rn

|f(y)|dy.

Since this inequality is true for all compact subsets K of Eα, taking the supremum
over all compact K ⊂ Eα and using the inner regularity of Lebesgue measure, we
deduce the weak type inequality (ii) for the maximal operator M

∼

. It follows from
Mf 6M

∼

f that

µ({x :Mf(x) > α}) 6 µ({x :M

∼

f(x) > α}) 6 3n

α
‖f‖1.

The above proof also gives the proof of (i) for the case when p = 1. For the case
p = ∞, by Theorem 3.2.2, (i) and (iii) is true with A∞ = 1.

Now, by using the Marcinkiewicz interpolation theorem between L1 → L1,∞

and L∞ → L∞, we can obtain simultaneously (i) and (iii) for the case p ∈ (1,∞). �
Now, we make some clarifying comments.

Remark 3.2.8. (1) The weak type estimate (ii) is the best possible (as far as order of
magnitude) for the distribution function of Mf , where f is an arbitrary function in
L1(Rn).

Indeed, we replace |f(y)|dy in the definition of (3.2.2) by a Dirac measure dµ
whose total measure of one is concentrated at the origin. The integral

∫
B(x,r) dµ = 1

only if the ball B(x, r) contains the origin; otherwise, it will be zero. Thus,

M(dµ)(x) = sup
r>0, 0∈B(x,r)

1

|B(x, r)|
= (Vn|x|n)−1,

i.e., it reaches the supremum when r = |x|. Obviously, ‖M(dµ)‖1 = ∞. Moreover,
the distribution function of M(dµ) is

(M(dµ))∗(α) =| {x : |M(dµ)(x)| > α} | = |
{
x : (Vn|x|n)−1 > α

}
|

=|
{
x : Vn|x|n < α−1

}
| = |B(0, (Vnα)

−1/n)|
=Vn(Vnα)

−1 = 1/α,

namely, ‖M(dµ)‖L1,∞ = 1. But we can always find a sequence {fm(x)} of positive
integrable functions, whose L1 norm is each 1, and which converges weakly to the
measure dµ. So we cannot expect an estimate essentially stronger than the estimate
(ii) in Theorem 3.2.7, since, in the limit, a similar stronger version would have to
hold for M(dµ)(x).
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(2) It is useful, for certain applications, to observe that

Ap = O

(
1

p− 1

)
, as p→ 1.

(3) It is easier to use M

∼

in proving (ii) than M , one can see the proof that Eα is
open.

In contrast with the case p > 1, when p = 1 the mapping f 7→ Mf is not
bounded on L1(Rn). That is,

Theorem 3.2.9.

If f ∈ L1(Rn) is not identically zero, then Mf is never integrable on the
whole of Rn, i.e., Mf /∈ L1(Rn).

Proof. We can choose an N large enough such that∫
B(0,N)

|f(x)|dx > 1

2
‖f‖1.

Then, we take an x ∈ Rn such that |x| > N . Let r = |x|+N , we have

Mf(x) > 1

|B(x, r)|

∫
B(x,r)

|f(y)|dy =
1

Vn(|x|+N)n

∫
B(x,r)

|f(y)|dy

> 1

Vn(|x|+N)n

∫
B(0,N)

|f(y)|dy > 1

2Vn(|x|+N)n
‖f‖1

> 1

2Vn(2|x|)n
‖f‖1.

It follows that for sufficiently large |x|, we have

Mf(x) > c|x|−n, c = (Vn2
n+1)−1‖f‖1.

This implies that Mf /∈ L1(Rn). �
Moreover, even if we limit our consideration to any bounded subset of Rn, then

the integrability of Mf holds only if stronger conditions than the integrability of f
are required. In fact, we have the following.

Theorem 3.2.10.

Let E be a bounded subset of Rn. If f ln+ |f | ∈ L1(Rn) and supp f ⊂ E, then∫
E
Mf(x)dx 6 2|E|+ C

∫
E
|f(x)| ln+ |f(x)|dx,

where ln+ t = max(ln t, 0).

Proof. By Theorem 1.1.4, it follows that∫
E
Mf(x)dx =2

∫ ∞

0
|{x ∈ E :Mf(x) > 2α}|dα

=2

(∫ 1

0
+

∫ ∞

1

)
|{x ∈ E :Mf(x) > 2α}|dα

62|E|+ 2

∫ ∞

1
|{x ∈ E :Mf(x) > 2α}|dα.

Decompose f as f1 + f2, where f1 = fχ{x:|f(x)|>α} and f2 = f − f1. Then, by
Theorem 3.2.2, it follows that

Mf2(x) 6 ‖Mf2‖∞ 6 ‖f2‖∞ 6 α,
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which yields

{x ∈ E :Mf(x) > 2α} ⊂ {x ∈ E :Mf1(x) > α}.

Hence, by Theorem 3.2.7, we have∫ ∞

1
|{x ∈ E :Mf(x) > 2α}|dα 6

∫ ∞

1
|{x ∈ E :Mf1(x) > α}|dα

6C
∫ ∞

1

1

α

∫
{x∈E:|f(x)|>α}

|f(x)|dxdα 6 C

∫
E
|f(x)|

∫ max(1,|f(x)|)

1

dα

α
dx

=C

∫
E
|f(x)| ln+ |f(x)|dx.

This completes the proof. �

§ 3.2.2 Control of other maximal operators

We now study some properties of the Hardy-Littlewood maximal function.

Definition 3.2.11.

Given a function g on Rn and ε > 0, we denote by gε the following function:

gε(x) = ε−ng(ε−1x). (3.2.8)

If g is an integrable function with integral equal to 1, then the family defined
by (3.2.8) is an approximate identity. Therefore, convolution with gε is an aver-
aging operation. The Hardy-Littlewood maximal function Mf is obtained as the
supremum of the averages of a function f with respect to the dilates of the kernel
k = V −1

n χB(0,1) in Rn. Indeed, we have

Mf(x) = sup
ε>0

1

Vnεn

∫
Rn

|f(x− y)|χB(0,1)(y/ε)dy

= sup
ε>0

(|f | ∗ kε)(x).

Note that the function k = V −1
n χB(0,1) has integral equal to 1, and convolving with

kε is an averaging operation.

Theorem 3.2.12.

Suppose that the least decreasing radial majorant of ϕ is integrable, i.e., let
ψ(x) = sup|y|>|x| |ϕ(y)|, and ψ ∈ L1(Rn). Then for f ∈ L1

loc(R
n),

sup
ε>0

|(f ∗ ϕε)(x)| 6 ‖ψ‖1Mf(x).

Proof. With a slight abuse of notation, let us write ψ(r) = ψ(x), if |x| = r; it should
cause no confusion since ψ(x) is anyway radial. Now observe that ψ(r) is decreas-
ing and then

∫
r/26|x|6r ψ(x)dx > ψ(r)

∫
r/26|x|6r dx = cψ(r)rn. Therefore, the as-

sumption ψ ∈ L1 proves that rnψ(r) → 0 as r → 0 or r → ∞. We need to show
that

(f ∗ ψε)(x) 6 AMf(x), (3.2.9)

where f > 0, ε > 0 and A =
∫
Rn ψ(x)dx.
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Since (3.2.9) is clearly translation invariant w.r.t f and also dilation invariant
w.r.t. ψ and the maximal function, it suffices to show that

(f ∗ ψ)(0) 6 AMf(0). (3.2.10)

In proving (3.2.10), we may clearly assume thatMf(0) <∞. Let us write λ(r) =∫
Sn−1 f(rx

′)dσ(x′), and Λ(r) =
∫
|x|6r f(x)dx, so

Λ(r) =

∫ r

0

∫
Sn−1

f(tx′)dσ(x′)tn−1dt =

∫ r

0
λ(t)tn−1dt, i.e., Λ′(r) = λ(r)rn−1.

We have

(f ∗ ψ)(0) =
∫
Rn

f(x)ψ(x)dx =

∫ ∞

0
rn−1

∫
Sn−1

f(rx′)ψ(r)dσ(x′)dr

=

∫ ∞

0
rn−1λ(r)ψ(r)dr = lim

ε→0
N→∞

∫ N

ε
λ(r)ψ(r)rn−1dr

= lim
ε→0

N→∞

∫ N

ε
Λ′(r)ψ(r)dr = lim

ε→0
N→∞

{
[Λ(r)ψ(r)]Nε −

∫ N

ε
Λ(r)dψ(r)

}
.

Since Λ(r) =
∫
|x|6r f(x)dx 6 Vnr

nMf(0), and the fact rnψ(r) → 0 as r → 0 or
r → ∞, we have

0 6 lim
N→∞

Λ(N)ψ(N) 6 VnMf(0) lim
N→∞

Nnψ(N) = 0,

which implies limN→∞ Λ(N)ψ(N) = 0 and similarly limε→0 Λ(ε)ψ(ε) = 0. Thus, by
integration by parts, we have

(f ∗ ψ)(0) =
∫ ∞

0
Λ(r)d(−ψ(r)) 6 VnMf(0)

∫ ∞

0
rnd(−ψ(r))

=nVnMf(0)

∫ ∞

0
ψ(r)rn−1dr =Mf(0)

∫
Rn

ψ(x)dx,

where two of the integrals are of Lebesgue-Stieltjes type, since ψ(r) is decreasing
which implies ψ′(r) 6 0, and nVn = ωn−1. This proves (3.2.10) and then (3.2.9). �

§ 3.2.3 Applications to differentiation theory

We continue this section by obtaining some applications of the boundedness of
the Hardy-Littlewood maximal function in differentiation theory.

We now show that the weak type (1, 1) property of the Hardy-Littlewood max-
imal function implies almost everywhere convergence for a variety of families of
functions. We deduce this from the more general fact that a certain weak type prop-
erty for the supremum of a family of linear operators implies almost everywhere
convergence.

Let (X,µ) and (Y, ν) be measure spaces and let 1 6 p 6 ∞, 1 6 q <∞. Suppose
that D is a dense subspace of Lp(X,µ). This means that for all f ∈ Lp and all δ > 0,
there exists a g ∈ D such that ‖f − g‖p < δ. Suppose that for every ε > 0, Tε is a
linear operator that maps Lp(X,µ) into a subspace of measurable functions, which
are defined everywhere on Y . For y ∈ Y , define a sublinear operator

T∗f(y) = sup
ε>0

|Tεf(y)| (3.2.11)

and assume that T∗f is ν-measurable for any f ∈ Lp(X,µ). We have the following.
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Theorem 3.2.13.

Let p, q ∈ [1,∞), Tε and T∗ be as previously stated. Suppose that for some
B > 0 and all f ∈ Lp(X,µ), we have

‖T∗f‖Lq,∞ 6 B‖f‖p (3.2.12)

and that for all f ∈ D,

lim
ε→0

Tεf = Tf (3.2.13)

exists and is finite ν-a.e. (and defines a linear operator on D). Then, for all
f ∈ Lp(X,µ), the limit (3.2.13) exists and is finite ν-a.e., and defines a linear
operator T on Lp(X,µ) (uniquely extending T defined on D) that satisfies

‖Tf‖Lq,∞ 6 B‖f‖p (3.2.14)

for all functions f ∈ Lp(X,µ).

Proof. Given f ∈ Lp, we define the oscillation of f :

Of (y) = lim sup
ε→0

lim sup
θ→0

|Tεf(y)− Tθf(y)|.

We would like to show that for all f ∈ Lp and δ > 0,

ν({y ∈ Y : Of (y) > δ}) = 0. (3.2.15)

Once (3.2.15) is established, given f ∈ Lp(X,µ), we obtain that Of (y) = 0 for ν-
almost all y, which implies that Tεf(y) is Cauchy for ν-almost all y, and it therefore
converges ν-a.e. to some Tf(y) as ε → 0. The operator T defined in this way on
Lp(X,µ) is linear and extends T defined on D.

To approximate Of , we use density. Given η > 0, find a function g ∈ D such
that ‖f − g‖p < η. Since Tεg → Tg ν-a.e., it follows that Og = 0 ν-a.e. Using this
fact and the linearity of the Tε’s, we conclude that

Of (y) 6 Og(y) +Of−g(y) = Of−g(y) ν − a.e.

Now for any δ > 0, we have by (3.2.12)

ν({y ∈ Y : Of (y) > δ}) 6ν({y ∈ Y : Of−g(y) > δ})
6ν({y ∈ Y : 2T∗(f − g)(y) > δ})
6(2‖T∗(f − g)‖Lq,∞/δ)q

6(2B‖f − g‖p/δ)q

6(2Bη/δ)q,

due to

Of−g(y) = lim sup
ε→0

lim sup
θ→0

|Tε(f − g)(y)− Tθ(f − g)(y)|

62 sup
ε

|Tε(f − g)(y)| = 2T∗(f − g)(y).

Letting η → 0, we deduce (3.2.15). We conclude that Tεf is a Cauchy sequence,
and hence it converges ν-a.e. to some Tf . Since |Tf | 6 T∗f , the conclusion (3.2.14)
follows easily. �

As a corollary of Theorem 3.2.7 or 3.2.13, we have the differentiability almost
everywhere of the integral, expressed in (3.2.1).
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Theorem 3.2.14: Lebesgue differentiation theorem

If f ∈ Lp(Rn), p ∈ [1,∞], or more generally if f is locally integrable (i.e.,
f ∈ L1

loc(R
n)), then

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

f(y)dy = f(x), for a.e. x. (3.2.16)

Proof. We first consider the case p = 1. It suffices to show that for each α > 0, the
set

Eα =

{
x : lim sup

r→0

∣∣∣∣∣ 1

µ(B(x, r))

∫
B(x,r)

f(y)dy − f(x)

∣∣∣∣∣ > 2α

}
has measure zero, because this assertion then guarantees that the setE =

⋃∞
k=1E1/k

has measure zero, and the limit in (3.2.16) holds at all points of Ec.
Fix α, since all continuous functions of compact support (i.e., Cc(Rn)) are dense

in L1(Rn), for each ε > 0 we may select a continuous function g of compact support
with ‖f − g‖1 < ε. As we remarked earlier, the continuity of g implies that

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

g(y)dy = g(x), for all x.

Since we may write the difference 1
µ(B(x,r))

∫
B(x,r) f(y)dy − f(x) as

1

µ(B(x, r))

∫
B(x,r)

(f(y)− g(y))dy

+
1

µ(B(x, r))

∫
B(x,r)

g(y)dy − g(x) + g(x)− f(x),

we find that

lim sup
r→0

∣∣∣∣∣ 1

µ(B(x, r))

∫
B(x,r)

f(y)dy − f(x)

∣∣∣∣∣ 6M(f − g)(x) + |g(x)− f(x)|.

Consequently, if

Fα = {x :M(f − g)(x) > α} and Gα = {x : |f(x)− g(x)| > α} ,

then Eα ⊂ Fα ∪ Gα, because if u1 and u2 are positive, then u1 + u2 > 2α only if
ui > α for at least one ui.

On the one hand, Tchebychev’s inequality yields

µ(Gα) 6
1

α
‖f − g‖1,

and on the other hand, the weak type estimate for the maximal function gives

µ(Fα) 6
3n

α
‖f − g‖1.

Since the function g was selected so that ‖f − g‖1 < ε, we get

µ(Eα) 6
3n

α
ε+

1

α
ε =

3n + 1

α
ε.

Since ε is arbitrary, we must have µ(Eα) = 0, and the proof for p = 1 is completed.
Indeed, the limit in the theorem is taken over balls that shrink to the point x, so

the behavior of f far from x is irrelevant. Thus, we expect the result to remain valid
if we simply assume integrability of f on every ball. Clearly, the conclusion holds
under the weaker assumption that f is locally integrable.
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For the remained cases p ∈ (1,∞], we have by Hölder inequality, for any ball B,∫
B
|f(x)|dx 6 ‖f‖Lp(B)‖1‖Lp′ (B) 6 µ(B)1/p

′‖f‖p.

Thus, f ∈ L1
loc(Rn) and then the conclusion is valid for p ∈ (1,∞]. Therefore, we

complete the proof of the theorem. �
By the Lebesgue differentiation theorem, we have

Corollary 3.2.15.

Let f ∈ L1
loc(Rn). Then

|f(x)| 6Mf(x), a.e. x ∈ Rn.

Combining with the maximal function theorem (i.e., Theorem 3.2.7), we get

Corollary 3.2.16.

If f ∈ Lp(Rn), p ∈ (1,∞], then we have

‖f‖p 6 ‖Mf‖p 6 Ap‖f‖p.

Corollary 3.2.17.

Suppose that the least decreasing radial majorant of ϕ is integrable, and∫
Rn ϕ(x)dx = 1. Then limε→0(f ∗ ϕε)(x) = f(x) a.e. for all f ∈ Lp(Rn),
1 6 p <∞.

Proof. We can verify that if f1 ∈ Cc, then (f1 ∗ ϕε)(x) → f1(x) uniformly as ε → 0

(cf. Theorem 2.1.15). Next we can deal with the case f ∈ Lp(Rn), 1 6 p < ∞, by
writing f = f1 + f2 with f1 as described and with ‖f2‖p small. The argument then
follows closely that given in the proof of Theorem 3.2.14 (the Lebesgue differenti-
ation theorem). Thus, we get that limε→0 f ∗ ϕε(x) exists almost everywhere and
equals f(x). �

§ 3.2.4 An application to Sobolev’s inequality

As an application, we prove the (Gagliardo-Nirenberg-) Sobolev inequality by
using the maximal function theorem for the case 1 < p < n. We note that the
inequality also holds for the case p = 1 and one can see [Eva10, p.279-281] for the
proof.

Theorem 3.2.18: (Gagliardo-Nirenberg-) Sobolev inequality

Let p ∈ (1, n) and its Sobolev conjugate p∗ = np/(n−p). Then for f ∈ D(Rn),
we have

‖f‖p∗ 6 C‖∇f‖p,
where C depends only on n and p.

Proof. Since f ∈ D(Rn), we have

f(x) = −
∫ ∞

0

∂

∂r
(f(x+ rz))dr,
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where z ∈ Sn−1. Integrating this over the whole unit sphere surface Sn−1 yields

ωn−1f(x) =

∫
Sn−1

f(x)dσ(z) = −
∫
Sn−1

∫ ∞

0

∂

∂r
(f(x+ rz))drdσ(z)

=−
∫
Sn−1

∫ ∞

0
∇f(x+ rz) · zdrdσ(z)

=−
∫ ∞

0

∫
Sn−1

∇f(x+ rz) · zdσ(z)dr.

Changing variables y = x + rz, dσ(z) = r−(n−1)dσ(y), z = (y − x)/|y − x| and
r = |y − x|, we get

ωn−1f(x) =−
∫ ∞

0

∫
∂B(x,r)

∇f(y) · y − x

|y − x|n
dσ(y)dr

=−
∫
Rn

∇f(y) · y − x

|y − x|n
dy,

which implies that

|f(x)| 6 1

ωn−1

∫
Rn

|∇f(y)|
|y − x|n−1

dy.

We split this integral into two parts as
∫
Rn =

∫
B(x,r)+

∫
Rn\B(x,r). For the first

part, we have
1

ωn−1

∫
B(x,r)

|∇f(y)|
|x− y|n−1

dy

=
1

ωn−1

∞∑
k=0

∫
B(x,2−kr)\B(x,2−k−1r)

|∇f(y)|
|x− y|n−1

dy

6 1

ωn−1

∞∑
k=0

∫
B(x,2−kr)\B(x,2−k−1r)

|∇f(y)|
(2−k−1r)n−1

dy

6
∞∑
k=0

2−kr

nVn2−kr

∫
B(x,2−kr)

2n−1 |∇f(y)|
(2−kr)n−1

dy

6 1

n

∞∑
k=0

2−k+n−1r
1

µ(B(x, 2−kr))

∫
B(x,2−kr)

|∇f(y)|dy

62n−1

n
rM(∇f)(x)

∞∑
k=0

2−k =
2n

n
rM(∇f)(x).

For the second part, by Hölder inequality, we get for 1 < p < n∫
Rn\B(x,r)

|∇f(y)|
|x− y|n−1

dy

6
(∫

Rn\B(x,r)
|∇f(y)|pdy

)1/p(∫
Rn\B(x,r)

|x− y|(1−n)p′dy

)1/p′

6
(
ωn−1

∫ ∞

r
ρ(1−n)p

′
ρn−1dρ

)1/p′

‖∇f‖p

=

(
(p− 1)ωn−1

n− p

)1/p′

r1−n/p‖∇f‖p.

Choose r = (p−1)(p−1)/n

(n−p)(p−1)/nω
1/n
n−12

p

(
n∥∇f∥p
M(∇f)(x)

)p/n
satisfying

2n

n
rM(∇f)(x) = 1

ωn−1

(
(p− 1)ωn−1

n− p

)1/p′

r1−n/p‖∇f‖p,
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then we get

|f(x)| 6 C‖∇f‖p/np (M(∇f)(x))1−p/n.

Thus, by part (iii) in Theorem 3.2.7, we obtain for 1 < p < n

‖f‖p∗ 6C‖∇f‖p/np ‖M(∇f)‖1−p/np∗(1−p/n)

=C‖∇f‖p/np ‖M(∇f)‖1−p/np 6 C‖∇f‖p.

This completes the proof. �

§ 3.3 Calderón-Zygmund decomposition

Applying Lebesgue differentiation theorem, we give a decomposition of Rn,
called Calderón-Zygmund decomposition, which is extremely useful in harmonic
analysis.

Theorem 3.3.1: Calderón-Zygmund decomposition of Rn

Let f ∈ L1(Rn) and α > 0. Then there exists a decomposition of Rn such that
(i) Rn = F ∪ Ω, F ∩ Ω = ∅.
(ii) |f(x)| 6 α for a.e. x ∈ F .
(iii) Ω is the union of cubes, Ω =

⋃
kQk, whose interiors are disjoint and

edges parallel to the coordinate axes, and such that for each Qk

α <
1

µ(Qk)

∫
Qk

|f(x)|dx 6 2nα. (3.3.1)

Proof. We decompose Rn into a mesh of equal cubes Q(0)
k (k = 1, 2, · · · ), whose

interiors are disjoint and edges parallel to the coordinate axes, and whose common
diameter is so large that

1

µ(Q
(0)
k )

∫
Q

(0)
k

|f(x)|dx 6 α, (3.3.2)

since f ∈ L1.
Split each Q(0)

k into 2n congruent cubes. These we denote by Q(1)
k , k = 1, 2, · · · .

There are two possibilities:

either
1

µ(Q
(1)
k )

∫
Q

(1)
k

|f(x)|dx 6 α, or
1

µ(Q
(1)
k )

∫
Q

(1)
k

|f(x)|dx > α.

In the first case, we splitQ(1)
k again into 2n congruent cubes to getQ(2)

k (k = 1, 2, · · · ).
In the second case, we have

α <
1

µ(Q
(1)
k )

∫
Q

(1)
k

|f(x)|dx 6 1

2−nµ(Q
(0)

k

∼)

∫
Q

(0)

k

∼

|f(x)|dx 6 2nα

in view of (3.3.2) where Q(1)
k is split from Q

(0)

k

∼, and then we take Q(1)
k as one of the

cubes Qk.
A repetition of this argument shows that if x /∈ Ω =:

⋃∞
k=1Qk then x ∈ Q

(j)
kj

(j = 0, 1, 2, · · · ) for which

µ(Q
(j)
kj

) → 0 as j → ∞, and
1

µ(Q
(j)
kj

)

∫
Q

(j)
kj

|f(x)|dx 6 α (j = 0, 1, · · · ).
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Thus, |f(x)| 6 α a.e. x ∈ F = Ωc by a variation of the Lebesgue differentiation
theorem. Thus, we complete the proof. �

We now state an immediate corollary.

Corollary 3.3.2.

Suppose f , α, F , Ω and Qk have the same meaning as in Theorem 3.3.1.
Then there exists two constants A and B (depending only on the dimension
n), such that (i) and (ii) of Theorem 3.3.1 hold and

(a) µ(Ω) 6 A

α
‖f‖1,

(b)
1

µ(Qk)

∫
Qk

|f |dx 6 Bα.

Proof. In fact, by (3.3.1) we can take B = 2n, and also because of (3.3.1)

µ(Ω) =
∑
k

µ(Qk) <
1

α

∫
Ω
|f(x)|dx 6 1

α
‖f‖1.

This proves the corollary with A = 1 and B = 2n. �
It is possible however to give another proof of this corollary without using The-

orem 3.3.1 from which it was deduced, but by using the maximal function theorem
(Theorem 3.2.7) and also the theorem about the decomposition of an arbitrary open
set as a union of disjoint cubes. This more indirect method of proof has the advan-
tage of clarifying the roles of the sets F and Ω into which Rn was divided.

Another proof of Corollary 3.3.2. We know that in F , |f(x)| 6 α, but this fact does
not determine F . The set F is however determined, in effect, by the fact that the
maximal function satisfies Mf(x) 6 α on it. So we choose F = {x :Mf(x) 6 α}
and Ω = Eα = {x :Mf(x) > α}. Then by Theorem 3.2.7, part (ii) we know that
µ(Ω) 6 3n

α ‖f‖1. Thus, we can take A = 3n.
Since by definition F is closed, we can choose cubes Qk according to Theorem

3.1.2, such that Ω =
⋃
kQk, and whose diameters are approximately proportional

to their distances from F . Let Qk then be one of these cubes, and pk a point of F
such that

dist (F,Qk) = dist (pk, Qk).

Let Bk be the smallest ball whose center is pk and which contains the interior of
Qk. Let us set

γk =
µ(Bk)

µ(Qk)
.

We have, because pk ∈ {x :Mf(x) 6 α}, that

α >Mf(pk) >
1

µ(Bk)

∫
Bk

|f(x)|dx > 1

γkµ(Qk)

∫
Qk

|f(x)|dx.

Thus, we can take a upper bound of γk as the value of B.
The elementary geometry and the inequality (iii) of Theorem 3.1.2 then show

that

radius(Bk) 6dist (pk, Qk) + diam (Qk) = dist (F,Qk) + diam (Qk)

6(c2 + 1) diam (Qk),
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and so

µ(Bk) =Vn(radius(Bk))n 6 Vn(c2 + 1)n(diam (Qk))
n

=Vn(c2 + 1)nnn/2µ(Qk),

since µ(Qk) = ( diam (Qk)/
√
n)n. Thus, γk 6 Vn(c2 + 1)nnn/2 for all k. Thus, we

complete the proof with A = 3n and B = Vn(c2 + 1)nnn/2. �

Remark 3.3.3. Theorem 3.3.1 may be used to give another proof of the fundamental
inequality for the maximal function in part (ii) of Theorem 3.2.7. (See [Ste70, §5.1,
p.22–23] for more details.)

The Calderón-Zygmund decomposition is a key step in the real-variable analy-
sis of singular integrals. The idea behind this decomposition is that it is often useful
to split an arbitrary integrable function into its “small” and “large” parts, and then
use different techniques to analyze each part.

The scheme is roughly as follows. Given a function f and an altitude α, we
write f = g + b, where g is called the good function of the decomposition since it
is both integrable and bounded; hence the letter g. The function b is called the bad
function since it contains the singular part of f (hence the letter b), but it is carefully
chosen to have mean value zero. To obtain the decomposition f = g+ b, one might
be tempted to “cut” f at the height α; however, this is not what works. Instead, one
bases the decomposition on the set where the maximal function of f has height α.

Indeed, the Calderón-Zygmund decomposition on Rn may be used to deduce
the Calderón-Zygmund decomposition on functions. The latter is a very important
tool in harmonic analysis.

Theorem 3.3.4: Calderón-Zygmund decomposition for functions

Let f ∈ L1(Rn) and α > 0. Then there exist functions g and b on Rn such that
f = g + b and
(i) ‖g‖1 6 ‖f‖1 and ‖g‖∞ 6 2nα.
(ii) b =

∑
j bj , where each bj is supported in a dyadic cube Qj satisfying∫

Qj
bj(x)dx = 0 and ‖bj‖1 6 2n+1αµ(Qj). Furthermore, the cubes Qj and Qk

have disjoint interiors when j 6= k.
(iii)

∑
j µ(Qj) 6 α−1‖f‖1.

Proof. Applying Corollary 3.3.2 (with A = 1 and B = 2n), we have
1) Rn = F ∪ Ω, F ∩ Ω = ∅;
2) |f(x)| 6 α, a.e. x ∈ F ;
3) Ω =

⋃∞
j=1Qj , with the interiors of the Qj mutually disjoint;

4) µ(Ω) 6 α−1
∫
Rn |f(x)|dx, and α < 1

µ(Qj)

∫
Qj

|f(x)|dx 6 2nα.
From 3) and 4), it is easy to obtain (iii).
Now define

bj =

(
f − 1

µ(Qj)

∫
Qj

fdx

)
χQj ,
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b =
∑

j bj and g = f − b. It is clear that
∫
Qj
bj(x)dx = 0. Consequently,∫

Qj

|bj |dx 6
∫
Qj

|f(x)|dx+ µ(Qj)

∣∣∣∣∣ 1

µ(Qj)

∫
Qj

f(x)dx

∣∣∣∣∣
62

∫
Qj

|f(x)|dx 6 2n+1αµ(Qj),

which proves ‖bj‖1 6 2n+1αµ(Qj). Thus, (ii) is proved with the help of 3).
Next, we need to obtain the estimates on g. Write Rn = ∪jQj ∪ F , where

F is the closed set obtained by Corollary 3.3.2. Since b = 0 on F and f − bj =
1

µ(Qj)

∫
Qj
f(x)dx on Qj , we have

g =


f, on F,

1

µ(Qj)

∫
Qj

f(x)dx, on Qj .
(3.3.3)

On the cube Qj , g is equal to the constant 1
µ(Qj)

∫
Qj
f(x)dx, and this is bounded by

2nα by 4). Then by 2), we can get ‖g‖∞ 6 2nα. Finally, it follows from (3.3.3) that
‖g‖1 6 ‖f‖1. This completes the proof of (i) and then of the theorem. �

As an application of Calderón-Zygmund decomposition and Marcinkiewicz in-
terpolation theorem, we now prove the weighted estimates for the Hardy-Littlewood
maximal function (cf. [FS71, p.111, Lemma 1]).

Theorem 3.3.5.

For p ∈ (1,∞), there exists a constant C = Cn,p such that, for any non-
negative real-valued locally integrable function ϕ(x) on Rn, we have, for
f ∈ L1

loc(R
n), the inequality∫

Rn

(Mf(x))pϕ(x)dx 6 C

∫
Rn

|f(x)|pMϕ(x)dx. (3.3.4)

Proof. Except when Mϕ(x) = ∞ a.e., in which case (3.3.4) holds trivially, Mϕ is
the density of a positive measure σ. Thus, we may assume that Mϕ(x) < ∞ a.e.
x ∈ Rn and Mϕ(x) > 0. If we denote

dσ(x) =Mϕ(x)dx and dν(x) = ϕ(x)dx,

then by the Marcinkiewicz interpolation theorem in order to get (3.3.4), it suffices
to prove that M is both of type (L∞(σ), L∞(ν)) and of weak type (L1(σ), L1(ν)).

Let us first show thatM is of type (L∞(σ), L∞(ν)). In fact, if ‖f‖L∞(σ) = α, then∫
{x∈Rn:|f(x)|>α}

Mϕ(x)dx = σ({x ∈ Rn : |f(x)| > α}) = 0.

Since Mϕ(x) > 0 for any x ∈ Rn, we have µ({x ∈ Rn : |f(x)| > α}) = 0, equiv-
alently, |f(x)| 6 α a.e. x ∈ Rn. Thus, Mf(x) 6 α a.e. x ∈ Rn and then µ({x :

Mf(x) > α}) = 0 which implies that ν({Mf(x) > α}) =
∫
{x:Mf(x)>α} ϕ(x)dx = 0

and thus ‖Mf‖L∞(ν) 6 α. Therefore, ‖Mf‖L∞(ν) 6 ‖f‖L∞(σ).
Before proving thatM is also of weak type (L1(σ), L1(ν)), we give the following

lemma.
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Lemma 3.3.6.

Let f ∈ L1(Rn) and α > 0. If the sequence {Qk} of cubes is chosen from the
Calderón-Zygmund decomposition of Rn for f and α > 0, then

{x ∈ Rn :M ′f(x) > 7nα} ⊂
⋃
k

Q∗
k,

where Q∗
k = 2Qk. It follows

µ({x ∈ Rn :M ′f(x) > 7nα}) 6 2n
∑
k

µ(Qk).

Proof. Suppose that x /∈
⋃
kQ

∗
k. Then there are two cases for any cube Q with the

center x. If Q ⊂ F := Rn \
⋃
kQk, then

1

µ(Q)

∫
Q
|f(x)|dx 6 α.

If Q ∩Qk 6= ∅ for some k, then it is easy to check that Qk ⊂ 3Q, and⋃
k

{Qk : Qk ∩Q 6= ∅} ⊂ 3Q.

Hence, we have∫
Q
|f(x)|dx 6

∫
Q∩F

|f(x)|dx+
∑

Qk∩Q ̸=∅

∫
Qk

|f(x)|dx

6αµ(Q) +
∑

Qk∩Q̸=∅
2nαµ(Qk)

6αµ(Q) + 2nαµ(3Q)

67nαµ(Q).

Thus we know that M ′f(x) 6 7nα for any x /∈
⋃
kQ

∗
k, and it yields that

µ({x ∈ Rn :M ′f(x) > 7nα}) 6 µ

(⋃
k

Q∗
k

)
= 2n

∑
k

µ(Qk).

We complete the proof of the lemma. �
Let us return to the proof of weak type (L1(σ), L1(ν)). We need to prove that

there exists a constant C such that for any α > 0 and f ∈ L1(σ)∫
{x∈Rn:Mf(x)>α}

ϕ(x)dx =ν({x ∈ Rn :Mf(x) > α})

6C
α

∫
Rn

|f(x)|Mϕ(x)dx.

(3.3.5)

We may assume that f ∈ L1(Rn). In fact, if we take fℓ = |f |χB(0,ℓ), then fℓ ∈ L1(Rn),
0 6 fℓ(x) 6 fℓ+1(x) for x ∈ Rn and ` = 1, 2, · · · . Moreover, limℓ→∞ fℓ(x) = |f(x)|
and

{x ∈ Rn :Mf(x) > α} =
⋃
ℓ

{x ∈ Rn :Mfℓ(x) > α}.

By the point-wise equivalence of M and M ′, there exists cn > 0 such that
Mf(x) 6 cnM

′f(x) for all x ∈ Rn. Applying the Calderón-Zygmund decompo-
sition on Rn for f and α′ = α/(cn7

n), we get a sequence {Qk} of cubes satisfying

α′ <
1

µ(Qk)

∫
Qk

|f(x)|dx 6 2nα′.
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By Lemma 3.3.6 and the point-wise equivalence of M and M ′′, we have that∫
{x∈Rn:Mf(x)>α}

ϕ(x)dx

6
∫
{x∈Rn:M ′f(x)>7nα′}

ϕ(x)dx

6
∫
⋃

k Q
∗
k

ϕ(x)dx 6
∑
k

∫
Q∗

k

ϕ(x)dx

6
∑
k

(
1

µ(Qk)

∫
Q∗

k

ϕ(x)dx

)(
1

α′

∫
Qk

|f(y)|dy
)

=
cn7

n

α

∑
k

∫
Qk

|f(y)|

(
2n

µ(Q∗
k)

∫
Q∗

k

ϕ(x)dx

)
dy

6cn14
n

α

∑
k

∫
Qk

|f(y)|M ′′ϕ(y)dy

6C
α

∫
Rn

|f(y)|Mϕ(y)dy.

Thus, M is of weak type (L1(σ), L1(ν)), and the inequality can be obtained by ap-
plying the Marcinkiewicz interpolation theorem. �
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§ 4.1 Poisson kernel and Hilbert transform

§ 4.1.1 Poisson kernel and the conjugate

We shall now introduce a notation that will be indispensable in much of our
further work. Indeed, we have shown some properties of Poisson kernel in Chapter
2. The setting for the application of this theory will be as follows. We shall think of
Rn as the boundary hyperplane of the (n + 1) dimensional upper-half space Rn+1.
In coordinate notation,

Rn+1
+ = {(x, y) : x ∈ Rn, y > 0} .

We shall consider the Poisson integral of a function f given on Rn. This Pois-
son integral is effectively the solution to the Dirichlet Problem for Rn+1

+ : find a har-
monic function u(x, y) on Rn+1

+ , whose boundary values on Rn (in the appropriate
sense) are f(x), that is {

∆x,yu(x, y) = 0, (x, y) ∈ Rn+1
+ ,

u(x, 0) = f, x ∈ Rn.
(4.1.1)

The formal solution of this problem can be given neatly in the context of the L2

theory.
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In fact, let f ∈ L2(Rn), and consider

u(x, y) =

(
|ω|
2π

)n/2 ∫
Rn

eωiξ·xe−|ωξ|yf

∨

(ξ)dξ, y > 0. (4.1.2)

This integral converges absolutely (cf. Theorem 2.1.15), because f

∨

∈ L2(Rn), and
e−|ωξ|y is rapidly decreasing in |ξ| for y > 0. For the same reason, the integral
above may be differentiated w.r.t. x and y any number of times by carrying out the
operation under the sign of integration. This gives

∆x,yu =
∂2u

∂y2
+

n∑
k=1

∂2u

∂x2k
= 0,

because the factor eωiξ·xe−|ωξ|y satisfies this property for each fixed ξ. Thus, u(x, y)
is a harmonic function on Rn+1

+ .
By Theorem 2.1.15, we get that u(x, y) → f(x) inL2(Rn) norm, as y → 0. That is,

u(x, y) satisfies the boundary condition and so u(x, y) structured above is a solution
for the above Dirichlet problem.

This solution of the problem can also be written without explicit use of the
Fourier transform. For this purpose, we recall the Poisson kernel Py(x) := P (x, y)

by

Py(x) =

(
|ω|
2π

)n ∫
Rn

eωiξ·xe−|ωξ|ydξ =

(
|ω|
2π

)n/2
(F−1e−|ωξ|y)(x), y > 0. (4.1.3)

Then the function u(x, y) obtained above can be written as a convolution

u(x, y) =

∫
Rn

Py(z)f(x− z)dz, (4.1.4)

as the same as in Theorem 2.1.15. We shall say that u is the Poisson integral of f .
For convenience, we recall (2.1.14) and (2.1.12) as follows.

Proposition 4.1.1.

The Poisson kernel has the following explicit expression:

Py(x) =
cny

(|x|2 + y2)
n+1
2

, cn =
Γ((n+ 1)/2)

π
n+1
2

. (4.1.5)

Remark 4.1.2. We list the properties of the Poisson kernel that are now more or less
evident:

(i) The expression in (4.1.5) is independent of the definition of the Fourier trans-
form, and Py(x) > 0 for y > 0.

(ii)
∫
Rn Py(x)dx = 1, y > 0 by Lemma 2.1.14; more generally, Py

∨

(ξ) =
(
|ω|
2π

)n/2
e−|ωξ|y

by Corollary 2.1.23.

(iii) Py(x) is homogeneous of degree −n w.r.t. (x, y); and Py(x) = y−nP1(x/y),
y > 0.

(iv) Py(x) is a decreasing function of |x|, and Py ∈ Lp(Rn), 1 6 p 6 ∞. Indeed, by
changes of variables, we have for 1 6 p <∞

‖Py‖pp =cpn
∫
Rn

(
y

(|x|2 + y2)(n+1)/2

)p
dx
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x=yz
== cpny

−n(p−1)

∫
Rn

1

(1 + |z|2)p(n+1)/2
dz

z=rz′
== cpny

−n(p−1)ωn−1

∫ ∞

0

1

(1 + r2)p(n+1)/2
rn−1dr

r=tan θ
=== cpny

−n(p−1)ωn−1

∫ π/2

0

1

(sec θ)p(n+1)
tann−1 θ sec2 θdθ

=cpny
−n(p−1)ωn−1

∫ π/2

0
sinn−1 θ cos(p−1)(n+1) θdθ

=
cpnωn−1

2
B

(
p(n+ 1)− n

2
,
n

2

)
y−n(p−1),

where we recall that the Beta function

B(α, β) =

∫ 1

0
xα−1(1− x)β−1dµ(x) = 2

∫ π
2

0
sin2β−1 ϕ cos2α−1 ϕdϕ

converges for <α,<β > 0. Here, it is clear that p(n+ 1)− n > 0 for p ∈ [1,∞)

and thus the Beta function converges. Therefore, we have for p ∈ [1,∞)

‖Py‖p = cn

[
ωn−1

2
B

(
p(n+ 1)− n

2
,
n

2

)]1/p
y−n/p

′
.

For p = ∞, it is clear that ‖Py(x)‖∞ = cny
−n.

(v) Suppose f ∈ Lp(Rn), 1 6 p 6 ∞, then its Poisson integral u, given by (4.1.4),
is harmonic in Rn+1

+ . This is a simple consequence of the fact that Py(x) is
harmonic in Rn+1

+ which is immediately derived from (4.1.3).

(vi) We have the “semi-group property” Py1 ∗ Py2 = Py1+y2 if y1, y2 > 0 in view of
Corollary 2.1.24.

The boundary behavior of Poisson integrals is already described to a significant
extension by the following theorem.

Theorem 4.1.3.

Suppose f ∈ Lp(Rn), 1 6 p 6 ∞, and let u(x, y) be its Poisson integral. Then

(a) sup
y>0

|u(x, y)| 6Mf(x), where Mf is the maximal function.

(b) lim
y→0

u(x, y) = f(x), for almost every x.

(c) If 1 6 p <∞, u(x, y) converges to f(x) in Lp(Rn) norm, as y → 0.

Proof. We can prove it by applying Theorem 3.2.12 directly, because of properties
(i)–(iv) of the Poisson kernel in the case ϕ(x) = ψ(x) = P1(x). �

Now, we give the definition of harmonic conjugate functions as follows.

Definition 4.1.4.

The harmonic conjugate to a given function u(x, y) is a function v(x, y) such
that

f(x, y) = u(x, y) + iv(x, y)
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is analytic, i.e., satisfies the Cauchy-Riemann equations

ux = vy, uy = −vx,
where ux ≡ ∂u/∂x, uy ≡ ∂u/∂y. It is given by

v(x, y) =

∫ (x,y)

(x0,y0)
uxdy − uydx+ C,

along any path connecting (x0, y0) and (x, y) in the domain, where C is a
constant of integration.

Given a function f in S (R), its harmonic extension to the upper half-plane is
given by u(x, y) = Py ∗ f(x), where Py is the Poisson kernel. We can also write, in
view of (4.1.2),

u(z) =u(x, y) =

(
|ω|
2π

)1/2 ∫
R
eωiξ·xe−|ωξ|yf

∨

(ξ)dξ

=

(
|ω|
2π

)1/2 [∫ ∞

0
eωiξ·xe−|ω|ξyf

∨

(ξ)dξ +

∫ 0

−∞
eωiξ·xe|ω|ξyf

∨

(ξ)dξ

]
=

(
|ω|
2π

)1/2 [∫ ∞

0
eωiξ·(x+i sgn (ω)y)f

∨

(ξ)dξ +

∫ 0

−∞
eωiξ·(x−i sgn (ω)y)f

∨

(ξ)dξ

]
,

where z = x+ iy. If we now define

i sgn (ω)v(z) =

(
|ω|
2π

)1/2 [ ∫ ∞

0
eωiξ·(x+i sgn (ω)y)f

∨

(ξ)dξ

−
∫ 0

−∞
eωiξ·(x−i sgn (ω)y)f

∨
(ξ)dξ

]
,

then v is also harmonic in R2
+ and both u and v are real if f is. Furthermore, u+ iv

is analytic since it satisfies the Cauchy-Riemann equations ux = vy = ωiξu(z) and
uy = −vx = −ωiξv(z), so v is the harmonic conjugate of u.

Clearly, v can also be written as, by Proposition 2.4.18,

v(z) =− i sgn (ω)

(
|ω|
2π

)1/2 ∫
R

sgn (ξ)eωiξ·xe−|ωξ|yf

∨

(ξ)dξ

=− i sgn (ω)F−1( sgn (ξ)e−|ωξ|yf

∨

(ξ))(x)

=− i sgn (ω)

(
|ω|
2π

)1/2

[F−1( sgn (ξ)e−|ωξ|y) ∗ f ](x),

which is equivalent to

v(x, y) = Qy ∗ f(x), (4.1.6)

where

Qy

∨

(ξ) = −i sgn (ω)

(
|ω|
2π

)1/2

sgn (ξ)e−|ωξ|y. (4.1.7)

Now we invert the Fourier transform, we get, by a change of variables and integra-
tion by parts,

Qy(x) = −i sgn (ω)
|ω|
2π

∫
R
eωix·ξ sgn (ξ)e−|ωξ|ydξ

=− i sgn (ω)
|ω|
2π

[∫ ∞

0
eωix·ξe−|ω|ξydξ −

∫ 0

−∞
eωix·ξe|ω|ξydξ

]
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=− i sgn (ω)
|ω|
2π

[∫ ∞

0
eωix·ξe−|ω|ξydξ −

∫ ∞

0
e−ωix·ξe−|ω|ξydξ

]
=− i sgn (ω)

|ω|
2π

∫ ∞

0

(
eωix·ξ − e−ωix·ξ

) ∂ξe−|ω|ξy

−|ω|y
dξ

=i sgn (ω)
1

2πy

[ (
eωix·ξ − e−ωix·ξ

)
e−|ω|ξy

∣∣∣∞
ξ=0

−
∫ ∞

0
ωix

(
eωix·ξ + e−ωix·ξ

)
e−|ω|ξydξ

]
=
|ω|x
2πy

∫ ∞

0

(
eωix·ξ + e−ωix·ξ

)
e−|ω|ξydξ

=
|ω|x
2πy

∫
R
e−ωix·ξe−|ωξ|ydξ =

x

y
F

((
|ω|
2π

)1/2

e−|ωξ|y

)
=
x

y
Py(x) =

x

y

c1y

y2 + x2
=

c1x

y2 + x2
,

where c1 = Γ(1)/π = 1/π. That is,

Qy(x) =
1

π

x

y2 + x2
.

One can immediately verify that Q(x, y) = Qy(x) is a harmonic function in the
upper half-plane and is the conjugate of the Poisson kernel Py(x) = P (x, y). More
precisely, they satisfy Cauchy-Riemann equations

∂xP = ∂yQ = − 1

π

2xy

(y2 + x2)2
, ∂yP = −∂xQ =

1

π

x2 − y2

(y2 + x2)2
.

In Theorem 4.1.3, we studied the limit of u(x, t) as y → 0 using the fact that {Py}
is an approximation of the identity. We would like to do the same for v(x, y), but
we immediately run into an obstacle: {Qy} is not an approximation of the identity
and, in fact, Qy is not integrable for any y > 0. Formally,

lim
y→0

Qy(x) =
1

πx
,

this is not even locally integrable, so we cannot define its convolution with smooth
functions.

§ 4.1.2 Hilbert transform

We define a tempered distribution called the principal value of 1/x, abbreviated
p.v. 1/x, by 〈

p.v. 1
x
, φ

〉
= lim

ε→0

∫
|x|>ε

φ(x)

x
dx, φ ∈ S .

To see that this expression defines a tempered distribution, we rewrite it as〈
p.v. 1

x
, φ

〉
=

∫
|x|<1

φ(x)− φ(0)

x
dx+

∫
|x|>1

φ(x)

x
dx,

this holds since the integral of 1/x on ε < |x| < 1 is zero. It is now immediate that∣∣∣∣〈p.v. 1
x
, φ

〉∣∣∣∣ 6 C(‖φ′‖∞ + ‖xφ‖∞).
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Proposition 4.1.5.

In S ′(R), we have lim
y→0

Qy(x) =
1
π p.v. 1x .

Proof. For each ε > 0, the functions ψε(x) = x−1χ|x|>ε are bounded and define
tempered distributions. It follows at once from the definition that in S ′,

lim
ε→0

ψε(x) = p.v. 1
x
.

Therefore, it will suffice to prove that in S ′

lim
y→0

(
Qy −

1

π
ψy

)
= 0.

Fix φ ∈ S , then by a change of variables, we have

〈πQy − ψy, φ〉 =
∫
R

xφ(x)

y2 + x2
dx−

∫
|x|>y

φ(x)

x
dx

=

∫
|x|<y

xφ(x)

y2 + x2
dx+

∫
|x|>y

(
x

y2 + x2
− 1

x

)
φ(x)dx

=

∫
|x|<1

xφ(yx)

1 + x2
dx−

∫
|x|>1

φ(yx)

x(1 + x2)
dx.

If we take the limit as y → 0 and apply the dominated convergence theorem, we
get two integrals of odd functions on symmetric domains. Hence, the limit equals
0. �

As a consequence of this proposition, we get that

lim
y→0

Qy ∗ f(x) =
1

π
lim
ε→0

∫
|t|>ε

f(x− t)

t
dt,

and by the continuity of the Fourier transform on S ′ and by (4.1.7), we get

F

(
1

π
p.v. 1

x

)
(ξ) = −i sgn (ω)

(
|ω|
2π

)1/2

sgn (ξ).

Given a function f ∈ S , we can define its Hilbert transform by any one of the
following equivalent expressions:

Hf = lim
y→0

Qy ∗ f,

Hf =
1

π
p.v. 1

x
∗ f,

Hf =F−1(−i sgn (ω) sgn (ξ)f

∨

(ξ)).

The third expression also allows us to define the Hilbert transform of functions in
L2(R), which satisfies, with the help of Theorem 2.2.1,

‖Hf‖2 =‖Hf

∨

‖2 = ‖f

∨

‖2 = ‖f‖2, (4.1.8)

that is, H is an isometry on L2(R). Moreover, H satisfies

H2f = H(Hf) =F−1((−i sgn (ω) sgn (ξ))2f

∨

(ξ)) = −f. (4.1.9)

By Theorem 2.2.3, we have

〈Hf, g〉 =
∫
R
Hf · gdx =

∫
R

F−1(−i sgn (ω) sgn (ξ)f

∨

(ξ)) · gdx

=

∫
R
−i sgn (ω) sgn (ξ)f

∨

(ξ) · g∧(ξ)dξ
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=

∫
R
f(x) · F [−i sgn (ω) sgn (ξ)g

∧

(ξ)](x)dx

=

∫
R
f(x) · F [−i sgn (ω) sgn (ξ)g

∨

(−ξ)](x)dx

=

∫
R
f(x) · F−1[i sgn (ω) sgn (ξ)g

∨

(ξ)](x)dx

=〈f,−Hg〉, (4.1.10)

namely, the dual/conjugate operator of H is H ′ = −H . Similarly, the adjoint oper-
ator H∗ of H is uniquely defined via the identity

(f,Hg) =

∫
R
f ·Hgdx = −

∫
R
Hfḡdx = (−Hf, g) =: (H∗f, g),

that is, H∗ = −H .
Note that for given x ∈ R, Hf(x) is defined for all f ∈ L1(R) satisfying the

following Hölder condition near the point x:

|f(x)− f(t)| 6 Cx|x− t|εx

for some Cx > 0 and εx > 0 whenever |t− x| < δx. Indeed, suppose that this is the
case, then

lim
y→0

Qy ∗ f(x) =
1

π
lim
ε→0

∫
ε<|x−t|<δx

f(t)

x− t
dt+

1

π

∫
|x−t|>δx

f(t)

x− t
dt

=
1

π
lim
ε→0

∫
ε<|x−t|<δx

f(t)− f(x)

x− t
dt+

1

π

∫
|x−t|>δx

f(t)

x− t
dt.

Both integrals converge absolutely, and hence the limit of Qy ∗ f(x) exists as y → 0.
Therefore, the Hilbert transform of a piece-wise smooth integrable function is well-
defined at all points of Hölder-Lipschitz continuity of the function. On the other
hand, observe that Qy ∗ f is well-defined for all f ∈ Lp(R), 1 6 p <∞, as it follows
from the Hölder inequality, since Qy(x) is in Lp

′
(R). Indeed,

‖πQy‖p
′

p′ =2

∫ ∞

0

(
x

x2 + y2

)p′
dx

=2y1−p
′
∫ ∞

0

(
x

x2 + 1

)p′
dx

=2y1−p
′
∫ π/2

0
sinp′ θ cosp′−2 θdθ (let x = tan θ)

=y1−p
′
B(p′ + 1, p′ − 1),

where the Beta function converges if p′ − 1 > 0. Thus, we obtain for p′ ∈ (1,∞),

‖Qy‖p′ =
1

π
(B(p′ + 1, p′ − 1))1/p

′
y−1/p, and ‖Qy‖∞ =

1

2πy
.

Definition 4.1.6.

The truncated Hilbert transform (at height ε) of a function f ∈ Lp(R), 1 6
p <∞, is defined by

H(ε)f(x) =
1

π

∫
|y|>ε

f(x− y)

y
dy =

1

π

∫
|x−y|>ε

f(y)

x− y
dy.

Observe that H(ε)f is well-defined for all f ∈ Lp(R), 1 6 p < ∞. This follows
from Hölder’s inequality, since 1/x is integrable to the power p′ on the set |x| > ε.
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It is clear that the Hilbert transform of f ∈ S can be given by

Hf(x) = lim
ε→0

H(ε)f(x). (4.1.11)

Example 4.1.7. Consider the characteristic function χ[a,b] of an interval [a, b]. It is a
simple calculation to show that

H(χ[a,b])(x) =
1

π
ln |x− a|

|x− b|
. (4.1.12)

Let us verify this identity. By the definition, we have

H(χ[a,b])(x) =
1

π
lim
ε→0

∫
|y|>ε

χ[a,b](x− y)

y
dy =

1

π
lim
ε→0

∫
|y|>ε

x−b6y6x−a

1

y
dy.

It is clear that it will be −∞ and +∞ at x = a and x = b, respectively. Thus, we
only need to consider three cases: x − b > 0, x − a < 0 and x − b < 0 < x − a. For
the first two cases, we have

H(χ[a,b])(x) =
1

π

∫ x−a

x−b

1

y
dy =

1

π
ln |x− a|

|x− b|
.

For the third case we get (without loss of generality, we can assume ε < min(|x −
a|, |x− b|))

H(χ[a,b])(x) =
1

π
lim
ε→0

(∫ −ε

x−b

1

y
dy +

∫ x−a

ε

1

y
dy

)
=
1

π
lim
ε→0

(
ln |x− a|

ε
+ ln ε

|x− b|

)
=
1

π
ln |x− a|

|x− b|
,

where it is crucial to observe how the cancellation of the odd kernel 1/x is mani-
fested. Note that H(χ[a,b])(x) blows up logarithmically for x near the points a and
b and decays like x−1 as x→ ±∞. See the following graph with a = 1 and b = 3:

The following is a graph of the function H(χ[−10,0]∪[1,2]∪[4,7]):
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It is obvious, for the dilation operator δε with ε > 0, by changes of variables
(εy → y), that

(Hδε)f(x) = lim
σ→0

1

π

∫
|y|>σ

f(εx− εy)

y
dy

= lim
σ→0

∫
|y|>εσ

f(εx− y)

y
dy = (δεH)f(x),

so Hδε = δεH ; and it follows obviously that Hδε = −δεH , if ε < 0.
These simple considerations of dilation “invariance” and the obvious transla-

tion invariance in fact characterize the Hilbert transform.

Proposition 4.1.8: Characterization of Hilbert transform

Suppose T is a bounded linear operator on L2(R) which satisfies the follow-
ing properties:
(a) T commutes with translations;
(b) T commutes with positive dilations;
(c) T anticommutes with the reflections.
Then, T is a constant multiple of the Hilbert transform.

Proof. Since T commutes with translations and maps L2(R) to itself, according to
Theorem 2.5.6, there is a bounded function m(ξ) such that Tf

∨

(ξ) = m(ξ)f

∨

(ξ). The
assumptions (b) and (c) may be written as Tδεf = sgn (ε)δεTf for all f ∈ L2(R).
By part (iv) in Proposition 2.1.2, we have

F (Tδεf)(ξ) =m(ξ)F (δεf)(ξ) = m(ξ)|ε|−1f

∨

(ξ/ε),

sgn (ε)F (δεTf)(ξ) = sgn (ε)|ε|−1Tf

∨

(ξ/ε) = sgn (ε)|ε|−1m(ξ/ε)f

∨

(ξ/ε),

which means m(εξ) = sgn (ε)m(ξ), if ε 6= 0. This shows that m(ξ) = c sgn (ξ), and
the proposition is proved. �

§ 4.1.3 Lp boundedness of Hilbert transform

The next theorem shows that the Hilbert transform, now defined for functions
in S or L2, can be extended to functions in Lp, 1 6 p <∞.

Theorem 4.1.9.

For f ∈ S (R), the following assertions hold:
(i) (Kolmogorov) H is of weak type (1, 1):

µ({x ∈ R : |Hf(x)| > α}) 6 C

α
‖f‖1.

(ii) (M. Riesz) H is of type (p, p), 1 < p <∞:

‖Hf‖p 6 Cp‖f‖p.
Therefore, the Hilbert transform H admits an extension to a bounded opera-
tor on Lp(R) when 1 < p <∞.

Proof. (i) Fix α > 0. From the Calderón-Zygmund decomposition of f at height α
(Theorem 3.3.4), there exist two functions g and b such that f = g + b and

(1) ‖g‖1 6 ‖f‖1 and ‖g‖∞ 6 2α.
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(2) b =
∑

j bj , where each bj is supported in a dyadic interval Ij satisfying∫
Ij
bj(x)dx = 0 and ‖bj‖1 6 4αµ(Ij). Furthermore, the intervals Ij and Ik have

disjoint interiors when j 6= k.
(3)
∑

j µ(Ij) 6 α−1‖f‖1.
Let 2Ij be the interval with the same center as Ij and twice the length, and let

Ω = ∪jIj and Ω∗ = ∪j2Ij . Then µ(Ω∗) 6 2µ(Ω) 6 2α−1‖f‖1.
Since Hf = Hg + Hb, from parts (iv) and (vi) of Proposition 1.1.3, (4.1.8) and

(1), we have

(Hf)∗(α) 6 (Hg)∗(α/2) + (Hb)∗(α/2)

6(α/2)−2

∫
R
|Hg(x)|2dx+ µ(Ω∗) + µ({x /∈ Ω∗ : |Hb(x)| > α/2})

6 4

α2

∫
R
|g(x)|2dx+ 2α−1‖f‖1 + 2α−1

∫
R\Ω∗

|Hb(x)|dx

6 8

α

∫
R
|g(x)|dx+

2

α
‖f‖1 +

2

α

∫
R\Ω∗

∑
j

|Hbj(x)|dx

6 8

α
‖f‖1 +

2

α
‖f‖1 +

2

α

∑
j

∫
R\2Ij

|Hbj(x)|dx.

For x /∈ 2Ij , we have

Hbj(x) =
1

π
p.v.

∫
Ij

bj(y)

x− y
dy =

1

π

∫
Ij

bj(y)

x− y
dy,

since supp bj ⊂ Ij and |x − y| > µ(Ij)/2 for y ∈ Ij . Denote the center of Ij by cj ,
then, since bj is mean value zero, we have∫

R\2Ij
|Hbj(x)|dx =

∫
R\2Ij

∣∣∣∣∣ 1π
∫
Ij

bj(y)

x− y
dy

∣∣∣∣∣ dx
=
1

π

∫
R\2Ij

∣∣∣∣∣
∫
Ij

bj(y)

(
1

x− y
− 1

x− cj

)
dy

∣∣∣∣∣ dx
6 1

π

∫
Ij

|bj(y)|

(∫
R\2Ij

|y − cj |
|x− y||x− cj |

dx

)
dy

6 1

π

∫
Ij

|bj(y)|

(∫
R\2Ij

µ(Ij)

|x− cj |2
dx

)
dy.

The last inequality follows from the fact that |y − cj | < µ(Ij)/2 and |x − y| >
|x− cj |/2. Since |x− cj | > µ(Ij), the inner integral equals

2µ(Ij)

∫ ∞

µ(Ij)

1

r2
dr = 2µ(Ij)

1

µ(Ij)
= 2.

Thus, by (2) and (3),

(Hf)∗(α) 6
10

α
‖f‖1 +

4

απ

∑
j

∫
Ij

|bj(y)|dy 6 10

α
‖f‖1 +

4

απ

∑
j

4αµ(Ij)

610

α
‖f‖1 +

16

π

1

α
‖f‖1 =

10 + 16/π

α
‖f‖1.

(ii) Since H is of weak type (1, 1) and of type (2, 2), by the Marcinkiewicz in-
terpolation theorem, we have the strong type (p, p) inequality for 1 < p < 2. If
p > 2, we apply the dual estimates with the help of (4.1.10) and the result for p′ < 2
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(where 1/p+ 1/p′ = 1):

‖Hf‖p = sup
∥g∥p′61

|〈Hf, g〉| = sup
∥g∥p′61

|〈f,Hg〉|

6‖f‖p sup
∥g∥p′61

‖Hg‖p′ 6 Cp′‖f‖p.

This completes the proof. �

Remark 4.1.10. i) Recall from the proof of the Marcinkiewicz interpolation theorem
that the coefficient

Cp =


(10 + 16/π)p

p− 1
+

2
√
2

2− p
, 1 < p < 2,

(10 + 16/π)p+ 2
√
2
p− 1

p− 2
, p > 2.

So the constant Cp tends to infinity as p tends to 1 or ∞. More precisely,

Cp = O(p) as p→ ∞, and Cp = O((p− 1)−1) as p→ 1.

ii) The strong (p, p) inequality is false if p = 1 or p = ∞, this can be easily
seen from the previous example Hχ[a,b] =

1
π ln |x−a|

|x−b| which is neither integrable nor
bounded. See the following figure.

Hχ[1,2]

The integral

iii) By using the inequalities in Theorem 4.1.9, we can extend the Hilbert trans-
form to functions in Lp, 1 6 p <∞. If f ∈ L1 and {fn} is a sequence of functions in
S that converges to f in L1, then by the weak (1, 1) inequality the sequence {Hfn}
is a Cauchy sequence in measure: for any ε > 0,

lim
m,n→∞

µ({x ∈ R : |(Hfn −Hfm)(x)| > ε}) = 0.

Therefore, it converges in measure to a measurable function which we define to be
the Hilbert transform of f .

If f ∈ Lp, 1 < p < ∞, and {fn} is a sequence of functions in S that converges
to f in Lp, by the strong (p, p) inequality, {Hfn} is a Cauchy sequence in Lp, so it
converges to a function in Lp which we call the Hilbert transform of f .

In either case, a subsequence of {Hfn}, depending on f , converges pointwise
almost everywhere to Hf as defined.

§ 4.1.4 The maximal Hilbert transform and its Lp boundedness

We now introduce the maximal Hilbert transform.
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Definition 4.1.11.

The maximal Hilbert transform is the operator

H(∗)f(x) = sup
ε>0

|H(ε)f(x)| (4.1.13)

defined for all f ∈ Lp, 1 6 p <∞.

Since H(ε)f is well-defined, H(∗)f makes sense for f ∈ Lp(R), although for
some values of x, H(∗)f(x) may be infinite.

Example 4.1.12. Using the result of Example 4.1.7, we obtain that

H(∗)χ[a,b](x) =
1

π

∣∣∣∣ln |x− a|
|x− b|

∣∣∣∣ = ∣∣Hχ[a,b](x)
∣∣ .

However, in general, H(∗)f(x) 6= |Hf(x)| by taking f to be the characteristic func-
tion of the union of two disjoint closed intervals. (We leave the calculation to the
readers.)

The definition of H gives that H(ε)f converges pointwise to Hf whenever f ∈
D(R). If we have the estimate ‖H(∗)f‖p 6 Cp‖f‖p for f ∈ Lp(R), 1 6 p < ∞,
Theorem 3.2.13 yields that H(ε)f converges to Hf a.e. as ε → 0 for any f ∈ Lp(R).
This limit a.e. provides a way to describe Hf for general f ∈ Lp(R). Note that
Theorem 4.1.9 implies only that H has a (unique) bounded extension on Lp, but it
does not provide a way to describe Hf when f is a general Lp function.

The next theorem is a simple consequence of this ideas.

Theorem 4.1.13.

There exists a constant C such that for all p ∈ (1,∞), we have

‖H(∗)f‖p 6 C max(p, (p− 1)−2)‖f‖p. (4.1.14)

Moreover, for all f ∈ Lp(R), H(ε)f converges to Hf a.e. and in Lp.

Proof. Recall the kernels

Pε =
1

π

ε

x2 + ε2
, Qε =

1

π

x

x2 + ε2
.

From Corollary 2.1.23 and (4.1.7), we know

Pε

∨

(ξ) =

(
|ω|
2π

)1/2

e−ε|ωξ|, Qε

∨

(ξ) = −i sgn (ωξ)

(
|ω|
2π

)1/2

e−ε|ωξ|.

Thus,

f ∗Qε

∨

= −i sgn (ωξ)e−ε|ωξ|f

∨

= e−ε|ωξ|Hf

∨

=

(
|ω|
2π

)−1/2

Pε

∨

Hf

∨

= Pε ∗Hf

∨

,

which implies for all f ∈ Lp

f ∗Qε = Hf ∗ Pε, ε > 0. (4.1.15)

Then, we have

H(ε)f = H(ε)f − f ∗Qε +Hf ∗ Pε. (4.1.16)

Using the identity

H(ε)f(x)− (f ∗Qε)(x) =− 1

π

[∫ ∞

−∞

tf(x− t)

t2 + ε2
dt−

∫
|t|>ε

f(x− t)

t
dt

]
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=− 1

π

∫
R
f(x− t)ψε(t)dt, (4.1.17)

where ψε(x) = ε−1ψ(ε−1x) and

ψ(t) =


t

t2 + 1
− 1

t
, if |t| > 1,

t

t2 + 1
, if |t| < 1.

Note that ψ has integral zero since ψ is an odd function and is integrable over the
line. Indeed, ∫

R
|ψ(t)|dt =

∫
|t|>1

∣∣∣∣ t

t2 + 1
− 1

t

∣∣∣∣ dt+ ∫
|t|<1

|t|
t2 + 1

dt

=

∫
|t|>1

1

(t2 + 1)|t|
dt+

∫
|t|<1

|t|
t2 + 1

dt

=

∫ ∞

1

dt2

(t2 + 1)t2
+

∫ 1

0

dt2

t2 + 1

=

∫ ∞

1

ds

(s+ 1)s
+

∫ 1

0

ds

s+ 1

=

∫ ∞

1

(
1

s
− 1

s+ 1

)
ds+

∫ 1

0

ds

s+ 1

=

[
ln
∣∣∣∣ s

s+ 1

∣∣∣∣]∞
1

+ [ln |s+ 1|]10

=2 ln 2.

The least decreasing radial majorant of ψ is

Ψ(t) = sup
|s|>|t|

|ψ(s)| =


1

(t2 + 1)|t|
, if |t| > 1,

1

2
, if |t| < 1,

since the function g(x) = x
x2+1

is increasing for x ∈ [0, 1] and decreasing for x ∈
(1,∞). It is easy to see that ‖Ψ‖1 = ln 2 + 1. It follows from Theorem 3.2.12 that

sup
ε>0

|H(ε)f(x)− (f ∗Qε)(x)| 6
ln 2 + 1

π
Mf(x). (4.1.18)

In view of (4.1.16) and (4.1.18), from Theorem 4.1.3 we obtain for f ∈ Lp(R) that

|H(∗)f(x)| = sup
ε>0

|H(ε)f(x)| 6 sup
ε>0

|H(ε)f(x)− (f ∗Qε)(x)|+ sup
ε>0

|Hf ∗ Pε|

6 ln 2 + 1

π
Mf(x) +M(Hf)(x).

It follows immediately from Theorems 3.2.7 and 4.1.9 that H(∗) is Lp bounded with
norm at most C max(p, (p− 1)−2).

Applying Corollary 2.1.16 to (4.1.17), we have lim
ε→0

‖H(ε)f − (f ∗Qε)‖p = 0 since

ψ has integral zero. By Theorem 2.1.15, we also have lim
ε→0

‖Hf ∗ Pε − Hf‖p = 0.

Thus, from (4.1.16), it follows that lim
ε→0

‖H(ε)f − Hf‖p = 0 and therefore we also

have H(ε)f → Hf a.e. as ε→ 0. �
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§ 4.2 Calderón-Zygmund singular integrals

From this section on, we are going to consider singular integrals whose kernels
have the same essential properties as the kernel of the Hilbert transform. We can
generalize Theorem 4.1.9 to get the following result.

Theorem 4.2.1: Calderón-Zygmund Theorem

Let K be a tempered distribution in Rn which coincides with a locally inte-
grable function on Rn \ {0} and satisfies

|K

∨

(ξ)| 6
(
|ω|
2π

)n/2
B, (4.2.1)∫

|x|>2|y|
|K(x− y)−K(x)|dx 6 B, y ∈ Rn. (4.2.2)

Then we have the strong type (p, p) estimate for 1 < p <∞
‖K ∗ f‖p 6 Cp‖f‖p, (4.2.3)

and the weak type (1, 1) estimate

(K ∗ f)∗(α) 6
C

α
‖f‖1. (4.2.4)

We will show that these inequalities are true for f ∈ S , but they can be ex-
tended to arbitrary f ∈ Lp as we did for the Hilbert transform. Condition (4.2.2) is
usually referred to as the Hörmander condition; in practice it is often deduced from
another stronger condition called the gradient condition (i.e., (4.2.5) as below).

Proposition 4.2.2.

The Hörmander condition (4.2.2) holds if for every x 6= 0

|∇K(x)| 6 C

|x|n+1
. (4.2.5)

Proof. By the integral mean value theorem and (4.2.5), we have∫
|x|>2|y|

|K(x− y)−K(x)|dx 6
∫
|x|>2|y|

∫ 1

0
|∇K(x− θy)||y|dθdx

6
∫ 1

0

∫
|x|>2|y|

C|y|
|x− θy|n+1

dxdθ 6
∫ 1

0

∫
|x|>2|y|

C|y|
(|x|/2)n+1

dxdθ

62n+1C|y|ωn−1

∫ ∞

2|y|

1

r2
dr = 2n+1C|y|ωn−1

1

2|y|
= 2nCωn−1.

This completes the proof. �

Proof of Theorem 4.2.1. Let f ∈ S and Tf = K ∗ f . From (4.2.1), it follows that

‖Tf‖2 =‖Tf

∨

‖2 =
(
|ω|
2π

)−n/2
‖K

∨

f

∨

‖2

6
(
|ω|
2π

)−n/2
‖K

∨

‖∞‖f

∨

‖2 6 B‖f

∨

‖2

=B‖f‖2,

(4.2.6)

by the Plancherel theorem (Theorem 2.2.1) and part (vi) in Proposition 2.1.2.
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It will suffice to prove that T is of weak type (1, 1) since the strong (p, p) in-
equality, 1 < p < 2, follows from the interpolation, and for p > 2 it follows from
the duality since the conjugate operator T ′ has kernel K ′(x) = K(−x) which also
satisfies (4.2.1) and (4.2.2). In fact,

〈Tf, ϕ〉 =
∫
Rn

Tf(x)ϕ(x)dx =

∫
Rn

∫
Rn

K(x− y)f(y)dyϕ(x)dx

=

∫
Rn

∫
Rn

K(−(y − x))ϕ(x)dxf(y)dy =

∫
Rn

∫
Rn

(K ′ ∗ ϕ)(y)f(y)dy

=〈f, T ′ϕ〉.
To show that f is of weak type (1, 1), fix α > 0 and from the Calderón-Zygmund

decomposition of f at height α, then as in Theorem 4.1.9, we can write f = g + b,
where

(i) ‖g‖1 6 ‖f‖1 and ‖g‖∞ 6 2nα.
(ii) b =

∑
j bj , where each bj is supported in a dyadic cube Qj satisfying∫

Qj

bj(x)dx = 0 and ‖bj‖1 6 2n+1αµ(Qj).

Furthermore, the cubes Qj and Qk have disjoint interiors when j 6= k.
(iii)

∑
j µ(Qj) 6 α−1‖f‖1.

The argument now proceeds as in Theorem 4.1.9, and the proof reduces to
showing that ∫

Rn\Q∗
j

|Tbj(x)|dx 6 C

∫
Qj

|bj(x)|dx, (4.2.7)

where Q∗
j is the cube with the same center as Qj and whose sides are 2

√
n times

longer. Denote their common center by cj . Inequality (4.2.7) follows from the Hör-
mander condition (4.2.2): since each bj has zero average, if x /∈ Q∗

j

Tbj(x) =

∫
Qj

K(x− y)bj(y)dy =

∫
Qj

[K(x− y)−K(x− cj)]bj(y)dy;

hence,∫
Rn\Q∗

j

|Tbj(x)|dx 6
∫
Qj

(∫
Rn\Q∗

j

|K(x− y)−K(x− cj)|dx

)
|bj(y)|dy.

By changing variables x−cj = x′ and y−cj = y′, and the fact that |x−cj | > 2|y−cj |
for all x /∈ Q∗

j and y ∈ Qj as an obvious geometric consideration shows, and (4.2.2),
we get∫

Rn\Q∗
j

|K(x− y)−K(x− cj)|dx 6
∫
|x′|>2|y′|

|K(x′ − y′)−K(x′)|dx′ 6 B.

Since the remainder proof is (essentially) a repetition of the proof of Theorem 4.1.9,
we omit the details and complete the proof. �

There is still an element which may be considered unsatisfactory in our formu-
lation because of the following related points:

1) The L2 boundedness of the operator has been assumed via the hypothesis
that K

∨

∈ L∞ and not obtained as a consequence of some condition on the kernel
K;

2) An extraneous condition such as K ∈ L2 subsists in the hypothesis; and
for this reason our results do not directly treat the “principal-value” singular inte-
grals, those which exist because of the cancelation of positive and negative values.

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



- 116 - Chengchun HAO

However, from what we have done, it is now a relatively simple matter to obtain a
theorem which covers the cases of interest.

Definition 4.2.3.

Suppose that K ∈ L1
loc(Rn \ {0}) and satisfies the following conditions:

|K(x)| 6 B|x|−n, ∀x 6= 0,∫
|x|>2|y|

|K(x− y)−K(x)|dx 6 B, ∀y 6= 0,
(4.2.8)

and ∫
R1<|x|<R2

K(x)dx = 0, ∀0 < R1 < R2 <∞. (4.2.9)

Then K is called the Calderón-Zygmund kernel, where B is a constant inde-
pendent of x and y.

Theorem 4.2.4.

Suppose that K is a Calderón-Zygmund kernel. For ε > 0 and f ∈ Lp(Rn),
1 < p <∞, let

Tεf(x) =

∫
|y|>ε

f(x− y)K(y)dy. (4.2.10)

Then the following conclusions hold:
(i) We have

‖Tεf‖p 6 Ap‖f‖p (4.2.11)

where Ap is independent of f and ε.
(ii) For any f ∈ Lp(Rn), limε→0 Tε(f) exists in the sense of Lp norm. That is,
there exists an operator T such that

Tf(x) = p.v.
∫
Rn

K(y)f(x− y)dy.

(iii) ‖Tf‖p 6 Ap‖f‖p for f ∈ Lp(Rn).

Remark 4.2.5. 1) The linear operator T defined by (ii) of Theorem 4.2.4 is called
the Calderón-Zygmund singular integral operator. Tε is also called the truncated
operator of T .

2) The cancelation property alluded to is contained in condition (4.2.9). This
hypothesis, together with (4.2.8), allows us to prove the L2 boundedness and the
Lp convergence of the truncated integrals (4.2.11).

3) We should point out that the kernel K(x) = 1
πx , x ∈ R, clearly satisfies the

hypotheses of Theorem 4.2.4. Therefore, we have the existence of the Hilbert trans-
form in the sense that if f ∈ Lp(R), 1 < p <∞, then

lim
ε→0

1

π

∫
|y|>ε

f(x− y)

y
dy

exists in the Lp norm and the resulting operator is bounded in Lp, as has shown in
Theorem 4.1.9.

For L2 boundedness, we have the following lemma.
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Lemma 4.2.6.

Suppose that K satisfies the conditions (4.2.8) and (4.2.9) of the above defini-
tion with bound B. Let

Kε(x) =

{
K(x), |x| > ε,

0, |x| < ε.

Then, we have the estimate

sup
ξ

|Kε

∨

(ξ)| 6
(
|ω|
2π

)n/2
CB, ε > 0, (4.2.12)

where C depends only on the dimension n.

Proof. First, we prove the inequality (4.2.12) for the special case ε = 1. Since
K1

∨

(0) = 0, thus we can assume ξ 6= 0 and have

K1

∨

(ξ) =

(
|ω|
2π

)n/2 ∫
Rn

e−ωix·ξK1(x)dx

=

(
|ω|
2π

)n/2 ∫
|x|<2π/(|ω||ξ|)

e−ωix·ξK1(x)dx

+

(
|ω|
2π

)n/2 ∫
2π/(|ω||ξ|)6|x|

e−ωix·ξK1(x)dx

=:I1 + I2.

By the condition (4.2.9),
∫
1<|x|<2π/(|ω||ξ|)K(x)dx = 0 which implies∫

|x|<2π/(|ω||ξ|)
K1(x)dx = 0.

Thus,
∫
|x|<2π/(|ω||ξ|) e

−ωix·ξK1(x)dx =
∫
|x|<2π/(|ω||ξ|)[e

−ωix·ξ−1]K1(x)dx. Hence, from
the fact |eiθ − 1| 6 |θ| (see Section 2.1) and the first condition in (4.2.8), we get(

|ω|
2π

)−n/2
|I1| 6

∫
|x|<2π/(|ω||ξ|)

|ω||x||ξ||K1(x)|dx 6 |ω|B|ξ|
∫
|x|<2π/(|ω||ξ|)

|x|−n+1dx

=ωn−1B|ω||ξ|
∫ 2π/(|ω||ξ|)

0
dr = 2πωn−1B.

To estimate I2, choose z = z(ξ) such that e−ωiξ·z = −1. This choice can be
realized if z = πξ/(ω|ξ|2), with |z| = π/(|ω||ξ|). Since, by changing variables x+z =
y, we get∫

Rn

e−ωix·ξK1(x)dx =−
∫
Rn

e−ωi(x+z)·ξK1(x)dx = −
∫
Rn

e−ωiy·ξK1(y − z)dy

=−
∫
Rn

e−ωix·ξK1(x− z)dx,

which implies
∫
Rn e

−ωix·ξK1(x)dx = 1
2

∫
Rn e

−ωix·ξ[K1(x) − K1(x − z)]dx, then we
have (

|ω|
2π

)−n/2
I2 =

(∫
Rn

−
∫
|x|<2π/(|ω||ξ|)

)
e−ωix·ξK1(x)dx

=
1

2

∫
Rn

e−ωix·ξ[K1(x)−K1(x− z)]dx

−
∫
|x|<2π/(|ω||ξ|)

e−ωix·ξK1(x)dx
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=
1

2
lim
R→∞

∫
2π/(|ω||ξ|)6|x|6R

e−ωix·ξ[K1(x)−K1(x− z)]dx

− 1

2

∫
|x|<2π/(|ω||ξ|)

e−ωix·ξK1(x)dx

− 1

2

∫
|x|<2π/(|ω||ξ|)

e−ωix·ξK1(x− z)dx.

The last two integrals are equal to, in view of the integration by parts,

− 1

2

∫
|x|<2π/(|ω||ξ|)

e−ωix·ξK1(x)dx− 1

2

∫
|y+z|<2π/(|ω||ξ|)

e−ωi(y+z)·ξK1(y)dy

=− 1

2

∫
|x|<2π/(|ω||ξ|)

e−ωix·ξK1(x)dx+
1

2

∫
|x+z|<2π/(|ω||ξ|)

e−ωix·ξK1(x)dx

=− 1

2

∫
|x|<2π/(|ω||ξ|)6|x+z|

e−ωix·ξK1(x)dx+
1

2

∫
|x+z|<2π/(|ω||ξ|)6|x|

e−ωix·ξK1(x)dx.

2π
|ω||ξ|O

−z

For the first integral, we have 2π/(|ω||ξ|) > |x| > |x +

z| − |z| > 2π/(|ω||ξ|)− π/(|ω||ξ|) = π/(|ω||ξ|), and for the
second one, 2π/(|ω||ξ|) < |x| 6 |x+ z|+ |z| 6 3π/(|ω||ξ|).
These two integrals are taken over a region contained in
the spherical shell, π/(|ω||ξ|) < |x| 6 3π/(|ω||ξ|) (see the
figure), and is bounded by 1

2Bωn−1 ln 3 since |K1(x)| 6
B|x|−n. By |z| = π/(|ω||ξ|) and the condition (4.2.8), the
first integral of I2 is majorized by

1

2

∫
|x|>2π/(|ω||ξ|)

|K1(x− z)−K1(x)|dx

=
1

2

∫
|x|>2|z|

|K1(x− z)−K1(x)|dx 6 1

2
B.

Thus, we have obtained

|K1

∨

(ξ)| 6
(
|ω|
2π

)n/2(
2πωn−1B +

1

2
B +

1

2
Bωn−1 ln 3

)
6 Cn

(
|ω|
2π

)n/2
B,

where C depends only on n. We finish the proof for K1.
To pass to the case of general Kε, we use a simple observation (dilation argu-

ment) whose significance carries over to the whole theory presented in this chapter.
Let δε be the dilation by the factor ε > 0, i.e., (δεf)(x) = f(εx). Thus if T is a

convolution operator

Tf(x) = ϕ ∗ f(x) =
∫
Rn

ϕ(x− y)f(y)dy,

then

δε
−1
Tδεf(x) =

∫
Rn

ϕ(ε−1x− y)f(εy)dy

=ε−n
∫
Rn

ϕ(ε−1(x− z))f(z)dz = ϕε ∗ f,

where ϕε(x) = ε−nϕ(ε−1x). In our case, if T corresponds to the kernel K(x), then
δε

−1
Tδε corresponds to the kernel ε−nK(ε−1x). Notice that if K satisfies the as-

sumptions of our theorem, then ε−nK(ε−1x) also satisfies these assumptions with
the same bounds. (A similar remark holds for the assumptions of all the theorems
in this chapter.) Now, with our K given, let K ′ = εnK(εx). Then K ′ satisfies the
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conditions of our lemma with the same bound B, and so if we denote

K ′
1(x) =

{
K ′(x), |x| > 1,

0, |x| < 1,

then we know that |K ′
1

∨

(ξ)| 6
(
|ω|
2π

)n/2
CB. The Fourier transform of ε−nK ′

1(ε
−1x)

is K ′
1

∨

(εξ) which is again bounded by
(
|ω|
2π

)n/2
CB; however ε−nK ′

1(ε
−1x) = Kε(x),

therefore the lemma is completely proved. �

We can now prove Theorem 4.2.4.

Proof of Theorem 4.2.4. Since K satisfies the conditions (4.2.8) and (4.2.9), then
Kε(x) satisfies the same conditions with bounds not greater than CB. By Lemma
4.2.6 and Theorem 4.2.1, we have that the Lp boundedness of the operators {Kε}ε>0

is uniform. Thus, (i) holds.

Next, we prove that {Tεf1}ε>0 is a Cauchy sequence inLp provided f1 ∈ C1
c(Rn).

In fact, we have

Tεf1(x)− Tηf1(x) =

∫
|y|>ε

K(y)f1(x− y)dy −
∫
|y|>η

K(y)f1(x− y)dy

= sgn (η − ε)

∫
min(ε,η)6|y|6max(ε,η)

K(y)[f1(x− y)− f1(x)]dy,

because of the cancelation condition (4.2.9). For p ∈ (1,∞), we get, by the mean
value theorem with some θ ∈ [0, 1], Minkowski’s inequality and (4.2.8), that

‖Tεf1 − Tηf1‖p 6
∥∥∥∥∥
∫

min(ε,η)6|y|6max(ε,η)
|K(y)||∇f1(x− θy)||y|dy

∥∥∥∥∥
p

6
∫

min(ε,η)6|y|6max(ε,η)
|K(y)|‖∇f1(x− θy)‖p|y|dy

6C
∫

min(ε,η)6|y|6max(ε,η)
|K(y)||y|dy

6CB
∫

min(ε,η)6|y|6max(ε,η)
|y|−n+1dy

=CBωn−1

∫ max(ε,η)

min(ε,η)
dr

=CBωn−1|η − ε|

which tends to 0 as ε, η → 0. Thus, we obtain Tεf1 converges in Lp as ε → 0 by the
completeness of Lp.

Finally, an arbitrary f ∈ Lp can be written as f = f1 + f2 where f1 is of the
type described above and ‖f2‖p is small. We apply the basic inequality (4.2.11) for
f2 to get ‖Tεf2‖p 6 C‖f2‖p, then we see that limε→0 Tεf exists in Lp norm; that the
limiting operator T also satisfies the inequality (4.2.11) is then obvious. Thus, we
complete the proof of the theorem. �
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§ 4.3 L2 boundedness of homogeneous singular integrals

Definition 4.3.1.

Let Ω ∈ L1(Sn−1) with mean value zero. For 0 < ε < N < ∞ and f ∈
∪16p<∞L

p(Rn), we define the truncated singular integral

T
(ε,N)
Ω f(x) =

∫
ε6|y|6N

f(x− y)
Ω(y/|y|)

|y|n
dy. (4.3.1)

Note that for f ∈ Lp(Rn), we have by Young’s inequality

‖T (ε,N)
Ω f‖p 6‖f‖p

∫
ε6|y|6N

|Ω(y/|y|)|
|y|n

dy

=‖f‖p
∫ N

ε

∫
Sn−1

|Ω(y′)|
rn

rn−1dσ(y′)dr

=‖f‖p‖Ω‖L1(Sn−1) ln N
ε
,

which implies that (4.3.1) is finite a.e. and therefore well-defined.
We also note that the cancellation condition (4.2.9) is the same as the mean value

zero condition ∫
Sn−1

Ω(x)dσ(x) = 0

where K(x) = Ω(x/|x|)
|x|n and dσ(x) is the induced Euclidean measure on Sn−1. In

fact, this equation implies that∫
R1<|x|<R2

K(x)dx =

∫ R2

R1

∫
Sn−1

Ω(x′)

rn
dσ(x′)rn−1dr

= ln
(
R2

R1

)∫
Sn−1

Ω(x′)dσ(x′).

Definition 4.3.2.

We denote by TΩ the singular integral operator whose kernel is p.v. Ω(x/|x|)
|x|n ,

i.e., for f ∈ S (Rn)

TΩf(x) = p.v. Ω(·/| · |)
| · |n

∗ f(x) = lim
ε→0

N→∞

T
(ε,N)
Ω f(x).

The associated maximal singular integral is defined by

T
(∗∗)
Ω f = sup

0<N<∞
sup

0<ε<N
|T (ε,N)

Ω f |. (4.3.2)

We note that if Ω is bounded, there is no need to use the upper truncations in
the definition of T (ε,N)

Ω given in (4.3.1). In this case, the maximal singular integrals
could be defined as

T
(∗)
Ω f = sup

ε>0
|T (ε)

Ω f |, (4.3.3)

where for f ∈ ∪16p<∞L
p(Rn), ε > 0 and x ∈ Rn, T (ε)

Ω f(x) is defined in term of
absolutely convergent integral

T
(ε)
Ω f(x) =

∫
|y|>ε

Ω(y/|y|)
|y|n

f(x− y)dy.
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To examine the relationship between T
(∗)
Ω and T

(∗∗)
Ω for Ω ∈ L∞(Sn−1), notice

that∣∣∣T (ε,N)
Ω f(x)

∣∣∣ = ∣∣∣∣∣
∫
ε6|y|6N

Ω(y/|y|)
|y|n

f(x− y)dy

∣∣∣∣∣ 6 sup
0<N<∞

∣∣∣T (ε,N)
Ω f(x)

∣∣∣ . (4.3.4)

Then for f ∈ Lp(Rn), 1 6 p <∞, we let N → ∞ on the l.h.s. in (4.3.4), and we note
that the limit exists in view of the absolutely convergence of the integral, which is
|T (ε)

Ω f(x)|. Then we take the supremum over ε > 0 to deduce that T (∗)
Ω is pointwise

bounded by T
(∗∗)
Ω . Since T (ε,N)

Ω = T
(ε)
Ω − T

(N)
Ω , it also follows that T (∗∗)

Ω 6 2T
(∗)
Ω .

Thus, T (∗)
Ω and T

(∗∗)
Ω are pointwise comparable when Ω lies in L∞(Sn−1). This is

the case with the Hilbert transform, that is, H(∗∗) is comparable to H(∗).
Next, we would like to compute the Fourier transforms of p.v.Ω(x/|x|)/|x|n.

This provides information whether the operator TΩ is L2 bounded. We have the
following result.

Theorem 4.3.3.

Let Ω ∈ L1(Sn−1) have mean value zero. Then the Fourier transform of(
|ω|
2π

)−n/2
p.v.Ω(x/|x|)/|x|n is a bounded homogeneous function of degree 0

given by

m(ξ) =

∫
Sn−1

[
ln(1/|ξ · x|)− πi

2
sgn (ω) sgn (ξ · x)

]
Ω(x)dσ(x), |ξ| = 1.

(4.3.5)

Moreover, m ∈ L∞(Rn) and then TΩ is L2 bounded.

Proof. Since K(x) = Ω(x/|x|)/|x|n is not integrable, we first consider its truncated
function. Let 0 < ε < η <∞, and

Kε,η(x) =


Ω(x/|x|)

|x|n
, ε 6 |x| 6 η,

0, otherwise.

Clearly, Kε,η ∈ L1(Rn). If f ∈ L2(Rn) then Kε,η ∗ f

∨

(ξ) =
(
|ω|
2π

)−n/2
Kε,η

∨

(ξ)f

∨

(ξ).

We shall prove two facts about Kε,η

∨

(ξ).

(i) ‖Kε,η

∨

‖L∞ 6
(
|ω|
2π

)n/2
A, with A independent of ε and η;

(ii) lim ε→0
η→∞

Kε,η

∨

(ξ) = m(ξ) a.e., see (4.3.5).

For this purpose, it is convenient to introduce polar coordinates. Let x = rx′,
r = |x|, x′ = x/|x| ∈ Sn−1, and ξ = Rξ′, R = |ξ|, ξ′ = ξ/|ξ| ∈ Sn−1. Then we have(

|ω|
2π

)−n/2
Kε,η

∨

(ξ) =

∫
Rn

e−ωix·ξKε,η(x)dx =

∫
ε6|x|6η

e−ωix·ξ
Ω(x/|x|)

|x|n
dx

=

∫
Sn−1

Ω(x′)

(∫ η

ε
e−ωiRrx

′·ξ′r−nrn−1dr

)
dσ(x′)

=

∫
Sn−1

Ω(x′)

(∫ η

ε
e−ωiRrx

′·ξ′ dr

r

)
dσ(x′).

Since ∫
Sn−1

Ω(x′)dσ(x′) = 0,
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we can introduce the factor cos(|ω|Rr) (which does not depend on x′) in the integral
defining Kε,η

∨

(ξ). We shall also need the auxiliary integral

Iε,η(ξ, x
′) =

∫ η

ε
[e−ωiRrx

′·ξ′ − cos(|ω|Rr)]dr
r
, R > 0.

Thus, it follows (
|ω|
2π

)−n/2
Kε,η

∨

(ξ) =

∫
Sn−1

Iε,η(ξ, x
′)Ω(x′)dσ(x′).

Now, we first consider Iε,η(ξ, x′). For its imaginary part, we have, by changing
variable ωRr(x′ · ξ′) = t, that

=Iε,η(ξ, x′) =−
∫ η

ε

sin(ωRr(x′ · ξ′))
r

dr

=− sgn (ω) sgn (x′ · ξ′)
∫ |ω|Rη|x′·ξ′|

|ω|Rε|x′·ξ′|

sin t
t
dt

is uniformly bounded and converges to

− sgn (ω) sgn (x′ · ξ′)
∫ ∞

0

sin t
t
dt = −π

2
sgn (ω) sgn (x′ · ξ′),

as ε→ 0 and η → ∞.
For its real part, since cos r is an even function, we have

<Iε,η(ξ, x′) =
∫ η

ε
[cos(|ω|Rr|x′ · ξ′|)− cos(|ω|Rr)]dr

r
.

If x′ · ξ′ = ±1, then <Iε,η(ξ, x′) = 0. Now we assume 0 < ε < 1 < η. For the case
x′ · ξ′ 6= ±1, we get the absolute value of its real part∣∣<Iε,η(ξ, x′)∣∣ 6 ∣∣∣∣∫ 1

ε
−2 sin

(
|ω|
2
Rr(|x′ · ξ′|+ 1)

)
sin
(
|ω|
2
Rr(|x′ · ξ′| − 1)

)
dr

r

∣∣∣∣
+

∣∣∣∣∫ η

1
cos
(
|ω|Rr|x′ · ξ′|

) dr
r

−
∫ η

1
cos (|ω|Rr) dr

r

∣∣∣∣
6 |ω|2

2
R2(1− |x′ · ξ′|2)

∫ 1

ε
rdr

+

∣∣∣∣∣
∫ |ω|Rη|ξ′·x′|

|ω|R|ξ′·x′|

cos t
t
dt−

∫ |ω|Rη

|ω|R

cos t
t
dt

∣∣∣∣∣
6 |ω|2

4
R2 + I1.

If η|ξ′ · x′| > 1, then we have

I1 =

∣∣∣∣∣
∫ |ω|R

|ω|R|ξ′·x′|

cos t
t
dt−

∫ |ω|Rη

|ω|Rη|ξ′·x′|

cos t
t
dt

∣∣∣∣∣
6
∫ |ω|R

|ω|R|ξ′·x′|

dt

t
+

∫ |ω|Rη

|ω|Rη|ξ′·x′|

dt

t

62 ln(1/|ξ′ · x′|).
If 0 < η|ξ′ · x′| 6 1, then

I1 6
∫ |ω|R/|ξ′·x′|

|ω|R|ξ′·x′|

dt

t
6 2 ln(1/|ξ′ · x′|).

Thus, ∣∣<Iε,η(ξ, x′)∣∣ 6 |ω|2

4
R2 + 2 ln(1/|ξ′ · x′|),
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and so the real part converges as ε → 0 and η → ∞. By the fundamental theorem
of calculus, we can write∫ η

ε

cos(λr)− cos(µr)
r

dr = −
∫ η

ε

∫ λ

µ
sin(tr)dtdr = −

∫ λ

µ

∫ η

ε
sin(tr)drdt

=

∫ λ

µ

∫ η

ε

∂r cos(tr)
t

drdt =

∫ λ

µ

cos(tη)− cos(tε)
t

dt

=

∫ λη

µη

cos s
s

ds−
∫ λ

µ

cos(tε)
t

dt =
sin s
s

∣∣∣λη
µη

+

∫ λη

µη

sin s
s2

ds−
∫ λ

µ

cos(tε)
t

dt

→0−
∫ λ

µ

1

t
dt = − ln(λ/µ) = ln(µ/λ), as η → ∞, ε→ 0,

by the Lebesgue dominated convergence theorem with∫ λ

µ

∣∣∣∣cos(tε)
t

∣∣∣∣ dt 6 ∫ λ

µ

1

t
dt = ln(λ/µ).

Take λ = |ω|R|x′ · ξ′|, and µ = |ω|R. So

lim
ε→0
η→∞

<(Iε,η(ξ, x′)) =
∫ ∞

0
[cos |ω|Rr(x′ · ξ′)− cos |ω|Rr]dr

r
= ln(1/|x′ · ξ′|).

Next, we need to show (i) for all ξ ∈ Rn. By the properties of Iε,η just proved,
we have(
|ω|
2π

)−n/2
|Kε,η

∨

(ξ)| 6
∫
Sn−1

[
4 +

|ω|2

4
R2 + 2 ln(1/|ξ′ · x′|)

]
|Ω(x′)|dσ(x′) (4.3.6)

6(4 +
|ω|2

4
R2)‖Ω‖L1(Sn−1) + 2

∫
Sn−1

ln(1/|ξ′ · x′|)|Ω(x′)|dσ(x′).

For n = 1, we have S0 = {−1, 1} and then
∫
Sn−1 ln(1/|ξ′ · x′|)|Ω(x′)|dσ(x′) =

2 ln 1 = 0. For n > 2, if we can show∫
Sn−1

∫
Sn−1

ln(1/|ξ′ · x′|)|Ω(x′)|dσ(x′)dσ(ξ′) <∞,

then,
(
|ω|
2π

)−n/2
|Kε,η

∨

(ξ)| is finite a.e. We can pick an orthogonal matrix A such that
Ae1 = x′, and so by changes of variables and using the notation ȳ = (y2, y3, ..., yn),∫

Sn−1

∫
Sn−1

ln(1/|ξ′ · x′|)|Ω(x′)|dσ(x′)dσ(ξ′)

=

∫
Sn−1

∫
Sn−1

ln(1/|ξ′ ·Ae1|)dσ(ξ′)|Ω(x′)|dσ(x′)

=

∫
Sn−1

∫
Sn−1

ln(1/|e1 ·A−1ξ′|)dσ(ξ′)|Ω(x′)|dσ(x′)

A−1ξ′=y
====‖Ω‖L1(Ω)

∫
Sn−1

ln(1/|y1|)dσ(y).

If for φj ∈ [0, π] (j = 1, · · · , n− 2) and φn−1 ∈ [0, 2π], let

y1 = cosφ1
y2 = sinφ1 cosφ2
y3 = sinφ1 sinφ2 cosφ3

...

yn−1 = sinφ1 · · · sinφn−2 cosφn−1

yn = sinφ1 · · · sinφn−2 sinφn−1,
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then the volume element dSn−1σ(y) of the (n− 1)-sphere is given by

dSn−1σ(y) = sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2) dφ1 dφ2 · · · dφn−1

= sinn−3(φ1) sinn−3(φ2) · · · sin(φn−2) dy1 dφ2 · · · dφn−1

=(1− y21)
(n−3)/2dy1dSn−2σ(ȳ),

due to dy1 = sin(φ1)dφ1 and sinφ1 =
√
1− y21 . Thus, we get∫

Sn−1

ln(1/|y1|)dσ(y)

=

∫ 1

−1
ln(1/|y1|)

∫
Sn−2

(1− y21)
(n−3)/2dσ(ȳ)dy1

=ωn−2

∫ 1

−1
ln(1/|y1|)(1− y21)

(n−3)/2dy1

=2ωn−2

∫ 1

0
ln(1/|y1|)(1− y21)

(n−3)/2dy1

=2ωn−2

∫ π/2

0
ln(1/ cos θ)(sin θ)n−2dθ (let y1 = cos θ)

=2ωn−2I2.

For n > 3, we have, by integration by parts,

I2 6
∫ π/2

0
ln(1/ cos θ) sin θdθ =

∫ π/2

0
sin θdθ = 1.

For n = 2, we have by changing variables

I2 =

∫ π/2

0
ln(1/ cos θ)dθ = −

∫ π/2

0
ln(cos θ)dθ

=−
∫ π/2

0
ln sin

(π
2
− θ
)
dθ = −

∫ π/2

0
ln(sin θ)dθ

=−
∫ π/2

0
ln
(
2 sin θ

2
cos θ

2

)
dθ

=−
∫ π/2

0

(
ln 2 + ln sin θ

2
+ ln cos θ

2

)
dθ

=− π

2
ln 2− 2

∫ π/4

0
ln sinxdx− 2

∫ π/4

0
ln cosxdx

=− π

2
ln 2− 2

∫ π/4

0
ln sinxdx− 2

∫ π/2

π/4
ln sinxdx

=− π

2
ln 2 + 2I2,

which yields I2 = π
2 ln 2. Hence,

∫
Sn−1 ln(1/|ξ′ · x′|)|Ω(x′)|dσ(x′) 6 C for any ξ′ ∈

Sn−1.
Thus, we have proved the uniform boundedness of Kε,η

∨

(ξ), i.e., (i). In view of
the limit of Iε,η(ξ, x′) as ε→ 0, η → ∞ just proved, and the dominated convergence
theorem, we get (

|ω|
2π

)−n/2
lim
ε→0
η→∞

Kε,η

∨

(ξ) = m(ξ), a.e.

By the Plancherel theorem, if f ∈ L2(Rn), Kε,η ∗ f converges in L2 norm as
ε → 0 and η → ∞, and the Fourier transform of this limit is m(ξ)f

∨

(ξ). From the
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formula of the multiplier m(ξ), it is homogeneous of degree 0 in view of the mean
zero property of Ω. Thus, we obtain the conclusion. �

Remark 4.3.4. 1) In the theorem, the condition that Ω is mean value zero on Sn−1

is necessary and cannot be neglected. Since in the estimate∫
Rn

Ω(y/|y|)
|y|n

f(x− y)dy =

[∫
|y|61

+

∫
|y|>1

]
Ω(y)

|y|n
f(x− y)dy,

the main difficulty lies in the first integral. For instance, if we assume Ω(x) ≡ 1 ∈
L1(Sn−1), f(x) = χ|x|61(x) ∈ L2(Rn), then this integral is divergent for |x| 6 1/2

since ∫
Rn

Ω(y/|y|)
|y|n

f(x− y)dy =

∫
|x−y|61

1

|y|n
dy >

∫
|y|61/2

1

|y|n
dy = ∞.

2) The proof holds under very general conditions on Ω. Write Ω = Ωe+Ωo where
Ωe is the even part of Ω, Ωe(x) = Ωe(−x), and Ωo(x) is the odd part, Ωo(−x) =

−Ωo(x). Then, because of the uniform boundedness of the sine integral, i.e., =Iε,η(ξ, x′),
we required only

∫
Sn−1 |Ωo(x′)|dσ(x′) < ∞for the odd part; and for the even part,

the proof requires the uniform boundedness of∫
Sn−1

|Ωe(x′)| ln(1/|ξ′ · x′|)dσ(x′).

This observation is suggestive of certain generalizations of Theorem 4.2.4, see [Ste70,
§6.5, p.49–50]. In addition, ln(1/|ξ′ · x′|) is not bounded but any power (> 1) of it is
integrable, we immediately get the following corollary.

Corollary 4.3.5.

Given a function Ω with mean value zero on Sn−1, suppose that Ωo ∈
L1(Sn−1) and Ωe ∈ Lq(Sn−1) for some q > 1. Then, the Fourier transform of
p.v.Ω(x′)/|x|n is bounded.

If Ω ∈ L1(Sn−1) is odd, i.e., Ω(−x) = −Ω(x) for all x ∈ Sn−1, then∫
Sn−1

Ω(x) ln(1/|ξ · x|)dσ(x) = 0

for all ξ ∈ Sn−1. Thus, m ∈ L∞(Rn) by Theorem 4.3.3. We have the following result
by Theorem 2.5.6.

Corollary 4.3.6.

Given an odd function Ω ∈ L1(Sn−1), then the singular integral TΩf(x) :=

p.v.
∫
Rn

Ω(y/|y|)
|y|n

f(x− y)dy is always L2 bounded.

§ 4.4 Riesz transforms and spherical harmonics

§ 4.4.1 Riesz transforms

We look for the operators in Rn which have the analogous structural charac-
terization as the Hilbert transform. We begin by making a few remarks about the
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interaction of rotations with the n-dimensional Fourier transform. We shall need
the following elementary observation.

Let ρ denote any rotation about the origin in Rn. Denote also by ρ its induced
action on functions, ρ(f)(x) = f(ρx). Then

F (ρ(f))(ξ) =

(
|ω|
2π

)n/2 ∫
Rn

e−ωix·ξf(ρx)dx =

(
|ω|
2π

)n/2 ∫
Rn

e−ωiρ
−1y·ξf(y)dy

=

(
|ω|
2π

)n/2 ∫
Rn

e−ωiy·ρξf(y)dy = f

∨

(ρξ) = ρ(f

∨

)(ξ),

that is,

Fρ = ρF .

Let `(x) = (`1(x), `2(x), ..., `n(x)) be an n-tuple of functions defined on Rn. For
any rotation ρ about the origin, write ρ = (ρjk) for its matrix realization. Suppose
that ` transforms like a vector. Symbolically this can be written as

`(ρx) = ρ(`(x)),

or more explicitly

`j(ρx) =
∑
k

ρjk`k(x), for every rotation ρ. (4.4.1)

Lemma 4.4.1.

Suppose ` is homogeneous of degree 0, i.e., `(εx) = `(x), for ε > 0. If `
transforms according to (4.4.1) then `(x) = c x|x| for some constant c; that is

`j(x) = c
xj
|x|
. (4.4.2)

Proof. It suffices to consider x ∈ Sn−1 due to the homogeneousness of degree 0 for
`. Now, let e1, e2, ..., en denote the usual unit vectors along the axes. Set c = `1(e1).
We can see that `j(e1) = 0, if j 6= 1.

In fact, we take a rotation arbitrarily such that e1 fixed under the acting of ρ, i.e.,
ρe1 = e1. Thus, we also have e1 = ρ−1ρe1 = ρ−1e1 = ρ⊤e1. From ρe1 = ρ⊤e1 = e1,

we get ρ11 = 1 and ρ1k = ρj1 = 0 for k 6= 1 and j 6= 1. So ρ =

(
1 0

0 A

)
. Because(

1 0

0 A

)−1

=

(
1 0

0 A−1

)
and ρ−1 = ρ⊤, we obtain A−1 = A⊤ and detA = 1, i.e., A

is a rotation in Rn−1. On the other hand, by (4.4.1), we get `j(e1) =
∑n

k=2 ρjk`k(e1)

for j = 2, ..., n. That is, the n − 1 dimensional vector (`2(e1), `3(e1), · · · , `n(e1)) is
left fixed by all the rotations on this n− 1 dimensional vector space. Thus, we have
to take `2(e1) = `3(e1) = · · · = `n(e1) = 0.

Inserting again in (4.4.1) gives `j(ρe1) = ρj1`1(e1) = cρj1. If we take a rotation
such that ρe1 = x, then we have ρj1 = xj , so `j(x) = cxj , (|x| = 1), which proves
the lemma. �

We now define the n Riesz transforms. For f ∈ Lp(Rn), 1 6 p <∞, we set

Rjf(x) = lim
ε→0

cn

∫
|y|>ε

yj
|y|n+1

f(x− y)dy, j = 1, ..., n, (4.4.3)
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with cn = Γ((n+1)/2)

π(n+1)/2 where 1/cn = π(n+1)/2

Γ((n+1)/2) is half the surface area of the unit

sphere Sn of Rn+1. Thus, Rj is defined by the kernel Kj(x) =
Ωj(x)
|x|n , and Ωj(x) =

cn
xj
|x| .
Next, we derive the multipliers which correspond to the Riesz transforms, and

which in fact justify their definition. Denote

Ω(x) = (Ω1(x),Ω2(x), ...,Ωn(x)), and m(ξ) = (m1(ξ),m2(ξ), ...,mn(ξ)).

Let us recall the formula (4.3.5), i.e.,

m(ξ) =

∫
Sn−1

Φ(ξ · x)Ω(x)dσ(x), |ξ| = 1, (4.4.4)

with Φ(t) = −πi
2 sgn (ω) sgn (t)+ ln |1/t|. For any rotation ρ, since Ω commutes with

any rotations, i.e., Ω(ρx) = ρ(Ω(x)), we have, by changes of variables,

ρ(m(ξ)) =

∫
Sn−1

Φ(ξ · x)ρ(Ω(x))dσ(x) =
∫
Sn−1

Φ(ξ · x)Ω(ρx)dσ(x)

=

∫
Sn−1

Φ(ξ · ρ−1y)Ω(y)dσ(y) =

∫
Sn−1

Φ(ρξ · y)Ω(y)dσ(y)

=m(ρξ).

Thus, m commutes with rotations and so m satisfies (4.4.1). However, the mj are
each homogeneous of degree 0, so Lemma 4.4.1 shows that mj(ξ) = c

ξj
|ξ| , with

c =m1(e1) =

∫
Sn−1

Φ(e1 · x)Ω1(x)dσ(x)

=

∫
Sn−1

[−πi
2

sgn (ω) sgn (x1) + ln |1/x1|]cnx1dσ(x)

=− sgn (ω)
πi

2
cn

∫
Sn−1

|x1|dσ(x) (the 2nd is 0 since it is odd w.r.t. x1)

=− sgn (ω)
πi

2

Γ((n+ 1)/2)

π(n+1)/2

2π(n−1)/2

Γ((n+ 1)/2)
= − sgn (ω)i.

Here we have used the fact
∫
Sn−1 |x1|dσ(x) = 2π(n−1)/2/Γ((n+1)/2). Therefore, we

obtain

Rjf

∨

(ξ) = − sgn (ω)i
ξj
|ξ|
f

∨

(ξ), j = 1, ..., n. (4.4.5)

This identity and Plancherel’s theorem also imply the following “unitary” character
of the Riesz transforms

n∑
j=1

‖Rjf‖22 = ‖f‖22.

By m(ρξ) = ρ(m(ξ)) proved above, we have mj(ρξ) =
∑

k ρjkmk(ξ) for any
rotation ρ and then mj(ρξ)f

∨

(ξ) =
∑

k ρjkmk(ξ)f

∨

(ξ). Taking the inverse Fourier
transform, it follows

F−1(mj(ρξ)f

∨

(ξ)) =F−1(
∑
k

ρjkmk(ξ)f

∨

(ξ))

=
∑
k

ρjkF
−1(mk(ξ)f

∨

(ξ)) =
∑
k

ρjkRkf.

But by changes of variables, we have

F−1(mj(ρξ)f

∨

(ξ))

=

(
|ω|
2π

)n/2 ∫
Rn

eωix·ξmj(ρξ)f

∨

(ξ)dξ
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=

(
|ω|
2π

)n/2 ∫
Rn

eωiρx·ηmj(η)f

∨

(ρ−1η)dη

=(F−1(mj(ξ)f

∨

(ρ−1ξ)))(ρx) = ρF−1(mj(ξ)f

∨

(ρ−1ξ))(x)

=ρRjρ
−1f,

since the Fourier transform commutes with rotations. Therefore, it reaches

ρRjρ
−1f =

∑
k

ρjkRkf, (4.4.6)

which is the statement that under rotations in Rn, the Riesz operators transform in
the same manner as the components of a vector.

We have the following characterization of Riesz transforms.

Proposition 4.4.2.

Let T = (T1, T2, ..., Tn) be an n-tuple of bounded linear transforms on
L2(Rn). Suppose
(a) Each Tj commutes with translations of Rn;
(b) Each Tj commutes with dilations of Rn;
(c) For every rotation ρ = (ρjk) of Rn, ρTjρ−1f =

∑
k ρjkTkf .

Then the Tj is a constant multiple of the Riesz transforms, i.e., there exists a
constant c such that Tj = cRj , j = 1, ..., n.

Proof. All the elements of the proof have already been discussed. We bring them
together.

(i) Since the Tj is bounded linear on L2(Rn) and commutes with translations, by
Theorem 2.5.6 they can be each realized by bounded multipliersmj , i.e., Tjf

∨

= mjf
∨

.
(ii) Since the Tj commutes with dilations, i.e., Tjδεf = δεTjf , in view of Propo-

sition 2.1.2, we see that

Tjδ
εf

∨

= mj(ξ)δ
εf

∨

= mj(ξ)ε
−nδε

−1
f

∨

(ξ) = mj(ξ)ε
−nf

∨

(ξ/ε)

and

δεTjf

∨

= ε−nδε
−1
Tjf

∨

= ε−nδε
−1
(mjf

∨

) = ε−nmj(ξ/ε)f

∨

(ξ/ε),

which imply mj(ξ) = mj(ξ/ε) or equivalently mj(εξ) = mj(ξ), ε > 0; that is, each
mj is homogeneous of degree 0.

(iii) Finally, assumption (c) has a consequence by taking the Fourier transform,
i.e., the relation (4.4.1), and so by Lemma 4.4.1, we can obtain the desired conclu-
sion. �

For the Lp boundedness, we have the following.

Theorem 4.4.3.

The Riesz transforms Rj , j = 1, · · · , n, are of weak-type (1, 1) and of strong-
type (p, p) for 1 < p <∞.

Proof. It suffices to show that Kj(x) = cn p.v. xj
|x|n+1 satisfy the hypotheses of The-

orem 4.2.1 for j = 1, · · · , n, respectively. Clearly Kj coincides with a locally inte-
grable function on Rn \ {0}. Moreover, by (4.4.5),(

|ω|
2π

)−n/2
Kj

∨

(ξ) = − sgn (ω)i
ξj
|ξ|
, j = 1, ..., n,
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which is clearly bounded.
Finally, we have on Rn \ {0}

|∇Kj(x)| 6cn
1

|x|n+1
+ cn(n+ 1)

|xj ||x|
|x|n+3

6 C

|x|n+1
,

that is, (4.2.5) is satisfied. Thus, by Theorem 4.2.1 we obtain the desired results. �
One of the important applications of the Riesz transforms is that they can be

used to mediate between various combinations of partial derivatives of a function.

Example 4.4.4. (Schauder estimate) Suppose f ∈ C2
c(Rn). Let ∆f =

∑n
j=1

∂2f
∂x2j

.

Then we have the a priori bound∥∥∥∥ ∂2f

∂xj∂xk

∥∥∥∥
p

6 Ap‖∆f‖p, 1 < p <∞. (4.4.7)

Proof. Since ∂xjf

∨

(ξ) = ωiξjf

∨

(ξ), we have

∂2f
∂xj∂xk

∨

(ξ) =− ω2ξjξkf

∨

(ξ)

=−
(
− sgn (ω)

iξj
|ξ|

)(
− sgn (ω)

iξk
|ξ|

)
(−ω2|ξ|2)f

∨

(ξ)

=−RjRk∆f

∨

(ξ).

Thus, ∂2f
∂xj∂xk

= −RjRk∆f . By the Lp boundedness of the Riesz transforms, we
have the desired result. �

Example 4.4.5. Suppose f ∈ C1
c(R2). Then we have the a priori bound∥∥∥∥ ∂f∂x1

∥∥∥∥
p

+

∥∥∥∥ ∂f∂x2
∥∥∥∥
p

6 Ap

∥∥∥∥ ∂f∂x1 + i
∂f

∂x2

∥∥∥∥
p

, 1 < p <∞.

Proof. The proof is similar to the previous one. Indeed, we have

∂xjf

∨

(ξ) =ωiξjf

∨

(ξ) = ω
iξj
|ξ|

|ξ|f

∨

(ξ) = ω
iξj
|ξ|

ξ21 + ξ22
|ξ|

f

∨

(ξ)

=ω
iξj
|ξ|

(ξ1 − iξ2)(ξ1 + iξ2)

|ξ|
f

∨

(ξ)

=− − sgn (ω)iξj
|ξ|

− sgn (ω)i(ξ1 − iξ2)

|ξ|
∂x1f + i∂x2f

∨

(ξ)

=−Rj(R1 − iR2)(∂x1f + i∂x2f

∨

(ξ).

That is, ∂xjf = −Rj(R1 − iR2)(∂x1f + i∂x2f). Also by the Lp boundedness of the
Riesz transforms, we can obtain the result. �

We shall now tie together the Riesz transforms and the theory of harmonic func-
tions, more particularly Poisson integrals. Since we are interested here mainly in
the formal aspects we shall restrict ourselves to the L2 case. For Lp case, one can
see the further results in [Ste70, §4.3 and §4.4, p.78].

Example 4.4.6. Let f and f1, ..., fn all belong to L2(Rn), and let their respective
Poisson integrals be u0(x, y) = Py ∗ f , u1(x, y) = Py ∗ f1, ..., un(x, y) = Py ∗ fn. Then
a necessary and sufficient condition of

fj = Rj(f), j = 1, ..., n, (4.4.8)
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is that the following generalized Cauchy-Riemann equations hold:
n∑
j=0

∂uj
∂xj

= 0,

∂uj
∂xk

=
∂uk
∂xj

, j 6= k, with x0 = y.

(4.4.9)

Remark 4.4.7. At least locally, the system (4.4.9) is equivalent with the existence of
a harmonic function g of the n+ 1 variables, such that uj = ∂g

∂xj
, j = 0, 1, 2, ..., n.

Proof. Suppose fj = Rjf , then fj

∨

(ξ) = − sgn (ω)
iξj
|ξ| f

∨

(ξ), and so by (4.1.2)

uj(x, y) = − sgn (ω)

(
|ω|
2π

)n/2 ∫
Rn

f

∨

(ξ)
iξj
|ξ|
eωiξ·xe−|ωξ|ydξ, j = 1, ..., n,

and

u0(x, y) =

(
|ω|
2π

)n/2 ∫
Rn

f

∨

(ξ)eωiξ·xe−|ωξ|ydξ.

The equation (4.4.9) can then be immediately verified by differentiation under
the integral sign, which is justified by the rapid convergence of the integrals in
question.

Conversely, let uj(x, y) =
(
|ω|
2π

)n/2 ∫
Rn fj

∨

(ξ)eωiξ·xe−|ωξ|ydξ, j = 0, 1, ..., n with

f0 = f . Then the fact that ∂u0
∂xj

=
∂uj
∂x0

=
∂uj
∂y , j = 1, ..., n, and Fourier inversion

theorem, show that

ωiξjf0

∨

(ξ)e−|ωξ|y = −|ωξ|fj

∨

(ξ)e−|ωξ|y,

therefore fj

∨

(ξ) = − sgn (ω)
iξj
|ξ| f0

∨

(ξ), and so fj = Rjf0 = Rjf for j = 1, ..., n. �

§ 4.4.2 Spherical harmonics and higher Riesz transforms

Consider now an open set Ω ⊂ Rn and suppose u is a harmonic function (i.e.,
∆u = 0) within Ω. We next derive the important mean-value formulas, which
declare that u(x) equals both the average of u over the sphere ∂B(x, r) and the
average of u over the entire ball B(x, r), provided B(x, r) ⊂ Ω.

Theorem 4.4.8: Mean-value formula for harmonic functions

If u ∈ C2(Ω) is harmonic, then for each ball B(x, r) ⊂ Ω,

u(x) =
1

µ(∂B(x, r))

∫
∂B(x,r)

u(y)dσ(y) =
1

µ(B(x, r))

∫
B(x,r)

u(y)dy.

Proof. Denote

f(r) =
1

µ(∂B(x, r))

∫
∂B(x,r)

u(y)dσ(y) =
1

ωn−1

∫
Sn−1

u(x+ rz)dσ(z).

Obviously,

f ′(r) =
1

ωn−1

∫
Sn−1

n∑
j=1

∂xju(x+ rz)zjdσ(z) =
1

ωn−1

∫
Sn−1

∂u

∂ν
(x+ rz)dσ(z),
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where ∂
∂ν denotes the differentiation w.r.t. the outward normal. Thus, by changes

of variable

f ′(r) =
1

ωn−1rn−1

∫
∂B(x,r)

∂u

∂ν
(y)dσ(y).

By Stokes theorem, we get

f ′(r) =
1

ωn−1rn−1

∫
B(x,r)

∆u(y)dy = 0.

Thus, f(r) = const. Since limr→0 f(r) = u(x), hence, f(r) = u(x).
Next, observe that our employing polar coordinates gives, by the first identity

proved just now, that∫
B(x,r)

u(y)dy =

∫ r

0

(∫
∂B(x,s)

u(y)dσ(y)

)
ds =

∫ r

0
µ(∂B(x, s))u(x)ds

=u(x)

∫ r

0
nVns

n−1ds = Vnr
nu(x).

This completes the proof. �

Theorem 4.4.9: Converse to mean-value property

If u ∈ C2(Ω) satisfies

u(x) =
1

µ(∂B(x, r))

∫
∂B(x,r)

u(y)dσ(y)

for each ball B(x, r) ⊂ Ω, then u is harmonic.

Proof. If ∆u 6≡ 0, then there exists some ball B(x, r) ⊂ Ω such that, say, ∆u > 0

within B(x, r). But then for f as above,

0 = f ′(r) =
1

rn−1ωn−1

∫
B(x,r)

∆u(y)dy > 0,

is a contradiction. �
We return to the consideration of special transforms of the form

Tf(x) = lim
ε→0

∫
|y|>ε

Ω(y)

|y|n
f(x− y)dy, (4.4.10)

where Ω is homogeneous of degree 0 with mean value zero on Sn−1.
We have already considered the example, i.e., the case of Riesz transforms,

Ωj(y) = c
yj
|y| , j = 1, ..., n. For n = 1, Ω(y) = c sgn y, this is the only possible

case, i.e., the Hilbert transform. To study the matter further for n > 1, we recall the
expression

m(ξ) =

∫
Sn−1

Λ(y · ξ)Ω(y)dσ(y), |ξ| = 1

where m is the multiplier arising from the transform (4.4.10).
We have already remarked that the mapping Ω → m commutes with rotations.

We shall therefore consider the functions on the sphere Sn−1 (more particularly the
space L2(Sn−1)) from the point of view of its decomposition under the action of
rotations. As is well known, this decomposition is in terms of the spherical har-
monics, and it is with a brief review of their properties that we begin.

We fix our attention, as always, on Rn, and we shall consider polynomials in Rn

which are also harmonic.
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Definition 4.4.10.

Let α = (α1, ..., αn) be a multi-index, |α| =
∑n

j=1 αj and xα = xα1
1 · · ·xαn

n .
Let Pk denote the linear space of all homogeneous polynomials of degree k,
i.e.,

Pk :=
{
P (x) =

∑
aαx

α : |α| = k
}
.

Each such polynomial corresponds its dual object, the differential operatorP (∂x) =∑
aα∂

α
x , where ∂αx = ∂α1

x1 · · · ∂αn
xn . On Pk, we define a positive inner product

〈P,Q〉 = P (∂x)Q̄. Note that two distinct monomials xα and xα
′

in Pk are orthog-
onal w.r.t. it, since there exists at least one i such that αi > α′

i, then ∂αi
xi x

α′
i
i = 0.

〈P, P 〉 =
∑

|aα|2α! where α! = (α1!) · · · (αn!).

Definition 4.4.11.

We define Hk to be the linear space of homogeneous polynomials of degree
k which are harmonic: the solid spherical harmonics of degree k. That is,

Hk := {P (x) ∈ Pk : ∆P (x) = 0} .

It will be convenient to restrict these polynomials to Sn−1, and then to define
the standard inner product,

(P,Q) =

∫
Sn−1

P (x)Q(x)dσ(x).

For a function f on Sn−1, we define the spherical Laplacean ∆S by

∆Sf(x) = ∆f(x/|x|),
where f(x/|x|) is the degree zero homogeneous extension of the function f to Rn \
{0}, and ∆ is the Laplacian of the Euclidean space.

Proposition 4.4.12.

We have the following properties.
(1) The finite dimensional spaces {Hk}∞k=0 are mutually orthogonal.
(2) Every homogeneous polynomial P ∈ Pk can be written in the form P =

P1 + |x|2P2, where P1 ∈ Hk and P2 ∈ Pk−2.
(3) Let Hk denote the linear space of restrictions of Hk to the unit sphere.a

The elements of Hk are the surface spherical harmonics of degree k, i.e.,

Hk = {P (x) ∈ Hk : |x| = 1} .
Then L2(Sn−1) =

∑∞
k=0Hk. Here the L2 space is taken w.r.t. usual measure,

and the infinite direct sum is taken in the sense of Hilbert space theory. That
is, if f ∈ L2(Sn−1), then f has the development

f(x) =

∞∑
k=0

Yk(x), Yk ∈ Hk, (4.4.11)

where the convergence is in the L2(Sn−1) norm, and∫
Sn−1

|f(x)|2dσ(x) =
∑
k

∫
Sn−1

|Yk(x)|2dσ(x).

(4) If Yk ∈ Hk, then ∆SYk(x) = −k(k + n− 2)Yk(x).
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(5) Suppose f has the development (4.4.11). Then f (after correction on a
set of measure zero, if necessary) is indefinitely differentiable on Sn−1 (i.e.,
f ∈ C∞(Sn−1)) if and only if∫

Sn−1

|Yk(x)|2dσ(x) = O(k−N ), as k → ∞, for each fixed N. (4.4.12)

aSometimes, in order to emphasize the distribution between Hk and Hk, the members of
Hk are referred to as the surface spherical harmonics.

Proof. (1) If P ∈ Pk, i.e., P (x) =
∑
aαx

α with |α| = k, then
n∑
j=1

xj∂xjP =
n∑
j=1

xj
∑

aααjx
α1
1 · · ·xαj−1

j · · ·xαn
n =

n∑
j=1

αj
∑

aαx
α = kP.

On Sn−1, it follows kP = ∂P
∂ν where ∂

∂ν denotes differentiation w.r.t. the outward
normal vector. Thus, for P ∈ Hk, and Q ∈ Hj , then by Green’s formula

(k − j)

∫
Sn−1

PQ̄dσ(x) =

∫
Sn−1

(
Q̄
∂P

∂ν
− P

∂Q̄

∂ν

)
dσ(x)

=

∫
|x|61

[Q̄∆P − P∆Q̄]dx = 0,

where ∆ is the Laplacean on Rn.
(2) Let |x|2Pk−2 be the subspace of Pk of all polynomials of the form |x|2P2

where P2 ∈ Pk−2. Then its orthogonal complement w.r.t. 〈·, ·〉 is exactly Hk. In fact,
P1 is in this orthogonal complement if and only if 〈|x|2P2, P1〉 = 0 for all P2. But
〈|x|2P2, P1〉 = (P2(∂x)∆)P1 = 〈P2,∆P1〉, so ∆P1 = 0 and thus Pk = Hk⊕|x|2Pk−2,
which proves the conclusion. In addition, we have for P ∈ Pk

P (x) = Pk(x) + |x|2Pk−2(x) + · · ·+

{
|x|kP0(x), k even,
|x|k−1P1(x), k odd,

where Pj ∈ Hj by noticing that Pj = Hj for j = 0, 1.
(3) By the further result in (2), if |x| = 1, then we have

P (x) = Pk(x) + Pk−2(x) + · · · .+

{
P0(x), k even,
P1(x), k odd,

with Pj ∈ Hj . That is, the restriction of any polynomial on the unit sphere is a finite
linear combination of spherical harmonics. Since the restriction of polynomials is
dense in L2(Sn−1) (see [SW71, Corollary 2.3, p.141]) by the Weierstrass approxima-
tion theorem, the conclusion (4.4.11) is established.

(4) For |x| = 1, we have

∆SYk(x) =∆(|x|−kYk(x)) = |x|−k∆Yk +∆(|x|−k)Yk + 2∇(|x|−k) · ∇Yk
=(k2 + (2− n)k)|x|−k−2Yk − 2k2|x|−k−2Yk

=− k(k + n− 2)|x|k−2Yk = −k(k + n− 2)Yk,

since
∑n

j=1 xj∂xjYk = kYk for Yk ∈ Pk.
(5) Write (4.4.11) as f(x) =

∑∞
k=0 akY

0
k (x), where the Y 0

k is normalized such that∫
Sn−1 |Y 0

k (x)|2dσ(x) = 1. Our assertion is then equivalent with ak = O(k−N/2), as
k → ∞. If f is of class C2, then an application of Green’s formula shows that∫

Sn−1

∆SfY 0
k dσ =

∫
Sn−1

f∆SY 0
k dσ.
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Thus, if f ∈ C∞, then by (4)∫
Sn−1

∆r
SfY

0
k dσ =

∫
Sn−1

f∆r
SY

0
k dσ = [−k(k + n− 2)]r

∫
Sn−1

∞∑
j=0

ajY
0
j Y

0
k dσ

=[−k(k + n− 2)]rak

∫
Sn−1

|Y 0
k |2dσ = ak[−k(k + n− 2)]r.

So ak = O(k−2r) for every r and therefore (4.4.12) holds.
To prove the converse, from (4.4.12), we have for any r ∈ N

‖∆r
Sf‖22 =(∆r

Sf,∆
r
Sf) =

 ∞∑
j=0

∆r
SYj(x),

∞∑
k=0

∆r
SYk(x)


=

 ∞∑
j=0

[−j(j + n− 2)]rYj(x),
∞∑
k=0

[−k(k + n− 2)]rYk(x)


=

∞∑
k=0

[−k(k + n− 2)]2r(Yk(x), Yk(x))

=

∞∑
k=0

[−k(k + n− 2)]2rO(k−N ) 6 C,

if we take N large enough. Thus, f ∈ C∞(Sn−1). �

Theorem 4.4.13: Hecke’s identity

It holds

F (Pk(x)e
− |ω|

2
|x|2) = (−i sgn (ω))kPk(ξ)e

− |ω|
2
|ξ|2 , ∀Pk ∈ Hk(Rn).

Proof. That is to prove(
|ω|
2π

)n/2 ∫
Rn

Pk(x)e
−ωix·ξ− |ω|

2
|x|2dx = (−i sgn (ω))kPk(ξ)e

− |ω|
2
|ξ|2 . (4.4.13)

Applying the differential operator Pk(∂ξ) to both sides of the identity (cf. Theo-
rem 2.1.9) (

|ω|
2π

)n/2 ∫
Rn

e−ωix·ξ−
|ω|
2
|x|2dx = e−

|ω|
2
|ξ|2 ,

we obtain (
|ω|
2π

)n/2
(−ωi)k

∫
Rn

Pk(x)e
−ωix·ξ− |ω|

2
|x|2dx = Q(ξ)e−

|ω|
2
|ξ|2 .

Since Pk(x) is polynomial, it has an obvious analytic continuation Pk(z) to all of
Cn. Thus, by changes of variables, we get

Q(ξ) =(−ωi)k
(
|ω|
2π

)n/2 ∫
Rn

Pk(x)e
−ωix·ξ− |ω|

2
|x|2+ |ω|

2
|ξ|2dx

=(−ωi)k
(
|ω|
2π

)n/2 ∫
Rn

Pk(x)e
− |ω|

2
(x+i sgn (ω)ξ)2dx

=(−ωi)k
(
|ω|
2π

)n/2 ∫
Rn

Pk(y − i sgn (ω)ξ)e−
|ω|
2
|y|2dy.
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So,

Q(i sgn (ω)ξ) =(−ωi)k
(
|ω|
2π

)n/2 ∫
Rn

Pk(y + ξ)e−
|ω|
2
|y|2dy

=(−ωi)k
(
|ω|
2π

)n/2 ∫ ∞

0
rn−1e−

|ω|
2
r2
∫
Sn−1

Pk(ξ + ry′)dσ(y′)dr.

Since Pk is harmonic, it satisfies the mean value property, i.e., Theorem 4.4.8, thus∫
Sn−1

Pk(ξ + ry′)dσ(y′) = ωn−1Pk(ξ) = Pk(ξ)

∫
Sn−1

dσ(y′).

Hence

Q(i sgn (ω)ξ) =(−ωi)k
(
|ω|
2π

)n/2
Pk(ξ)

∫ ∞

0
rn−1e−

|ω|
2
r2
∫
Sn−1

dσ(y′)dr

=(−ωi)k
(
|ω|
2π

)n/2
Pk(ξ)

∫
Rn

e−
|ω|
2
|x|2dx = (−ωi)kPk(ξ).

Thus, Q(ξ) = (−ωi)kPk(−i sgn (ω)ξ) = (−ωi)k(−i sgn (ω))kPk(ξ), which proves the
theorem. �

The theorem implies the following generalization, whose interest is that it links
the various components of the decomposition of L2(Rn), for different n.

If f is a radial function, we write f = f(r), where r = |x|.

Corollary 4.4.14.

Let Pk(x) ∈ Hk(Rn). Suppose that f is radial and Pk(x)f(r) ∈ L2(Rn). Then
the Fourier transform of Pk(x)f(r) is also of the form Pk(x)g(r), with g a
radial function. Moreover, the induced transform f 7→ g, Tn,kf = g, depends
essentially only on n+ 2k. More precisely, we have Bochner’s relation

Tn,k = (−i sgn (ω))kTn+2k,0. (4.4.14)

Proof. Consider the Hilbert space of radial functions

R =

{
f(r) : ‖f‖2 =

∫ ∞

0
|f(r)|2r2k+n−1dr <∞

}
,

with the indicated norm. Fix now Pk(x), and assume that Pk is normalized, i.e.,∫
Sn−1

|Pk(x)|2dσ(x) = 1.

Our goal is to show that

(Tn,kf)(r) = (−i sgn (ω))k(Tn+2k,0f)(r), (4.4.15)

for each f ∈ R.
We consider e−

|ω|
2
εr2 for a fixed ε > 0. By the homogeneity of Pk and the in-

terplay of dilations with the Fourier transform (cf. Proposition 2.1.2), i.e., F δε =

ε−nδε
−1

F , and Hecke’s identity, we get

F (Pk(x)e
− |ω|

2
ε|x|2) = ε−k/2F (Pk(ε

1/2x)e−
|ω|
2
ε|x|2)

=ε−k/2−n/2δε
−1/2

F (Pk(x)e
− |ω|

2
|x|2)

=ε−k/2−n/2(−i sgn (ω))kδε
−1/2

(Pk(ξ)e
− |ω|

2
|ξ|2)

=(−i sgn (ω))kε−k/2−n/2Pk(ε
−1/2ξ)e−

|ω|
2
|ξ|2/ε

=(−i sgn (ω))kε−k−n/2Pk(ξ)e
− |ω|

2
|ξ|2/ε.
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This shows that Tn,ke−
|ω|
2
εr2 = (−i sgn (ω))kε−k−n/2e−

|ω|
2
r2/ε, and so

Tn+2k,0e
− |ω|

2
εr2 =(−i sgn (ω))0ε−0−(n+2k)/2e−

|ω|
2
r2/ε

=ε−k−n/2e−
|ω|
2
r2/ε.

Thus, Tn,ke−
|ω|
2
εr2 = (−i sgn (ω))kTn+2k,0e

− |ω|
2
εr2 for ε > 0.

To finish the proof, it suffices to see that the linear combination of {e−
|ω|
2
εr2}0<ε<∞

is dense in R. Suppose the contrary, then there exists a (almost everywhere) non-

zero g ∈ R, such that g is orthogonal to every e−
|ω|
2
εr2 in the sense of R, i.e.,∫ ∞

0
e−

|ω|
2
εr2g(r)r2k+n−1dr = 0, (4.4.16)

for all ε > 0. Let ψ(s) =
∫ s
0 e

−r2g(r)rn+2k−1dr for s > 0. Then, putting ε = 2(m +

1)/|ω|, where m is a positive integer, and by integration by parts, we have

0 =

∫ ∞

0
e−mr

2
ψ′(r)dr = 2m

∫ ∞

0
e−mr

2
ψ(r)rdr,

since ψ(0) = 0 and 0 6 e−mr
2
ψ(r) 6 Ce−mr

2
rk+(n−1)/2 → 0 as r → ∞ by the

Hölder inequality. By the change of variable z = e−r
2
, this equality is equivalent to

0 =

∫ 1

0
zm−1ψ(

√
ln 1/z)dz, m = 1, 2, ....

Since the polynomials are uniformly dense in the space of continuous functions on
the closed interval [0, 1], this can only be the case when ψ(

√
ln 1/z) = 0 for all z in

[0, 1]. Thus, ψ′(r) = e−r
2
g(r)rn+2k−1 = 0 for almost every r ∈ (0,∞), contradicting

the hypothesis that g(r) is not equal to 0 almost everywhere.
Since the operators Tn,k and (−i sgn (ω))kTn+2k,0 are bounded and agree on the

dense subspace, they must be equal. Thus, we have shown the desired result. �
We come now to what has been our main goal in our discussion of spherical

harmonics.

Theorem 4.4.15.

Let Pk(x) ∈ Hk, k > 1. Then the multiplier corresponding to the transform
(4.4.10) with the kernel Pk(x)

|x|k+n is

γk
Pk(ξ)

|ξ|k
, with γk =

(
|ω|
2

)n/2
(−i sgn (ω))k

Γ(k/2)

Γ(k/2 + n/2)
.

Remark 4.4.16. 1) If k > 1, then Pk(x) is orthogonal to the constants on the sphere,
and so its mean value over any sphere centered at the origin is zero.

2) The statement of the theorem can be interpreted as

F

(
Pk(x)

|x|k+n

)
=

(
|ω|
2π

)n/2
γk
Pk(ξ)

|ξ|k
. (4.4.17)

3) As such it will be derived from the following closely related fact,

F

(
Pk(x)

|x|k+n−α

)
=

(
|ω|
2π

)n/2
γk,α

Pk(ξ)

|ξ|k+α
, (4.4.18)

where γk,α =
(
|ω|
2

)n
2
−α

(−i sgn (ω))k Γ(k/2+α/2)
Γ(k/2+n/2−α/2) .
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Lemma 4.4.17.

The identity (4.4.18) holds in the sense that∫
Rn

Pk(x)

|x|k+n−α
ϕ

∨

(x)dx = γk,α

∫
Rn

Pk(ξ)

|ξ|k+α
ϕ(ξ)dξ, ∀ϕ ∈ S . (4.4.19)

It is valid for all non-negative integer k and for 0 < α < n.

Proof. From the proof of Corollary 4.4.14, we have already known that

F (Pk(x)e
− |ω|

2
ε|x|2) = (−i sgn (ω))kε−k−n/2Pk(ξ)e

− |ω|
2
|ξ|2/ε,

so we have by the multiplication formula,∫
Rn

Pk(x)e
− |ω|

2
ε|x|2ϕ

∨

(x)dx =

∫
Rn

F (Pk(x)e
− |ω|

2
ε|x|2)(ξ)ϕ(ξ)dξ

=(−i sgn (ω))kε−k−n/2
∫
Rn

Pk(ξ)e
− |ω|

2
|ξ|2/εϕ(ξ)dξ,

for ε > 0.
We now integrate both sides of the above w.r.t. ε, after having multiplied the

equation by εβ−1 (to be determined). That is∫ ∞

0
εβ−1

∫
Rn

Pk(x)e
− |ω|

2
ε|x|2ϕ

∨

(x)dxdε

=(−i sgn (ω))k
∫ ∞

0
εβ−1ε−k−n/2

∫
Rn

Pk(ξ)e
− |ω|

2
|ξ|2/εϕ(ξ)dξdε.

(4.4.20)

By changing the order of the double integral and a change of variable, we get

l.h.s. of (4.4.20) =
∫
Rn

Pk(x)ϕ

∨

(x)

∫ ∞

0
εβ−1e−

|ω|
2
ε|x|2dεdx

t=|ω|ε|x|2/2
====

∫
Rn

Pk(x)ϕ

∨

(x)

(
|ω|
2
|x|2
)−β ∫ ∞

0
tβ−1e−tdtdx

=

(
|ω|
2

)−β
Γ(β)

∫
Rn

Pk(x)ϕ

∨

(x)|x|−2βdx.

Thus, we can take β = (k + n− α)/2. Similarly,

r.h.s. of (4.4.20) = (−i sgn (ω))k
∫
Rn

Pk(ξ)ϕ(ξ)∫ ∞

0
ε−(k/2+α/2+1)e−

|ω|
2
|ξ|2/εdεdξ

t= |ω|
2
|ξ|2/ε

==== (−i sgn (ω))k
∫
Rn

Pk(ξ)ϕ(ξ)

(
|ω|
2
|ξ|2
)−(k+α)/2

∫ ∞

0
tk/2+α/2−1e−tdtdξ

= (−i sgn (ω))k
(
|ω|
2

)−(k+α)/2

Γ(k/2 + α/2)∫
Rn

Pk(ξ)ϕ(ξ)|ξ|−(k+α)dξ.

Thus, we get(
|ω|
2

)−(k+n−α)/2
Γ((k + n− α)/2)

∫
Rn

Pk(x)ϕ

∨

(x)|x|−(k+n−α)dx

=(−i sgn (ω))k
(
|ω|
2

)−(k+α)/2

Γ(k/2 + α/2)
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·
∫
Rn

Pk(ξ)ϕ(ξ)|ξ|−(k+α)dξ

which leads to (4.4.19).
Observe that when 0 < α < n and ϕ ∈ S , double integrals in the above con-

verge absolutely. Thus, the formal argument just given establishes the lemma. �

Remark 4.4.18. For the complex number αwith <α ∈ (0, n), the lemma and (4.4.18)
are also valid, see [SW71, Theorem 4.1, p.160-163].

Proof of Theorem 4.4.15. By the assumption that k > 1, we have that the integral
of Pk over any sphere centered at the origin is zero. Thus for ϕ ∈ S , we get∫

Rn

Pk(x)

|x|k+n−α
ϕ

∨

(x)dx =

∫
|x|61

Pk(x)

|x|k+n−α
[ϕ

∨

(x)− ϕ

∨

(0)]dx

+

∫
|x|>1

Pk(x)

|x|k+n−α
ϕ

∨

(x)dx.

Obviously, the second term tends to
∫
|x|>1

Pk(x)
|x|k+nϕ

∨

(x)dx as α→ 0 by the dominated

convergence theorem. It is clear that Pk(x)
|x|k+n [ϕ

∨

(x) − ϕ

∨

(0)] is locally integrable, thus
we have, by the dominated convergence theorem, the limit of the first term in the
r.h.s. of the above

lim
α→0+

∫
|x|61

Pk(x)

|x|k+n−α
[ϕ

∨

(x)− ϕ

∨

(0)]dx =

∫
|x|61

Pk(x)

|x|k+n
[ϕ

∨

(x)− ϕ

∨

(0)]dx

=

∫
|x|61

Pk(x)

|x|k+n
ϕ

∨

(x)dx = lim
ε→0

∫
ε6|x|61

Pk(x)

|x|k+n
ϕ

∨

(x)dx.

Thus, we obtain

lim
α→0+

∫
Rn

Pk(x)

|x|k+n−α
ϕ

∨

(x)dx = lim
ε→0

∫
|x|>ε

Pk(x)

|x|k+n
ϕ

∨

(x)dx. (4.4.21)

Similarly,

lim
α→0+

∫
Rn

Pk(ξ)

|ξ|k+α
ϕ(ξ)dξ = lim

ε→0

∫
|ξ|>ε

Pk(ξ)

|ξ|k
ϕ(ξ)dξ.

Thus, by Lemma 4.4.14, we complete the proof with γk = limα→0 γk,α. �
For fixed k > 1, the linear space of operators in (4.4.10), where Ω(y) = Pk(y)

|y|k and
Pk ∈ Hk, form a natural generalization of the Riesz transforms; the latter arise in
the special case k = 1. Those for k > 1, we call the higher Riesz transforms, with k
as the degree of the higher Riesz transforms, they can also be characterized by their
invariant properties (see [Ste70, §4.8, p.79]).

Theorem 4.4.19.

The higher Riesz transforms are of weak-type (1, 1) and of strong-type (p, p)

for 1 < p <∞.

Proof. It suffices to show that K(x) = p.v. Pk(x)
|x|n+k with Pk ∈ Hk satisfy the hy-

potheses of Theorem 4.2.1. Clearly K coincides with a locally integrable function
on Rn \ {0}. Moreover, by Theorem 4.4.15 we get

K

∨

(ξ) =

(
|ω|
2π

)n/2
γk
Pk(ξ)

|ξ|k
,

which is clearly bounded.
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Finally, we have on Rn \ {0}

|∇K(x)| 6 1

|x|n+k
∑
|α|=k

∑
16j6n
αj>1

|aααjxα1
1 · · ·xαj−1

j · · ·xαn
n |+ (n+ k)

Pk(x)|xj |
|x|n+k+2

6 C

|x|n+1
,

that is, (4.2.5) is satisfied. Thus, by Theorem 4.2.1 we obtain the desired results. �

§ 4.4.3 Equivalence between two classes of transforms

We now consider two classes of transforms, defined on L2(Rn). The first class
consists of all transforms of the form

Tf = c · f + lim
ε→0

∫
|y|>ε

Ω(y)

|y|n
f(x− y)dy, (4.4.22)

where c is a constant, Ω ∈ C∞(Sn−1) is a homogeneous function of degree 0, and
the integral

∫
Sn−1 Ω(x)dσ(x) = 0. The second class is given by those transform T

for which

Tf

∼

(ξ) = m(ξ)f

∨

(ξ) (4.4.23)

where the multiplier m ∈ C∞(Sn−1) is homogeneous of degree 0.

Theorem 4.4.20.

The two classes of transforms, defined by (4.4.22) and (4.4.23) respectively,
are identical.

Proof. First, support that T is of the form (4.4.22). Then by Theorem 4.3.3, T is of
the form (4.4.23) with m homogeneous of degree 0 and

m(ξ) = c+

∫
Sn−1

[
ln(1/|ξ · x|)− πi

2
sgn (ω) sgn (ξ · x)

]
Ω(x)dσ(x), |ξ| = 1. (4.4.24)

Now, we need to show m ∈ C∞(Sn−1). Write the spherical harmonic develop-
ments

Ω(x) =

∞∑
k=1

Yk(x), m(x) =

∞∑
k=0

Y

∼

k(x), ΩN (x) =

N∑
k=1

Yk(x), mN (x) =

N∑
k=0

Y

∼

k(x),

(4.4.25)

where Yk, Y

∼

k ∈ Hk in view of part (3) in Proposition 4.4.12. k starts from 1 in
the development of Ω, since

∫
Sn−1 Ω(x)dx = 0 implies that Ω(x) is orthogonal to

constants, and H0 contains only constants.
Then, by Theorem 4.4.15 and the Plancherel theorem, we get that if Ω = ΩN ,

then m(x) = mN (x), with

Y

∼

k(x) =

(
|ω|
2π

)n/2
γkYk(x), k > 1.

ButmM (x)−mN (x) =
∫
Sn−1

[
−πi

2 sgn (ω) sgn (y · x) + ln 1
|y·x|

]
[ΩM (y)−ΩN (y)]dσ(y).

Moreover, by Hölder’s inequality, we have

sup
x∈Sn−1

|mM (x)−mN (x)|
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6
(

sup
x

∫
Sn−1

∣∣∣∣−πi2 sgn (ω) sgn (y · x) + ln(1/|y · x|)
∣∣∣∣2 dσ(y)

)1/2

×
(∫

Sn−1

|ΩM (y)− ΩN (y)|2dσ(y)
)1/2

→ 0, (4.4.26)

as M , N → ∞, since for n = 1, S0 = {−1, 1},∫
S0

∣∣∣∣−πi2 sgn (ω) sgn (y · x) + ln(1/|y · x|)
∣∣∣∣2 dσ(y) = π2

2
,

and for n > 2, we can pick a orthogonal matrix A satisfying Ae1 = x and detA = 1

for |x| = 1, and then by a change of variable,

sup
x

∫
Sn−1

∣∣∣∣−πi2 sgn (ω) sgn (y · x) + ln(1/|y · x|)
∣∣∣∣2 dσ(y)

= sup
x

∫
Sn−1

[
π2

4
+ (ln(1/|y · x|))2

]
dσ(y)

=
π2

4
ωn−1 + sup

x

∫
Sn−1

(ln |y ·Ae1|)2dσ(y)

=
π2

4
ωn−1 + sup

x

∫
Sn−1

(ln |A−1y · e1|)2dσ(y)

z=A−1y
====

π2

4
ωn−1 +

∫
Sn−1

(ln |z1|)2dσ(z) <∞.

Here, we have used the boundedness of the integral in the r.h.s., i.e., (with the
notation z̄ = (z2, ..., zn), as in the proof of Theorem 4.3.3,∫

Sn−1

(ln |z1|)2dσ(z) =
∫ 1

−1
(ln |z1|)2

∫
Sn−2

(1− z21)
(n−3)/2dσ(z̄)dz1

=ωn−2

∫ 1

−1
(ln |z1|)2(1− z21)

(n−3)/2dz1

z1=cos θ
====ωn−2

∫ π

0
(ln | cos θ|)2(sin θ)n−2dθ = ωn−2I1.

If n > 3, then, by integration by parts,

I1 6
∫ π

0
(ln | cos θ|)2 sin θdθ = −2

∫ π

0
ln | cos θ| sin θdθ = 2

∫ π

0
sin θdθ = 4.

If n = 2, then, by the formula1 ∫ π/2
0 (ln(cos θ))2dθ = π

2 [(ln 2)2 + π2/12], cf. [GR07,
4.225.8, p.531], we get

I1 =

∫ π

0
(ln | cos θ|)2dθ = 2

∫ π/2

0
(ln(cos θ))2dθ = π[(ln 2)2 + π2/12].

Thus, (4.4.26) shows that

m(x) = c+

(
|ω|
2π

)n/2 ∞∑
k=1

γkYk(x).

Since Ω ∈ C∞, we have, in view of part (5) of Proposition 4.4.12, that∫
Sn−1

|Yk(x)|2dσ(x) = O(k−N )

1One can see https://math.stackexchange.com/questions/58654 or http://www.

doc88.com/p-9798925245778.html for some detailed solutions.
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as k → ∞ for every fixed N . However, by the explicit form of γk, we see that
γk ∼ k−n/2, so m(x) is also indefinitely differentiable on the unit sphere, i.e., m ∈
C∞(Sn−1).

Conversely, suppose m(x) ∈ C∞(Sn−1) and let its spherical harmonic develop-

ment be as in (4.4.25). Set c = Y

∼

0, and Yk(x) =
(
|ω|
2π

)−n/2
1
γk
Y

∼

k(x). Then Ω(x),
given by (4.4.25), has mean value zero in the sphere, and is again indefinitely dif-
ferentiable there. But as we have just seen the multiplier corresponding to this
transform is m; so the theorem is proved. �

As an application of this theorem, we shall give the generalization of the esti-
mates for partial derivatives given in 4.4.1.

Let P (x) ∈ Pk(Rn). We shall say that P is elliptic if P (x) vanishes only at
the origin. For any polynomial P , we consider also its corresponding differential
polynomial. Thus, if P (x) =

∑
aαx

α, we write P (∂x) =
∑
aα∂

α
x as in the previous

definition.

Corollary 4.4.21.

Suppose P is a homogeneous elliptic polynomial of degree k. Let ∂αx be any
differential monomial of degree k. Assume f ∈ Ckc , then we have the a priori
estimate

‖∂αx f‖p 6 Ap ‖P (∂x) f‖p , 1 < p <∞. (4.4.27)

Proof. From the Fourier transform of ∂αx f and P (∂x) f ,

P (∂x) f
∨

(ξ) =

(
|ω|
2π

)n/2 ∫
Rn

e−ωix·ξP (∂x) f(x)dx = (ωi)kP (ξ)f

∨

(ξ),

and

∂αx f

∨

(ξ) = (ωi)kξαf

∨

(ξ),

we have the following relation

P (ξ)∂αx f

∨

(ξ) = ξαP (∂x) f

∨

(ξ).

Since P (ξ) is non-vanishing except at the origin, ξα

P (ξ) is homogeneous of degree 0

and is indefinitely differentiable on the unit sphere. Thus

∂αx f = T (P (∂x) f) ,

where T is one of the transforms of the type given by (4.4.23). By Theorem 4.4.20,
T is also given by (4.4.22) and hence by the result of Theorem 4.2.1 and Proposition
4.2.2, we get the estimate (4.4.27). �

§ 4.5 The method of rotations and singualr integral with odd kernels

A simple procedure called the method of rotations plays a crucial role in the
study of operators TΩ when Ω is an odd function. This method is based on the use
of the directional Hilbert transforms.

Fix a unit vector θ ∈ Rn. For f ∈ S (Rn), let

Hθf(x) =
1

π
p.v.

∫ ∞

−∞
f(x− tθ)

dt

t
. (4.5.1)
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We call Hθf the directional Hilbert transform of f in the direction θ. For functions
f ∈ S (Rn), the integral in (4.5.1) is well-defined, since it converges rapidly at
infinity and by subtracting the constant f(x), it also converges near zero.

Now, we define the directional maximal Hilbert transforms. For a function
f ∈ ∪16p<∞L

p(Rn) and 0 < ε < N <∞, let

H
(ε,N)
θ f(x) =

1

π

∫
ε6|t|6N

f(x− tθ)
dt

t
,

H
(∗∗)
θ f(x) = sup

0<ε<N<∞

∣∣∣H(ε,N)
θ f(x)

∣∣∣ .
We observe that for any fixed 0 < ε < N < ∞ and f ∈ Lp(Rn), H(ε,N)

θ f is well-
defined almost everywhere. Indeed, by Minkowski’s integral inequality, we obtain∥∥∥H(ε,N)

θ f
∥∥∥
Lp(Rn)

6 2

π
‖f‖Lp(Rn) ln N

ε
<∞,

which implies that H(ε,N)
θ f(x) is finite for almost all x ∈ Rn. Thus, H(∗∗)

θ f is well-
defined for f ∈ ∪16p<∞L

p(Rn).

Theorem 4.5.1.

If Ω is odd and integrable over Sn−1, then TΩ and T
(∗∗)
Ω are Lp bounded for

all 1 < p < ∞. More precisely, TΩ initially defined on Schwartz functions
has a bounded extension on Lp(Rn) (which is also denoted by TΩ).

Proof. Let ej be the usual unit vectors in Sn−1. The operator He1 is the directional
Hilbert transform in the direction e1. Clearly, He1 is bounded on Lp(Rn) with norm
bounded by that of the Hilbert transform on Lp(R). Indeed, by Theorem 4.1.9, we
have

‖He1f‖
p
Lp(Rn) =

∥∥∥∥∥ 1π lim
ε→0

∫
|t|>ε

f(x− te1)
dt

t

∥∥∥∥∥
p

Lp(Rn)

=

∥∥∥∥∥ 1π lim
ε→0

∫
|t|>ε

f(x1 − t, x2, · · · , xn)
dt

t

∥∥∥∥∥
p

Lp(Rn)

6
∥∥∥‖H‖pLp(R)→Lp(R)‖f(x1, x

′)‖p
Lp
x1 (R)

∥∥∥p
Lp

x′ (R
n−1)

=‖H‖pLp(R)→Lp(R)‖f‖
p
Lp(Rn).

Next, observe that the following identity is valid for all matrices A ∈ O(n) (the
set of all n× n orthogonal matrices):

HAe1f(x) =
1

π
p.v.

∫ ∞

−∞
f(x− tAe1)

dt

t

=
1

π
p.v.

∫ ∞

−∞
f(A(A−1x− te1))

dt

t

=He1(f ◦A)(A−1x). (4.5.2)

This implies that the Lp boundedness of Hθ can be reduced to that of He1 . We
conclude that Hθ is Lp bounded for 1 < p <∞ with norm bounded by the norm of
the Hilbert transform on Lp(R) for every θ ∈ Sn−1.

Identity (4.5.2) is also valid forH(ε,N)
θ andH(∗∗)

θ . Consequently,H(∗∗)
θ is bounded

on Lp(Rn) for 1 < p <∞ with norm at most that of H(∗∗) on Lp(R) (or twice of the
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norm of H(∗) on Lp(R)).
Next, we realize a general singular integral TΩ with Ω odd as an average of

the directional Hilbert transforms Hθ. We start with f ∈ S (Rn) and the following
identities:∫

ε6|y|6N

Ω(y/|y|)
|y|n

f(x− y)dy =

∫
Sn−1

Ω(θ)

∫ N

ε
f(x− rθ)

dr

r
dσ(θ)

=−
∫
Sn−1

Ω(θ)

∫ N

ε
f(x+ rθ)

dr

r
dσ(θ)

=

∫
Sn−1

Ω(θ)

∫ −ε

−N
f(x− rθ)

dr

r
dσ(θ),

where the first one follows by switching to polar coordinates, the second one is
a consequence of the first one and the fact that Ω is odd via the change variables
θ 7→ −θ, and the third one follows from the second one by changing variables
r 7→ −r. Averaging the first and third identities, we obtain∫

ε6|y|6N

Ω(y/|y|)
|y|n

f(x− y)dy

=
1

2

∫
Sn−1

Ω(θ)

∫
ε6|r|6N

f(x− rθ)

r
drdσ(θ) (4.5.3)

=
π

2

∫
Sn−1

Ω(θ)H
(ε,N)
θ f(x)dσ(θ). (4.5.4)

Since Ω is odd and so it has mean value zero, we can get

(4.5.3) =
1

2

∫
Sn−1

Ω(θ)

∫
ε6|r|61

f(x− rθ)− f(x)

r
drdσ(θ)

+
1

2

∫
Sn−1

Ω(θ)

∫
1<|r|6N

f(x− rθ)

r
drdσ(θ).

Because f ∈ S , the inner integrals is uniformly bounded, so we can apply the
Lebesgue dominated convergence theorem to get

TΩf(x) =
π

2

∫
Sn−1

Ω(θ)Hθf(x)dσ(θ). (4.5.5)

From (4.5.4), we conclude that

T
(∗∗)
Ω f(x) 6 π

2

∫
Sn−1

|Ω(θ)|H(∗∗)
θ f(x)dσ(θ). (4.5.6)

The Lp boundedness of TΩ and T (∗∗)
Ω for Ω odd are then trivial consequences of

(4.5.6) and (4.5.5) via Minkowski’s integral inequality. �

Remark 4.5.2. It follows from the proof of Theorem 4.5.1 and from Theorems 4.1.9
and 4.1.13 that whenever Ω is an odd function on Sn−1, we have

‖TΩ‖Lp→Lp 6C‖Ω‖1

{
p, if p > 2,

(p− 1)−1, if 1 < p < 2,

‖T (∗∗)
Ω ‖Lp→Lp 6C‖Ω‖1

{
p, if p > 2,

(p− 1)−1, if 1 < p < 2,

for some C > 0 independent of p and the dimension.
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Corollary 4.5.3.

The Riesz transformsRj and the maximal Riesz transformsR(∗)
j are bounded

on Lp(Rn) for 1 < p <∞.

Proof. By the way, the boundedness forRj , we have obtained in Theorem 4.4.3. The
assertion follows from the fact that the Riesz transforms have odd kernels. Since
the kernel of Rj decays like |x|−n near infinity, it follows that R(∗)

j f is well-defined

for f ∈ Lp(Rn). Since R(∗)
j is point-wise bounded by 2R

(∗∗)
j , the conclusion follows

from Theorem 4.5.1. �

§ 4.6 Singular integral operators with Dini-type condition

§ 4.6.1 Lp boundedness of homogeneous singular integrals

In this section, we shall consider those operators which not only commute with
translations but also with dilations. Among these we shall study the class of singu-
lar integral operators, falling under the scope of Theorem 4.2.4.

If T corresponds to the kernel K(x), then as we have already pointed out,
δε

−1
Tδε corresponds to the kernel ε−nK(ε−1x). So if δε

−1
Tδε = T we are back

to the requirement K(x) = ε−nK(ε−1x), i.e., K(εx) = ε−nK(x), ε > 0; that is K is
homogeneous of degree −n. Put another way

K(x) =
Ω(x)

|x|n
, (4.6.1)

with Ω homogeneous of degree 0, i.e., Ω(εx) = Ω(x), ε > 0. This condition on Ω

is equivalent with the fact that it is constant on rays emanating from the origin; in
particular, Ω is completely determined by its restriction to the unit sphere Sn−1.

Let us try to reinterpret the conditions of Theorem 4.2.4 in terms of Ω.
1) By (4.2.8), Ω(x) must be bounded and consequently integrable on Sn−1; and

another condition
∫
|x|>2|y|

∣∣∣Ω(x−y)
|x−y|n − Ω(x)

|x|n

∣∣∣ dx 6 C which is not easily restated pre-
cisely in terms of Ω. However, what is evident is that it requires a certain continuity
of Ω. Here we shall content ourselves in treating the case where Ω satisfies the fol-
lowing “Dini-type” condition suggested by (4.2.8):

if w(η) := sup
|x−x′|6η

|x|=|x′|=1

|Ω(x)− Ω(x′)|, then
∫ 1

0

w(η)

η
dη <∞. (4.6.2)

Of course, any Ω which is of class C1, or even merely Lipschitz continuous,
satisfies the condition (4.6.2).

2) The cancelation condition (4.2.9) is then the same as the mean value zero of
Ω on Sn−1.

Theorem 4.6.1.

Let Ω ∈ L∞(Sn−1) be homogeneous of degree 0 with mean value zero on
Sn−1, and suppose that Ω satisfies the smoothness property (4.6.2). For 1 <
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p <∞, and f ∈ Lp(Rn), let

Tεf(x) =

∫
|y|>ε

Ω(y)

|y|n
f(x− y)dy. (4.6.3)

(a) Then there exists a bound Ap (independent of f and ε) such that

‖Tεf‖p 6 Ap‖f‖p.
(b) limε→0 Tεf = Tf exists in Lp norm, and

‖Tf‖p 6 Ap‖f‖p.
(c) If f ∈ L2(Rn), then the Fourier multiplier m corresponding to T is a
homogeneous function of degree 0 expressed in (4.3.5).

Proof. The conclusions (a) and (b) are immediately consequences of Theorem 4.2.4,
once we have shown that any K(x) of the form Ω(x)

|x|n satisfies∫
|x|>2|y|

|K(x− y)−K(x)|dx 6 B, (4.6.4)

if Ω is as in condition (4.6.2). Indeed,

K(x− y)−K(x) =
Ω(x− y)− Ω(x)

|x− y|n
+Ω(x)

[
1

|x− y|n
− 1

|x|n

]
.

The second group of terms is bounded since Ω is bounded and∫
|x|>2|y|

∣∣∣∣ 1

|x− y|n
− 1

|x|n

∣∣∣∣ dx =

∫
|x|>2|y|

∣∣∣∣ |x|n − |x− y|n

|x− y|n|x|n

∣∣∣∣ dx
=

∫
|x|>2|y|

||x| − |x− y||
∑n−1

j=0 |x|n−1−j |x− y|j

|x− y|n|x|n
dx

6
∫
|x|>2|y|

|y|
n−1∑
j=0

|x|−j−1|x− y|j−ndx

6
∫
|x|>2|y|

|y|
n−1∑
j=0

|x|−j−1(|x|/2)j−ndx (∵ |x− y| > |x| − |y| > |x|/2)

=

∫
|x|>2|y|

|y|
n−1∑
j=0

2n−j |x|−n−1dx = 2(2n − 1)|y|
∫
|x|>2|y|

|x|−n−1dx

=2(2n − 1)|y|ωn−1
1

2|y|
= (2n − 1)ωn−1.

Now, we estimate the first group of terms. Let θ be the angle with sides x and
x − y whose opposite side is y in the triangle formed by vectors x, y and x − y.

1

O

x

x− y

y

P

Qθ

Since |y| 6 |x|/2 6 |x|, we have θ 6 π
2 and so

cos θ2 > cos π4 = 1/
√
2. Moreover, by the sine the-

orem, we have sin θ 6 |y|
|x| . On the other hand, in

the triangle formed by
−−→
OP := x

|x| ,
−−→
OQ := x−y

|x−y| and
−−→
PQ := x−y

|x−y| −
x
|x| , it is clear that θ = ∠(POQ) and

sin θ
|
−−→
PQ|

=
sin π−θ

2

|
−−→
OP |

by the sine theorem. Then, we have∣∣∣∣ x− y

|x− y|
− x

|x|

∣∣∣∣ =|
−−→
PQ| = sin θ

sin(π2 − θ
2)

=
sin θ
cos θ2

6
√
2
|y|
|x|

6 2
|y|
|x|
.
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Thus, the integral corresponding to the first group of terms is dominated by

2n
∫
|x|>2|y|

w

(
2
|y|
|x|

)
dx

|x|n
= 2n

∫
|z|>2

w(2/|z|) dz
|z|n

=2nωn−1

∫ ∞

2
w(2/r)

dr

r
= 2nωn−1

∫ 1

0

w(η)dη

η
<∞

in view of changes of variables x = |y|z and the Dini-type condition (4.6.2).
For part (c), it is the same as the proof of Theorem 4.3.3 with minor modification.

Indeed, we only need to simplify the proof of (4.3.6) due to Ω ∈ L∞(Sn−1) here. We
can control (4.3.6) by

ωn−1(4 +
|ω|2

4
R2)‖Ω‖L∞(Sn−1) + 2‖Ω‖L∞(Sn−1)

∫
Sn−1

ln(1/|ξ′ · x′|)dσ(x′),

where the integral in the last term is equal to∫
Sn−1

ln(1/|y1|)dσ(y)

which have been estimated in Theorem 4.3.3. Thus, we have completed the proof.
�

§ 4.6.2 The maximal singular integral operator

Theorem 4.6.1 guaranteed the existence of the singular integral

lim
ε→0

∫
|y|>ε

Ω(y)

|y|n
f(x− y)dy (4.6.5)

in the sense of convergence in the Lp norm. The natural counterpart of this result is
that of convergence almost everywhere. For the questions involving almost every-
where convergence, it is best to consider also the corresponding maximal function.

Theorem 4.6.2.

Suppose that Ω satisfies the conditions of Theorem 4.6.1. For f ∈ Lp(Rn),
1 6 p <∞, consider

Tεf(x) =

∫
|y|>ε

Ω(y)

|y|n
f(x− y)dy, ε > 0.

(The integral converges absolutely for every x.)
(a) lim

ε→0
Tεf(x) exists for almost every x.

(b) Let T ∗f(x) = sup
ε>0

|T (ε)f(x)|. If f ∈ L1(Rn), then the mapping f → T ∗f is

of weak type (1, 1).
(c) If 1 < p <∞, then ‖T ∗f‖p 6 Ap‖f‖p.

Proof. The argument for the theorem presents itself in three stages.
The first one is the proof of inequality (c) which can be obtained as a relatively

easy consequence of the Lp norm existence of limε→0 T
(ε), already proved, and cer-

tain general properties of “approximations to the identity”.
Let Tf(x) = limε→0 Tεf(x), where the limit is taken in the Lp norm. Its existence

is guaranteed by Theorem 4.6.1. We shall prove this part by showing the following
Cotlar inequality

T ∗f(x) 6M(Tf)(x) + CMf(x).
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Let ϕ be a smooth non-negative function on Rn, which is supported in the unit
ball, has integral equal to one, and which is also radial and decreasing in |x|. Con-
sider

Kε(x) =

{
Ω(x)
|x|n , |x| > ε,

0, |x| < ε.

This leads us to another function Φ defined by

Φ = ϕ ∗K −K1, (4.6.6)

where ϕ ∗K = limε→0 ϕ ∗Kε = limε→0

∫
|x−y|>εK(x− y)ϕ(y)dy.

We shall need to prove that the smallest decreasing radial majorant Ψ of Φ is
integrable (so as to apply Theorem 3.2.12).

In fact, if |x| < 1, then

|Φ| =|ϕ ∗K| =
∣∣∣∣∫

Rn

K(y)ϕ(x− y)dy

∣∣∣∣ = ∣∣∣∣∫
Rn

K(y)(ϕ(x− y)− ϕ(x))dy

∣∣∣∣
6
∫
Rn

|K(y)||ϕ(x− y)− ϕ(x)|dy 6 C

∫
Rn

|ϕ(x− y)− ϕ(x)|
|y|n

dy 6 C,

since the mean value zero of Ω on Sn−1 implies
∫
Rn K(y)dy = 0 and by the smooth-

ness of ϕ. If 1 6 |x| 6 2, then Φ = ϕ ∗K −K is again bounded by the same reason
and the boundedness of K in this case. If |x| > 2, we have

Φ(x) =

∫
Rn

K(x− y)ϕ(y)dy −K(x) =

∫
|y|61

[K(x− y)−K(x)]ϕ(y)dy.

Similar to (4.6.4), we can get the bound for |y| 6 1 and so |x| > 2|y|,

|K(x− y)−K(x)| 62nw

(
2|y|
|x|

)
|x|−n + 2(2n − 1)‖Ω‖∞|y||x|−(n+1)

62nw

(
2

|x|

)
|x|−n + 2(2n − 1)‖Ω‖∞|x|−(n+1),

as in the proof of Theorem 4.6.1, since w is increasing. Thus, due to ‖ϕ‖1 = 1, we
obtain for |x| > 2

|Φ(x)| 62nw

(
2

|x|

)
|x|−n + 2(2n − 1)‖Ω‖∞|x|−(n+1).

Therefore, we get |Ψ| 6 C for |x| < 2, and

|Ψ(x)| 62nw

(
2

|x|

)
|x|−n + 2(2n − 1)‖Ω‖∞|x|−(n+1),

for |x| > 2, and then we can proved that Ψ ∈ L1(Rn) with the help of the Dini-type
condition.

From (4.6.6), it follows, because the singular integral operator ϕ → ϕ ∗K com-
mutes with dilations, that

ϕε ∗K −Kε = Φε, with Φε(x) = ε−nΦ(x/ε). (4.6.7)

Now, we claim that for any f ∈ Lp(Rn), 1 < p <∞,

(ϕε ∗K) ∗ f(x) = Tf ∗ ϕε(x), (4.6.8)

where the identity holds for every x. In fact, we notice first that

(ϕε ∗Kδ) ∗ f(x) = Tδf ∗ ϕε(x), for every δ > 0 (4.6.9)

because both sides of (4.6.9) are equal for each x to the absolutely convergent dou-
ble integral

∫
z∈Rn

∫
|y|>δK(y)f(z − y)ϕε(x − z)dydz. Moreover, ϕε ∈ Lp

′
(Rn), with
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1/p + 1/p′ = 1, so ϕε ∗ Kδ → ϕε ∗ K in Lp
′

norm, and Tδf → Tf in Lp norm, as
δ → 0, by Theorem 4.6.1. This proves (4.6.8), and so by (4.6.7)

Tεf = Kε ∗ f = ϕε ∗K ∗ f − Φε ∗ f = Tf ∗ ϕε − f ∗ Φε.

Passing to the supremum over ε, we obtain the Cotlar inequality, and applying
Theorem 3.2.12, Theorem 3.2.7 for maximal funtions and Theorem 4.6.1, we get

‖T ∗f‖p 6‖ sup
ε>0

|Tf ∗ ϕε|‖p + ‖ sup
ε>0

|f ∗ Φε|‖p

6C‖M(Tf)‖p + C‖Mf‖p 6 C‖Tf‖p + C‖f‖p 6 C‖f‖p.

Thus, we have proved (c).

The second and most difficult stage of the proof is the conclusion (b). Here the
argument proceeds in the main as in the proof of the weak type (1, 1) result for
singular integrals in Theorem 4.2.1. We review it with deliberate brevity so as to
avoid a repetition of details already examined.

For a given α > 0, we split f = g + b as in the proof of Theorem 4.2.1. We also
consider for each cube Qj its mate Q∗

j , which has the same center cj but whose side
length is expanded 2

√
n times. The following geometric remarks concerning these

cubes are nearly obvious (The first one has given in the proof of Theorem 4.2.1).

6.4 The Maximal Singular Integral Operator 99

(i) If x < Q∗j , then |x − c j| > 2|y − c j| for all y ∈ Q j, as an obvious geometric consideration shows.
(ii) Suppose x ∈ Rn \Q∗j and assume that for some y ∈ Q j, |x− y| = ε. Then the closed ball centered

at x, of radius γnε, contains Q j, i.e. B(x, r) ⊃ Q j, if r = γnε.
(iii) Under the same hypotheses as (ii), we have that |x − y| > γ′nε, for every y ∈ Q j.
Here γn and γ′n depend only on the dimension n, and not the particular cube Q j.

x

Rn \ ∪ jQ∗j

y ε

γnε

γ′nε
Q j

Q∗j

B(x, r)

Observation for (ii) and (iii)

With these observations, and following the development in the proof of Theorem 6.1, we shall
prove that if x ∈ Rn \ ∪ jQ∗j ,

sup
ε>0
|Tεb(x)| 6

∑

j

∫

Q j

|K(x − y) − K(x − c j)||b(y)|dy

+ C sup
r>0

1
m(B(x, r))

∫

B(x,r)
|b(y)|dy,

(6.23)

with K(x) =
Ω(x)
|x|n .

The addition of the maximal function to the r.h.s of (6.23) is the main new element of the proof.
To prove (6.23), fix x ∈ Rn \ ∪ jQ∗j , and ε > 0. Now the cubes Q j fall into three classes:
1) for all y ∈ Q j, |x − y| < ε;
2) for all y ∈ Q j, |x − y| > ε;
3) there is a y ∈ Q j, such that |x − y| = ε.
We now examine

Tεb(x) =
∑

j

∫

Q j

Kε(x − y)b(y)dy. (6.24)

Case 1). Kε(x − y) = 0 if |x − y| < ε, and so the integral over the cube Q j in (6.24) is zero.
Case 2). Kε(x − y) = K(x − y), if |x − y| > ε, and therefore this integral over Q j equals

∫

Q j

K(x − y)b(y)dy =

∫

Q j

[K(x − y) − K(x − c j)]b(y)dy.

This term is majorized in absolute value by

Figure 4.1: Observation for
(ii) and (iii)

(i) If x /∈ Q∗
j , then |x − cj | > 2|y − cj | for all y ∈

Qj , as an obvious geometric consideration shows.
(ii) Suppose x ∈ Rn \ Q∗

j and assume that for
some y ∈ Qj , |x − y| = ε. Then the closed ball cen-
tered at x, of radius γnε, contains Qj , i.e., B(x, r) ⊃
Qj , if r = γnε.

(iii) Under the same hypotheses as (ii), we have
that |x− y| > γ′nε, for every y ∈ Qj .

Here γn and γ′n depend only on the dimension
n, and not the particular cube Qj .

With these observations, and following the de-
velopment in the proof of Theorem 4.2.1, we shall
prove that if x ∈ Rn \ ∪jQ∗

j ,

sup
ε>0

|Tεb(x)| 6
∑
j

∫
Qj

|K(x− y)−K(x− cj)||bj(y)|dy

+ C sup
r>0

1

m(B(x, r))

∫
B(x,r)

|b(y)|dy,
(4.6.10)

with K(x) = Ω(x)
|x|n .

The addition of the maximal function to the r.h.s of (4.6.10) is the main new
element of the proof.

To prove (4.6.10), fix x ∈ Rn \ ∪jQ∗
j , and ε > 0. Now the cubes Qj fall into three

classes:
1) for all y ∈ Qj , |x− y| < ε;
2) for all y ∈ Qj , |x− y| > ε;
3) there is a y ∈ Qj , such that |x− y| = ε.
We now examine

Tεb(x) =
∑
j

∫
Qj

Kε(x− y)bj(y)dy. (4.6.11)
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Case 1). Kε(x − y) = 0 if |x − y| < ε, and so the integral over the cube Qj in
(4.6.11) is zero.

Case 2). Kε(x− y) = K(x− y), if |x− y| > ε, and therefore this integral over Qj
equals ∫

Qj

K(x− y)bj(y)dy =

∫
Qj

[K(x− y)−K(x− cj)]bj(y)dy.

This term is majorized in absolute value by∫
Qj

|K(x− y)−K(x− cj)||bj(y)|dy,

which expression appears in the r.h.s. of (4.6.10).
Case 3). We write simply∣∣∣∣∣

∫
Qj

Kε(x− y)bj(y)dy

∣∣∣∣∣ 6
∫
Qj

|Kε(x− y)||bj(y)|dy

=

∫
Qj∩B(x,r)

|Kε(x− y)||bj(y)|dy,

by (ii), with r = γnε. However, by (iii) and the fact that Ω(x) is bounded, we have

|Kε(x− y)| =
∣∣∣∣Ω(x− y)

|x− y|n

∣∣∣∣ 6 C

(γ′nε)
n
.

Thus, in this case,∣∣∣∣∣
∫
Qj

Kε(x− y)bj(y)dy

∣∣∣∣∣ 6 C

m(B(x, r))

∫
Qj∩B(x,r)

|bj(y)|dy.

If we add over all cubes Qj , we finally obtain, for r = γnε,

|Tεb(x)| 6
∑
j

∫
Qj

|K(x− y)−K(x− cj)||bj(y)|dy

+
C

m(B(x, r))

∫
B(x,r)

|b(y)|dy.

Taking the supremum over ε gives (4.6.10).
This inequality can be written in the form

|T ∗b(x)| 6 Σ(x) + CMb(x), x ∈ Rn \ ∪jQ∗
j ,

and so

|{x ∈ Rn \ ∪jQ∗
j : |T ∗b(x)| > α/2}|

6|{x ∈ Rn \ ∪jQ∗
j : Σ(x) > α/4}|+ |{x ∈ Rn \ ∪jQ∗

j : CMb(x) > α/4}|.
The first term in the r.h.s. is similar to (4.2.7), and we can get∫

Rn\∪jQ∗
j

Σ(x)dx 6 C‖b‖1

which implies |{x ∈ Rn \ ∪jQ∗
j : Σ(x) > α/4}| 6 4C

α ‖b‖1.
For the second one, by Theorem 3.2.7, i.e., the weak type estimate for the maxi-

mal function M , we get |{x ∈ Rn \ ∪jQ∗
j : CMb(x) > α/4}| 6 C

α ‖b‖1.
The weak type (1, 1) property of T ∗ then follows as in the proof of the same

property for T , in Theorem 4.2.1 for more details.

The final stage of the proof, the passage from the inequalities of T ∗ to the exis-
tence of the limits almost everywhere, follows the familiar pattern described in the
proof of the Lebesgue differential theorem (i.e., Theorem 3.2.14).
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More precisely, for any f ∈ Lp(Rn), 1 6 p <∞, let

Λf(x) =

∣∣∣∣lim sup
ε→0

Tεf(x)− lim inf
ε→0

Tεf(x)

∣∣∣∣ .
Clearly, Λf(x) 6 2T ∗f(x). Now write f = f1 + f2 where f1 ∈ C1

c , and ‖f2‖p 6 δ.
We have already proved in the proof of Theorem 4.2.4 that Tεf1 converges uni-

formly as ε → 0, so Λf1(x) ≡ 0. By (4.2.11), we have ‖Λf2‖p 6 2Ap‖f2‖p 6 2Apδ

if 1 < p < ∞. This shows Λf2 = 0, almost everywhere, thus by Λf(x) 6 Λf1(x) +

Λf2(x), we have Λf = 0 almost everywhere. So limε→0 Tεf exists almost every-
where if 1 < p <∞.

In the case p = 1, we get similarly

|{x : Λf(x) > α}| 6 A

α
‖f2‖1 6

Aδ

α
,

and so again Λf(x) = 0 almost everywhere, which implies that lim
ε→0

Tεf(x) exists

almost everywhere. �

§ 4.7 Vector-valued analogues

It is interesting to point out that the results of this chapter, where our functions
were assumes to take real or complex values, can be extended to the case of func-
tions taking their values in a Hilbert space. We present this generalization because
it can be put to good use in several problems. An indication of this usefulness is
given in the Littlewood-Paley theory.

We begin by reviewing quickly certain aspects of integration theory in this con-
text.

Let H be a separable Hilbert space. Then a function f(x), from Rn to H is mea-
surable if the scalar valued functions (f(x), ϕ) are measurable, where (·, ·) denotes
the inner product of H, and ϕ denotes an arbitrary vector of H.

If f(x) is such a measurable function, then |f(x)| is also measurable (as a func-
tion with non-negative values), where | · | denotes the norm of H.

Thus, Lp(Rn,H) is defined as the equivalent classes of measurable functions
f(x) from Rn to H, with the property that the norm ‖f‖p = (

∫
Rn |f(x)|pdx)1/p is

finite, when p < ∞; when p = ∞ there is a similar definition, except ‖f‖∞ =

ess sup |f(x)|.
Next, let H1 and H2 be two separable Hilbert spaces, and let L(H1,H2) denote

the Banach space of bounded linear operators from H1 to H2, with the usual oper-
ator norm.

We say that a function f(x), from Rn to L(H1,H2) is measurable if f(x)ϕ is
an H2-valued measurable function for every ϕ ∈ H1. In this case |f(x)| is also
measurable and we can define the space Lp(Rn, L(H1,H2)), as before; here again
| · | denotes the norm, this time in L(H1,H2).

The usual facts about convolution hold in this setting. For example, let f ∈
Lp(Rn,H1) and K ∈ Lq(Rn, L(H1,H2)), then g(x) =

∫
Rn K(x− y)f(y)dy converges

in the norm of H2 for almost every x, and

|g(x)| 6
∫
Rn

|K(x− y)f(y)|dy 6
∫
Rn

|K(x− y)||f(y)|dy.

Also ‖g‖r 6 ‖K‖q‖f‖p, if 1/r = 1/p+ 1/q − 1, with 1 6 r 6 ∞.
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Suppose that f ∈ L1(Rn,H). Then we can define its Fourier transform

f

∨

(ξ) =

(
|ω|
2π

)n/2 ∫
Rn

e−ωix·ξf(x)dx,

which is an element ofL∞(Rn,H). If f ∈ L1(Rn,H)∩L2(Rn,H), then f

∨

∈ L2(Rn,H)

with ‖f

∨

‖2 = ‖f‖2. The Fourier transform can then be extended by continuity to a
unitary mapping of the Hilbert space L2(Rn,H) to itself.

These facts can be obtained easily from the scalar-valued case by introducing
an arbitrary orthonormal basis in H.

Now suppose that H1 and H2 are two given Hilbert spaces. Assume that f(x)
takes values in H1, and K(x) takes values in L(H1,H2). Then

Tf(x) =

∫
Rn

K(y)f(x− y)dy,

whenever defined, takes values in H2.

Theorem 4.7.1.

The results in this chapter, in particular Theorems 4.2.1, 4.2.4, 4.6.1 and 4.6.2,
and Proposition 4.2.2 are valid in the more general context where f takes
its value in H1, K takes its values in L(H1,H2) and Tf and Tεf take their
value in H2, and where throughout the absolute value | · | is replaced by the
appropriate norm in H1, L(H1,H2) and H2, respectively.

This theorem is not a corollary of the scalar-valued case treated in any obvious
way. However, its proof consists of nothing but an identical repetition of the argu-
ments given for the scalar-valued case, if we take into account the remarks made in
the above paragraphs. So, we leave the proof to the interested reader.

Remark 4.7.2. 1) The final bounds obtained do not depend on the Hilbert spaces
H1 or H2, but only on B, p, and n, as in the scalar-valued case.

2) Most of the argument goes through in the even greater generality of Banach
space-valued functions, appropriately defined, one can refer to [Gra14, pp.385-414].
The Hilbert space structure is used only in the L2 theory when applying the variant
of Plancherel’s formula.

The Hilbert space structure also enters in the following corollary.

Corollary 4.7.3.

With the same assumptions as in Theorem 4.7.1, if in addition

‖Tf‖2 = c‖f‖2, c > 0, f ∈ L2(Rn,H1),

then ‖f‖p 6 A′
p‖Tf‖p, if f ∈ Lp(Rn,H1), 1 < p <∞.

Proof. We remark that theL2(Rn,Hj) are Hilbert spaces. In fact, let (·, ·)j denote the
inner product of Hj , j = 1, 2, and let 〈·, ·〉j denote the corresponding inner product
in L2(Rn,Hj); that is

〈f, g〉j =
∫
Rn

(f(x), g(x))jdx.
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Now T is a bounded linear transformation from the Hilbert space L2(Rn,H1) to
the Hilbert space L2(Rn,H2), and so by the general theory of inner products there
exists a unique adjoint transformation T ∗, from L2(Rn,H2) to L2(Rn,H1), which
satisfies the characterizing property

〈Tf1, f2〉2 = 〈f1, T ∗f2〉1, with fj ∈ L2(Rn,Hj).

But our assumption is equivalent with the identity (see the theory of Hilbert spaces,
e.g., [Din07, Chapter 6])

〈Tf, Tg〉2 = c2〈f, g〉1, for all f, g ∈ L2(Rn,H1).

Thus using the definition of the adjoint, 〈T ∗Tf, g〉1 = c2〈f, g〉1, and so the assump-
tion can be restated as

T ∗Tf = c2f, f ∈ L2(Rn,H1). (4.7.1)

T ∗ is again an operator of the same kind as T but it takes function with values in H2

to functions with values in H1, with the kernel K∗

∼

(x) = K∗(−x), where ∗ denotes
the adjoint of an element in L(H1,H2).

This is obvious on the formal level since

〈Tf1, f2〉2 =
∫
Rn

∫
Rn

(K(x− y)f1(y), f2(x))2dydx

=

∫
Rn

∫
Rn

(f1(y),K
∗(−(y − x))f2(x))1dxdy = 〈f1, T ∗f2〉1.

The rigorous justification of this identity is achieved by a simple limiting argument.
We will not tire the reader with the routine details.

This being said we have only to add the remark that K∗(−x) satisfies the same
conditions as K(x), and so we have, for it, similar conclusions as for K (with the
same bounds). Thus by (4.7.1),

c2‖f‖p = ‖T ∗Tf‖p 6 Ap‖Tf‖p.

This proves the corollary with A′
p = Ap/c

2. �

Remark 4.7.4. This corollary applies in particular to the singular integrals com-
muted with dilations, then the condition required is that the multiplier m(ξ) have
constant absolute value. This is the case, for example, when T is the Hilbert trans-
form, K(x) = 1

πx , and m(ξ) = −i sgn (ω) sgn (ξ).
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In harmonic analysis, Littlewood-Paley theory is a term used to describe a theo-
retical framework used to extend certain results about L2 functions to Lp functions
for 1 < p < ∞. It is typically used as a substitute for orthogonality arguments
which only apply to Lp functions when p = 2. One implementation involves study-
ing a function by decomposing it in terms of functions with localized frequencies,
and using the Littlewood-Paley g-function to compare it with its Poisson integral.
The one-variable case was originated by Littlewood and Paley (1931, 1937, 1938)
and developed further by Zygmund and Marcinkiewicz in the 1930s using complex
function theory (Zygmund 2002 [1935], chapters XIV, XV). Stein later extended the
theory to higher dimensions using real variable techniques.

§ 5.1 Three approach functions and Lp boundedness

The g-function is a nonlinear operator which allows one to give a useful charac-
terization of the Lp norm of a function on Rn in terms of the behavior of its Poisson
integral. This characterization will be used not only in this chapter, but also in the
succeeding chapter dealing with function spaces.

Let f ∈ Lp(Rn) and write u(x, y) for its Poisson integral

u(x, y) =

(
|ω|
2π

)n/2 ∫
Rn

eωiξ·xe−|ωξ|yf

∨

(ξ)dξ =

∫
Rn

Py(t)f(x− t)dt = Py ∗ f(x)

(5.1.1)

as defined in (4.1.2) and (4.1.4). Let ∆ denote the Laplace operator in Rn+1
+ , i.e., ∆ =

∂2

∂y2
+
∑n

j=1
∂2

∂x2j
; ∇ is the corresponding gradient, |∇u(x, y)|2 = |∂u∂y |

2+ |∇xu(x, y)|2,

where |∇xu(x, y)|2 =
∑n

j=1 |
∂u
∂xj

|2.

Definition 5.1.1.

With the above notations, we define the Littlewood-Paley g-function
g(f)(x), by

g(f)(x) =

(∫ ∞

0
|∇u(x, y)|2ydy

)1/2

. (5.1.2)
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We can also define two partial g-functions, one dealing with the y differen-
tiation and the other with the x differentiation, i.e.,

g1(f)(x) =

(∫ ∞

0

∣∣∣∣∂u∂y (x, y)
∣∣∣∣2 ydy

)1/2

, gx(f)(x) =

(∫ ∞

0
|∇xu(x, y)|2ydy

)1/2

.

(5.1.3)

Obviously, g2 = g21 + g2x.

The basic result for g is as follows.

Theorem 5.1.2.

Suppose f ∈ Lp(Rn), 1 < p <∞. Then we have g(f) ∈ Lp(Rn), and

A′
p‖f‖p 6 ‖g(f)‖p 6 Ap‖f‖p. (5.1.4)

Proof. Step 1: We first consider the simple case p = 2. For f ∈ L2(Rn), we have

‖g(f)‖22 =
∫
Rn

∫ ∞

0
|∇u(x, y)|2ydydx =

∫ ∞

0
y

∫
Rn

|∇u(x, y)|2dxdy.

In view of the identity (5.1.1), we have

∂u

∂y
=

(
|ω|
2π

)n/2 ∫
Rn

−|ωξ|f

∨

(ξ)eωiξ·xe−|ωξ|ydξ,

and

∂u

∂xj
=

(
|ω|
2π

)n/2 ∫
Rn

ωiξjf
∨

(ξ)eωiξ·xe−|ωξ|ydξ.

It follows from Plancherel’s formula that∫
Rn

|∇u(x, y)|2dx =

∫
Rn

∣∣∣∣∂u∂y
∣∣∣∣2 + n∑

j=1

∣∣∣∣ ∂u∂xj
∣∣∣∣2
 dx

=

∥∥∥∥∂u∂y
∥∥∥∥2
L2
x

+
n∑
j=1

∥∥∥∥ ∂u∂xj
∥∥∥∥2
L2
x

=‖F−1(−|ωξ|f

∨

(ξ)e−|ωξ|y)‖22 +
n∑
j=1

‖F−1(ωiξjf

∨

(ξ)e−|ωξ|y)‖22

=‖ − |ωξ|f

∨

(ξ)e−|ωξ|y‖22 +
n∑
j=1

‖ωiξjf

∨

(ξ)e−|ωξ|y‖22

=2ω2‖|ξ|f

∨

(ξ)e−|ωξ|y‖22

=

∫
Rn

2ω2|ξ|2|f

∨

(ξ)|2e−2|ωξ|ydξ,

and by integration by parts,

‖g(f)‖22 =
∫ ∞

0
y

∫
Rn

2ω2|ξ|2|f

∨

(ξ)|2e−2|ωξ|ydξdy

=

∫
Rn

2ω2|ξ|2|f

∨

(ξ)|2
∫ ∞

0
ye−2|ωξ|ydydξ

=

∫
Rn

2ω2|ξ|2|f

∨

(ξ)|2 1

4ω2|ξ|2
dξ
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=
1

2
‖f

∨

‖22 =
1

2
‖f ||22.

Hence, we get

‖g(f)‖2 = 2−1/2‖f‖2. (5.1.5)

We have also obtained ‖g1(f)‖2 = ‖gx(f)‖2 = 1
2‖f‖2.

Step 2: We consider the case p 6= 2 and prove ‖g(f)‖p 6 Ap‖f‖p. We define
the Hilbert spaces H1 and H2 which are to be considered now. Let H1 be the one-
dimensional Hilbert space of complex numbers. To define H2, we define first H0

2 as
the L2 space on (0,∞) with measure ydy, i.e.,

H0
2 =

{
f : |f |2 =

∫ ∞

0
|f(y)|2ydy <∞

}
.

Let H2 be the direct sum of n + 1 copies of H0
2; so the elements of H2 can be rep-

resented as (n+ 1) component vectors whose entries belong to H0
2. Since H1 is the

same as the complex numbers, L(H1,H2) is of course identifiable with H2.
Now let ε > 0, and keep it temporarily fixed. Define

Kε(x) =

(
∂Py+ε(x)

∂y
,
∂Py+ε(x)

∂x1
, · · · , ∂Py+ε(x)

∂xn

)
.

Notice that for each fixed x, Kε(x) ∈ H2. This is the same as saying that∫ ∞

0

∣∣∣∣∂Py+ε(x)∂y

∣∣∣∣2 ydy <∞ and
∫ ∞

0

∣∣∣∣∂Py+ε(x)∂xj

∣∣∣∣2 ydy <∞, for j = 1, ..., n.

In fact, Py(x) = cny
(|x|2+y2)(n+1)/2 implies that both ∂Py

∂y and ∂Py

∂xj
are bounded by

A
(|x|2+y2)(n+1)/2 . For the norm of Kε(x) in H2, we have

|Kε(x)|2 6A2(n+ 1)

∫ ∞

0

ydy

(|x|2 + (y + ε)2)n+1

6A2(n+ 1)

∫ ∞

0

dy

(y + ε)2n+1
6 Cε,

and then

|Kε(x)| ∈ L1
loc(Rn \ {0}). (5.1.6)

Similarly, ∣∣∣∣∂Kε(x)

∂xj

∣∣∣∣2 6 C

∫ ∞

ε

ydy

(|x|2 + y2)n+2
6 C|x|−2n−2,

thus, Kε satisfies the gradient condition, i.e.,∣∣∣∣∂Kε(x)

∂xj

∣∣∣∣ 6 C|x|−(n+1), (5.1.7)

with C independent of ε.
Now we consider the operator Tε defined by

Tεf(x) = Kε ∗ f(x) = ∇Py+ε ∗ f(x) = ∇(Py+ε ∗ f)(x) = ∇u(x, y + ε).

The function f is complex-valued (take its value in H1), but Tεf(x) takes its value
in H2. Observe that

|Tεf(x)| =
(∫ ∞

0
|∇u(x, y + ε)|2ydy

) 1
2

6
(∫ ∞

ε
|∇u(x, y)|2ydy

) 1
2

6 g(f)(x).

(5.1.8)
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Hence, ‖Tεf‖2 6 2−1/2‖f‖2, if f ∈ L2(Rn), by (5.1.5). Therefore, by Theorem 2.5.6,
we get(

|ω|
2π

)−n/2
|K

∨

ε(x)| 6
∥∥∥∥∥
(
|ω|
2π

)−n/2
|K

∨

ε(x)|

∥∥∥∥∥
L∞
x (Rn)

= ‖T‖ 6 2−1/2. (5.1.9)

Because of (5.1.6), (5.1.7) and (5.1.9), by Theorem 4.7.1 (cf. Theorem 4.2.1 and Propo-
sition 4.2.2), we get ‖Tεf‖p 6 Ap‖f‖p, 1 < p < ∞ with Ap independent of ε. By
(5.1.8), for each x, |Tεf(x)| increases to g(f)(x), as ε→ 0, thus we obtain finally

‖g(f)‖p 6 Ap‖f‖p, 1 < p <∞. (5.1.10)

Step 3: To derive the converse inequalities:

A′
p‖f‖p 6 ‖g(f)‖p, 1 < p <∞. (5.1.11)

In the first step, we have shown that ‖g1(f)‖2 = 1
2‖f‖2 for f ∈ L2(Rn). Let u1

and u2 be the Poisson integrals of f1, f2 ∈ L2, respectively. Then we have ‖g1(f1 +
f2)‖22 = 1

4‖f1 + f2‖22, i.e.,∫
Rn

∫ ∞

0

∣∣∣∣∂(u1 + u2)

∂y

∣∣∣∣2 ydydx =
1

4

∫
Rn

|f1 + f2|2dx.

It leads to the identity

4

∫
Rn

∫ ∞

0

∂u1
∂y

(x, y)
∂u2
∂y

(x, y)ydydx =

∫
Rn

f1(x)f2(x)dx,

which, in turn, leads to the inequality, by Hölder’s inequality and the definition of
g1,

1

4

∣∣∣∣∫
Rn

f1(x)f2(x)dx

∣∣∣∣ 6 ∫
Rn

g1(f1)(x)g1(f2)(x)dx.

Suppose now in addition that f1 ∈ Lp(Rn) and f2 ∈ Lp
′
(Rn) with ‖f2‖p′ 6 1

and 1/p+ 1/p′ = 1. Then by Hölder inequality and the result (5.1.10), we get∣∣∣∣∫
Rn

f1(x)f2(x)dx

∣∣∣∣ 6 4‖g1(f1)‖p‖g1(f2)‖p′ 6 4Ap′‖g1(f1)‖p. (5.1.12)

Now we take the supremum in (5.1.12) as f2 ranges over all function in L2∩Lp′ ,
with ‖f2‖p′ 6 1. Then, we obtain the desired result (5.1.11), with A′

p = 1/4Ap′ , but
where f is restricted to be in L2 ∩ Lp. The passage to the general case is provided
by an easy limiting argument. Let fm be a sequence of functions in L2 ∩ Lp, which
converges in Lp norm to f . Notice that

|g(fm)(x)− g(fn)(x)| =
∣∣‖∇um‖L2(0,∞;ydy) − ‖∇un‖L2(0,∞;ydy)

∣∣
6‖∇um −∇un‖L2(0,∞;ydy)

=g(fm − fn)(x)

by the triangle inequality. Thus, {g(fm)} is a Cauchy sequence in Lp and so con-
verges to g(f) in Lp, and we obtain the inequality (5.1.11) for f as a result of the
corresponding inequalities for fm. �

We have incidentally also proved the following, which we state as a corollary.

Corollary 5.1.3.

Suppose f ∈ L2(Rn), and g1(f) ∈ Lp(Rn), 1 < p <∞. Then f ∈ Lp(Rn), and
A′
p‖f‖p 6 ‖g1(f)‖p.
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Remark 5.1.4. There are some very simple variants of the above that should be
pointed out:

(i) The results hold also with gx(f) instead of g(f). The direct inequality ‖gx(f)‖p 6
Ap‖f‖p is of course a consequence of the one for g. The converse inequality is then
proved in the same way as that for g1.

(ii) For any integer k > 1, define

gk(f)(x) =

(∫ ∞

0

∣∣∣∣∂ku∂yk
(x, y)

∣∣∣∣2 y2k−1dy

)1/2

.

Then the Lp inequalities hold for gk as well. Both (i) and (ii) are stated more sys-
tematically in [Ste70, Chapter IV, §7.2, p.112-113].

(iii) For later purpose, it will be useful to note that for each x, gk(f)(x) >
Akg1(f)(x) where the bound Ak depends only on k.

It is easily verified from the Poisson integral formula that if f ∈ Lp(Rn), 1 6 p 6
∞, then

∂ku(x, y)

∂yk
→ 0 for each x, as y → ∞,

which yields

∂ku(x, y)

∂yk
= −

∫ ∞

y

∂k+1u(x, s)

∂sk+1
sk
ds

sk
.

By Schwarz’s inequality, we get∣∣∣∣∂ku(x, y)∂yk

∣∣∣∣2 6
(∫ ∞

y

∣∣∣∣∂k+1u(x, s)

∂sk+1

∣∣∣∣2 s2kds
)(∫ ∞

y
s−2kds

)

=
1

2k − 1
y−2k+1

(∫ ∞

y

∣∣∣∣∂k+1u(x, s)

∂sk+1

∣∣∣∣2 s2kds
)
.

Hence, by Fubini’s theorem, we have

(gk(f)(x))
2 =

∫ ∞

0

∣∣∣∣∂ku∂yk
(x, y)

∣∣∣∣2 y2k−1dy

6 1

2k − 1

∫ ∞

0

(∫ ∞

y

∣∣∣∣∂k+1u

∂sk+1
(x, s)

∣∣∣∣2 s2kds
)
dy

=
1

2k − 1

∫ ∞

0

(∫ s

0
dy

) ∣∣∣∣∂k+1u

∂sk+1
(x, s)

∣∣∣∣2 s2kds
=

1

2k − 1

∫ ∞

0

∣∣∣∣∂k+1u

∂sk+1
(x, s)

∣∣∣∣2 s2k+1ds

=
1

2k − 1
(gk+1(f)(x))

2.

Thus, the assertion is proved by the induction on k.

The proof given for the Lp inequalities of the g-function did not, in any essential
way, depend on the theory of harmonic functions, despite the fact that this function
was defined in terms of the Poisson integral. In effect, all that was really used are
the fact that the Poisson kernels are suitable approximations to the identity.

There is, however, another approach, which can be carried out without recourse
to the theory of singular integrals, but which leans heavily on characteristic prop-
erties of harmonic functions. We present it here (more precisely, we present that
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part which deals with 1 < p 6 2, for the inequality (5.1.10)), because its ideas can
be adapted to other situations where the methods of Chapter 4 are not applicable.
Everything will be based on the following three observations.

Lemma 5.1.5.

Suppose u is harmonic and strictly positive. Then

∆up = p(p− 1)up−2|∇u|2. (5.1.13)

Proof. The proof is straightforward. Indeed,

∂xju
p = pup−1∂xju, ∂2xju

p = p(p− 1)up−2(∂xju)
2 + pup−1∂2xju,

which implies by summation

∆up = p(p− 1)up−2|∇u|2 + pup−1∆u = p(p− 1)up−2|∇u|2,
since ∆u = 0. �

Lemma 5.1.6.

Suppose that F (x, y) ∈ C(Rn+1
+ ) ∩ C2(Rn+1

+ ) satisfies ∆F > 0, and for some
ε > 0, |F | = O(r−n−ε) and |∇F | = O(r−n−1−ε) as r = |(x, y)| → ∞. Then∫

Rn+1
+

y∆F (x, y)dxdy =

∫
Rn

F (x, 0)dx. (5.1.14)

Proof. We use Green’s theorem∫
D
(u∆v − v∆u)dxdy =

∫
∂D

(
u
∂v

∂N
− v

∂u

∂N

)
dσ

where D = Br ∩ Rn+1
+ , with Br the ball of radius r in Rn+1 centered at the origin,

and N is the outward normal vector. We take v = F , and u = y to obtain∫
D
(y∆F − F∆y)dxdy =

∫
∂D

(
y
∂F

∂N
− F

∂y

∂N

)
dσ,

i.e., ∫
D
y∆Fdxdy =

∫
∂D0

(
y
∂F

∂N
− F

∂y

∂N

)
dσ +

∫
Rn

F (x, 0)dx, (5.1.15)

due to ∆y = 0 in D and ∂y
∂N = −1 on the boundary

{
(x, y) ∈ Rn+1

+ : y = 0
}
= Rn,

where ∂D0 is the spherical part of the boundary of D. Since ∆F > 0, by Levi’s
monotone convergence theorem, we get∫

D
y∆F (x, y)dxdy =

∫
y∆F (x, y)χD(x, y)dxdy →

∫
Rn+1
+

y∆F (x, y)dxdy, (5.1.16)

as r → ∞. Let y = r sin θ on ∂D0 with θ ∈ [0, π], we have∫
∂D0

(
y
∂F

∂N
− F

∂y

∂N

)
dσ =

∫
∂D0

(
r sin θ∂F

∂N
− F sin θ

)
dσ

=rn
∫
Sn
+

(
r sin θ∂F

∂N
− F sin θ

)
dσ

=O(r−ε)

∫
Sn
+

sin θdσ 6 ωn
2
O(r−ε) → 0, (5.1.17)

as r → ∞. Thus, combining (5.1.15), (5.1.16) and (5.1.17), we obtain the desired
result (5.1.14). �
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Lemma 5.1.7.

If u(x, y) is the Poisson integral of f , then

sup
y>0

|u(x, y)| 6Mf(x). (5.1.18)

Proof. This is the same as the part (a) of Theorem 4.1.3. It can be proved with a
similar argument as in the proof of Theorem 3.2.12. �

Now we use these lemmas to give another proof for the inequality

‖g(f)‖p 6 Ap‖f‖p, 1 < p 6 2.

Another proof of ‖g(f)‖p 6 Ap‖f‖p, 1 < p 6 2. Suppose first 0 6 f ∈ D(Rn)
(and at least f 6= 0 on a nonzero measurable set). Then the Poisson integral u of f ,
u(x, y) =

∫
Rn Py(t)f(x − t)dt > 0, since Py > 0 for any x ∈ Rn and y > 0; and the

majorizations up(x, y) = O(r−np) and |∇up| = O(r−np−1), as r = |(x, y)| → ∞ are
valid. We have, by Lemmas 5.1.5 and 5.1.7, and the hypothesis 1 < p 6 2,

(g(f)(x))2 =

∫ ∞

0
y|∇u(x, y)|2dy =

1

p(p− 1)

∫ ∞

0
yu2−p∆updy

6 [Mf(x)]2−p

p(p− 1)

∫ ∞

0
y∆updy.

We can write this as

g(f)(x) 6 Cp(Mf(x))(2−p)/2(I(x))1/2, (5.1.19)

where I(x) =
∫∞
0 y∆updy. However, by Lemma 5.1.6,∫

Rn

I(x)dx =

∫
Rn+1
+

y∆updydx =

∫
Rn

up(x, 0)dx = ‖f‖pp. (5.1.20)

This immediately gives the desired result for p = 2.
Next, suppose 1 < p < 2. By (5.1.19), Hölder’s inequality, Theorem 3.2.7 and

(5.1.20), we have, for 0 6 f ∈ D(Rn),∫
Rn

(g(f)(x))pdx 6 Cpp

∫
Rn

(Mf(x))p(2−p)/2(I(x))p/2dx

6Cpp
(∫

Rn

(Mf(x))pdx

)1/r′ (∫
Rn

I(x)dx

)1/r

6 C ′
p‖f‖p/r

′
p ‖f‖p/rp = C ′

p‖f‖pp,

where r = 2/p ∈ (1, 2) and 1/r + 1/r′ = 1, then r′ = 2/(2− p).
Thus, ‖g(f)‖p 6 Ap‖f‖p, 1 < p 6 2, whenever 0 6 f ∈ D(Rn).
For general f ∈ Lp(Rn) (which we assume for simplicity to be real-valued),

write f = f+ − f− as its decomposition into positive and negative part; then we
need only approximate in norm f+ and f−, each by a sequences of positive func-
tions in D(Rn). We omit the routine details that are needed to complete the proof.
�

Unfortunately, the elegant argument just given is not valid for p > 2. There is,
however, a more intricate variant of the same idea which does work for the case
p > 2, but we do not intend to reproduce it here.

We shall, however, use the ideas above to obtain a significant generalization of
the inequality for the g-functions.
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Definition 5.1.8.

Define the positive function

(g∗λ(f)(x))
2 =

∫ ∞

0

∫
Rn

(
y

|t|+ y

)λn
|∇u(x− t, y)|2y1−ndtdy. (5.1.21)

Before going any further, we shall make a few comments that will help to clarify
the meaning of the complicated expression (5.1.21).

First, g∗λ(f)(x) will turn out to be a pointwise majorant of g(f)(x). To under-
stand this situation better we have to introduce still another quantity, which is
roughly midway between g and g∗λ. It is defined as follows.

Definition 5.1.9.

Let Γ be a fixed proper cone in Rn+1
+ with vertex at the origin and which

contains (0, 1) in its interior. The exact form of Γ will not really matter, but
for the sake of definiteness let us choose for Γ the up circular cone:

Γ =
{
(t, y) ∈ Rn+1

+ : |t| < y, y > 0
}
.

For any x ∈ Rn, let Γ(x) be the cone Γ translated such that its vertex is at x.
Now define the positive Lusin’s S-function S(f)(x) by

[S(f)(x)]2 =

∫
Γ(x)

|∇u(t, y)|2y1−ndydt =
∫
Γ
|∇u(x− t, y)|2y1−ndydt.

(5.1.22)

We assert, as we shall momentarily prove, that

Proposition 5.1.10.

g(f)(x) 6 CS(f)(x) 6 Cλg
∗
λ(f)(x). (5.1.23)

Γ

y

tO

Γ(x)

x

π
4

(0, 1)

Figure 1: Γ and Γ(x) for n = 1
Figure 5.1: Γ and Γ(x) for n = 1

What interpretation can we put on the in-
equalities relating these three quantities? A
hint is afforded by considering three corre-
sponding approaches to the boundary for har-
monic functions.

(a) With u(x, y) the Poisson integral of f(x),
the simplest approach to the boundary point
x ∈ Rn is obtained by letting y → 0, (with x

fixed). This is the perpendicular approach, and
for it the appropriate limit exists almost everywhere, as we already know.

(b) Wider scope is obtained by allowing the variable point (t, y) to approach
(x, 0) through any cone Γ(x) whose vertex is x. This is the nontangential approach
which will be so important for us later. As the reader may have already realized,
the relation of the S-function to the g-function is in some sense analogous to the
relation between the nontangential and the perpendicular approaches; we should
add that the S-function is of decisive significance in its own right, but we shall not
pursue that matter now.
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(c) Finally, the widest scope is obtained by allowing the variable point (t, y) to
approach (x, 0) in an arbitrary manner, i.e., the unrestricted approach. The func-
tion g∗λ has the analogous role: it takes into account the unrestricted approach for
Poisson integrals.

Notice that g∗λ(x) depends on λ. For each x, the smaller λ the greater g∗λ(x),
and this behavior is such that that Lp boundedness of g∗λ depends critically on the
correct relation between p and λ. This last point is probably the main interest in g∗λ,
and is what makes its study more difficult than g or S.

After these various heuristic and imprecise indications, let us return to firm
ground. The only thing for us to prove here is the assertion (5.1.23).

Proof of Proposition 5.1.10. The inequality S(f)(x) 6 Cλg
∗
λ(f)(x) is obvious, since

the integral (5.1.21) majorizes that part of the integral taken only over Γ, and(
y

|t|+ y

)λn
> 1

2λn

since |t| < y there. The non-trivial part of the assertion is:

g(f)(x) 6 CS(f)(x).

Γ

y

tO

By

(0, y)

Figure 1: Γ and ByFigure 5.2: Γ and By

It suffices to prove this inequality for x = 0. Let us de-
note by By the ball in Rn+1

+ centered at (0, y) and tangent
to the boundary of the cone Γ; the radius of By is then
proportional to y. Now the partial derivatives ∂u

∂y and
∂u
∂xk

are, like u, harmonic functions. Thus, by the mean
value theorem of harmonic functions (i.e., Theorem 4.4.8
by noticing (0, y) is the center of By), we get

∂u(0, y)

∂y
=

1

|By|

∫
By

∂u(x, s)

∂s
dxds

where |By| is the n+ 1 dimensional measure of By, i.e., |By| = cyn+1 for an appro-
priate constant c. By Schwarz’s inequality, we have∣∣∣∣∂u(0, y)∂y

∣∣∣∣2 6 1

|By|2

∫
By

∣∣∣∣∂u(x, s)∂s

∣∣∣∣2 dxds∫
By

dxds

=
1

|By|

∫
By

∣∣∣∣∂u(x, s)∂s

∣∣∣∣2 dxds.
If we integrate this inequality, we obtain∫ ∞

0
y

∣∣∣∣∂u(0, y)∂y

∣∣∣∣2 dy 6
∫ ∞

0
c−1y−n

(∫
By

∣∣∣∣∂u(x, s)∂s

∣∣∣∣2 dxds
)
dy.

However, (x, s) ∈ By clearly implies that c1s 6 y 6 c2s, for two positive constants
c1 and c2. Thus, apart from a multiplicative factor by changing the order of the
double integrals, the last integral is majorized by∫

Γ

(∫ c2s

c1s
y−ndy

) ∣∣∣∣∂u(x, s)∂s

∣∣∣∣2 dxds 6 c′
∫
Γ

∣∣∣∣∂u(x, s)∂s

∣∣∣∣2 s1−ndxds.
This is another way of saying that,∫ ∞

0
y

∣∣∣∣∂u(0, y)∂y

∣∣∣∣2 dy 6 c′′
∫
Γ

∣∣∣∣∂u(x, y)∂y

∣∣∣∣2 y1−ndxdy.
The same is true for the derivatives ∂u

∂xj
, j = 1, ..., n, and adding the correspond-

ing estimates proves our assertion. �
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We are now in a position to state the Lp estimates concerning g∗λ.

Theorem 5.1.11.

Let λ > 1 be a parameter. Suppose f ∈ Lp(Rn). Then,
(a) For every x ∈ Rn, g(f)(x) 6 Cλg

∗
λ(f)(x).

(b) If 1 < p <∞, and p > 2/λ, then

‖g∗λ(f)‖p 6 Ap,λ‖f‖p. (5.1.24)

Proof. The part (a) has already been proved in Proposition 5.1.10. Now, we prove
(b).

For the case p > 2, only the assumption λ > 1 is relevant since 2/λ < 2 6 p.
Let ψ denote a positive function on Rn, we claim that∫

Rn

(g∗λ(f)(x))
2ψ(x)dx 6 Aλ

∫
Rn

(g(f)(x))2(Mψ)(x)dx. (5.1.25)

The l.h.s. of (5.1.25) equals∫ ∞

0

∫
t∈Rn

y|∇u(t, y)|2
[∫

x∈Rn

ψ(x)

(|t− x|+ y)λn
yλny−ndx

]
dtdy,

so to prove (5.1.25), we must show that

sup
y>0

∫
x∈Rn

ψ(x)

(|t− x|+ y)λn
yλny−ndx 6 AλMψ(t). (5.1.26)

However, we know by Theorem 3.2.12, that

sup
ε>0

(ψ ∗ ϕε)(t) 6 AMψ(t)

for appropriate ϕ, with ϕε(x) = ε−nϕ(x/ε). Here, we have in fact ϕ(x) = (1 +

|x|)−λn, ε = y, and so with λ > 1 the hypotheses of that theorem are satisfied. This
proves (5.1.26) and thus also (5.1.25).

The case p = 2 follows immediately from (5.1.25) by inserting in this inequality
the function ψ = 1 (or by the definitions of g∗λ(f) and g(f) directly), and using the
L2 result for g.

Suppose now p > 2; let us set 1/q + 2/p = 1, and take the supremum of the
l.h.s. of (5.1.25) over all ψ > 0, such that ψ ∈ Lq(Rn) and ‖ψ‖q 6 1. Then, it gives
‖g∗λ(f)‖2p; Hölder’s inequality yields an estimate for the right side:

Aλ‖g(f)‖2p‖Mψ‖q.

However, by the inequalities for the g-function, ‖g(f)‖p 6 A′
p‖f‖p; and by the

theorem of the maximal function ‖Mψ‖q 6 Aq‖ψ‖q 6 Aq, since q > 1, if p < ∞. If
we substitute these in the above, we get the result:

‖g∗λ(f)‖p 6 Ap,λ‖f‖p, 2 6 p <∞, λ > 1.

The inequalities for p < 2 will be proved by an adaptation of the reasoning used
for g. Lemmas 5.1.5 and 5.1.6 will be equally applicable in the present situation, but
we need more general version of Lemma 5.1.7, in order to majorize the unrestricted
approach to the boundary of a Poisson integral.

It is at this stage where results which depend critically on the Lp class first make
their appearance. Matters will depend on a variant of the maximal function which
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we define as follows. Let µ > 1, and write Mµf(x) for

Mµf(x) =

(
sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|µdy

)1/µ

. (5.1.27)

Then M1f(x) = Mf(x), and Mµf(x) = ((M |f |µ)(x))1/µ. From the theorem of the
maximal function, it immediately follows that, for p > µ,

‖Mµf‖p =‖((M |f |µ)(x))1/µ‖p = ‖((M |f |µ)(x))‖1/µp/µ

6C‖|f |µ‖1/µp/µ = C‖f‖p. (5.1.28)

This inequality fails for p 6 µ, as in the special case µ = 1.
The substitute for Lemma 5.1.7 is as follows.

Lemma 5.1.12.

Let f ∈ Lp(Rn), p > µ > 1 and u(x, y) be the Poisson integral of f , then

|u(x− t, y)| 6 A

(
1 +

|t|
y

)n
Mf(x), (5.1.29)

and more generally

|u(x− t, y)| 6 Aµ

(
1 +

|t|
y

)n/µ
Mµf(x). (5.1.30)

We shall now complete the proof of the inequality (5.1.24) for the case 1 < p < 2,
with the restriction p > 2/λ.

Let us observe that we can always find a µ ∈ [1, p) such that if we set λ′ =

λ − 2−p
µ , then one still has λ′ > 1. In fact, if µ = p, then λ − 2−p

µ > 1 since λ > 2/p;
this inequality can then be maintained by a small variation of µ. With this choice of
µ, we have by Lemma 5.1.12

|u(x− t, y)|
(

y

y + |t|

)n/µ
6 AµMµf(x). (5.1.31)

We now proceed the argument with which we treated the function g.

(g∗λ(f)(x))
2

=
1

p(p− 1)

∫
Rn+1
+

y1−n
(

y

y + |t|

)λn
u2−p(x− t, y)∆up(x− t, y)dtdy

6 1

p(p− 1)
A2−p
µ (Mµf(x))

2−pI∗(x), (5.1.32)

where

I∗(x) =

∫
Rn+1
+

y1−n
(

y

y + |t|

)λ′n
∆up(x− t, y)dtdy.

It is clear that∫
Rn

I∗(x)dx =

∫
Rn+1
+

∫
Rn
x

y1−n
(

y

y + |t− x|

)λ′n
∆up(t, y)dxdtdy

=Cλ′

∫
Rn+1
+

y∆up(t, y)dtdy,

where the last step follows from the fact that if λ′ > 1

y−n
∫
Rn

(
y

y + |t− x|

)λ′n
dx =y−n

∫
Rn

(
y

y + |x|

)λ′n
dx
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x=yz
==

∫
Rn

(
1

1 + |z|

)λ′n
dz

=Cλ′ <∞.

So, by Lemma 5.1.6, we have∫
Rn

I∗(x)dx = Cλ′

∫
Rn

up(t, 0)dt = Cλ′‖f‖pp. (5.1.33)

Therefore, by (5.1.32), Hölder’s inequality, (5.1.28) and (5.1.33), we obtain

‖g∗λ(f)‖p 6 C‖Mµf(x)
1−p/2(I∗(x))1/2‖p 6 C‖Mµf‖1−p/2p ‖I∗‖1/21 6 C‖f‖p,

which is the desired result. �
Finally, we prove Lemma 5.1.12.

Proof of Lemma 5.1.12. One notices that (5.1.29) is unchanged by the dilation
(x, t, y) → (δx, δt, δy), it is then clear that it suffices to prove (5.1.29) with y = 1.

Setting y = 1 in the Poisson kernel, we have P1(x) = cn(1 + |x|2)−(n+1)/2, and
u(x − t, 1) = (f ∗ P1)(x − t), for each t. Theorem 3.2.12 shows that |u(x − t, 1)| 6
AtMf(x), where At =

∫
Qt(x)dx, and Qt(x) is the smallest decreasing radial majo-

rant of P1(x− t), i.e.,

Qt(x) = cn sup
|x′|>|x|

1

(1 + |x′ − t|2)(n+1)/2
.

For Qt(x), we have the easy estimates, Qt(x) 6 cn for |x| 6 2t and Qt(x) 6 A′(1 +

|x|2)−(n+1)/2, for |x| > 2|t|, from which it is obvious that At 6 A(1+ |t|)n and hence
(5.1.29) is proved.

Since u(x − t, y) =
∫
Rn Py(s)f(x − t − s)ds, and

∫
Rn Py(s)ds = 1, by Hölder

inequality, we have

u(x− t, y) 6‖P 1/µ
y f(x− t− ·)‖µ‖P 1/µ′

y ‖µ′

6
(∫

Rn

Py(s)|f(x− t− s)|µds
)1/µ

= U1/µ(x− t, y),

where U is the Poisson integral of |f |µ. Apply (5.1.29) to U , it gives

|u(x− t, y)| 6A1/µ(1 + |t|/y)n/µ(M(|f |µ)(x))1/µ

=Aµ(1 + |t|/y)n/µMµf(x),

and the Lemma is established. �

§ 5.2 Mikhlin and Hörmander multiplier theorem

The first application of the theory of the functions g and g∗λ will be in the study of
multipliers. Our main tool when proving theorems for the Sobolev spaces, defined
in the following chapter, is the following theorem.

Theorem 5.2.1: Mikhlin multiplier theorem

Suppose that m(ξ) ∈ Ck(Rn \ {0}) where k > n/2 is an integer. Assume

also that for every differential monomial
(
∂
∂ξ

)α
, α = (α1, α2, ..., αn), with

|α| = α1 + α2 + ...+ αn, we have Mikhlin’s condition∣∣∣∣( ∂

∂ξ

)α
m(ξ)

∣∣∣∣ 6 A|ξ|−|α|, whenever |α| 6 k. (5.2.1)
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Then m ∈ Mp, 1 < p <∞, and

‖m‖Mp 6 Cp,nA.

The proof of the theorem leads to a generalization of its statement which we
formulate as a corollary.

Corollary 5.2.2: Hörmander multiplier theorem

The assumption (5.2.1) can be replaced by the weaker assumptions, i.e., Hör-
mander’s condition

|m(ξ)| 6A,

sup
0<R<∞

R2|α|−n
∫
R6|ξ|62R

∣∣∣∣( ∂

∂ξ

)α
m(ξ)

∣∣∣∣2 dξ 6A, |α| 6 k.
(5.2.2)

The theorem and its corollary will be consequences of the following lemma. Its
statement illuminates at the same time the nature of the multiplier transforms con-
sidered here, and the role played by the g-functions and their variants. We also
remark here that while the Mikhlin and Hörmander multiplier theorem provides
useful sufficient conditions for Lp boundedness of Fourier multipliers, it is not dis-
cerning enough for a satisfactory theory; it does not distinguish between p so long
as 1 < p <∞. Note that 1 < p <∞ here in contrast to the case in Theorem 2.6.5.

Lemma 5.2.3.

Under the assumptions of Theorem 5.2.1 or Corollary 5.2.2, let us set for
f ∈ L2(Rn)

F (x) = Tmf(x) =

(
|ω|
2π

)n/2
(m

∧∗ f)(x).

Then

g1(F )(x) 6 Aλg
∗
λ(f)(x), where λ = 2k/n. (5.2.3)

Thus in view of the lemma, the g-functions and their variants are the charac-
terizing expressions which deal at once with all the multipliers considered. On the
other hand, the fact that the relation (5.2.3) is pointwise shows that to a large extent
the mapping Tm is “semi-local”.

Proof of Theorem 5.2.1 and Corollary 5.2.2. The conclusion is deduced from the
lemma as follows. Our assumption on k is such that λ = 2k/n > 1. Thus, Theorem
5.1.11 shows us that

‖g∗λ(f)‖p 6 Aλ,p‖f‖p, 2 6 p <∞, if f ∈ L2 ∩ Lp.

However, by Corollary 5.1.3, A′
p‖F‖p 6 ‖g1(F )‖p, therefore by Lemma 5.2.3,

‖Tmf‖p = ‖F‖p 6 Aλ‖g∗λ(f)‖p 6 Ap‖f‖p, if 2 6 p <∞ and f ∈ L2 ∩ Lp.

That is, m ∈ Mp, 2 6 p < ∞. By duality, i.e., (2.6.2), we have also m ∈ Mp,
1 < p 6 2, which gives the assertion of the theorem. �

Now we shall prove Lemma 5.2.3.
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Proof of Lemma 5.2.3. Let u(x, y) denote the Poisson integral of f , and U(x, y)

the Poisson integral of F . Then with ·∨denoting the Fourier transform w.r.t. the x
variable, we have

u

∨

(ξ, y) = e−|ωξ|yf

∨

(ξ), and U

∨

(ξ, y) = e−|ωξ|yF

∨

(ξ) = e−|ωξ|ym(ξ)f

∨

(ξ).

Define M(x, y) =
(
|ω|
2π

)n ∫
Rn e

ωix·ξe−|ωξ|ym(ξ)dξ. It is clear that(
|ω|
2π

)−n/2
M

∨

(ξ, y) = e−|ωξ|ym(ξ),

and then

U

∨

(ξ, y1 + y2) =

(
|ω|
2π

)−n/2
M

∨

(ξ, y1)u

∨

(ξ, y2), y = y1 + y2, y1, y2 > 0.

This can be written as

U(x, y1 + y2) =

∫
Rn

M(t, y1)u(x− t, y2)dt.

We differentiate this relation k times w.r.t. y1 and once w.r.t. y2, and set y1 = y2 =

y/2. This gives us the identity

U (k+1)(x, y) =

∫
Rn

M (k)(t, y/2)u(1)(x− t, y/2)dt. (5.2.4)

Here the superscripts denote the differentiation w.r.t. y.
Next, we translate the assumptions (5.2.1) (or (5.2.2)) on m in terms of M(x, y).

The result is

|M (k)(t, y)| 6A′y−n−k, (5.2.5)∫
Rn

|t|2k|M (k)(t, y)|2dt 6A′y−n, (5.2.6)

where A′ depends only on n and k.
In fact, from the definition of M and the condition |m(ξ)| 6 A, it follows that

|M (k)(x, y)| 6
(
|ω|
2π

)n
|ω|k

∫
Rn

|ξ|ke−|ωξ|y|m(ξ)|dξ

6Aωn−1

(
|ω|
2π

)n
|ω|k

∫ ∞

0
rke−|ω|ryrn−1dr

=Aωn−1

(
1

2π

)n
y−n−k

∫ ∞

0
e−RRk+n−1dR

=Aωn−1

(
1

2π

)n
Γ(k + n)y−n−k,

which is (5.2.5).
To prove (5.2.6), let us show more particularly that∫

Rn

|xαM (k)(x, y)|2dx 6 A′y−n,

where |α| = k.
By Plancherel’s theorem and Proposition 2.1.2, we have

‖xαM (k)(x, y)‖2 =
(
|ω|
2π

)n/2 ∥∥∥∥( ∂

∂ξ

)α
(|ξ|km(ξ)e−|ωξ|y)

∥∥∥∥
2

. (5.2.7)

Then we need to evaluate, by using Leibniz’ rule, that(
∂

∂ξ

)α
(|ξ|km(ξ)e−|ωξ|y) =

∑
β+γ=α

Cβ,γ

(
∂

∂ξ

)β
(|ξ|km(ξ))

(
∂

∂ξ

)γ
e−|ωξ|y. (5.2.8)
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Case I: (5.2.1) =⇒ (5.2.6). By the hypothesis (5.2.1) and Leibniz’ rule again, we
have ∣∣∣∣∣

(
∂

∂ξ

)β
(|ξ|km(ξ))

∣∣∣∣∣ 6 A′|ξ|k−|β|, with |β| 6 k.

Thus, ∣∣∣∣( ∂

∂ξ

)α
(|ξ|km(ξ)e−|ωξ|y)

∣∣∣∣
6C

∑
|β|+|γ|=k

|ξ|k−|β|(|ω|y)|γ|e−|ωξ|y 6 C
∑

06r6k
|ξ|r(|ω|y)re−|ωξ|y.

Since for r > 0

(|ω|y)2r
∫
Rn

|ξ|2re−2|ωξ|ydξ =ωn−1(|ω|y)2r
∫ ∞

0
R2re−2|ω|RyRn−1dR

=ωn−12
−(2r+n)(|ω|y)−n

∫ ∞

0
z2r+n−1e−zdz

=ωn−1(|ω|y)−n2−(2r+n)Γ(2r + n),

we get for |α| = k

‖xαM (k)(x, y)‖22 6
(
|ω|
2π

)n
ωn−1(|ω|y)−n

 ∑
06r6k

(2−(2r+n)Γ(2r + n))1/2

2

6Ck,ny−n,

which proves the assertion (5.2.6) in view of (2.3.6).
Case II: (5.2.2) =⇒ (5.2.6). From (5.2.7) and (5.2.8), we have, by Leibniz’ rule

again and (5.2.2),(
|ω|
2π

)−n/2
‖xαM (k)(x, y)‖2

6
∑

|β′|+|β′′|+|γ|=k

Cβ′β′′γ

∫
Rn

∣∣∣∣∣
(
∂

∂ξ

)β′

|ξ|k
∣∣∣∣∣
2 ∣∣∣∣∣
(
∂

∂ξ

)β′′

m(ξ)

∣∣∣∣∣
2

e−2|ωξ|y(|ω|y)2|γ|dξ

1/2

6C
∑

|β′|+|β′′|+|γ|=k

(|ω|y)|γ|
∑
j∈Z

∫
2j<|ξ|62j+1

|ξ|2(k−|β′|)

∣∣∣∣∣
(
∂

∂ξ

)β′′

m(ξ)

∣∣∣∣∣
2

e−2|ωξ|ydξ

1/2

6C
∑

|β′|+|β′′|+|γ|=k

(|ω|y)|γ|
∑
j∈Z

(2j+1)2(k−|β′|)e−|ω|2j+1y

·(2j)−2|β′′|+n

(2j)2|β
′′|−n

∫
2j<|ξ|62j+1

∣∣∣∣∣
(
∂

∂ξ

)β′′

m(ξ)

∣∣∣∣∣
2

dξ

1/2

6CA1/22k
∑

06r6k
(|ω|y)r

∑
j∈Z

2j(2j)2r+n−1e−|ω|2j+1y

1/2

6CA1/22k
∑

06r6k
(|ω|y)r

(∫ ∞

0
R2r+n−1e−|ω|RydR

)1/2
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=CA1/22k
∑

06r6k
(|ω|y)−n/2

(∫ ∞

0
z2r+n−1e−zdz

)1/2

6CA1/2(|ω|y)−n/22k
∑

06r6k
Γ1/2(2r + n),

which yields (5.2.6) in view of (2.3.6) again.
Now, we return to the identity (5.2.4), and for each y divide the range of integra-

tion into two parts, |t| 6 y/2 and |t| > y/2. In the first range, we use the estimate
(5.2.5) on M (k) and in the second range, we use the estimate (5.2.6). This together
with Schwarz’ inequality gives immediately

|U (k+1)(x, y)|2 6Cy−n−2k

∫
|t|6y/2

|u(1)(x− t, y/2)|2dt

+ Cy−n
∫
|t|>y/2

|u(1)(x− t, y/2)|2dt
|t|2k

=:I1(y) + I2(y).

Now

(gk+1(F )(x))
2 =

∫ ∞

0
|U (k+1)(x, y)|2y2k+1dy 6

2∑
j=1

∫ ∞

0
Ij(y)y

2k+1dy.

However, by a change of variable y/2 → y,∫ ∞

0
I1(y)y

2k+1dy =C

∫ ∞

0

∫
|t|6y/2

|u(1)(x− t, y/2)|2y−n+1dtdy

6C
∫
Γ
|∇u(x− t, y)|2y−n+1dtdy = C(S(f)(x))2

6Cλ(g∗λ(f)(x))2.
Similarly, with nλ = 2k,∫ ∞

0
I2(y)y

2k+1dy 6C
∫ ∞

0

∫
|t|>y

y−n+2k+1|t|−2k|∇u(x− t, y)|2dtdy

6C(g∗λ(f)(x))2.
This shows that gk+1(F )(x) 6 Cλg

∗
λ(f)(x). However, by Remark 5.1.4 (iii) of g-

functions, we know that g1(F )(x) 6 Ckgk+1(F )(x). Thus, the proof of the lemma is
concluded. �

§ 5.3 The partial sums operators

We shall now develop the second main tool in the Littlewood-Paley theory, (the
first being the usage of the functions g and g∗).

Let ρ denote an arbitrary rectangle in Rn. By rectangle we shall mean, in the
rest of this chapter, a possibly infinite rectangle with sides parallel to the axes, i.e.,
the Cartesian product of n intervals.

Definition 5.3.1.

For each rectangle ρ denote by Sρ the partial sum operator, that is the mul-
tiplier operator with m = χρ, i.e., characteristic function of the rectangle ρ.
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So

Sρf

∨

= χρf

∨

, f ∈ L2(Rn) ∩ Lp(Rn). (5.3.1)

For this operator, we immediately have the following theorem in view of the
Mikhlin multiplier theorem.

Theorem 5.3.2.

Let 1 < p <∞, we have

‖Sρf‖p 6 Ap‖f‖p, f ∈ L2(Rn) ∩ Lp(Rn),
where the constant Ap does not depend on the rectangle ρ.

However, we shall need a more extended version of the theorem which arises
when we replace complex-valued functions by functions taking their value in a
Hilbert space.

Let H be the sequence Hilbert space,

H = {(cj)∞j=1 : (
∑
j

|cj |2)1/2 = |c| <∞}.

Then we can represent a function f ∈ Lp(Rn,H) as sequences

f(x) = (f1(x), · · · , fj(x), · · · ),

where each fj is complex-valued and |f(x)| = (
∑∞

j=1 |fj(x)|2)1/2. Let < be a se-
quence of rectangle, < = {ρj}∞j=1. Then we can define the operator Sℜ, mapping
L2(Rn,H) to itself, by the rule

Sℜf = (Sρ1f1, · · · , Sρjfj , · · · ), where f = (f1, · · · , fj , · · · ). (5.3.2)

We first give a lemma, which will be used in the proof of the theorem or its
generalization. Recall the Hilbert transform f → H(f), which corresponds to the
multiplier −i sgn (ω) sgn (ξ) in one dimension.

Lemma 5.3.3.

Let f(x) = (f1(x), · · · , fj(x), · · · ) ∈ L2(Rn,H)∩Lp(Rn,H). Denote H

∼

f(x) =

(Hf1(x), · · · ,Hfj(x), · · · ). Then

‖H

∼

f‖p 6 Ap‖f‖p, 1 < p <∞,

where Ap is the same constant as in the scalar case, i.e., when H is one-
dimensional.

Proof. We use the vector-valued version of the Hilbert transform, as is described
more generally in Sec. 4.7. Let the Hilbert spaces H1 and H2 be both identical
with H. Take in R, K(x) = I · 1/πx, where I is the identity mapping on H. Then
the kernel K(x) satisfies all the assumptions of Theorem 4.7.1 and Theorem 4.6.1.
Moreover,

lim
ε→0

∫
|y|>ε

K(y)f(x− y)dy = H

∼

f(x),

and thus the lemma is proved. �
The generalization of Theorem 5.3.2 is then as follows.
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Theorem 5.3.4.

Let f ∈ L2(Rn,H) ∩ Lp(Rn,H). Then

‖Sℜf‖p 6 Ap‖f‖p, 1 < p <∞, (5.3.3)

where Ap does not depend on the family < of rectangles.

Proof. The theorem will be proved in four steps, the first two of which already
contain the essence of the matter.

Step 1: n = 1, and the rectangles ρ1, ρ2, · · · , ρj , · · · are the semi-infinite intervals
(−∞, 0).

It is clear that S(−∞,0)f = χ(−∞,0)f

∨∧

= 1− sgn (ξ)
2 f

∨∧

, so

S(−∞,0) =
I − i sgn (ω)H

2
, (5.3.4)

where I is the identity, and S(−∞,0) is the partial sum operator corresponding to the
interval (−∞, 0).

Now if all the rectangles are the intervals (−∞, 0), then by (5.3.4),

Sℜ =
I − i sgn (ω)H

∼

2
and so by Lemma 5.3.3, we have the desired result.

Step 2: n = 1, and the rectangles are the intervals (−∞, a1), (−∞, a2), · · · ,
(−∞, aj), · · · .

Notice that f(x)e−ωix·a

∨

= f

∨

(ξ + a), therefore

H(e−ωix·af(x))
∨
= −i sgn (ω) sgn (ξ)f

∨
(ξ + a),

and hence eωix·aH(e−ωix·af(x))

∨

= −i sgn (ω) sgn (ξ − a)f

∨

(ξ). From this, we see that

(S(−∞,aj)fj)(x) =
fj − i sgn (ω)eωix·ajH(e−ωix·ajfj)

2
. (5.3.5)

If we now write symbolically e−ωix·af for

(e−ωix·a1f1, · · · , e−ωix·ajfj , · · · )

with f = (f1, · · · , fj , · · · ), then (5.3.5) may be written as

Sℜf =
f − i sgn (ω)eωix·aH

∼

(e−ωix·af)

2
, (5.3.6)

and so the result again follows in this case by Lemma 5.3.3.
Step 3: General n, but the rectangles ρj are the half-spaces x1 < aj , i.e., ρj =

{x : x1 < aj}.
Let S(1)

(−∞,aj)
denote the operator defined on L2(Rn), which acts only on the x1

variable, by the action given by S(−∞,aj). We claim that

Sρj = S
(1)
(−∞,aj)

. (5.3.7)

This identity is obvious for L2 functions of the product form

f ′(x1)f
′′(x2, · · · , xn),

since their linear span is dense in L2, the identity (5.3.7) is established.
We now use the Lp inequality, which is the result of the previous step for each

fixed x2, x3, · · · , xn. We raise this inequality to the pth power and integrate w.r.t.
x2, · · · , xn. This gives the desired result for the present case. Notice that the result
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holds as well if the half-space {x : x1 < aj}∞j=1, is replaced by the half-space {x :

x1 > aj}∞j=1, or if the role of the x1 axis is taken by the x2 axis, etc.
Step 4: Observe that every general finite rectangle of the type considered is

the intersection of 2n half-spaces, each half-space having its boundary hyperplane
perpendicular to one of the axes of Rn. Thus a 2n-fold application of the result of
the third step proves the theorem, where the family < is made up of finite rectan-
gles. Since the bounds obtained do not depend on the family <, we can pass to the
general case where < contains possibly infinite rectangles by an obvious limiting
argument. �

We state here the continuous analogue of Theorem 5.3.4. Let (Γ, dγ) be a σ-finite
measure space, and consider the Hilbert space H of square integrable functions on
Γ, i.e., H = L2(Γ, dγ). The elements

f ∈ Lp(Rn,H)

are the complex-valued functions f(x, γ) = fγ(x) on Rn × Γ, which are jointly
measurable, and for which (

∫
Rn(
∫
Γ |f(x, γ)|

2dγ)p/2dx)1/p = ‖f‖p < ∞, if p < ∞.
Let < = {ργ}γ∈Γ, and suppose that the mapping γ → ργ is a measurable function
from Γ to rectangles; that is, the numerical-valued functions which assign to each γ
the components of the vertices of ργ are all measurable.

Suppose f ∈ L2(Rn,H). Then we define F = Sℜf by the rule

F (x, γ) = Sργ (fγ)(x), (fγ(x) = f(x, γ)).

Theorem 5.3.5.

It holds

‖Sℜf‖p 6 Ap‖f‖p, 1 < p <∞, (5.3.8)

for f ∈ L2(Rn,H) ∩ Lp(Rn,H), where the bound Ap does not depend on the
measure space (Γ, dγ), or on the function γ → ργ .

Proof. The proof of this theorem is an exact repetition of the argument given for
Theorem 5.3.4. The reader may also obtain it from Theorem 5.3.4 by a limiting
argument. �

§ 5.4 The dyadic decomposition

We shall now consider a decomposition of Rn into rectangles.

1

Figure 1: The dyadic decomposition
Figure 5.3: The dyadic de-
composition

First, in the case of R, we decompose it as the
union of the almost disjoint intervals (i.e., whose
interiors are disjoint) [2k, 2k+1], −∞ < k < ∞, and
[−2k+1,−2k], −∞ < k < ∞. This double collec-
tion of intervals, one collection for the positive half-
line, the other for the negative half-line, will be the
dyadic decomposition of R.

Having obtained this decomposition of R, we
take the corresponding product decomposition for
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Rn. Thus we write Rn as the union of almost dis-
joint rectangles which are products of the intervals
occurring for the dyadic decomposition of each of
the axes. This is the dyadic decomposition of Rn.

The family of resulting rectangles will be de-
noted by ∆. We recall the partial sum operator Sρ, defined in (5.3.1) for each rect-
angle. Now in an obvious sense, (e.g. L2 convergence)∑

ρ∈∆
Sρ = Identity.

Also in the L2 case, the different blocks, Sρf , ρ ∈ ∆, behave as if they were
independent; they are of course mutually orthogonal. To put the matter precisely:
The L2 norm of f can be given exactly in terms of the L2 norms of Sρf , i.e.,∑

ρ∈∆
‖Sρf‖22 = ‖f‖22, (5.4.1)

(and this is true for any decomposition of Rn). For the general Lp case not as much
can be hoped for, but the following important theorem can nevertheless be estab-
lished.

Theorem 5.4.1: Littlewood-Paley square function theorem

Suppose f ∈ Lp(Rn), 1 < p <∞. Then

‖(
∑
ρ∈∆

|Sρf(x)|2)1/2‖p ∼ ‖f‖p.

The Rademacher functions provide a very useful device in the study of Lp

norms in terms of quadratic expressions.

1
2

1 t

r1(t)

r0(t)

Figure 1: r0(t) and r1(t)
Figure 5.4: r0(t) with dotted
line and r1(t) with solid line

These functions, r0(t), r1(t), · · · , rm(t), · · · are
defined on the interval (0, 1) as follows:

r0(t) =

{
1, 0 6 t 6 1/2,

− 1, 1/2 < t < 1,

r0 is extended outside the unit interval by periodic-
ity, i.e., r0(t+1) = r0(t). In general, rm(t) = r0(2

mt).
The sequences of Rademacher functions are or-
thonormal (and in fact mutually independent) over
[0, 1]. In fact, for m < k, we have∫ 1

0
rm(t)rk(t)dt =

∫ 1

0
r0(2

mt)r0(2
kt)dt

=2−m
∫ 2m

0
r0(s)r0(2

k−ms)ds =

∫ 1

0
r0(s)r0(2

k−ms)ds

=

∫ 1/2

0
r0(2

k−ms)ds−
∫ 1

1/2
r0(2

k−ms)ds

=2m−k

[∫ 2k−m−1

0
r0(t)dt−

∫ 2k−m

2k−m−1

r0(t)dt

]

=2−1

[∫ 1

0
r0(t)dt−

∫ 1

0
r0(t)dt

]
= 0,

thus, they are orthogonal. It is clear that they are normal since
∫ 1
0 (rm(t))

2dt = 1.
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For our purposes, their importance arises from the following fact.
Suppose

∑∞
m=0 |am|2 < ∞ and set F (t) =

∑∞
m=0 amrm(t). Then for every 1 <

p <∞, we can prove F (t) ∈ Lp[0, 1] and

Ap‖F‖p 6 ‖F‖2 = (
∞∑
m=0

|am|2)1/2 6 Bp‖F‖p, (5.4.2)

for two positive constants Ap and Bp.
Thus, for functions which can be expanded in terms of the Rademacher func-

tions, all the Lp norms, 1 < p <∞, are comparable.
We shall also need the n-dimensional form of (5.4.2). We consider the unit cube

Q ⊂ Rn, Q = {t = (t1, t2, · · · , tn) : 0 6 tj 6 1}. Let m be an n-tuple of non-negative
integers m = (m1,m2, · · · ,mn). Define rm(t) = rm1(t1)rm2(t2) · · · rmn(tn). Write
F (t) =

∑
amrm(t). With

‖F‖p =
(∫

Q
|F (t)|pdt

)1/p

,

we can show (5.4.2), whenever
∑

|am|2 <∞. We state these results as follows.

Lemma 5.4.2.

Let F (t) =
∑
amrm(t) for t ∈ Rn and m ∈ Nn0 . Suppose

∑
|am|2 < ∞. Then

it holds

‖F‖p ∼ ‖F‖2 =

 ∞∑
|m|=0

|am|2
1/2

, 1 < p <∞. (5.4.3)

Proof. We split the proof into four steps.
Step 1: Let n = 1 and µ, a0, a1, · · · , aN be real numbers. Then because the

Rademacher functions are mutually independent, we have, in view of their defini-
tion,∫ 1

0
eµamrm(t)dt =

∫ 1

0
eµamr0(2

mt)dt = 2−m
∫ 2m

0
eµamr0(s)ds =

∫ 1

0
eµamr0(s)ds

=2−1(eµam + e−µam) = coshµam.
and for m < k∫ 1

0
eµamrm(t)eµakrk(t)dt =

∫ 1

0
eµamr0(2

mt)eµakr0(2
kt)dt

=2−m
∫ 2m

0
eµamr0(s)eµakr0(2

k−ms)ds =

∫ 1

0
eµamr0(s)eµakr0(2

k−ms)ds

=

∫ 1/2

0
eµameµakr0(2

k−ms)ds+

∫ 1

1/2
e−µameµakr0(2

k−ms)ds

=2m−k

[∫ 2k−m−1

0
eµameµakr0(t)dt+

∫ 2k−m

2k−m−1

e−µameµakr0(t)dt

]

=2−1(eµam + e−µam)

∫ 1

0
eµakr0(t)dt =

∫ 1

0
eµamrm(t)dt

∫ 1

0
eµakrk(t)dt.

Thus, by induction, we can verify∫ 1

0
eµ
∑N

m=0 amrm(t)dt =
N∏
m=0

∫ 1

0
eµamrm(t)dt.
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If we now make use of this simple inequality coshx 6 ex
2

(since coshx =∑∞
k=0

x2k

(2k)! 6
∑∞

k=0
x2k

k! = ex
2

for |x| <∞ by Taylor expansion), we obtain∫ 1

0
eµF (t)dt =

N∏
m=0

coshµam 6
N∏
m=0

eµ
2a2m = eµ

2
∑N

m=0 a
2
m ,

with F (t) =
∑N

m=0 amrm(t).
Step 2: n = 1. Let us make the normalizing assumption that

∑N
m=0 a

2
m = 1.

Then, since eµ|F | 6 eµF + e−µF , we have∫ 1

0
eµ|F (t)|dt 6 2eµ

2
.

Recall the distribution function F∗(α) = |{t ∈ [0, 1] : |F (t)| > α}|. If we take
µ = α/2 in the above inequality, we have

F∗(α) =

∫
{|F (t)|>α}∩[0,1]

dt 6 e−
α2

2

∫
{|F (t)|>α}∩[0,1]

e
α
2
|F (t)|dt 6 e−

α2

2 2e
α2

4 = 2e−
α2

4 .

From Theorem 1.1.4, the above and changes of variables, it follows immediately
that

‖F‖p =
(
p

∫ ∞

0
αp−1F∗(α)dα

)1/p

6
(
2p

∫ ∞

0
αp−1e−

α2

4 dα

)1/p

=

(
2pp

∫ ∞

0
sp/2−1e−sds

)1/p

(set s = α2/4)

=2(pΓ(p/2))1/p,

for 1 6 p <∞, and so in general, we obtain

‖F‖p 6 Cp

( ∞∑
m=0

|am|2
)1/2

, 1 6 p <∞. (5.4.4)

Step 3: We shall now extend the last inequality to several variables. The case of
two variables is entirely of the inductive procedure used in the proof of the general
case.

We can also limit ourselves to the situation when p > 2, since for the case p < 2

the desired inequality is a simple consequence of Hölder’s inequality. (Indeed, for
p < 2 and some q > 2, we have

‖F‖Lp(0,1) 6 ‖F‖Lq(0,1)‖1‖Lqp/(q−p)(0,1) 6 ‖F‖Lq(0,1)

by Hölder’s inequality.)
We have

F (t1, t2) =
N∑

m1=0

N∑
m2=0

am1m2rm1(t1)rm2(t2) =
N∑

m1=0

Fm1(t2)rm1(t1),

where Fm1(t2) =
∑

m2
am1m2rm2(t2). By(5.4.4), it follows∫ 1

0
|F (t1, t2)|pdt1 6 Cp

(∑
m1

|Fm1(t2)|2
)p/2

.

Integrating this w.r.t. t2, and using Minkowski’s inequality with p/2 > 1, we
have∫ 1

0

(∑
m1

|Fm1(t2)|2
)p/2

dt2 =

∥∥∥∥∥∑
m1

|Fm1(t2)|2
∥∥∥∥∥
p/2

p/2

6
(∑
m1

‖|Fm1(t2)|2‖p/2

)p/2
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=

(∑
m1

‖Fm1(t2)‖2p

)p/2
.

However, Fm1(t2) =
∑

m2
am1m2rm2(t2), and therefore the case already proved

shows that

‖Fm1(t2)‖2p 6 Cp
∑
m2

a2m1m2
.

Inserting this in the above gives∫ 1

0

∫ 1

0
|F (t1, t2)|pdt1dt2 6 Cp

(∑
m1

∑
m2

a2m1m2

)p/2
,

which leads to the desired inequality

‖F‖p 6 Cp‖F‖2, 2 6 p <∞.

Step 4: The converse inequality

‖F‖2 6 Cp‖F‖p, p > 1

is a simple consequence of the direct inequality.
In fact, for any p > 1, (here we may assume p < 2) by Hölder inequality

‖F‖2 6 ‖F‖1/2p ‖F‖1/2p′ .

We already know that ‖F‖p′ 6 A′
p′‖F‖2, p′ > 2. We therefore get

‖F‖2 6 Cp′‖F‖p,

which is the required converse inequality. �
Now, let us return to the proof of the Littlewood-Paley square function theorem.

Proof of Theorem 5.4.1. It will be presented in five steps.
Step 1: We show here that it suffices to prove the inequality∥∥∥∥∥∥

(∑
ρ∈∆

|Sρf(x)|2
)1/2∥∥∥∥∥∥

p

6 Ap‖f‖p, 1 < p <∞, (5.4.5)

for f ∈ L2(Rn) ∩ Lp(Rn). To see this sufficiency, let g ∈ L2(Rn) ∩ Lp
′
(Rn), and

consider the identity ∑
ρ∈∆

∫
Rn

SρfSρgdx =

∫
Rn

fḡdx

which follows from (5.4.1) by polarization. By Schwarz’s inequality and then Hölder’s
inequality, we get∣∣∣∣∫

Rn

fḡdx

∣∣∣∣ 6∫
Rn

(∑
ρ

|Sρf |2
) 1

2
(∑

ρ

|Sρg|2
) 1

2

dx

6

∥∥∥∥∥∥
(∑

ρ

|Sρf |2
) 1

2

∥∥∥∥∥∥
p

∥∥∥∥∥∥
(∑

ρ

|Sρg|2
) 1

2

∥∥∥∥∥∥
p′

.

Taking the supremum over all such g with the additional restriction that ‖g‖p′ 6
1, it gives ‖f‖p for the l.h.s. of the above inequality. The r.h.s. is majorized by

Ap′

∥∥∥∥(∑ |Sρf |2
)1/2∥∥∥∥

p

,

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



- 178 - Chengchun HAO

since we assume (5.4.5) for all p. Thus, we have also

Bp‖f‖p 6

∥∥∥∥∥∥
(∑

ρ

|Sρf |2
)1/2

∥∥∥∥∥∥
p

. (5.4.6)

To dispose of the additional assumption that f ∈ L2, for f ∈ Lp we take fj ∈ L2∩Lp

such that ‖fj − f‖p → 0 by density and use the inequality (5.4.5) and (5.4.6) for fj
and fj−fj′ ; after a simple limiting argument, we get (5.4.5) and (5.4.6) for f as well.

Step 2: Here we shall prove the inequality (5.4.5) for n = 1.

1

1

2 3 4 ξ

ϕ(ξ)

Figure 1: ϕ(ξ)
Figure 5.5: ϕ(ξ)

We shall need first to introduce a little
more notations. In R, let ∆1 be the family of
dyadic set Im = [2m, 2m+1] ∪ [−2m+1,−2m]

with m ∈ Z. For each Im ∈ ∆1, we consider
the partial sum operator SIm , and a modifica-
tion of it that we now define. Let ϕ ∈ D(R)
be a fixed function with the following prop-
erties:

ϕ(ξ) =

{
1, 1 6 |ξ| 6 2,

0, |ξ| 6 1/2, or |ξ| > 4.

Define S

∼

Im by

S

∼

Imf

∨

(ξ) = ϕ(2−mξ)f

∨

(ξ) = ϕm(ξ)f

∨

(ξ). (5.4.7)

That is, S

∼

Im , like SIm , is a multiplier transform where the multiplier is equal to one
on the interval Im; but unlike SIm , the multiplier of S

∼

Im is smooth. We observe that

SImS

∼

Im = SIm , (5.4.8)

since SIm has the multiplier as the characteristic function of Im.
Now for each t ∈ [0, 1], consider the multiplier transform

T

∼

t =
∑
m∈Z

rm(t)S

∼

Im .

That is, for each t, T

∼

t is the multiplier transform whose multiplier is m

∼

t(ξ), with

m

∼

t(ξ) =
∑
m∈Z

rm(t)ϕm(ξ). (5.4.9)

By the definition of ϕm, it is clear that for any ξ at most five terms in the sum
(5.4.9) can be non-zero. Moreover, we also see easily that

|m

∼

t(ξ)| 6 B,

∣∣∣∣dm∼tdξ
(ξ)

∣∣∣∣ 6 B

|ξ|
, (5.4.10)

where B is independent of t. Thus, by the Mikhlin multiplier theorem (Theorem
5.2.1)

‖T

∼

tf‖p 6 Ap‖f‖p, for f ∈ L2 ∩ Lp, (5.4.11)

and with Ap independent of t. From this, it follows obviously that(∫ 1

0
‖T

∼

tf‖ppdt
)1/p

6 Ap‖f‖p.

However, by Lemma 5.4.2 about the Rademacher functions,∫ 1

0
‖T

∼

tf‖ppdt =
∫ 1

0

∫
R

∣∣∣∑ rm(t)(S

∼

Imf)(x)
∣∣∣p dxdt
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>A′
p

∫
R

(∑
m

|S

∼

Imf(x)|2
)p/2

dx.

Thus, we have ∥∥∥∥∥∥
(∑

m

|S

∼

Im(f)|2
)1/2

∥∥∥∥∥∥
p

6 Bp‖f‖p. (5.4.12)

Now using (5.4.8), applying the general theorem about partial sums, Theorem
5.3.4, with < = ∆1 here and (5.4.12), we get, for F = (S

∼

Imf)m∈Z,∥∥∥∥∥∥
(∑

m

|SImf |2
)1/2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
(∑

m

|SImS

∼

Imf |2
)1/2

∥∥∥∥∥∥
p

= ‖S∆1F‖p

6Ap‖F‖p = Ap

∥∥∥∥∥∥
(∑

m

|S

∼

Imf |2
)1/2

∥∥∥∥∥∥
p

6 ApBp‖f‖p = Cp‖f‖p, (5.4.13)

which is the one-dimensional case of the inequality (5.4.5), and this is what we had
set out to prove.

Step 3: We are still in the one-dimensional case, and we write Tt for the operator

Tt =
∑
m

rm(t)SIm .

Our claim is that

‖Ttf‖p 6 Ap‖f‖p, 1 < p <∞, (5.4.14)

with Ap independent of t, and f ∈ L2 ∩ Lp.
Write TNt =

∑
|m|6N rm(t)SIm , and it suffices to show that (5.4.14) holds, with

TNt in place of Tt (and Ap independent of N and t). Since each SIm is a bounded
operator on L2 and Lp, we have that TNt f ∈ L2 ∩ Lp and so we can apply Lemma
5.4.2 to it for n = 1. So

Bp‖TNt f‖p 6

∥∥∥∥∥∥∥
 ∑

|m|6N
|SImf |2

1/2
∥∥∥∥∥∥∥
p

6 Cp‖f‖p,

by using (5.4.13). Letting N → ∞, we get (5.4.14).
Step 4: We now turn to the n-dimensional case and define T (1)

t1
, as the operator

Tt1 acting only on the x1 variable. Then, by the inequality (5.4.14), we get∫
R
|T (1)
t1
f(x1, x2, · · · , xn)|pdx1 6 App

∫
R
|f(x1, · · · , xn)|pdx1, (5.4.15)

for almost every fixed x2, x3, · · · , xn, since x1 → f(x1, x2, · · · , xn) ∈ L2
x1(R)∩L

p
x1(R)

for almost every fixed x2, · · · , xn, if f ∈ L2(Rn) ∩ Lp(Rn). If we integrate (5.4.15)
w.r.t. x2, · · · , xn, we obtain

‖T (1)
t1
f‖p 6 Ap‖f‖p, f ∈ L2 ∩ Lp, (5.4.16)

with Ap independent of t1. The same inequality of course holds with x1 replaced
by x2, or x3, etc.

Step 5: We first describe the additional notation we shall need. With ∆ rep-
resenting the collection of dyadic rectangles in Rn, we write any ρ ∈ ∆, as ρ =

Im1 × Im2 × · · · × Imn where Imj represents the arbitrary dyadic set used above.
Thus, if m = (m1,m2, · · · ,mn) ∈ Zn, we write ρm = Im1 × Im2 × · · · × Imn .
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We now apply the operator T (1)
t1

for the x1 variable, and successively its ana-
logues for x2, x3, etc. The result is

‖Ttf‖p 6 Anp‖f‖p. (5.4.17)

Here

Tt =
∑
ρm∈∆

rm(t)Sρm

with rm(t) = rm1(t1) · · · rmn(tn) as described in the previous. The inequality holds
uniformly for each (t1, t2, · · · , tn) in the unit cube Q.

We raise this inequality to the pth power and integrate it w.r.t. t, making use of
the properties of the Rademacher functions, i.e., Lemma 5.4.2. We then get, as in
the analogous proof of (5.4.12), that∥∥∥∥∥∥∥

 ∑
ρm∈∆

|Sρmf |2
1/2

∥∥∥∥∥∥∥
p

6 Ap‖f‖p,

if f ∈ L2(Rn) ∩ Lp(Rn). This together with the first step concludes the proof of
Theorem 5.4.1. �

§ 5.5 Marcinkiewicz multiplier theorem

We now present another multiplier theorem which is one of the most important
results of the whole theory. For the sake of clarity, we state first the one-dimensional
case whose proof is similar to the higher dimensional cases.

Theorem 5.5.1.

Let m be a bounded function on R, which is of bounded variation on every
finite interval not containing the origin. Suppose
(a) |m(ξ)| 6 B, −∞ < ξ <∞,
(b)
∫
I |m(ξ)|dξ 6 B, for every dyadic interval I .

Then m ∈ Mp, 1 < p <∞; and more precisely, for f ∈ L2 ∩ Lp,
‖Tmf‖p 6 Ap‖f‖p,

where Ap depends only on B and p.

To present the general theorem, we consider R as divided into its two half-
lines, R2 as divided into its four quadrants, and generally Rn as divided into its 2n

“octants”. Thus, the first octant in Rn will be the open “rectangle” of those ξ all
of whose coordinates are strictly positive. We shall assume that m(ξ) is defined on
each such octant and is there continuous together with its partial derivatives up to
and including order n. Thus m may be left undefined on the set of points where
one or more coordinate variables vanishes.

For every k 6 n, we regard Rk embedded in Rn in the following obvious way:
Rk is the subspace of all points of the form (ξ1, ξ2, · · · , ξk, 0, · · · , 0).
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Theorem 5.5.2: Marcinkiewicz’ multiplier theorem

Let m be a bounded function on Rn that is Cn in all 2n “octants”. Suppose
also
(a) |m(ξ)| 6 B,
(b) for each 0 < k 6 n,

sup
ξk+1,··· ,ξn

∫
ρ

∣∣∣∣ ∂km

∂ξ1∂ξ2 · · · ∂ξk

∣∣∣∣ dξ1 · · · dξk 6 B

as ρ ranges over dyadic rectangles of Rk. (If k = n, the “sup” sign is omitted.)
(c) The condition analogous to (b) is valid for every one of the n! permuta-
tions of the variables ξ1, ξ2, · · · , ξn.
Then m ∈ Mp, 1 < p < ∞; and more precisely, for f ∈ L2 ∩ Lp, ‖Tmf‖p 6
Ap‖f‖p, where Ap depends only on B, p and n.

Proof. It will be best to prove Theorem 5.5.2 in the case n = 2. This case is already
completely typical of the general situation, and in doing only it we can avoid some
notational complications.

Let f ∈ L2(R2) ∩ Lp(R2) and F = Tmf , that is F

∨

(ξ) = m(ξ)f

∨

(ξ).
Let ∆ denote the family of dyadic rectangles, and for each ρ ∈ ∆, we write

fρ = Sρf , Fρ = SρF , thus Fρ = Tmfρ.
In view of Theorem 5.4.1, it suffices to show that∥∥∥(∑

ρ∈∆
|Fρ|2

)1/2∥∥∥
p
6 Cp

∥∥∥(∑
ρ∈∆

|fρ|2
)1/2∥∥∥

p
. (5.5.1)

The rectangles in ∆ come from four sets, those in the first, the second, the third,
and the fourth quadrants, respectively. In estimating the l.h.s. of (5.5.1), we con-
sider the rectangles of each quadrant separately and assume from now on that the
rectangles belong to the first quadrant.

We will express Fρ in terms of an integral involving fρ and the partial sum
operators. That this is possible is the essential idea of the proof.

Fix ρ and assume ρ = {(ξ1, ξ2) : 2k 6 ξ1 6 2k+1, 2l 6 ξ2 6 2l+1}. Then, for
(ξ1, ξ2) ∈ ρ, it is easy to verify the identity by the fundamental theorem of calculus

m(ξ1, ξ2) =

∫ ξ2

2l

∫ ξ1

2k

∂2m(t1, t2)

∂t1∂t2
dt1dt2 +

∫ ξ1

2k

∂

∂t1
m(t1, 2

l)dt1

+

∫ ξ2

2l

∂

∂t2
m(2k, t2)dt2 +m(2k, 2l).

Now let St denote the multiplier transform corresponding to the rectangle {(ξ1, ξ2) :
2k+1 > ξ1 > t1, 2l+1 > ξ2 > t2}. Similarly, let S(1)

t1
denote the multiplier cor-

responding to the interval
{
ξ1 : 2

k+1 > ξ1 > t1
}

, similarly for S(2)
t2

. Thus, in fact,

St = S
(1)
t1

· S(2)
t2

. Multiplying both sides of the above equation by the function χρf

∨

and taking inverse Fourier transforms yields, by changing the order of integrals
in view of Fubini’s theorem and the fact that SρTmf = Fρ, and S

(1)
t1
Sρ = S

(1)
t1

,

S
(2)
t2
Sρ = S

(2)
t2

, StSρ = St, we have

Fρ =TmSρf = F−1(mχρf

∨

)

=

(
|ω|
2π

)n/2 ∫
R2

eωix·ξ
[ ∫ ξ2

2l

∫ ξ1

2k

∂2m(t1, t2)

∂t1∂t2
dt1dt2χρ(ξ)f

∨

(ξ)
]
dξ
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+

(
|ω|
2π

)n/2 ∫
R2

eωix·ξ
[ ∫ ξ1

2k

∂

∂t1
m(t1, 2

l)dt1χρ(ξ)f

∨

(ξ)
]
dξ

+

(
|ω|
2π

)n/2 ∫
R2

eωix·ξ
[ ∫ ξ2

2l

∂

∂t2
m(2k, t2)dt2χρ(ξ)f

∨

(ξ)
]
dξ

+ F−1[m(2k, 2l)χρ(ξ)f

∨

(ξ)]

=

(
|ω|
2π

)n/2 ∫
R2

eωix·ξ
∫ 2l+1

2l

∫ 2k+1

2k

∂2m(t1, t2)

∂t1∂t2
χ[2k,ξ1](t1)χ[2l,ξ2](t2)dt1dt2

· χρ(ξ)f

∨

(ξ)dξ

+

(
|ω|
2π

)n/2 ∫
R2

eωix·ξ
∫ 2k+1

2k

∂

∂t1
m(t1, 2

l)χ[2k,ξ1](t1)dt1χρ(ξ)f

∨

(ξ)dξ

+

(
|ω|
2π

)n/2 ∫
R2

eωix·ξ
∫ 2l+1

2l

∂

∂t2
m(2k, t2)χ[2l,ξ2](t2)dt2χρ(ξ)f

∨

(ξ)dξ

+m(2k, 2l)fρ

=

(
|ω|
2π

)n/2 ∫ 2l+1

2l

∫ 2k+1

2k

∫
R2

eωix·ξχ[t1,2k+1](ξ1)χ[t2,2l+1](ξ2)χρ(ξ)f

∨

(ξ)dξ

· ∂
2m(t1, t2)

∂t1∂t2
dt1dt2

+

(
|ω|
2π

)n/2 ∫ 2k+1

2k

∫
R2

eωix·ξχ[t1,2k+1](ξ1)χρ(ξ)f

∨

(ξ)dξ
∂

∂t1
m(t1, 2

l)dt1

+

(
|ω|
2π

)n/2 ∫ 2l+1

2l

∫
R2

eωix·ξχ[t2,2l+1](ξ2)χρ(ξ)f

∨

(ξ)dξ
∂

∂t2
m(2k, t2)dt2

+m(2k, 2l)fρ

=

∫
ρ
Stfρ

∂2m(t1, t2)

∂t1∂t2
dt1dt2 +

∫ 2k+1

2k
S
(1)
t1
fρ

∂

∂t1
m(t1, 2

l)dt1

+

∫ 2l+1

2l
S
(2)
t2
fρ

∂

∂t2
m(2k, t2)dt2 +m(2k, 2l)fρ.

We apply the Cauchy-Schwarz inequality in the first three terms of the above w.r.t.
the measures |∂t1∂t2m(t1, t2)|dt1dt2, |∂t1m(t1, 2

l)|dt1, |∂t2m(2k, t2)|dt2, respectively,
and we use the assumptions of the theorem to deduce

|Fρ|2 .
(∫

ρ
|Stfρ|2

∣∣∣∣ ∂2m∂t1∂t2

∣∣∣∣ dt1dt2)(∫
ρ

∣∣∣∣ ∂2m∂t1∂t2

∣∣∣∣ dt1dt2)
+
(∫ 2k+1

2k
|S(1)
t1
fρ|2

∣∣∣∣ ∂∂t1m(t1, 2
l)

∣∣∣∣ dt1)(∫ 2k+1

2k

∣∣∣∣ ∂∂t1m(t1, 2
l)

∣∣∣∣ dt1)
+
(∫ 2l+1

2l
|S(2)
t2
fρ|2

∣∣∣∣ ∂∂t2m(2k, t2)

∣∣∣∣ dt2)(∫ 2l+1

2l

∣∣∣∣ ∂∂t2m(2k, t2)

∣∣∣∣ dt2)
+ |m(2k, 2l)|2|fρ|2

6B′
{∫

ρ
|Stfρ|2

∣∣∣∣ ∂2m∂t1∂t2

∣∣∣∣ dt1dt2 + ∫
I1

|S(1)
t1
fρ|2

∣∣∣∣∂m(t1, 2
l)

∂t1

∣∣∣∣ dt1
+

∫
I2

|S(2)
t2
fρ|2

∣∣∣∣∂m(2k, t2)

∂t2

∣∣∣∣ dt2 + |fρ|2
}

==1
ρ + =2

ρ + =3
ρ + =4

ρ, with ρ = I1 × I2.

To estimate ‖(
∑

ρ |Fρ|2)1/2‖p, we estimate separately the contributions of each of
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the four terms on the r.h.s. of the above inequality by the use of Theorem 5.3.5.
To apply that theorem in the case of =1

ρ we take the first quadrant as Γ and dγ =

|∂
2m(t1,t2)
∂t1∂t2

|dt1dt2, the functions γ → ργ are constant on the dyadic rectangles. Since
for every rectangle, we have∫

ρ
dγ =

∫
ρ

∣∣∣∣∂2m(t1, t2)

∂t1∂t2

∣∣∣∣ dt1dt2 6 B,

then ∥∥∥∥∥∥
(∑

ρ

|=1
ρ|

)1/2
∥∥∥∥∥∥
p

6 Cp

∥∥∥∥∥∥
(∑

ρ

|fρ|2
)1/2

∥∥∥∥∥∥
p

.

The similar argument for =2
ρ, =3

ρ and =4
ρ concludes the proof. �
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§ 6.1 Riesz potentials and fractional integrals

The Laplacian satisfies the following identity for all f ∈ S (Rn):

−∆f

∨

(ξ) = ω2|ξ|2f

∨

(ξ). (6.1.1)

From this, we replace the exponent 2 in |ωξ|2 by a general exponent s, and thus
to define (at least formally) the fractional power of the Laplacian by

(−∆)s/2f = F−1((|ω||ξ|)sf

∨

(ξ)). (6.1.2)

Of special significance will be the negative powers s in the range −n < s < 0.
In general, with a slight change of notation, we can define

Definition 6.1.1.

Let s > 0. The Riesz potential of order s is the operator

Is = (−∆)−s/2. (6.1.3)

For 0 < s < n and f ∈ L1
loc(R

n), Is is actually given in the form

Isf(x) =
1

γ(s)

∫
Rn

|x− y|−n+sf(y)dy, (6.1.4)

with

γ(s) =

(
|ω|
2

)n
2

2s
Γ(s/2)

Γ((n− s)/2)
.

The formal manipulations have a precise meaning.
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Lemma 6.1.2.

Let 0 < s < n.
(a) The Fourier transform of the function |x|−n+s is the function
γ(s)(|ω||ξ|)−s, in the sense that∫

Rn

|x|−n+sϕ(x)dx = γ(s)

∫
Rn

(|ω||ξ|)−sϕ∨(ξ)dξ, (6.1.5)

whenever ϕ ∈ S .
(b) The identity Isf

∨

(ξ) = (|ω||ξ|)−sf

∨

(ξ) holds in the sense that∫
Rn

Isf(x)g(x)dx =

∫
Rn

f

∨

(ξ)(|ω||ξ|)−sg∨(ξ)dξ,

whenever f, g ∈ S .

Proof. Part (a) is merely a restatement of Lemma 4.4.17 since γ(s) = |ω|sγ0,s.
Part (b) follows immediately from part (a) by writing

Isf(x) =
1

γ(s)

∫
Rn

f(x− y)|y|−n+sdy =

∫
Rn

(|ω||ξ|)−sf(x− ·)

∨

dξ

=

∫
Rn

(|ω||ξ|)−sf

∨

(ξ)eωiξ·xdξ =

∫
Rn

(|ω||ξ|)−sf

∨

(ξ)e−ωiξ·xdξ,

so ∫
Rn

Isf(x)g(x)dx =

∫
Rn

∫
Rn

(|ω||ξ|)−sf

∨

(ξ)e−ωiξ·xdξg(x)dx

=

∫
Rn

(|ω||ξ|)−sf

∨

(ξ)g

∨

(ξ)dξ.

This completes the proof. �
Now, we state two further identities which can be obtained from (6.1.2) or (6.1.3)

and which reflect essential properties of the potentials Is:

Is(Itf) = Is+tf, f ∈ S , s, t > 0, s+ t < n; (6.1.6)

∆(Isf) = Is(∆f) = −Is−2f, f ∈ S , n > 3, 2 6 s 6 n. (6.1.7)

The deduction of these two identities have no real difficulties, and these are best
left to the interested reader to work out.

A simple consequence of (6.1.6) is the n-dimensional variant of the Beta func-
tion, ∫

Rn

|x− y|−n+s|y|−n+tdy =
γ(s)γ(t)

γ(s+ t)
|x|−n+(s+t) in S ′, (6.1.8)

with s, t > 0 and s + t < n. Indeed, for any ϕ ∈ S , we have, by the definition of
Riesz potentials and (6.1.6), that∫∫

Rn×Rn

|x− y|−n+s|y|−n+tdyϕ(z − x)dx

=

∫
Rn

|y|−n+t
∫
Rn

|x− y|−n+sϕ(z − y − (x− y))dxdy

=

∫
Rn

|y|−n+tγ(s)Isϕ(z − y)dy = γ(s)γ(t)It(Isϕ)(z) = γ(s)γ(t)Is+tϕ(z)

=
γ(s)γ(t)

γ(s+ t)

∫
Rn

|x|−n+(s+t)ϕ(z − x)dx.
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We have considered the Riesz potentials formally and the operation for Schwartz
functions. But since the Riesz potentials are integral operators, it is natural to in-
quire about their actions on the spaces Lp(Rn).

For this reason, we formulate the following problem. Given s ∈ (0, n), for what
pairs p and q, is the operator f → Isf bounded from Lp(Rn) to Lq(Rn)? That is,
when do we have the inequality

‖Isf‖q 6 A‖f‖p? (6.1.9)

There is a simple necessary condition, which is merely a reflection of the homo-
geneity of the kernel (γ(s))−1|y|−n+s. In fact, we have

Proposition 6.1.3.

If the inequality (6.1.9) holds for all f ∈ S and a finite constant A, then
1/q = 1/p− s/n.

Proof. Let us consider the dilation operator δε, defined by δεf(x) = f(εx) for ε > 0.
Then clearly, for ε > 0 and any f ∈ S (Rn), we have

(Isδ
εf)(x) =

1

γ(s)

∫
Rn

|x− y|−n+sf(εy)dy

z=εy
==ε−n

1

γ(s)

∫
Rn

|x− ε−1z|−n+sf(z)dz

=ε−sIsf(εx). (6.1.10)

Noticing that

‖δεf‖p = ε−n/p‖f‖p, ‖δε−1Isf‖q = εn/q‖Isf‖q, (6.1.11)

by (6.1.9), we get

‖Isf‖q =εs‖δε
−1
Isδ

εf‖q = εs+n/q‖Isδεf‖q
6Aεs+n/q‖δεf‖p = Aεs+n/q−n/p‖f‖p.

If s + n/q − n/p > 0, let ε → 0+; if s + n/q − n/p < 0, let ε → ∞, we always have
‖Isf‖q = 0 for any f ∈ S (Rn). However, if f 6≡ 0 is non-negative, then Isf > 0

everywhere and hence ‖Isf‖q > 0, thus we can conclude the desired relations

1/q = 1/p− s/n. (6.1.12)

�
Now, we give the following Hardy-Littlewood-Sobolev theorem of fractional

integration. The result was first considered in one dimension on the circle by Hardy
and Littlewood and n-dimension by Sobolev.

Theorem 6.1.4: Hardy-Littlewood-Sobolev theorem

Let 0 < s < n, 1 6 p < q <∞, 1/q = 1/p− s/n.
(a) If f ∈ Lp(Rn), then the integral (6.1.4), defining Isf , converges absolutely
for almost every x.
(b) If, in addition, p > 1, then ‖Isf‖q 6 Ap,q‖f‖p.
(c) If f ∈ L1(Rn), then |{x : |Isf(x)| > α}| 6 (Aα−1‖f‖1)q, for all α > 0. That
is, the mapping Is is of weak type (1, q), with 1/q = 1− s/n.

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



- 188 - Chengchun HAO

Proof. We first prove parts (a) and (b). Let us write

γ(s)Isf(x) =

∫
B(x,δ)

|x− y|−n+sf(y)dy +
∫
Rn\B(x,δ)

|x− y|−n+sf(y)dy

=:Lδ(x) +Hδ(x).

Divide the ballB(x, δ) into the shellsEj := B(x, 2−jδ)\B(x, 2−(j+1)δ), j = 0, 1, 2, ...,
we have

|Lδ(x)| 6

∣∣∣∣∣∣
∞∑
j=0

∫
Ej

|x− y|−n+sf(y)dy

∣∣∣∣∣∣ 6
∞∑
j=0

∫
Ej

|x− y|−n+s|f(y)|dy

6
∞∑
j=0

∫
Ej

(2−(j+1)δ)−n+s|f(y)|dy

6
∞∑
j=0

∫
B(x,2−jδ)

(2−(j+1)δ)−n+s|f(y)|dy

=
∞∑
j=0

(2−(j+1)δ)−n+s|B(x, 2−jδ)|
|B(x, 2−jδ)|

∫
B(x,2−jδ)

|f(y)|dy

=
∞∑
j=0

(2−(j+1)δ)−n+sVn(2
−jδ)n

|B(x, 2−jδ)|

∫
B(x,2−jδ)

|f(y)|dy

6Vnδs2n−s
∞∑
j=0

2−sjMf(x) =
Vnδ

s2n

2s − 1
Mf(x).

Now, we derive an estimate forHδ(x). By Hölder’s inequality and the condition
1/p > s/n (i.e., q <∞), we obtain

|Hδ(x)| 6‖f‖p

(∫
Rn\B(x,δ)

|x− y|(−n+s)p′dy

)1/p′

=‖f‖p
(∫

Sn−1

∫ ∞

δ
r(−n+s)p

′
rn−1drdσ

)1/p′

=ω
1/p′

n−1‖f‖p
(∫ ∞

δ
r(−n+s)p

′+n−1dr

)1/p′

=

(
ωn−1

(n− s)p′ − n

)1/p′

δn/p
′−(n−s)‖f‖p = C(n, s, p)δs−n/p‖f‖p.

By the above two inequalities, we have

|γ(s)Isf(x)| 6 C(n, s)δsMf(x) + C(n, s, p)δs−n/p‖f‖p =: F (δ).

Choose δ = C(n, s, p)[‖f‖p/Mf ]p/n, such that the two terms of the r.h.s. of the
above are equal, i.e., the minimizer of F (δ), to get

|γ(s)Isf(x)| 6 C(Mf(x))1−ps/n‖f‖ps/np .

Therefore, by part (i) of Theorem 3.2.7 for maximal functions, i.e., Mf is finite
almost everywhere if f ∈ Lp (1 6 p 6 ∞), it follows that |Isf(x)| is finite almost
everywhere, which proves part (a) of the theorem.

By part (iii) of Theorem 3.2.7, we know ‖Mf‖p 6 Ap‖f‖p (1 < p 6 ∞), thus

‖Isf‖q 6 C‖Mf‖1−ps/np ‖f‖ps/np = C‖f‖p.

This gives the proof of part (b).
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Finally, we prove (c). Since we also have |Hδ(x)| 6 ‖f‖1δ−n+s, taking α =

‖f‖1δ−n+s, i.e., δ = (‖f‖1/α)1/(n−s), by part (ii) of Theorem 3.2.7, we get

|{x : |Isf(x)| > 2(γ(s))−1α}|
6|{x : |Lδ(x)| > α}|+ |{x : |Hδ(x)| > α}|
6|{x : |CδsMf(x)| > α}|+ 0

6 C

δ−sα
‖f‖1 = C[‖f‖1/α]n/(n−s) = C[‖f‖1/α]q.

This completes the proof of part (c). �

§ 6.2 Bessel potentials

While the behavior of the kernel (γ(s))−1|x|−n+s as |x| → 0 is well suited for
their smoothing properties, their decay as |x| → ∞ gets worse as s increases.

We can slightly adjust the Riesz potentials such that we maintain their essential
behavior near zero but achieve exponential decay at infinity. The simplest way to
achieve this is by replacing the “nonnegative” operator −∆ by the “strictly posi-
tive” operator I −∆, where I = identity. Here the terms nonnegative and strictly
positive, as one may have surmised, refer to the Fourier transforms of these expres-
sions.

Definition 6.2.1.

Let s > 0. The Bessel potential of order s is the operator

Js = (I −∆)−s/2

whose action on functions f is given by

Jsf =

(
|ω|
2π

)−n/2
F−1(Gs

∨

f

∨

) = Gs ∗ f,

where

Gs(x) =

(
|ω|
2π

)n/2
F−1((1 + ω2|ξ|2)−s/2)(x).

Now we give some properties of Gs(x) and show why this adjustment yields
exponential decay for Gs at infinity.

Proposition 6.2.2.

Let s > 0.
(a) Gs(x) =

1

(4π)n/2Γ(s/2)

∫ ∞

0
e−te−

|x|2
4t t

s−n
2
dt

t
.

(b) Gs(x) > 0, ∀x ∈ Rn; and Gs ∈ L1(Rn), precisely,
∫
Rn Gs(x)dx = 1.

(c) There exist two constants 0 < C(s, n), c(s, n) <∞ such that

Gs(x) 6 C(s, n)e−|x|/2, when |x| > 2,

and
1

c(s, n)
6 Gs(x)

Hs(x)
6 c(s, n), when |x| 6 2,
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where Hs is a function satisfying

Hs(x) =


|x|s−n + 1 +O(|x|s−n+2), 0 < s < n,

ln 2

|x|
+ 1 +O(|x|2), s = n,

1 +O(|x|s−n), s > n,

as |x| → 0.
(d) Gs ∈ Lp

′
(Rn) for any 1 6 p 6 ∞ and s > n/p.

Proof. (a) For A, s > 0, we have the Γ-function identity

A−s/2 =
1

Γ(s/2)

∫ ∞

0
e−tAts/2

dt

t
,

which we use to obtain

(1 + ω2|ξ|2)−s/2 = 1

Γ(s/2)

∫ ∞

0
e−te−t|ωξ|

2
ts/2

dt

t
.

Note that the above integral converges at both ends (as |ξ| → 0, or ∞). Now taking
the inverse Fourier transform in ξ and using Theorem 2.1.9, we obtain

Gs(x) =

(
|ω|
2π

)n/2 1

Γ(s/2)
F−1
ξ

∫ ∞

0
e−te−t|ωξ|

2
ts/2

dt

t

=

(
|ω|
2π

)n/2 1

Γ(s/2)

∫ ∞

0
e−tF−1

ξ

(
e−t|ωξ|

2
)
ts/2

dt

t

=
1

(4π)n/2Γ(s/2)

∫ ∞

0
e−te−

|x|2
4t t

s−n
2
dt

t
.

(b) We have easily1 ∫
Rn Gs(x)dx =

(
|ω|
2π

)−n/2
FGs(0) = 1. Thus, Gs ∈ L1(Rn).

(c) First, we suppose |x| > 2. Then t + |x|2
4t > t + 1

t and also t + |x|2
4t > |x|. This

implies that

−t− |x|2

4t
6 − t

2
− 1

2t
− |x|

2
,

from which it follows that when |x| > 2

Gs(x) 6
1

(4π)n/2Γ(s/2)

∫ ∞

0
e−

t
2 e−

1
2t t

s−n
2
dt

t
e−

|x|
2 6 C(s, n)e−

|x|
2 ,

where C(s, n) = 2|s−n|/2Γ(|s−n|/2)
(4π)n/2Γ(s/2)

for s 6= n, and C(s, n) = 4
(4π)n/2Γ(s/2)

for s = n

since ∫ ∞

0
e−

t
2 e−

1
2t
dt

t
6
∫ 1

0
e−

1
2t
dt

t
+

∫ ∞

1
e−

t
2dt =

∫ ∞

1/2
e−y

dy

y
+ 2e−1/2

1Or use (a) to show it. From part (a), we know Gs(x) > 0. Since
∫
Rn e−π|x|2/tdx = tn/2, by

Fubini’s theorem, we have∫
Rn

Gs(x)dx =

∫
Rn

1

(4π)n/2Γ(s/2)

∫ ∞

0

e−te−
|x|2
4t t

s−n
2

dt

t
dx

=
1

(4π)n/2Γ(s/2)

∫ ∞

0

e−t

∫
Rn

e−
|x|2
4t dxt

s−n
2

dt

t

=
1

(4π)n/2Γ(s/2)

∫ ∞

0

e−t(4πt)n/2t
s−n
2

dt

t
=

1

Γ(s/2)

∫ ∞

0

e−tt
s
2
−1dt = 1.
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62

∫ ∞

1/2
e−ydy + 2 6 4.

Next, suppose that |x| 6 2. Write Gs(x) = G1
s(x) +G2

s(x) +G3
s(x), where

G1
s(x) =

1

(4π)n/2Γ(s/2)

∫ |x|2

0
e−te−

|x|2
4t t

s−n
2
dt

t
,

G2
s(x) =

1

(4π)n/2Γ(s/2)

∫ 4

|x|2
e−te−

|x|2
4t t

s−n
2
dt

t
,

G3
s(x) =

1

(4π)n/2Γ(s/2)

∫ ∞

4
e−te−

|x|2
4t t

s−n
2
dt

t
.

Since t|x|2 6 16 in G1
s, we have e−t|x|

2
= 1+O(t|x|2) as |x| → 0; thus after changing

variables, we can write

G1
s(x) =

|x|s−n

(4π)n/2Γ(s/2)

∫ 1

0
e−t|x|

2
e−

1
4t t

s−n
2
dt

t

=
|x|s−n

(4π)n/2Γ(s/2)

∫ 1

0
e−

1
4t t

s−n
2
dt

t
+

O(|x|s−n+2)

(4π)n/2Γ(s/2)

∫ 1

0
e−

1
4t t

s−n
2 dt

=
2n−s−2|x|s−n

(4π)n/2Γ(s/2)

∫ ∞

1/4
e−yy

n−s
2
dy

y
+

2n−s−4O(|x|s−n+2)

(4π)n/2Γ(s/2)

∫ ∞

1/4
e−yy

n−s
2
dy

y2

=c1s,n|x|s−n +O(|x|s−n+2), as |x| → 0.

Since 0 6 |x|2
4t 6 1

4 and 0 6 t 6 4 in G2
s, we have e−17/4 6 e−t−

|x|2
4t 6 1, thus as

|x| → 0, we obtain

G2
s(x) ∼

∫ 4

|x|2
t(s−n)/2

dt

t
=


|x|s−n

n−s − 2s−n+1

n−s , s < n,

2 ln 2
|x| , s = n,

2s−n+1

s−n , s > n.

Finally, we have e−1/4 6 e−
|x|2
4t 6 1 in G3

s, which yields that G3
s(x) is bounded

above and below by fixed positive constants. Combining the estimates for Gjs(x),
we obtain the desired conclusion.

(d) For p = 1 and so p′ = ∞, by part (c), we have ‖Gs‖∞ 6 C for s > n.
Next, we assume that 1 < p 6 ∞ and so 1 6 p′ <∞. Again by part (c), we have,

for |x| > 2, that Gp
′
s 6 Ce−p

′|x|/2, and then the integration over this range |x| > 2 is
clearly finite.

On the range |x| 6 2, it is clear that
∫
|x|62G

p′
s (x)dx 6 C for s > n. For the case

s = n and n 6= 1, we also have
∫
|x|62G

p′
s (x)dx 6 C by noticing that∫

|x|62

(
ln 2

|x|

)q
dx = C

∫ 2

0

(
ln 2

r

)q
rn−1dr 6 C

for any q > 0 since limr→0 r
ε ln(2/r) = 0. For the case s = n = 1, we have∫

|x|62
(ln 2

|x|
)qdx =2

∫ 2

0
(ln 2/r)qdr = 4

∫ 1

0
(ln 1/r)qdr

=4

∫ ∞

0
tqe−tdt = 4Γ(q + 1)

for q > 0 by changing the variable r = e−t. For the final case s < n, we have∫ 2
0 r

(s−n)p′rn−1dr 6 C if (s− n)p′ + n > 0, i.e., s > n/p.
Thus, we obtain ‖Gs‖p′ 6 C for any 1 6 p 6 ∞ and s > n/p, which implies the

desired result. �
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We also have a result analogues to that of Riesz potentials for the operator Js.

Theorem 6.2.3.

(a) For all 0 < s < ∞, the operator Js maps Lr(Rn) into itself with norm 1

for all 1 6 r 6 ∞.
(b) Let 0 < s < n and 1 < p < q < ∞ satisfy 1/q = 1/p − s/n. Then there
exists a constant Cn,s,p > 0 such that for all f ∈ Lp(Rn), we have

‖Jsf‖q 6 Cn,s,p‖f‖p.
(c) If f ∈ L1(Rn), then |{x : |Jsf(x)| > α}| 6 (Cn,sα

−1‖f‖1)q, for all α > 0.
That is, the mapping Js is of weak type (1, q), with 1/q = 1− s/n.

Proof. By Young’s inequality, we have ‖Jsf‖r = ‖Gs ∗ f‖r 6 ‖Gs‖1‖f‖r = ‖f‖r.
This proves the result (a).

In the special case 0 < s < n, we have, from the above proposition, that the
kernel Gs of Js satisfies

Gs(x) ∼

{
|x|−n+s, |x| 6 2,

e−|x|/2, |x| > 2.

Then, we can write

Jsf(x) 6Cn,s

[∫
|y|62

|f(x− y)||y|−n+sdy +
∫
|y|>2

|f(x− y)|e−|y|/2dy

]

6Cn,s
[
Is(|f |)(x) +

∫
Rn

|f(x− y)|e−|y|/2dy

]
.

We can use that the function e−|y|/2 ∈ Lr for all 1 6 r 6 ∞, Young’s inequality and
Theorem 6.1.4 to complete the proofs of (b) and (c). �

§ 6.3 Sobolev spaces

We start by weakening the notation of partial derivatives by the theory of dis-
tributions. The appropriate definition is stated in terms of the space D(Rn).

Let ∂α be a differential monomial, whose total order is |α|. Suppose we are
given two locally integrable functions on Rn, f and g. Then we say that ∂αf = g

(in the weak sense), if∫
Rn

f(x)∂αϕ(x)dx = (−1)|α|
∫
Rn

g(x)ϕ(x)dx, ∀ϕ ∈ D . (6.3.1)

Integration by parts shows us that this is indeed the relation that we would
expect if f had continuous partial derivatives up to order |α|, and ∂αf = g had the
usual meaning.

Of course, it is not true that every locally integrable function has partial deriva-
tives in this sense: consider, for example, f(x) = ci/|x|

n
. However, when the partial

derivatives exist, they are determined almost everywhere by the defining relation
(6.3.1).

In this section, we study a quantitative way of measuring smoothness of func-
tions. Sobolev spaces serve exactly this purpose. They measure the smoothness of
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a given function in terms of the integrability of its derivatives. We begin with the
classical definition of Sobolev spaces.

Definition 6.3.1.

Let k be a nonnegative integer and let 1 6 p 6 ∞. The Sobolev space
W k,p(Rn) is defined as the space of functions f in Lp(Rn) all of whose distri-
butional derivatives ∂αf are also in Lp(Rn) for all multi-indices α that satis-
fies |α| 6 k. This space is normed by the expression

‖f‖Wk,p =
∑
|α|6k

‖∂αf‖p, (6.3.2)

where ∂(0,...,0)f = f .

The index k indicates the “degree” of smoothness of a given function in W k,p.
As k increases, the functions become smoother. Equivalently, these spaces form a
decreasing sequence

Lp ⊃W 1,p ⊃W 2,p ⊃ · · ·

meaning that each W k+1,p(Rn) is a subspace of W k,p(Rn) in view of the Sobolev
norms.

We next observe that the space W k,p(Rn) is complete. Indeed, if {fm} is a
Cauchy sequence in W k,p, then for each α, {∂αfm} is a Cauchy sequence in Lp,
|α| 6 k. By the completeness of Lp, there exist functions f (α) such that f (α) =

limm ∂
αfm in Lp, then clearly

(−1)|α|
∫
Rn

fm∂
αϕdx =

∫
Rn

∂αfmϕdx→
∫
Rn

f (α)ϕdx,

for each ϕ ∈ D . Since the first expression converges to

(−1)|α|
∫
Rn

f∂αϕdx,

it follows that the distributional derivative ∂αf is f (α). This implies that fj → f in
W k,p(Rn) and proves the completeness of this space.

First, we generalize Riesz and Bessel potentials to any s ∈ R by

Isf =F−1(|ωξ|sf

∨

), f ∈ S ′(Rn), 0 /∈ supp f

∨

, (6.3.3)

Jsf =F−1((1 + |ωξ|2)s/2f

∨

), f ∈ S ′(Rn). (6.3.4)

It is clear that I−s = Is and J−s = Js for s > 0 are exactly Riesz and Bessel po-
tentials, respectively. we also note that Js · J t = Js+t for any s, t ∈ R from the
definition.

Observe that the condition 0 /∈ supp f

∨

in (6.3.3) induces that ‖Isf‖p does not
satisfy the condition of the norms when s ∈ N, since for k > m ∈ N we have
IkP (x) = 0 in S ′ for any P ∈ Pm where Pm denotes the set of all polynomials of
degree less than or equal to m. Indeed, we have for any α ∈ Nn0 with |α| = m < k

and any g ∈ S∫
Rn

(Ikxα)g(x)dx =

∫
Rn

xα|ωξ|kg∧
∨

(x)dx

=

∫
Rn

eiωx·0(ωi)−|α|∂αξ (|ωξ|kg

∧

)

∨

(x)dx
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=

(
|ω|
2π

)−n/2
(ωi)−|α|

[
∂αξ (|ωξ|kg

∧

)
]
(0) = 0.

It is not good to focus upon S ′(Rn) when we consider the homogeneous spaces.
We need to work on the quotient space S ′(Rn)/P(Rn), where P denotes the set
of all polynomials.

Definition 6.3.2.

Define

Ṡ (Rn) =
{
f ∈ S (Rn) :

∫
Rn

xαf(x)dx = 0, ∀α ∈ Nn0
}
, (6.3.5)

which is a subspace of S (Rn) with the same topology.

The main advantage of defining the class Ṡ is that for given f ∈ Ṡ , the function
given by g = F−1[|ξ|αf

∨

] is in Ṡ . In fact, for f ∈ S ,

f ∈ Ṡ ⇐⇒ (∂αf

∨

)(0) = 0, ∀α ∈ Nn0 .
We have the following fundamental theorem.

Theorem 6.3.3.

The dual space of Ṡ (Rn) under the topology inherited from S (Rn) is

Ṡ ′(Rn) = S ′(Rn)/P(Rn).

Proof. To identify the dual of Ṡ (Rn), we argue as follows. For each u ∈ S (Rn), let
J(u) = u|Ṡ (Rn) be the restriction of u on the subspace Ṡ (Rn) of S (Rn). Then J is

a linear mapping from S ′(Rn) to Ṡ ′(Rn).
Firstly, we claim that the kernel of J is exactly P(Rn). In fact, if 〈u, φ〉 = 0 for

all φ ∈ Ṡ (Rn), then 〈u∨, φ

∧

〉 = 0 for all φ ∈ Ṡ (Rn), i.e., 〈u∨, ψ〉 = 0 for all ψ ∈ S (Rn)
supported in Rn \ {0}. It follows that u∨is supported at the origin and thus u must
be a polynomial by Corollary 2.4.25. This proves that the kernel of the mapping J
is P(Rn).

We also claim that the range of J is the entire Ṡ ′(Rn). Indeed, given v ∈
Ṡ ′(Rn), v is a linear functional on Ṡ (Rn), which is a subspace of the vector space
S , and |〈v, ϕ〉| 6 p(ϕ) for all ϕ ∈ Ṡ , where p(ϕ) is equal to a constant times a finite
sum of Schwartz seminorms of ϕ. By the Hahn-Banach theorem, v has an extension
V on S such that |〈V,Φ〉| 6 p(Φ) for all Φ ∈ S . Then J(V ) = v, and this shows
that J is surjective.

Combining these two facts, we conclude that there is an identification

S ′(Rn)/P(Rn) = Ṡ ′(Rn),
as claimed. �

In view of the identification in Theorem 6.3.3, we have that uj → u in Ṡ ′ if and
only if uj , u are elements of Ṡ ′ and

〈uj , φ〉 → 〈u, φ〉
as j → ∞ for all φ ∈ Ṡ . Note that convergence in Ṡ implies convergence in S ,
and consequently, convergence in S ′ implies convergence in Ṡ ′.

The Fourier transform of Ṡ (Rn) functions can be multiplied by |ξ|s, s ∈ R, and
still be smooth and vanish to infinite order at zero.
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Indeed, let φ ∈ Ṡ (Rn). Then, we show that ∂j(|ξ|sφ

∨

)(0) exists. Since every
Taylor polynomial of φ

∨

at zero is identically equal to zero, it follows from Taylor’s
theorem that |φ

∨

(ξ)| 6 Cm|ξ|M for every M ∈ Z+, whenever ξ lies in a compact set.
Consequently, if M > 1− s,

lim
t→0

|tej |sφ

∨

(tej)

t
= 0,

where ej is the vector with 1 in the jth entry and zero elsewhere. This shows that
all partial derivatives of |ξ|sφ

∨

(ξ) at zero exist and are equal to zero.
By induction, we assume that ∂α(|ξ|sφ

∨

(ξ))(0) = 0, and we need to prove that

∂j∂
α(|ξ|sφ

∨

(ξ))(0)

also exists and equals zero. Applying Leibniz’s rule, we express ∂α(|ξ|sφ

∨

(ξ)) as a
finite sum of derivatives of |ξ|s times derivatives of φ

∨

(ξ). But for each |β| 6 |α|,
we have |∂βφ

∨

(ξ)| 6 CM,β |ξ|M for all M ∈ Z+ whenever |ξ| 6 1. Picking M >

|α| + 1 − s and using the fact that |∂α−β(|ξ|s)| 6 Cα|ξ|s−|α|+|β|, we deduce that
∂j∂

α(|ξ|sφ

∨

(ξ))(0) also exists and equals zero.
We have now proved that F−1(|ξ|sφ

∨

(ξ)) ∈ Ṡ for φ ∈ Ṡ and all s ∈ R. This
allows us to introduce the operation of multiplication by |ξ|s on the Fourier trans-
forms of distributions modulo polynomials. For s ∈ R and u ∈ Ṡ ′(Rn), we define
another distribution F−1(|ξ|su∨) ∈ Ṡ ′(Rn) by setting for all φ ∈ Ṡ (Rn)

〈F−1(| · |su∨), φ〉 = 〈u, | · |sφ

∧∨

〉.

This definition is consistent with the corresponding operations on functions and

makes sense since φ ∈ Ṡ implies that | · |sφ
∧∨

also lies in Ṡ (Rn), and thus the action
of u on this function is defined.

Next, we shall extend the spaces W k,p(Rn) to the case where the number k is
real.

Definition 6.3.4.

Let s ∈ R and 1 6 p 6 ∞. We write

‖f‖Ḣs
p
= ‖Isf‖p, ‖f‖Hs

p
= ‖Jsf‖p.

Then, the homogeneous Sobolev space Ḣs
p(Rn) is defined by

Ḣs
p(Rn) =

{
f ∈ Ṡ ′(Rn) : ‖f‖Ḣs

p
<∞

}
, (6.3.6)

and the non-homogeneous Sobolev space Hs
p(Rn) is defined by

Hs
p(Rn) =

{
f ∈ S ′(Rn) : ‖f‖Hs

p
<∞

}
. (6.3.7)

If p = 2, we denote Ḣs
2(Rn) by Ḣs(Rn) and Hs

2(Rn) by Hs(Rn) for simplicity.

It is clear that the space Hs
p(Rn) is a normed linear space with the above norm.

Moreover, it is complete and therefore Banach space. To prove the completeness,
let {fm} be a Cauchy sequence in Hs

p . Then, by the completeness of Lp, there exists
a g ∈ Lp such that

‖fm − J−sg‖Hs
p
= ‖Jsfm − g‖p → 0, as m→ ∞.

Clearly, J−sg ∈ S ′ and thus Hs
p is complete.

We give some elementary results about Sobolev spaces.
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Theorem 6.3.5.

Let s ∈ R and 1 6 p 6 ∞, then we have
(a) S is dense in Hs

p , 1 6 p <∞.
(b) Hs+ε

p ↪→ Hs
p , ∀ε > 0.

(c) Hs
p ↪→ L∞, ∀s > n/p.

(d) Suppose 1 < p < ∞ and s > 1. Then f ∈ Hs
p(Rn) if and only if f ∈

Hs−1
p (Rn) and for each j, ∂f

∂xj
∈ Hs−1

p (Rn). Moreover, the two norms are
equivalent:

‖f‖Hs
p
∼ ‖f‖Hs−1

p
+

n∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
Hs−1

p

.

(e) Hk
p (Rn) =W k,p(Rn), 1 < p <∞, ∀k ∈ N.

Proof. (a) Take f ∈ Hs
p , i.e., Jsf ∈ Lp. Since S is dense in Lp (1 6 p < ∞), there

exists a g ∈ S such that

‖f − J−sg‖Hs
p
= ‖Jsf − g‖p

is smaller than any given positive number. Since J−sg ∈ S , therefore S is dense
in Hs

p .
(b) Suppose that f ∈ Hs+ε

p . By part (a) in Theorem 6.2.3, we see that Jε maps Lp

into Lp with norm 1 for ε > 0. Form this, we get the result since

‖f‖Hs
p
= ‖Jsf‖p = ‖J−εJs+εf‖p = ‖JεJs+εf‖p 6 ‖Js+εf‖p = ‖f‖Hs+ε

p
.

(c) By Young’s inequality, the definition of the kernel Gs(x) and part (d) of
Proposition 6.2.2, we get for s > 0

‖f‖∞ =‖F−1[(1 + |ωξ|2)−s/2(1 + |ωξ|2)s/2f

∨

]‖∞

=

(
|ω|
2π

)n/2
‖F−1[(1 + |ωξ|2)−s/2] ∗ Jsf‖∞

6
(
|ω|
2π

)n/2
‖F−1(1 + |ωξ|2)−s/2‖p′‖Jsf‖p

=‖Gs(x)‖p′‖f‖Hs
p
6 C‖f‖Hs

p
.

(d) From the Mikhlin multiplier theorem, we can get (ωξj)(1 + |ωξ|2)−1/2 ∈ Mp

for 1 < p <∞, and thus∥∥∥∥ ∂f∂xj
∥∥∥∥
Hs−1

p

=‖F−1[(1 + |ωξ|2)(s−1)/2(ωiξj)f

∨

]‖p

=‖F−1[(1 + |ωξ|2)−1/2(ωξj)(1 + |ωξ|2)s/2f

∨

]‖p

=

(
|ω|
2π

)n/2
‖F−1[(1 + |ωξ|2)−1/2(ωξj)] ∗ Jsf‖p

6C‖Jsf‖p = C‖f‖Hs
p
.

Combining with ‖f‖Hs−1
p

6 ‖f‖Hs
p
, we get

‖f‖Hs−1
p

+
n∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
Hs−1

p

6 C‖f‖Hs
p
.

Now, we prove the converse inequality. We use the Mikhlin multiplier theorem
once more and an auxiliary function 0 6 χ ∈ C∞(R) with χ(x) = 1 for |x| > 2 and
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χ(x) = 0 for |x| < 1. We obtain

(1 + |ωξ|2)1/2
1 +

n∑
j=1

χ(ξj)|ξj |

−1

∈ Mp, χ(ξj)|ξj |ξ−1
j ∈ Mp, 1 < p <∞,

and then

‖f‖Hs
p
=‖Jsf‖p = ‖F−1[(1 + |ωξ|2)1/2Js−1f

∨

]‖p

6C‖F−1[(1 +

n∑
j=1

χ(ξj)|ξj |)Js−1f

∨

]‖p

6C‖f‖Hs−1
p

+ C

n∑
j=1

∥∥∥∥F−1(χ(ξj)|ξj |ξ−1
j Js−1 ∂f

∂xj

∨

)

∥∥∥∥
p

6C‖f‖Hs−1
p

+ C
n∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
Hs−1

p

.

Thus, we have obtained the desired result.
(e) It is obvious thatW 0,p = H0

p = Lp for k = 0. However, from part (d), if k > 1,
then f ∈ Hk

p if and only if f and ∂f
∂xj

∈ Hk−1
p , j = 1, ..., n. Thus, we can extends the

identity of W k,p = Hk
p from k = 0 to k = 1, 2, .... �

We continue with the Sobolev embedding theorem.

Theorem 6.3.6: Sobolev embedding theorem

Let 1 < p 6 p1 < ∞ and s, s1 ∈ R. Assume that s − n
p = s1 − n

p1
. Then the

following conclusions hold

Hs
p ↪→ Hs1

p1 , Ḣs
p ↪→ Ḣs1

p1 .

Proof. It is trivial for the case p = p1 since we also have s = s1 in this case. Now,
we assume that p < p1. Since 1

p1
= 1

p −
s−s1
n , by part (b) of Theorem 6.2.3, we get

‖f‖Hs1
p1

= ‖Js1f‖p1 = ‖Js1−sJsf‖p1 = ‖Js−s1Jsf‖p1 6 C‖Jsf‖p = C‖f‖Hs
p
.

Similarly, we can show the homogeneous case. �

Theorem 6.3.7.

Let s, σ ∈ R and 1 6 p 6 ∞. Then Jσ is an isomorphism between Hs
p and

Hs−σ
p .

Proof. It is clear from the definition. �

Corollary 6.3.8.

Let s ∈ R and 1 6 p <∞. Then

(Hs
p)

′ = H−s
p′ .

Proof. It follows from the above theorem and that (Lp)′ = Lp
′
, if 1 6 p <∞. �

Finally, we give the connection between the homogeneous and the nonhomo-
geneous spaces, whose proof will be postponed to next section.
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Theorem 6.3.9.

Suppose that f ∈ S ′(Rn) and 0 /∈ supp f

∨

. Then

f ∈ Ḣs
p ⇔ f ∈ Hs

p , ∀s ∈ R, 1 6 p 6 ∞.

Moreover, for 1 6 p 6 ∞, we have

Hs
p =Lp ∩ Ḣs

p , ∀s > 0,

Hs
p =Lp + Ḣs

p , ∀s < 0,

H0
p =Lp = Ḣ0

p .

§ 6.4 The smooth dyadic decomposition

For simplicity, let ω = 1 in the definition of the Fourier transform and its inverse,
and we will use the following forms of them:

Ff(ξ) = f

∨

(ξ) =(2π)−
n
2

∫
Rn

e−ix·ξf(x)dx, (6.4.1)

F−1g(x) = g

∧

(x) =(2π)−
n
2

∫
Rn

eix·ξg(ξ)dξ. (6.4.2)

In this section, we will introduce smooth Littlewood-Paley dyadic decomposi-
tion, which is also a very basic way to carve up the phase space.

The dyadic decomposition with rectangles is very intuitionistic for the state-
ment, but it is not convenient to do some operations such as differentiation, multi-
plier and so on. Therefore, we use a smooth form of this decomposition.

Throughout, we shall call a ball any set {ξ ∈ Rn : |ξ| 6 R} with R > 0 and an
annulus any set {ξ ∈ Rn : R1 6 |ξ| 6 R2} with 0 < R1 < R2.

Now, we give the fundamental Bernstein inequalities.

Proposition 6.4.1: Bernstein inequalities

Let k ∈ N0, 1 6 p 6 q 6 ∞, A be an annulus and B be a ball. Then, we have

∀f ∈ Lp(Rn) with supp f

∨

⊂ λB =⇒ sup
|α|=k

‖∂αf‖q 6 Ck+1λ
k+n( 1

p
− 1

q
)‖f‖p,

∀f ∈ Lp(Rn) with supp f

∨

⊂ λA =⇒
C−k−1λk‖f‖p 6 sup

|α|=k
‖∂αf‖p 6 Ck+1λk‖f‖p.

Proof. Since f

∨

∈ S ′ has a compact support, we have f

∨

∈ E ′ in view of the argu-

ments below Definition 2.4.20. Then, it follows from Theorem 2.4.27 that f

∨∨

∈ C∞

which implies that f coincides with a C∞ function by Fourier inversion in S ′.
Let φ be a function of D(Rn) with value 1 near B and denote φλ(ξ) = φ(ξ/λ).

As f

∨

(ξ) = φλ(ξ)f

∨

(ξ) point-wisely, we have

∂αf = ∂αgλ ∗ f with gλ = (2π)−n/2φλ

∧

.

Thus, gλ(x) = λnφ

∧

(λx) = λng(λx), where we denote g := g1.
Applying Young’s inequality with 1

r := 1− 1
p +

1
q , we get

‖∂αf‖q =‖∂αgλ ∗ f‖q 6 ‖∂αgλ‖r‖f‖p
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=λn+k‖(∂αg)(λx)‖r‖f‖p = λk+n/r
′‖∂αg‖r‖f‖p

=λ
k+n( 1

p
− 1

q
)‖∂αg‖r‖f‖p.

The first assertion follows via

(2π)n/2‖∂αg‖r 6‖∂αg‖∞ + ‖∂αg‖1

6‖∂αg‖∞ +

∫
Rn

|∂αg|(1 + |x|2)n 1

(1 + |x|2)n
dx

6‖∂αg‖∞ + ‖(1 + |x|2)n∂αg‖∞
∫
Rn

1

(1 + |x|2)n
dx

6Cn‖(1 + |x|2)n∂αg‖∞ = Cn‖F−1F ((1 + |x|2)n∂αg)‖∞
6Cn‖F ((1 + |x|2)n∂αg)‖1 = Cn‖(1−∆)n((iξ)αφ(ξ))‖1

=Cn

∥∥∥∥∥∥
n∑
j=0

Cjn(−1)j∆j(ξαφ(ξ))

∥∥∥∥∥∥
1

6 Cn

n∑
j=0

Cjn‖∆j(ξαφ(ξ))‖1

6Cn sup
06|β|6|α|, 06|σ|62n−|β|

‖∂β(ξα)∂σφ‖1

6Cn sup
06|β|6|α|, 06|σ|62n−|β|

‖ξβ∂σφ‖1

6CnCk sup
06|σ|62n

‖∂σφ‖1 (since φ is compactly supported)

6Ck+1
n .

To prove the second assertion, we consider a function φ

∼

∈ D(Rn \ {0}) with
value 1 on a neighborhood of A. From the algebraic identity

|ξ|2k =
∑

16j1,··· ,jk6n
ξ2j1 · · · ξ

2
jk

=
∑
|α|=k

aα(iξ)
α(−iξ)α,

for some integer constants aα and the fact that f

∨

= φ

∼

f

∨

, we deduce that there exists
a family of integers (aα)α∈Nn

0
such that

f =
∑
|α|=k

hα ∗ ∂αf, with hα := (2π)−n/2aαF−1
(
(−iξ)α|ξ|−2kφ

∼

(ξ)
)
∈ S ↪→ L1.

For λ > 0, we have

f

∨

(ξ) =
∑
|α|=k

aα
(−iξ)α

|ξ|2k
φ

∼

(ξ/λ)(iξ)αf

∨

(ξ) = λ−k
∑
|α|=k

aα
(−iξ/λ)α

|ξ/λ|2k
φ

∼

(ξ/λ)(iξ)αf

∨

(ξ),

which implies that

f = λ−k
∑
|α|=k

λnhα(λ·) ∗ ∂αf.

Then by Young’s inequality we get

‖f‖p 6 λ−k
∑
|α|=k

‖hα‖1‖∂αf‖p 6 Ck+1λ−k
∑
|α|=k

‖∂αf‖p,

and the result follows from the first inequality. �

Remark 6.4.2. When the frequency is localized, one can upgrade low Lebesgue
integrability to high Lebesgue integrability, at the cost of some powers of λ; when
the frequency λ is very slow, this cost is in fact a gain, and it becomes quite suitable
to use Bernstein’s inequality whenever the opportunity arises.
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The following lemma describes the action of Fourier multipliers which behave
like homogeneous functions of degree m.

Lemma 6.4.3.

Let A be an annulus, m ∈ R, and k > n/2 be an integer. Let σ be a k-times
differentiable function on Rn\{0} satisfying that for any α ∈ Nn0 with |α| 6 k,
there exists a constant Cα such that

|∂ασ(ξ)| 6 Cα|ξ|m−|α|, ∀ξ ∈ Rn.
Then, there exists a constantC, independent of λ, such that for any p ∈ [1,∞]

and any λ > 0, we have, for any function f ∈ Lp with supp f

∨

⊂ λA,

‖σ(D)f‖p 6 Cλm‖f‖p, with σ(D)f := F−1(σf

∨

).

Proof. Consider a smooth function θ supported in an annulus and such that θ = 1

on A. It is clear that we have

σ(D)f =(2π)−n/2σ

∧∗ f = (2π)−n/2F−1(θ(ξ/λ)σ(ξ)) ∗ f.

Thus, we only need to prove θ(ξ)σ(λξ) ∈ Mp(Rn), or equivalently, θ(ξ)σ(λξ) ∈
Mp(Rn). We can use the Bernstein multiplier theorem (i.e., Theorem 2.6.5) to prove
it. In fact, we have

‖θ(ξ)σ(λξ)‖2 6 C0‖θ(ξ)|λξ|m‖2 = C0λ
m‖θ(ξ)|ξ|m‖2 6 Cλm,

and by Leibniz’s rule

‖∂kξj (θ(ξ)σ(λξ))‖2 6
k∑
ℓ=0

Cℓk‖∂k−ℓξj
θ(ξ)λℓ(∂ℓξjσ)(λξ)‖2

6Ckλℓ
k∑
ℓ=0

‖∂k−ℓξj
θ(ξ)|λξ|m−ℓ‖2

6Ckλm
k∑
ℓ=0

‖∂k−ℓξj
θ(ξ)|ξ|m−ℓ‖2

6Cλm.
Thus, we have ‖θ(ξ)σ(λξ)‖Mp 6 Cλm by the Bernstein multiplier theorem for any
p ∈ [1,∞]. Then, we obtain the desired result. �

Let α ∈ (1,
√
2) and ψ : Rn → [0, 1] be a real radial smooth bump function, e.g.,

ψ(ξ) =


1, |ξ| 6 α−1,

smooth, α−1 < |ξ| < α,

0, |ξ| > α.

(6.4.3)

Let ϕ(ξ) be the function

ϕ(ξ) := ψ(ξ/2)− ψ(ξ). (6.4.4)

Thus, ϕ is a bump function supported on the annulus

A =
{
ξ : α−1 6 |ξ| 6 2α

}
. (6.4.5)

By construction, we have ∑
k∈Z

ϕ(2−kξ) = 1
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for all ξ 6= 0. Thus, we can partition unity into the functions ϕ(2−kξ) for integers k,
each of which is supported on an annulus of the form |ξ| ∼ 2k.

For convenience, we define the following functions{
ψk(ξ) = ψ(2−kξ), k ∈ Z,
ϕk(ξ) = ϕ(2−kξ) = ψk+1(ξ)− ψk(ξ), k ∈ Z.

(6.4.6)

Since suppϕ ⊂ A, we have

suppϕk ⊂2kA :=
{
ξ : 2kα−1 6 |ξ| 6 2k+1α

}
, k ∈ Z,

suppψk ⊂
{
ξ : |ξ| 6 2kα

}
, k ∈ Z.

(6.4.7)

We now define the k-th homogeneous dyadic blocks ∆̇k and the homogeneous
low-frequency cut-off operators Ṡk by

∆̇kf =F−1(ϕkf

∨

), Ṡkf = F−1(ψkf

∨

) =
∑
j6k−1

∆̇jf, k ∈ Z. (6.4.8)

Informally, ∆̇k is a frequency projection to the annulus
{
ξ : 2kα−1 6 |ξ| 6 2k+1α

}
,

while Ṡk is a frequency projection to the ball
{
ξ : |ξ| 6 2kα

}
. The non-homogeneous

dyadic blocks ∆k are defined by

∆kf = 0 if k 6 −2, ∆−1f = Ṡ0f, and ∆kf = ∆̇kf if k > 0.

The non-homogeneous low-frequency cut-off operator Sk is defined by

Skf =
∑
j6k−1

∆jf.

Obviously, Skf = 0 if k 6 −1, and Skf = Ṡkf if k > 0.
Observe that Ṡk+1 = Ṡk + ∆̇k from (6.4.6). Also, if f is an L2 function, then

Ṡkf → 0 in L2 as k → −∞, and Ṡkf → f in L2 as k → +∞ (this is an easy
consequence of Parseval’s theorem). By telescoping the series, we thus can write
the following (formal) Littlewood-Paley (or dyadic) decomposition

Id =
∑
k∈Z

∆̇k and Id =
∑
k∈Z

∆k. (6.4.9)

The homogeneous decomposition takes a single function and writes it as a super-
position of a countably infinite family of functions ∆̇kf , each one of which has
frequency of magnitude roughly 2k. Lower values of k represent low frequency
components of f ; higher values represent high frequency components.

Both decompositions have advantages and drawbacks. The non-homogeneous
one is more suitable for characterizing the usual functional spaces whereas the
properties of invariance by dilation of the homogeneous decomposition may be
more adapted for studying certain PDEs or stating optimal functional inequalities
having some scaling invariance.

In the non-homogeneous cases, the above decomposition makes sense in S ′(Rn).

Proposition 6.4.4.

Let f ∈ S ′(Rn), then f = lim
k→+∞

Skf in S ′(Rn).

Proof. Note that 〈f − Skf, g〉 = 〈f, g − Skg〉 for all f ∈ S ′(Rn) and g ∈ S (Rn), so
it suffices to prove that g = lim

k→+∞
Skg in S (Rn). Because the Fourier transform is
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an automorphism of S (Rn), we can alternatively prove that ψ(2−k·)g∨tends to g∨in
S (Rn). This can easily be verified, so we left it to the interested reader. �

We now state another result of convergence.

Proposition 6.4.5.

Let {uj}j∈N be a sequence of bounded functions such that suppuj∨⊂ 2jA

∼

,
where A

∼

is a given annulus. Assume that for some N ∈ N
‖uj‖∞ 6 C2jN , ∀j ∈ N, (6.4.10)

then the series
∑
j
uj converges in S ′.

Proof. Taking φ(ξ) ∈ D(Rn \ {0}) with value 1 near A

∼

, we have near A

∼

and any
k ∈ N,

u0

∨

= φ(ξ)u0

∨

(ξ) =
∑
|α|=k

aα
(−iξ)α

|ξ|2k
φ(ξ)(iξ)αu0

∨

(ξ),

namely,

u0 =
∑
|α|=k

gα ∗ ∂αu0, gα = (2π)−n/2aαF−1

[
(−iξ)α

|ξ|2k
φ(ξ)

]
.

Similarly, on each 2jA

∼

, it holds

uj

∨

=
∑
|α|=k

aα2
−jk (−iξ/2j)α

|ξ/2j |2k
φ(ξ/2j)(iξ)αuj

∨

(ξ),

that is,

uj = 2−jk
∑
|α|=k

2jngα(2
j ·) ∗ ∂αuj . (6.4.11)

For any f ∈ S , we get

|〈uj , f〉| =2−jk

∣∣∣∣∣∣
∑
|α|=k

〈uj , 2jngα(−2j ·) ∗ (−∂)αf〉

∣∣∣∣∣∣
62−jk

∑
|α|=k

‖uj‖∞‖2jngα(−2j ·) ∗ ∂αf‖1

6C2−jk
∑
|α|=k

2jN‖∂αf‖1.

It is clear that

‖∂αf‖1 6
∫
Rn

dx

(1 + |x|)n+1
sup
x∈Rn

(1 + |x|)n+1|∂αf(x)|

6C sup
x∈Rn

(1 + |x|)n+1|∂αf(x)|.

Taking k = N + 1, we have∣∣∣∣∣∣
∑
j∈N

〈uj , f〉

∣∣∣∣∣∣ 6 C
∑

|α|=N+1

sup
x∈Rn

(1 + |x|)n+1|∂αf(x)|.

which implies the series converges in S ′ by the equivalent conditions of S ′. Thus,
the convergent series

〈u, f〉 := lim
j∞

∑
j′6j

〈uj′ , f〉
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defines a tempered distribution. �
For the operators ∆̇k and Ṡk, we can easily verify the following result:

Proposition 6.4.6.

Let α ∈ (1,
√
2), k, l ∈ Z, and ∆̇k, Ṡk be defined as in (6.4.8). For any f ∈

S ′(Rn), we have the following properties:

Ṡk∆̇k+lf ≡ 0, if l > 1, (6.4.12)

∆̇k∆̇lf ≡ 0, if |k − l| > 2. (6.4.13)

Remark 6.4.7. In these properties, we need the condition α2 < 2 which is the reason
that we requires α <

√
2 in the beginning of the section.

When dealing with the Littlewood-Paley decomposition, it is convenient to in-
troduce the functions

ψ

∼

(ξ) = ψ(ξ/2), ϕ

∼

(ξ) = ϕ−1(ξ) + ϕ0(ξ) + ϕ1(ξ) = ψ(ξ/4)− ψ(2ξ).

as well as the operators

S

∼

k =F−1ψ

∼

(2−kξ)F = Ṡk+1, 4

∼

k = F−1ϕ

∼

(2−kξ)F .

It is clear that Ṡk = S

∼

kṠk, and ∆̇k = 4

∼

k∆̇k from Proposition 6.4.6.
By the Bernstein multiplier theorem, we can easily prove the following crucial

properties of the operators ∆̇k and Ṡk:

Proposition 6.4.8: Boundedness of the operators

For any 1 6 p 6 ∞ and k ∈ Z, it holds

‖∆̇kf‖p 6 C‖f‖p, ‖Ṡkf‖p 6 C‖f‖p,
for some constant C independent of p.

We now study how the Littlewood-Paley pieces ∆̇kf (or Ṡkf ) of a function are
related to the function itself. Specifically, we are interested in how the Lp behavior
of the ∆̇kf relate to the Lp behavior of f . One can already see this when p = 2, in
which case we have

‖f‖2 ∼

(∑
k∈Z

‖∆̇kf‖22

)1/2

. (6.4.14)

In fact, we square both sides and take Plancherel to obtain∫
Rn

|f

∨

(ξ)|2dξ ∼
∑
k∈Z

∫
Rn

|ϕk(ξ)|2|f

∨

(ξ)|2dξ.

Observe that for each ξ 6= 0 there are only three values of ϕk(ξ) which does not
vanish. That is, for ξ ∈ suppϕℓ,∑

k∈Z
|ϕk(ξ)|2 =ϕ2

ℓ−1(ξ) + ϕ2
ℓ (ξ) + ϕ2

ℓ+1(ξ)

=(ϕℓ−1(ξ) + ϕℓ(ξ) + ϕℓ+1(ξ))
2

− 2(ϕℓ−1(ξ)ϕℓ(ξ) + ϕℓ−1(ξ)ϕℓ+1(ξ) + ϕℓ(ξ)ϕℓ+1(ξ))

=1− 2(ϕℓ−1(ξ) + ϕℓ+1(ξ))ϕℓ(ξ)
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=1− 2(1− ϕℓ(ξ))ϕℓ(ξ)

=1− 2ϕℓ(ξ) + 2ϕ2
ℓ (ξ)

=
1

2
+ 2

(
1

2
− ϕℓ(ξ)

)2

,

which yields
1

2
6
∑
k∈Z

|ϕk(ξ)|2 6 1, ∀ξ 6= 0.

The claim follows.
Another way to rewrite (6.4.14) is

‖f‖2 ∼

∥∥∥∥∥∥
(∑
k∈Z

|∆̇kf |2
)1/2

∥∥∥∥∥∥
2

. (6.4.15)

The quantity
(∑

k∈Z |∆̇kf |2
)1/2

is also known as the Littlewood-Paley square func-
tion. More generally, the Littlewood-Paley square function theorem is valid for this
smooth type decomposition:

Theorem 6.4.9: Littlewood-Paley square function theorem

For any 1 < p <∞, we have∥∥∥∥∥∥
(∑
k∈Z

|∆̇kf |2
)1/2

∥∥∥∥∥∥
p

∼ ‖f‖p

with the implicit constant depending on p.

The proof of this theorem is very similar to that of Theorem 5.4.1, so we remain
it to the interested reader.

Now, we can give the proof of Theorem 6.3.9.

Proof of Theorem 6.3.9. Since 0 /∈ supp f

∨

, we have f

∨

(ξ) = 0 in a neighborhood of
ξ = 0. Then there is some integer k0 such that f =

∑
k>k0 ∆̇kf . Noting that

(1 + |ωξ|2)s/2|ωξ|−s
∑
k>k0

ϕk(ξ) ∈ Mp

by the Bernstein multiplier theorem, we see that for f ∈ Ḣs
p(Rn)

‖f‖Hs
p
=

∥∥∥∥∥∥F−1

(1 + |ωξ|2)s/2|ωξ|−s
∑
k>k0

ϕk(ξ)I
sf

∨

∥∥∥∥∥∥
p

6 C‖f‖Ḣs
p
.

Conversely, if f ∈ Hs
p , then we note that |ωξ|s(1 + |ωξ|2)−s/2

∑
k>k0 ϕk(ξ) ∈ Mp in

view of Bernstein multiplier theorem. Thus,

‖f‖Ḣs
p
=

∥∥∥∥∥∥F−1

|ωξ|s(1 + |ωξ|2)−s/2
∑
k>k0

ϕk(ξ)J
sf

∨

∥∥∥∥∥∥
p

6 C‖f‖Hs
p
.

We consider the case s > 0. If f ∈ Lp ∩ Ḣs
p , then we obtain as above

‖f‖Hs
p
6

∥∥∥∥∥∥F−1

(1 + |ωξ|2)s/2|ωξ|−s
∑
k>0

ϕk(ξ)I
sf

∨

∥∥∥∥∥∥
p
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+

∥∥∥∥∥F−1

(
(1 + |ωξ|2)s/2

∑
k<0

ϕk(ξ)f

∨

)∥∥∥∥∥
p

6C(‖f‖Ḣs
p
+ ‖f‖p).

Conversely, if f ∈ Hs
p , then clearly f ∈ Lp and

‖f‖Ḣs
p
6

∥∥∥∥∥∥F−1

|ωξ|s(1 + |ωξ|2)−s/2
∑
k>0

ϕk(ξ)J
sf

∨

∥∥∥∥∥∥
p

+ |ω|s
∑
k<0

2ks
∥∥∥F−1

(
(2−k|ξ|)sϕ(2−kξ)f

∨)∥∥∥
p

6C(‖f‖Hs
p
+ ‖f‖p) 6 C‖f‖Hs

p
.

Now, we consider the case s < 0. If f ∈ Lp + Ḣs
p , i.e., f = f1 + f2 for some

f1 ∈ Lp and f2 ∈ Ḣs
p with 0 /∈ supp f2

∨

, then

‖f‖Hs
p
6‖f1‖Hs

p
+ ‖f2‖Hs

p

=‖Jsf1‖p +

∥∥∥∥∥∥F−1

(1 + |ωξ|2)s/2|ωξ|−s
∑
k>k0

ϕk(ξ)Isf2

∨

∥∥∥∥∥∥
p

6‖f1‖p + C‖f2‖Ḣs
p
,

by Theorem 6.2.3 and the fact that (1 + |ωξ|2)s/2|ωξ|−s
∑

k>k0 ϕk(ξ) ∈ Mp for s < 0

by the Bernstein multiplier theorem. Conversely, if f ∈ Hs
p , then f =

∑
k<0 ∆̇kf +∑

k>0 ∆̇kf where ‖
∑

k<0 ∆̇kf‖p 6 ‖f‖p and ‖
∑

k>0 ∆̇kf‖Ḣs
p
6 ‖f‖Hs

p
by the first

conclusion since 0 /∈ supp F (
∑

k>0 ∆̇kf).
For the case s = 0, it is obviously from the definitions. �

§ 6.5 Besov spaces and Triebel-Lizorkin spaces

The Littlewood-Paley decomposition is very useful. For example, we can define
(independently of the choice of the initial function ψ) the following notations.

Definition 6.5.1.

Let s ∈ R, 1 6 p, r 6 ∞. For f ∈ S ′(Rn), we write

‖f‖Ḃs
p,r

=

( ∞∑
k=−∞

(
2sk‖∆̇kf‖p

)r) 1
r

, (6.5.1)

‖f‖Bs
p,r

=‖S0f‖p +

( ∞∑
k=0

(
2sk‖∆kf‖p

)r) 1
r

. (6.5.2)

Observe that (6.5.1) does not satisfy the condition of the norms, since we have
∆̇kP (x) = 0 in S ′ for any P ∈ P . In fact,

∆̇kP (x) = 0 in S ′ ⇐⇒ 〈∆̇kP, g〉 = 0, ∀g ∈ S .

It follows from 0 /∈ suppϕk for any k ∈ Z that for any α ∈ Nn0∫
Rn

xα∆̇kg(x)dx =

∫
Rn

xα∆̇kg

∨∧

(x)dx =

∫
Rn

e−ix·0i|α|∂αξ ∆̇kg

∨∧

(x)dx
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=(2π)n/2i|α|
[
∂αξ ∆̇kg

∨]
(0) = (2π)n/2i|α|

(
i

ω

)|α| [
∂αξ (ϕkg

∨

)
]
(0) = 0.

Thus, by the property of ϕk, we obtain∫
Rn

(∆̇kx
α)g(x)dx = 0.

Now, we can use Ṡ (Rn) to give the following definition.

Definition 6.5.2.

Let s ∈ R, 1 6 p, r 6 ∞. The homogeneous Besov space Ḃs
p,r is defined by

Ḃs
p,r =

{
f ∈ Ṡ ′(Rn) : ‖f‖Ḃs

p,r
<∞

}
,

and the non-homogeneous Besov space Bs
p,r is defined by

Bs
p,r =

{
f ∈ S ′(Rn) : ‖f‖Bs

p,r
<∞

}
.

For the sake of completeness, we also define the Triebel-Lizorkin spaces.

Definition 6.5.3.

Let s ∈ R, 1 6 p <∞, 1 6 r 6 ∞. We write

‖f‖Ḟ s
p,r

=

∥∥∥∥∥∥
( ∞∑
k=−∞

(
2sk|∆̇kf |

)r) 1
r

∥∥∥∥∥∥
p

, ∀f ∈ Ṡ ′(Rn),

‖f‖F s
p,r

=‖S0f‖p +

∥∥∥∥∥∥
( ∞∑
k=0

(
2sk|∆kf |

)r) 1
r

∥∥∥∥∥∥
p

, ∀f ∈ S ′(Rn).

The homogeneous Triebel-Lizorkin space Ḟ sp,r is defined by

Ḟ sp,r =
{
f ∈ Ṡ ′(Rn) : ‖f‖Ḟ s

p,r
<∞

}
,

and the non-homogeneous Triebel-Lizorkin space F sp,r is defined by

F sp,r =
{
f ∈ S ′(Rn) : ‖f‖F s

p,r
<∞

}
.

Remark 6.5.4. It is easy to see that the above quantities define a quasi-norm and a
norm in general, with the usual convention that r = ∞ in both cases corresponds
to the usual L∞ norm. On the other hand, we have not included the case r = ∞
in the definition of Triebel-Lizorkin space because the L∞ norm has to be replaced
here by a more complicated Carleson measure.

Besov space and Triebel-Lizorkin space were constructed between 1960’s and
1980’s. Recently, they are widely applied to study PDEs. Roughly speaking, these
spaces are products of the function spaces `r(Lp) orLp(`r) by combining the Littlewood-
Paley decomposition of phase space. The index s in the definition, describes the
regularity of the space.

From Theorem 6.4.9, we immediately have the following relations involving
Sobolev spaces and Triebel-Lizorkin spaces:
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Theorem 6.5.5.

Let s ∈ R and 1 < p <∞. Then

Hs
p = F sp,2, Ḣs

p = Ḟ sp,2, (6.5.3)

with equivalent norms.

For simplicity, we useX to denoteB or F in the spaces, that is, Xs
p,r (Ẋs

p,r, resp.)
denotes Bs

p,r (Ḃs
p,r, resp.) or F sp,r (Ḟ sp,r, resp.). But it will denote only one of them

in the same formula. We always assume that 1 6 p 6 ∞ for Bs
p,r (Ḃs

p,r, resp.) and
1 6 p < ∞ for F sp,r (Ḟ sp,r, resp.) if no other statement is declared. We have the
following embedding relations:

Theorem 6.5.6.

Let X denote B or F . Then, we have the following embedding:

Xs
p,r1 ↪→ Xs

p,r2 , Ẋs
p,r1 ↪→ Ẋs

p,r2 , if r1 6 r2,

Xs+ε
p,r1 ↪→ Xs

p,r2 , if ε > 0,

Bs
p,min(p,r) ↪→ F sp,r ↪→ Bs

p,max(p,r), if 1 6 p <∞,

Ḃs
p,min(p,r) ↪→ Ḟ sp,r ↪→ Ḃs

p,max(p,r), if 1 6 p <∞.

Proof. It is clear that the first one is valid because of `r ↪→ `r+a for any a > 0. For
the second one, we notice that( ∞∑

k=0

2skr2 |ak|r2
) 1

r2

6 sup
k>0

2(s+ε)k|ak|

( ∞∑
k=0

2−εkr2

) 1
r2

. sup
k>0

2(s+ε)k|ak|.

Taking ak = ‖∆kf‖p or ak = |∆kf |, we can get

Xs+ε
p,∞ ↪→ Xs

p,r2 ,

which yields the second result in view of the first one.
For the third and last one, we separate into two cases and denote bk = 2sk|∆̇kf |

and j = 0 for the third or j = −∞ for the last one.
Case I: r 6 p. In this case, we have `r ↪→ `p and

∞∑
k=j

‖bk‖pp =
∞∑
k=j

∫
Rn

|bk(x)|pdx =

∫
Rn

∞∑
k=j

|bk(x)|pdx

=

∫
Rn

‖ (bk) ‖pℓpdx .
∫
Rn

‖ (bk) ‖pℓrdx,

which yields the second parts of embedding relations. Moreover, by Minkowski’s
inequality, we get∥∥∥∥∥∥∥

 ∞∑
k=j

brk

 1
r

∥∥∥∥∥∥∥
r

p

=

∥∥∥∥∥∥
∞∑
k=j

brk

∥∥∥∥∥∥
p
r

6
∞∑
k=j

‖brk‖ p
r
=

∞∑
k=j

‖bk‖rp,

which yields the first parts of embedding relations.
Case II: p < r. By Minkowski’s inequality, we have

∞∑
k=j

‖bk‖rp =
∞∑
k=j

‖brk‖ p
r
6

∥∥∥∥∥∥
∞∑
k=j

brk

∥∥∥∥∥∥
p
r

=

∥∥∥∥∥∥∥
 ∞∑
k=j

brk

 1
r

∥∥∥∥∥∥∥
r

p

,
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which yields the second parts of embedding relations.
In this case, we have `p ↪→ `r and

‖‖ (bk) ‖ℓr‖pp .‖‖ (bk) ‖ℓp‖pp =

∥∥∥∥∥∥
∞∑
k=j

bpk

∥∥∥∥∥∥
1

=

∞∑
k=j

‖bk‖pp,

which yields the first parts of embedding relations. We complete the proof. �
From Theorems 6.5.5 and 6.5.6, we can get the following corollary.

Corollary 6.5.7.

Let s ∈ R. Then we have:

i) For 1 < p < ∞, Bs
p,min(p,2) ↪→ Hs

p ↪→ Bs
p,max(p,2) and Ḃs

p,min(p,2) ↪→ Ḣs
p ↪→

Ḃs
p,max(p,2). In particular, Hs = Bs

2,2 = F s2,2 and Ḣs = Ḃs
2,2 = Ḟ s2,2.

ii) For 1 6 p 6 ∞, Bs
p,1 ↪→ Hs

p ↪→ Bs
p,∞ and Ḃs

p,1 ↪→ Ḣs
p ↪→ Ḃs

p,∞.

Proof. It obviously follows from Theorems 6.5.5 and 6.5.6 except the endpoint cases
p = 1 or ∞ in ii). For the proof of the endpoint cases, one can see [BL76, Chapter
6]. �

Theorem 6.5.8.

Let X denote B or F . Then,

i) Xs
p,r and Ẋs

p,r are complete;

ii) S (Rn) ↪→ Xs
p,r ↪→ S ′(Rn), Ṡ (Rn) ↪→ Ẋs

p,r ↪→ Ṡ ′(Rn);

iii) S (Rn) is dense in Xs
p,r, if 1 6 p, r < ∞; Ṡ (Rn) is dense in Ẋs

p,r, if
1 6 p, r <∞.

Proof. We only show the non-homogeneous cases and leave the homogeneous cases
to the interested reader (cf. [Jaw77, Saw18]). Clearly, Xs

p,r is a normed linear space
with the norm ‖ · ‖Xs

p,r
since either `r(Lp) or Lp(`r) is a normed linear space. More-

over, it is complete and therefore Banach space which will be proved in the final.
Let’s first prove the second result. We divide the proofs into four steps.

Step 1: To prove S ↪→ Bs
p,∞. In fact, for σ = max(s, 0) and sufficiently large2

L ∈ N0, we have for any f ∈ S , from Proposition 6.4.1 and 6.4.8, that

‖f‖Bs
p,∞ =‖S0f‖p + sup

k>0
2sk‖∆kf‖p

6C‖f‖p + sup
k>0

2sk‖(
√
−∆)−σ∆k(

√
−∆)σf‖p

2It is enough to assume that L > n
2p

. In fact,

∥(1 + |x|2)−L∥p =C

(∫ ∞

0

rn−1(1 + r2)−pLdr

)1/p

6 C2L
(∫ ∞

0

rn−1(1 + r)−2pLdr

)1/p

6C2L
(∫ ∞

0

(1 + r)−2pL+n−1dr

)1/p

6 C2L(2pL− n)−1/p,

where we assume that 2pL > n.

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



§6.5. Besov spaces and Triebel-Lizorkin spaces - 209 -

.
∑
α,β

|f |α,β + sup
k>0

2sk2−σk‖(
√
−∆)σf‖p

.
∑
α,β

|f |α,β + ‖(1 + |x|2)L(
√
−∆)σf‖∞ .

∑
α,β

|f |α,β.

where |f |α,β is one of the semi-norm sequence of S . Thus, we obtain the result.
Step 2: To prove S ↪→ Xs

p,r. From Step 1, we know S ↪→ Bs+ε
p,∞ for any ε > 0.

From Theorem 6.5.6, we getBs+ε
p,∞ ↪→ Bs

p,min(p,r) ↪→ Bs
p,r∩F sp,r. Therefore, S ↪→ Xs

p,r.
Step 3: To prove Bs

p,∞ ↪→ S ′. For simplicity, we denote ∆−1 ≡ 0 temporarily.
For any f ∈ Bs

p,∞ and α ∈ S , we have, from Schwarz’ inequality, Proposition 6.4.8
and the result in Step 1, that

|〈f, α〉| =|

〈
(S0 +

∞∑
k=0

∆k)f, (S0 +
∞∑
l=0

∆l)α

〉
|

6| 〈S0f, S0α〉 |+ | 〈S0f,∆0α〉 |+ | 〈∆0f, S0α〉 |

+
∞∑
k=0

1∑
l=−1

| 〈∆kf,∆k+lα〉 |

.‖f‖p‖α‖Lp′ +
∞∑
k=0

1∑
l=−1

‖∆kf‖p‖∆k+lα‖Lp′

.‖f‖p‖α‖Lp′ +
∞∑
k=0

1∑
l=−1

2sk‖∆kf‖p2−sk‖∆k+lα‖Lp′

.‖f‖p‖α‖Lp′ + sup
k>0

2sk‖∆kf‖p
∞∑
k=0

2−sk‖∆kα‖Lp′

.‖f‖Bs
p,∞‖α‖B−s+ε

p′,∞

.‖f‖Bs
p,∞pN (α).

Here, we can take α over a bounded set B of S , then pN (α) 6 C. Thus, we have
proved the result.

Step 4: To proveXs
p,r ↪→ S ′. From Theorem 6.5.6, we haveXs

p,r ↪→ Bs
p,max(p,q) ↪→

Bs
p,∞ ↪→ S ′.

Finally, let us prove the completeness of Bs
p,r. The completeness of F sp,r can be

proved at a similar way. Let {fl}∞1 be a Cauchy sequence in Bs
p,r. So does it in S ′

in view of ii). Because S ′ is a complete local convex topological linear space, there
exists a f ∈ S ′ such that fl → f according to the strong topology of S ′. On the
other hand, that {fl}∞1 is a Cauchy sequence implies that {∆kfl}∞l=1 is a Cauchy
sequence in Lp. From the completeness of Lp, there is a gk ∈ Lp such that

‖∆kfl − gk‖p → 0, l → ∞. (6.5.4)

Since Lp ↪→ S ′ and ∆kfl → ∆kf as l → ∞ in S ′, we get gk = ∆kf . Hence, (6.5.4)
implies

‖∆k(fl − f)‖p → 0, l → ∞.

which yields supk>0 2
(s+ε)k‖∆k(fl − f)‖p → 0 as l → ∞ for any ε > 0.

Similarly, we have

‖S0(fl − f)‖p → 0, l → ∞.
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Therefore,

‖fl − f‖Bs
p,r

. ‖fl − f‖Bs+ε
p,∞

→ 0, l → ∞.

Similarly, we can obtain the density statement in iii). We omit the details. �

§ 6.6 Embedding and interpolation of spaces

Theorem 6.6.1: The embedding theorem

Let 1 6 p, p1, r, r1 6 ∞ and s, s1 ∈ R. Assume that s − n
p = s1 − n

p1
. Then

the following conclusions hold

Bs
p,r ↪→ Bs1

p1,r1 , Ḃs
p,r ↪→ Ḃs1

p1,r1 , ∀p 6 p1 and r 6 r1;

F sp,r ↪→ F s1p1,r1 , Ḟ sp,r ↪→ Ḟ s1p1,r1 , ∀p < p1 <∞.

Proof. We only give the proof of the non-homogeneous cases, the homogeneous
cases can be treated in a similar way.

Let us prove the first conclusion. From the Bernstein inequality in Proposition
6.4.1, we immediately have

‖∆kf‖p1 . 2
kn( 1

p
− 1

p1
)‖∆kf‖p, ‖S0f‖p1 . ‖S0f‖p, (6.6.1)

since 1 6 p 6 p1 6 ∞. Thus, with the help of the embedding Bs
p,r ↪→ Bs

p,r1 for
r 6 r1 in Theorem 6.5.6, we get

‖f‖Bs1
p1,r1

=‖S0f‖p1 +

( ∞∑
k=0

(
2s1k‖∆kf‖p1

)r1) 1
r1

.‖S0f‖p +

( ∞∑
k=0

(
2sk‖∆kf‖p

)r1) 1
r1

= ‖f‖Bs
p,r1

. ‖f‖Bs
p,r
.

This gives the first conclusion.
Next, we prove the second conclusion. In view of Theorem 6.5.6, we need only

prove F sp,∞ ↪→ F s1p1,1. Without loss of generality, we assume ‖f‖F s
p,∞ = 1 and con-

sider the norm

‖f‖F s1
p1,1

= ‖S0f‖p1 +

∥∥∥∥∥
∞∑
k=0

2s1k|∆kf |

∥∥∥∥∥
p1

.

We use the following equivalent norm (i.e., Theorem 1.1.4) on Lp for 1 6 p <∞:

‖f‖pp = p

∫ ∞

0
tp−1| {x : |f(x)| > t} |dt.

Thus, we have∥∥∥∥∥
∞∑
k=0

2s1k|∆kf |

∥∥∥∥∥
p1

p1

=p1

∫ A

0
tp1−1

∣∣∣∣∣
{
x :

∞∑
k=0

2s1k|∆kf(x)| > t

}∣∣∣∣∣ dt
+ p1

∫ ∞

A
tp1−1

∣∣∣∣∣
{
x :

∞∑
k=0

2s1k|∆kf(x)| > t

}∣∣∣∣∣ dt
=:I + II,
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where A� 1 is a constant which can be chosen as below. Noticing that p < p1 and
s− n

p = s1 − n
p1

imply s > s1, we have
∞∑
k=K

2s1k|∆kf | . 2K(s1−s) sup
k>0

2sk|∆kf |, ∀K ∈ N0. (6.6.2)

By taking K = 0 and noticing p < p1 (which implies that tp1−1 6 Ap1−ptp−1 for
t 6 A), we get

I .
∫ A

0
tp1−1

∣∣∣∣∣
{
x : sup

k>0
2sk|∆kf(x)| > ct

}∣∣∣∣∣ dt
.
∫ cA

0
τp−1

∣∣∣∣∣
{
x : sup

k>0
2sk|∆kf(x)| > τ

}∣∣∣∣∣ dτ .
∥∥∥∥∥sup
k>0

2sk|∆kf |

∥∥∥∥∥
p

p

. 1,

where the implicit constant depends on A, but it is a fixed constant.
Now we estimate II . By the Bernstein inequality in Proposition 6.4.1, we have

‖∆kf‖∞ . 2kn/p‖∆kf‖p . 2k(n/p−s)

∥∥∥∥∥sup
k>0

2sk|∆kf |

∥∥∥∥∥
p

.

Hence, for K ∈ N, we obtain
K−1∑
k=0

2s1k|∆kf | .
K−1∑
k=0

2k(s1−s+n/p)

∥∥∥∥∥sup
k>0

2sk|∆kf |

∥∥∥∥∥
p

.2Kn/p1

∥∥∥∥∥sup
k>0

2sk|∆kf |

∥∥∥∥∥
p

. 2Kn/p1 .

(6.6.3)

Taking K to be the largest natural number satisfying C2Kn/p1 6 t/2, we have 2K ∼
tp1/n. It is easy to see that such a K exists if t > A � 1. Thus, for t > A and∑∞

k=0 2
s1k|(∆kf)(x)| > t, we have, from (6.6.2) and (6.6.3), that

C2K(s1−s) sup
k>0

2sk|∆kf | >
∞∑
k=K

2s1k|∆kf | > t/2. (6.6.4)

Hence, from (6.6.3) and (6.6.4), we get

II =p1

∫ ∞

A
tp1−1

∣∣∣∣∣
{
x :

∞∑
k=0

2s1k|∆kf(x)| > t

}∣∣∣∣∣ dt
.
∫ ∞

A
tp1−1

∣∣∣∣∣
{
x :

K−1∑
k=0

2s1k|∆kf(x)| > t/2

}∣∣∣∣∣ dt
+

∫ ∞

A
tp1−1

∣∣∣∣∣
{
x :

∞∑
k=K

2s1k|∆kf(x)| > t/2

}∣∣∣∣∣ dt
.
∫ ∞

A
tp1−1

∣∣∣{x : C2Kn/p1 > t/2
}∣∣∣ dt

+

∫ ∞

A
tp1−1

∣∣∣∣∣
{
x : C2K(s1−s) sup

k>0
2sk|∆kf(x)| > t/2

}∣∣∣∣∣ dt
.
∫ ∞

A
tp1−1

∣∣∣∣∣
{
x : sup

k>0
2sk|∆kf(x)| > ctp1/p

}∣∣∣∣∣ dt
.
∫ ∞

A′
τp−1

∣∣∣∣∣
{
x : sup

k>0
2sk|∆kf(x)| > τ

}∣∣∣∣∣ dτ
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.‖ sup
k>0

2sk|∆kf |‖pp . 1.

That is, ∥∥∥∥∥
∞∑
k=0

2s1k|∆kf |

∥∥∥∥∥
p1

. 1.

On the other hand, from (6.6.1), we have ‖S0f‖p1 . 1. Therefore, we have obtained
‖f‖Bs1

p1,1
. 1 under the assumption ‖f‖Bs

p,∞ = 1. This completes the proof. �

Theorem 6.6.2.

Let 1 6 p < ∞, s > n/p and 1 6 r 6 ∞. Let Xs
p,r denote Bs

p,r or F sp,r. Then it
holds

Xs
p,r ↪→ B0

∞,1 ↪→ L∞.

Proof. By Bernstein’s inequality and Theorem 6.5.6, we have

‖f‖∞ 6
∞∑

k=−1

‖∆kf‖∞ .
∞∑

k=−1

2kn/p‖∆kf‖p

.
( ∞∑
k=−1

2k(n/p−s)

)
‖f‖Bs

p,∞ . ‖f‖Xs
p,r
.

�
Now, we give some fractional Gagliardo-Nirenberg inequalities in homoge-

neous Besov spaces.

Theorem 6.6.3.

Let 1 6 p, p0, p1, r, r0, r1 6 ∞, s, s0, s1 ∈ R, 0 6 θ 6 1. Suppose that the
following conditions hold:

s− n

p
= (1− θ)

(
s0 −

n

p0

)
+ θ

(
s1 −

n

p1

)
, (6.6.5)

s 6 (1− θ)s0 + θs1, (6.6.6)
1

r
6 1− θ

r0
+

θ

r1
. (6.6.7)

Then the fractional GN inequality of the following type

‖u‖Ḃs
p,r

. ‖u‖1−θ
Ḃ

s0
p0,r0

‖u‖θ
Ḃ

s1
p1,r1

(6.6.8)

holds for all u ∈ Ḃs0
p0,r0 ∩ Ḃ

s1
p1,r1 .

Proof. Let s∗ = (1−θ)s0+θs1, 1/p∗ = (1−θ)/p0+θ/p1 and 1/r∗ = (1−θ)/r0+θ/r1.
By (6.6.6), we have s 6 s∗ and r∗ 6 r. Applying the convexity Hölder inequality,
we have

‖f‖Ḃs∗
p∗,r∗

6 ‖f‖1−θ
Ḃ

s0
p0,r0

‖f‖θ
Ḃ

s1
p1,r1

. (6.6.9)

Using the embedding Ḃs∗
p∗,r∗ ↪→ Ḃs

p,r, we get the conclusion. �
For the most general case, we give some fractional Gagliardo-Nirenberg in-

equalities in homogeneous Besov, Triebel-Lizorkin and Sobolev spaces without proofs
(cf. [HMOW11]).
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Theorem 6.6.4.

Let 1 6 p, p0, p1, r, r0, r1 6 ∞, s, s0, s1 ∈ R, 0 6 θ 6 1. Assume that

s− n

p
= (1− θ)

(
s0 −

n

p0

)
+ θ

(
s1 −

n

p1

)
,

then the fractional Gagliardo-Nirenberg inequality of the following type

‖f‖Ḃs
p,r

. ‖f‖1−θ
Ḃ

s0
p0,r0

‖f‖θ
Ḃ

s1
p1,r1

holds for all f ∈ Ḃs0
p0,r0 ∩ Ḃ

s1
p1,r1 if and only if one of the following conditions

holds:
i) s 6 (1− θ)s0 + θs1 and

1

r
6 1− θ

r0
+

θ

r1
;

ii) p0 = p1 and s = (1− θ)s0 + θs1 but s0 6= s1;
iii) s0 −

n

p0
6= s− n

p
and s < (1− θ)s0 + θs1.

Theorem 6.6.5.

Let 1 6 p, pi, r < ∞, s, s0, s1 ∈ R, 0 < θ < 1. Then the fractional Gagliardo-
Nirenberg inequality of the following type

‖f‖Ḟ s
p,r

. ‖f‖1−θ
Ḟ

s0
p0,∞

‖f‖θ
Ḟ

s1
p1,∞

holds if and only if

s− n

p
= (1− θ)

(
s0 −

n

p0

)
+ θ

(
s1 −

n

p1

)
,

s 6 (1− θ)s0 + θs1,

s0 6= s1 if s = (1− θ)s0 + θs1.

Corollary 6.6.6.

Let 1 < p, p0, p1 < ∞, s, s1 ∈ R, 0 6 θ 6 1. Then the fractional Gagliardo-
Nirenberg inequality of the following type

‖f‖Ḣs
p
. ‖f‖1−θLp0 ‖f‖θḢs1

p1

holds if and only if

s− n

p
= (1− θ)

n

p0
+ θ

(
s1 −

n

p1

)
, s 6 θs1.

Now, we give the duality theorem:

Theorem 6.6.7: The duality theorem

Let s ∈ R. Then we have
i) (Bs

p,r)
′ = B−s

p′,r′ , if 1 6 p, r <∞.
ii) (F sp,r)

′ = F−s
p′,r′ , if 1 < p, r <∞.

Proof. Please read [BL76, Tri83] for details. �
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§ 6.7 Differential-difference norm on Besov spaces

The next theorem points to an alternative definition of the Besov spaces Bs
p,r

(s > 0) in terms of derivatives and moduli of continuity. The modulus of continuity
is defined by

ωmp (t, f) = sup
|y|<t

‖ Mmy f‖p,

where Mmy is the m-th order difference operator:

Mmy f(x) =
m∑
k=0

Ckm(−1)kf(x+ ky).

Theorem 6.7.1.

Assume that s > 0, and let m and N be integers, such that m + N > s and
0 6 N < s. Then, with 1 6 p, r 6 ∞,

‖f‖Bs
p,r

∼ ‖f‖p +
n∑
j=1

(∫ ∞

0

(
tN−sωmp

(
t,
∂Nf

∂xNj

))r
dt

t

)1/r

.

Proof. We note that ωmp is an increasing function of t. Therefore, it is sufficient to
prove that

‖f‖Bs
p,r

∼ ‖f‖p +
n∑
j=1

( ∞∑
ℓ=−∞

(
2ℓ(s−N)ωmp

(
2−ℓ,

∂Nf

∂xNj

))r)1/r

.

First, we assume that f ∈ Bs
p,r. It is clear that

ωmp (2−ℓ,
∂Nf

∂xNj
) = sup

|y|<2−ℓ

∥∥∥∥∥Mmy ∂Nf

∂xNj

∥∥∥∥∥
p

= sup
|y|<2−ℓ

∥∥∥∥∥
m∑
k=0

Ckm(−1)k
∂Nf

∂xNj
(x+ ky)

∥∥∥∥∥
p

= sup
|y|<2−ℓ

∥∥∥∥∥ ∂N∂xNj
(

m∑
k=0

Ckm(−1)kf(x+ ky)

)∥∥∥∥∥
p

= sup
|y|<2−ℓ

∥∥∥∥∥ ∂N∂xNj
(

m∑
k=0

Ckm(−1)kF−1(eiky·ξf

∨

)

)∥∥∥∥∥
p

= sup
|y|<2−ℓ

∥∥∥∥∥ ∂N∂xNj F−1

(
m∑
k=0

Ckm(−1)keiky·ξf

∨

)∥∥∥∥∥
p

= sup
|y|<2−ℓ

∥∥∥∥∥ ∂N∂xNj F−1
(
(1− eiy·ξ)mf

∨)∥∥∥∥∥
p

.

Denote ρy(ξ) = (1− eiy·ξ)m. By the Littlewood-Paley decomposition and the Bern-
stein inequalities, we have

ωmp (2−ℓ,
∂Nf

∂xNj
)

= sup
|y|<2−ℓ

∥∥∥∥∥
(
S0 +

∞∑
k=0

∆k

)
∂N

∂xNj
F−1

(
ρy(ξ)f

∨)∥∥∥∥∥
p

. sup
|y|<2−ℓ

∥∥∥(2π)−n/2ρy∧∗ S0f∥∥∥
p
+ sup

|y|<2−ℓ

∞∑
k=0

2kN
∥∥∥(2π)−n/2ρy∧∗∆kf

∥∥∥
p
.
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Hence, it follows
n∑
j=1

( ∞∑
ℓ=−∞

(
2ℓ(s−N)ωmp

(
2−ℓ,

∂Nf

∂xNj

))r)1/r

.
( ∞∑
ℓ=−∞

(
2ℓ(s−N) sup

|y|<2−ℓ

‖(2π)−n/2ρy∧∗ S0f‖p

+ sup
|y|<2−ℓ

∞∑
k=0

2(ℓ−k)(s−N)2ks‖(2π)−n/2ρy∧∗∆kf‖p
)r)1/r

.

If we can prove that for all integers k

‖(2π)−n/2ρy∧∗ S0f‖p . min(1, |y|m)‖S0f‖p, (6.7.1)

and

‖(2π)−n/2ρy∧∗∆kf‖p . min(1, |y|m2mk)‖∆kf‖p. (6.7.2)

Then, we can obtain
n∑
j=1

( ∞∑
ℓ=−∞

(
2ℓ(s−N)ωmp

(
2−ℓ,

∂Nf

∂xNj

))r)1/r

.
( ∞∑
ℓ=−∞

(
2ℓ(s−N) sup

|y|<2−ℓ

min(1, |y|m)‖S0f‖p

+ sup
|y|<2−ℓ

∞∑
k=0

2(ℓ−k)(s−N)2ks min(1, |y|m2mk)‖∆kf‖p
)r)1/r

.
( ∞∑
ℓ=−∞

(
2ℓ(s−N) min(1, 2−ℓm)‖S0f‖p

+
∞∑
k=0

2(ℓ−k)(s−N) min(1, 2−(ℓ−k)m)2ks‖∆kf‖p
)r)1/r

.‖(2k(s−N) min(1, 2−km)) ∗ (αk)‖ℓr

.‖(2k(s−N) min(1, 2−km))‖ℓ1‖(αk)‖ℓr . ‖f‖Bs
p,r
,

where the sequence (αk)
∞
k=−∞ with αk = 2sk‖∆kf‖p if k > 0, α−1 = ‖S0f‖p and

αk = 0 if k < −1, and we have used the Young inequality for a convolution of two
sequences. In addition, we have

‖f‖p .‖S0f‖p +
∞∑
k=0

‖∆kf‖p

.‖S0f‖p +

( ∞∑
k=0

2−skr
′

)1/r′ ( ∞∑
k=0

(2sk‖∆kf‖p)r
)1/r

. ‖f‖Bs
p,r
,

which implies the desired conclusion.
Now, we turn to prove (6.7.1) and (6.7.2). We only need to show ρy ∈ Mp and

ρy(·)〈y, ·〉−m ∈ Mp for p ∈ [1,∞] and

‖ρy‖Mp 6 C, ‖ρy(·)〈y, ·〉−m‖Mp 6 C, ∀y 6= 0. (6.7.3)

In fact, from the definition of ρy, we get

‖ρy‖Mp =(2π)−n/2 sup
f∈S

‖ρy∧∗ f‖p
‖f‖p

= sup
f∈S

‖
∑m

k=0C
k
m(−1)kf(x+ ky)‖p

‖f‖p
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6
m∑
k=0

Ckm = 2m.

By Theorem 2.6.4, we have

‖ρy(ξ)〈y, ξ〉−m‖Mp(Rn) =‖(1− ei⟨y,ξ⟩)m〈y, ξ〉−m‖Mp(Rn)

=‖((1− eiη)/η)m‖Mp(R)

6‖((1− eiη)/η)‖mMp(R),

since Mp is a Banach algebra and the integer m > 1 in view of the conditions m +

N > s and 0 6 N < s.
In view of the Bernstein multiplier theorem (i.e., Theorem 2.6.5), we only need

to show ((1− eiη)/η) ∈ L2(R) and ∂η((1− eiη)/η) ∈ L2(R). We split the L2 integral
into two parts |η| < 1 and |η| > 1. For |η| < 1, we can use |1 − eiη| 6 |η| to get
|(1− eiη)/η| 6 1; while for its first order derivative, we can use Taylor’s expansion

ez =
∞∑
k=0

zk

k! whenever |z| <∞ (z ∈ C) to get

∂η((1− eiη)/η) =− η−2(iηeiη + 1− eiη)

=− η−2

(
iη

∞∑
k=0

(iη)k

k!
−

∞∑
k=1

(iη)k

k!

)

=− η−2

( ∞∑
k=0

(iη)k+1

k!
−

∞∑
k=0

(iη)k+1

(k + 1)!

)

=

∞∑
k=1

k(iη)k−1

(k + 1)!

=
∞∑
k=1

(iη)k−1

(k − 1)!

1

(k + 1)
,

which implies |∂η((1 − eiη)/η)| 6 1
2e

|η|. Then it is easy to get the bound of the L2

integral. Thus, ‖((1 − eiη)/η)‖Mp(R) 6 C by Theorem 2.6.5, which completes the
proof of (6.7.3).

Similarly, we can prove

‖〈y/|y|, ·〉mψ

∼

(·)‖Mp 6 C, and ‖〈y/|y|, ·〉mϕ

∼

(·)‖Mp 6 C,

which implies

‖〈y, ·〉mψ

∼

(·)‖Mp 6 C|y|m, ‖〈y, ·〉mϕ

∼

(2−k·)‖Mp 6 C|y|m2mk.

Thus, we get

‖(2π)−n/2ρy∧∗ S0f‖p .‖S0f‖p,

‖(2π)−n/2ρy∧∗ S0f‖p =‖(2π)−nF−1(ρy(ξ)〈y, ξ〉−m) ∗ F−1(〈y, ξ〉mψ

∼

(ξ)) ∗ S0f‖p
.|y|m‖S0f‖p,

which yields (6.7.1). In the same way, we have

‖(2π)−n/2ρy∧∗∆kf‖p .‖∆kf‖p,

‖(2π)−n/2ρy∧∗∆kf‖p =‖(2π)−n(F−1ρy(ξ)〈y, ξ〉−m) ∗ F−1(〈y, ξ〉mϕ

∼

(2−kξ)) ∗∆kf‖p
.|y|m2mk‖∆kf‖p,

which yields (6.7.2).
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The converse inequality will follow if we can prove the estimate

‖∆kf‖p 6 C2−Nk
n∑
j=1

∥∥∥∥∥ρjk∧∗ ∂Nf∂xNj

∥∥∥∥∥
p

, (6.7.4)

where ρjk = ρ(2−kej) with ej being the unit vector in the direction of the ξj-axis and
ρy defined as the previous. In fact, if (6.7.4) is valid, we have, by noting ψ ∈ M1,
that

‖f‖Bs
p,r

.‖f‖p +

 ∞∑
k=0

2k(s−N)
n∑
j=1

∥∥∥∥∥ρjk∧∗ ∂Nf∂xNj

∥∥∥∥∥
p

r1/r

.‖f‖p +
n∑
j=1

( ∞∑
k=0

(
2k(s−N)ωmp

(
2−k,

∂Nf

∂xNj

))r)1/r

,

which implies the desired inequality.
In order to prove (6.7.4), we need the following lemma.

Lemma 6.7.2.

Assume that n > 2 and take ϕ as in (6.4.4). Then there exist functions χj ∈
S (Rn) (1 6 j 6 n), such that

n∑
j=1

χj = 1 on suppϕ,

suppχj ⊂
{
ξ ∈ Rn : |ξj | > (3

√
n)−1

}
, 1 6 j 6 n.

Proof. Choose κ ∈ S (R) with suppκ = {ξ ∈ R : |ξ| > (3
√
n)−1} and with positive

values in the interior of suppκ. Moreover, choose σ ∈ S (Rn−1) with suppσ ={
ξ ∈ Rn−1 : |ξ| 6 3

}
and positive in the interior. Writing

ξ̄j = (ξ1, · · · , ξj−1, ξj+1, · · · , ξn)

and

χj(ξ) = κ(ξj)σ(ξ̄
j)/

n∑
j=1

κ(ξj)σ(ξ̄
j), 1 6 j 6 n,

where
∑n

j=1 κ(ξj)σ(ξ̄
j) > 0 on suppϕ, only routine verification remains to com-

plete the proof of the lemma. �
We now complete the proof of the theorem, i.e., we prove (6.7.4). By the previ-

ous lemma, we obtain the formula

‖∆kf‖p .
n∑
j=1

∥∥∥∥F−1(ρ−mjk χj(2
−k·)ξ−Nj ϕ(2−k·)) ∗ F−1(ρmjk

∂Nf
∂xNj

∨

)

∥∥∥∥
p

.2−kN
n∑
j=1

∥∥∥∥F−1(ρ−mjk χj(2
−k·)(2−kξj)−Nϕ(2−k·)) ∗ F−1(ρmjk

∂Nf
∂xNj

∨

)

∥∥∥∥
p

.2−kN
n∑
j=1

∥∥∥ρ−mj0 χjξ
−N
j ϕ

∥∥∥
Mp(Rn)

∥∥∥∥∥ρmjk∧∗ ∂Nf∂xNj

∥∥∥∥∥
p

.2−kN
n∑
j=1

∥∥∥∥∥ρmjk∧∗ ∂Nf∂xNj

∥∥∥∥∥
p

,
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since, by Theorem 2.6.4 and 2.6.5, we have

(1− eiξj )−mχj(ξ)ξ
−N
j ϕ(ξ) ∈ Mp,

for 1 6 j 6 n and 1 6 p 6 ∞. �
Now we give a corollary which is very convenient for nonlinear estimates in

PDEs.

Corollary 6.7.3.

Assume that s > 0 and s /∈ N. Let 1 6 p, r 6 ∞, then

‖f‖Bs
p,r

∼ ‖f‖p +
n∑
j=1

(∫ ∞

0

(
t[s]−s sup

|h|6t

∥∥∥Mh ∂[s]xj f∥∥∥p
)r

dt

t

)1/r

,

where [s] denotes the integer part of the real number s and Mh denotes the
first order difference operator.

Similarly, we can get a equivalent norm for the homogeneous Besov space.

Theorem 6.7.4.

Assume that s > 0, and let m and N be integers, such that m + N > s and
0 6 N < s. Then, with 1 6 p, r 6 ∞,

‖f‖Ḃs
p,r

∼
n∑
j=1

(∫ ∞

0

(
tN−sωmp

(
t,
∂Nf

∂xNj

))r
dt

t

)1/r

.

In particular, if s > 0 and s /∈ N, then

‖f‖Ḃs
p,r

∼
n∑
j=1

(∫ ∞

0

(
t[s]−s sup

|h|6t

∥∥∥Mh ∂[s]xj f∥∥∥p
)r

dt

t

)1/r

,

One of the following result is a straightforward consequence of Theorem 6.7.1
and Theorem 6.7.4, which indicates the relation between homogeneous and non-
homogeneous spaces.

Theorem 6.7.5.

Suppose that f ∈ S ′ and 0 /∈ supp f

∨

. Then

f ∈ Bs
p,r ⇔ f ∈ Ḃs

p,r, ∀s ∈ R, 1 6 p, r 6 ∞.

Moreover,

Bs
p,r = Lp ∩ Ḃs

p,r, ∀s > 0, 1 6 p, r 6 ∞,

Bs
p,r = Lp + Ḃs

p,r, ∀s < 0, 1 6 p, r 6 ∞.

Proof. One can see [BL76, Chapter 6]. �

§ 6.8 The realization of homogeneous Besov spaces for PDEs

When we consider partial differential equations, it is not conformable to work
on the quotient space. One of the reasons is that the quotient space does not give
us any information of the value of functions. Therefore, at least we want to go back
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to the subspace of S ′. Although the evaluation does not make sense in S ′, we feel
that the situation becomes better in S ′ than in Ṡ ′ = S ′/P . Such a situation is
available when s is small enough.

Theorem 6.8.1.

Let 1 6 p, r 6 ∞. Assume

s <
n

p
, or s =

n

p
and r = 1. (6.8.1)

Then for all f ∈ Ḃs
p,r,

0∑
k=−∞

∆̇kf is convergent in L∞ and
∞∑
k=1

∆̇kf is conver-

gent in S ′.

Proof. From Bernstein’s inequality, we have ‖∆̇kf‖∞ 6 C2kn/p‖∆̇kf‖p. It follows
that ∥∥∥∥∥

0∑
k=−∞

∆̇kf

∥∥∥∥∥
∞

6C
0∑

k=−∞
‖∆̇kf‖∞ 6 C

0∑
k=−∞

2k(n/p−s)2ks‖∆̇kf‖p

6

C‖f‖Ḃs
p,∞

6 C‖f‖Ḃs
p,r
, if s < n/p,

C‖f‖
Ḃ

n/p
p,1
, if s = n/p and r = 1.

The fact that
∞∑
k=1

∆̇kf is convergent in S ′ is a general fact. �

There is a way to modify the definition of homogeneous Besov spaces, regard-
ing of the regularity index. For convenience, we first define a subspace of S ′(Rn)
which will play an important role to study PDEs.

Definition 6.8.2.

We denote by S ′
h(Rn) the space of tempered distributions f such that

lim
λ→∞

‖θ(λD)f‖∞ = 0, ∀θ ∈ D(Rn), (6.8.2)

where the operator θ(D) is defined by θ(D)f := F−1(θf

∨

), for a measurable
function f on Rn with at most polynomial growth at infinity.

Remark 6.8.3. We have the following facts about S ′
h(Rn).

1) It holds

S ′
h(Rn) =

{
f ∈ S ′(Rn) : lim

k→−∞
Ṡkf = 0 in S ′(Rn)

}
. (6.8.3)

Thus, we obtain

S ′
h(Rn) =

{
f ∈ S ′(Rn) : f =

∑
k∈Z

∆̇kf in S ′(Rn)

}
. (6.8.4)

In fact, since ψ ∈ D , we have Ṡkf = ψk(D)f = ψ(2−kD)f → 0 in L∞ as k → −∞
if f satisfies (6.8.2). It also implies limk→−∞ Ṡkf = 0 in S ′. Conversely, for given
θ ∈ D , we may assume supp θ ⊂ {ξ : |ξ| 6 C}. It follows that ϕk(ξ) = 0 if
2kα−1 > C/λ, i.e., k > log2 C

λα . Due to (6.8.4), it holds for any g ∈ S ,

|〈θ(λD)f, g〉| =|〈f

∨

(ξ), θ(λξ)g

∧〉|
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=

∣∣∣∣∣
〈∑
k∈Z

ϕk(ξ)f

∨

, θ(λξ)g

∧

〉∣∣∣∣∣
=

∣∣∣∣∣∣∣
〈 ∑
k6[log2 C

λα ]

ϕk(ξ)f

∨

, θ(λξ)g

∧

〉∣∣∣∣∣∣∣
=
∣∣∣〈Ṡ[log2 C

λα ]+1f, θ(λ·)

∨

∗ g
〉∣∣∣→ 0 as λ→ ∞,

by (6.8.3) and the fact that ‖θ(λ·)

∨

∗ g‖∞ 6 ‖θ(λ·)

∨

‖1‖g‖∞ = ‖θ

∨

‖1‖g‖∞ by Young’s
inequality, i.e., θ(λ·)

∨

∗g is uniformly bounded w.r.t. λ. Taking supremum over all
g ∈ S with ‖g‖1 6 1, we obtain ‖θ(λD)f‖∞ → 0 as λ→ ∞. For (6.8.4), noticing
∆̇k = Ṡk+1 − Ṡk and by Proposition 6.4.4 and (6.8.3), we have for any g ∈ S〈∑

k∈Z
∆̇kf, g

〉
=

〈∑
k∈Z

(Ṡk+1f − Ṡkf), g

〉

=

〈
lim

k→+∞
Ṡk+1f − lim

k→−∞
Ṡkf, g

〉
=〈f, g〉.

On the other hand, from Proposition 6.4.4 and (6.8.4), it follows that (6.8.3).
2) It is clear that whether a tempered distribution f belongs to S ′

h depends only on
low frequencies. If a tempered distribution f is such that its Fourier transform f

∨

is locally integrable near 0, then f ∈ S ′
h. In particular, the space E ′ of compactly

supported distributions is included in S ′
h. In fact, for any g ∈ S , we get

|〈Ṡkf, g〉| = |〈ψ(2−kξ)f
∨

(ξ), g
∧

(ξ)〉| 6
∫
|ξ|62kα

|f
∨

(ξ)||g∧(ξ)|dξ

6C
∫
|ξ|62kα

|f

∨

(ξ)|dξ → 0, as k → −∞,

since f

∨

is locally integrable near 0. Thus, f ∈ S ′
h.

3) f ∈ S ′
h(Rn) ⇔ ∃θ ∈ D(Rn), s.t. lim

λ→∞
‖θ(λD)f‖∞ = 0 and θ(0) 6= 0. Indeed, the

necessity is clear from the definition. For the sufficiency, by assumption, there is
an ` ∈ Z small enough such that suppψℓ ⊂ supp θ, then

|〈Ṡkf, g〉| =
∣∣∣∣〈θ(2l−kξ)f∨(ξ), ψ(2−kξ)θ(2l−kξ)

g

∧

(ξ)

〉∣∣∣∣
6(2π)−n/2‖θ(2l−kD)f‖∞

∥∥∥∥F (
ψ(2−kξ)

θ(2l−kξ)

)∥∥∥∥
1

‖g‖1

=(2π)−n/2‖θ(2l−kD)f‖∞
∥∥∥∥F (

ψℓ
θ

)∥∥∥∥
1

‖g‖1 (6.8.5)

6C‖θ(2l−kD)f‖∞ → 0, as k → −∞,

since ψℓ
θ ∈ D ⊂ S .

4) Obviously, f ∈ S ′
h(Rn)⇔ ∀θ ∈ D(Rn) with value 1 near the origin, we have

lim
λ→∞

‖θ(λD)f‖∞ = 0.

5) If f ∈ S ′ satisfies θ(D)f ∈ Lp for some p ∈ [1,∞) and some function θ ∈ D(Rn)
with θ(0) 6= 0, then f ∈ S ′

h. In fact, as similar as in (6.8.5), we can also get for
any k < `

|〈Ṡkf, g〉| =
∣∣∣∣〈θ(ξ)f∨(ξ), ψ(2−kξ)θ(ξ)

g

∧

(ξ)

〉∣∣∣∣
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6(2π)−n/2‖θ(D)f‖p
∥∥∥∥F (

ψ(2−kξ)

θ(ξ)

)∥∥∥∥
p′
‖g‖1

=(2π)−n/2‖θ(D)f‖p
∥∥∥∥2knF (

ψ(·)
θ(2k·)

)
(2k·)

∥∥∥∥
p′
‖g‖1

=(2π)−n/22kn/p‖θ(D)f‖p
∥∥∥∥F (

ψ(·)
θ(2k·)

)∥∥∥∥
p′
‖g‖1 → 0, as k → −∞,

with the help of θ(2k·) → θ(0) 6= 0 as k → −∞ and the uniform continuity of the
Fourier transform for L1 functions.

6) A nonzero polynomial P does not belongs to S ′
h because for any θ ∈ D(Rn)

with value 1 near 0 and any λ > 0, we may write θ(λD)P = P . In fact, ∀α ∈ Nn0 ,
∀g ∈ S ,

〈θ(λD)xα, g(x)〉 =〈θ(λξ)xα

∨

(ξ), g

∧

(ξ)〉 = 〈xα, θ(λξ)g∧(ξ)

∨

〉 = 〈1, xαθ(λξ)g∧(ξ)

∨

〉

=〈1, (−i∂ξ)α(θ(λξ)g

∧

(ξ))

∨

〉

=

〈
(2π)n/2δ0(ξ),

∑
α=β+γ

Cβα(−iλ)β(∂
β
ξ θ)(λξ)(−i∂ξ)

γg

∧

(ξ)

〉
=(2π)n/2

∑
α=β+γ

Cβα(−iλ)β(∂
β
ξ θ)(0)(x

γg)

∧

(0)

=(2π)n/2(xαg)

∧

(0) = 〈(2π)n/2δ0, (xαg)

∧

〉 = 〈1, xαg〉 = 〈xα, g(x)〉,
since (∂βθ)(0) = 0 for any β 6= 0.

7) A non-zero constant function f does not belong to S ′
h because Ṡkf = f , ∀k ∈ Z,

i.e., limk→−∞ Ṡkf 6= 0. We note that this example implies that S ′
h is not a closed

subspace of S ′ for the topology of weak-* convergence, a fact which must be
kept in mind in the applications. For example, taking f ∈ S (Rn) with f(0) = 1

and constructing the sequence

fk(x) = f
(x
k

)
∈ S (Rn) ⊂ S ′

h(Rn),
we can prove

fk(x)
S ′(Rn)−−−−−→ 1 /∈ S ′

h(Rn), as k → ∞.

Now, we redefine homogeneous Besov spaces which can be used in the context
of PDEs.

Definition 6.8.4: Realization of homogeneous Besov spaces

Let s ∈ R, 1 6 p, r 6 ∞. The homogeneous Besov space Ḃs
p,r is defined by

Ḃs
p,r =

{
f ∈ S ′

h(Rn) : ‖f‖Ḃs
p,r

:= ‖f‖Ḃs
p,r
<∞

}
.

Proposition 6.8.5.

The space Ḃs
p,r endowed with ‖ · ‖

Ḃs
p,r

is a normed space.

Proof. It is clear that ‖ · ‖
Ḃs

p,r
is a semi-norm. Assume that for some f ∈ S ′

h, we

have ‖f‖
Ḃs

p,r
= 0. This implies that supp f

∨

⊂ {0} and thus for any k ∈ Z, we have

Ṡkf = f . As f ∈ S ′
h, we conclude that f = 0. �

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



- 222 - Chengchun HAO

Remark 6.8.6. The definition of the realized Besov space Ḃs
p,r is independent of the

function ϕ used for defining the blocks ∆̇k, and changing ϕ yields an equivalent
norm. Indeed, if ϕ̃ is another dyadic partition of unity, then an integer N0 exists
such that |k − k′| > N0 implies that supp ϕ̃(2−k·) ∩ suppϕ(2−k′ ·) = ∅. Thus,

2ks‖ϕ̃(2−kD)f‖p =2ks

∥∥∥∥∥∥
∑

|k−k′|6N0

ϕ̃(2−kD)∆̇k′f

∥∥∥∥∥∥
p

6C2N0|s|
∑
k′

χ[−N0,N0](k − k′)2k
′s‖∆̇k′f‖p,

which implies the result by Young’s inequality. We also note that the previous
embedding relations for Ḃs

p,r are valid for Ḃs
p,r.

The (realized) homogeneous Besov spaces have nice scaling properties. Indeed,
if f is a tempered distribution, then consider the tempered distribution fN defined
by fN := f(2N ·). We have the following proposition.

Proposition 6.8.7.

Let N ∈ N0 and f ∈ S ′
h(Rn). Then, ‖f‖

Ḃs
p,r

is finite if and only if ‖fN‖Ḃs
p,r

is
finite. Moreover, we have

‖fN‖Ḃs
p,r

= 2N(s−n/p)‖f‖
Ḃs

p,r
.

Proof. By the definition of ∆̇k, we get

∆̇kfN (x) =F−1(ϕ(2−kξ)f(2Nx)

∨

(ξ))(x)

=F−1(ϕ(2−kξ)2−nNf

∨

(2−Nξ))(x)

=F−1(ϕ(2−(k−N)ξ)f

∨

(ξ))(2Nx) = ∆̇k−Nf(2
Nx).

It turns out that ‖∆̇kfN‖p = 2−nN/p‖∆̇k−Nf‖p. We deduce from this that

2ks‖∆̇kfN‖p = 2N(s−n/p)2(k−N)s‖∆̇k−Nf‖p,

and the proposition follows immediately by summation. �
In contrast with the standard function spaces (e.g., Sobolev space Hs or Lp

spaces with p < ∞), (realized) homogeneous Besov spaces contain nontrivial ho-
mogeneous distributions. This is illustrated by the following proposition.

Proposition 6.8.8.

Let σ ∈ (0, n). Then for any p ∈ [1,∞], it holds
1

|x|σ
∈ Ḃ

n
p
−σ

p,∞ (Rn). (6.8.6)

Proof. By Proposition 6.6.1, it is enough to prove that ρσ := | · |−σ ∈ Ḃn−σ
1,∞ . In order

to do so, we introduce χ ∈ D with value 1 near the unit ball, and write

ρσ = ρ0 + ρ1, with ρ0(x) := χ(x)|x|−σ and ρ1(x) := (1− χ(x))|x|−σ.

It is obvious that ρ0 ∈ L1 and that ρ1 ∈ Lq whenever q > n/σ. This implies that
ρσ ∈ S ′

h. The homogeneity of ρσ gives

∆̇kρσ =(2π)−n/2ϕ(2−k·)

∧

∗ ρσ = (2π)−n/22knϕ

∧

(2k·) ∗ ρσ
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=(2π)−n/22k(n+σ)ϕ

∧

(2k·) ∗ ρσ(2k·) = 2kσ(∆̇0ρσ)(2
k·).

Therefore, ‖∆̇kρσ‖1 = 2k(σ−n)‖∆̇0ρσ‖1, which reduces the problem to proving that
∆̇0ρσ ∈ L1. Due to ρ0 ∈ L1, we have ∆̇0ρ0 ∈ L1 by the continuity of ∆̇0 on Lebesgue
spaces. By Bernstein’s inequality, we get

‖∆̇0ρ1‖1 6 Ck sup
|α|=k

‖∂α∆̇0ρ1‖1 6 Ck sup
|α|=k

‖∂αρ1‖1.

From Leibniz’s formula, ∂αρ1 − (1 − χ)∂αρσ ∈ D . Then we complete the proof by
choosing k such that k > n− σ. �

The following lemma provides a useful criterion for determining whether the
sum of a series belongs to a homogeneous Besov space.

Lemma 6.8.9.

Let s ∈ R, 1 6 p, r 6 ∞ and A be an annulus in Rn. Assume that {fk}k∈Z is
a sequence of functions satisfying

supp f

∨

k ⊂ 2kA, and
∥∥∥{2ks‖fk‖p}k∥∥∥

ℓr(Z)
<∞.

If the series
∑

k∈Z fk converges in S ′ to some f ∈ S ′
h, then f ∈ Ḃs

p,r and

‖f‖
Ḃs

p,r
6 Cs

∥∥∥{2ks‖fk‖p}k∥∥∥
ℓr(Z)

.

Proof. It is clear that there exists some positive integer N0 such that ∆̇jfk = 0 for
|j − k| > N0. Hence,

‖∆̇jf‖p =

∥∥∥∥∥∥
∑

|j−k|<N0

∆̇jfk

∥∥∥∥∥∥
p

6 C
∑

|j−k|<N0

‖fk‖p.

Therefore, we obtain that

2js‖∆̇jf‖p 6 C
∑

|j−k|<N0

2(j−k)s2ks‖fk‖p = C
∑
k∈Z

2(j−k)sχ|j−k|<N0
(k)2ks‖fk‖p.

Thus, by Young’s inequality, we get

‖f‖
Ḃs

p,r
6 C

 N0−1∑
j=−N0+1

2js

∥∥∥{2ks‖fk‖p}k∥∥∥
ℓr(Z)

6 Cs

∥∥∥{2ks‖fk‖p}k∥∥∥
ℓr(Z)

.

As f ∈ S ′
h by assumption, this proves the lemma. �

Remark 6.8.10. The above convergence assumption concerns {fk}k<0. We note that
if (s, p, r) satisfies the condition (6.8.1), i.e.,

s <
n

p
, or s =

n

p
and r = 1, (6.8.1)

then, owing to Theorem 6.8.1, we have

lim
j→−∞

∑
k<j

fk = 0 in L∞.

Hence,
∑

k∈Z fk converges to some f ∈ S ′, and Ṡkf tends to 0 when k goes to −∞.
In particular, we have f ∈ S ′

h.
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Theorem 6.8.11.

Let s ∈ R, p, r ∈ [1,∞]. Then Ḃs
p,r(Rn) is a Banach space when s < n

p . In

addition, Ḃ
n
p

p,1(Rn) is also a Banach space.

Proof. By Proposition 6.8.5, both Ḃs
p,r(Rn) and Ḃ

n
p

p,1(Rn) are normed spaces.

Step 1. To prove the embedding: Ḃs
p,r(Rn) ↪→ S ′ for s < n

p , and Ḃ
n
p

p,1(Rn) ↪→ S ′.

We know that Ḃs
p,r(Rn) ⊂ S ′ for s < n

p and Ḃ
n
p

p,1(Rn) ⊂ S ′ by the definition
of Besov spaces due to S ′

h ⊂ S ′, but the embedding relation in topological sense
needs to prove. From Bernstein’s inequality, it follows that

‖∆̇ku‖∞ 6 C2
k n

p ‖∆̇ku‖p. (6.8.7)

For u ∈ Ḃ
n
p

p,1, we have

‖u‖∞ 6
∑
k∈Z

‖∆̇ku‖∞ 6 C
∑
k∈Z

2
k n

p ‖∆̇ku‖p = C‖u‖
Ḃ

n
p
p,1

,

which yields Ḃ
n
p

p,1 ↪→ L∞ ↪→ S ′.
For s < n

p , we first consider the part of low frequencies k < 0. For any f ∈ S ,
we get

|〈∆̇ku, f〉| 6‖∆̇ku‖∞‖f‖1 6 2
k n

p ‖∆̇ku‖p‖f‖1

6C2k
(
n
p
−s
)
‖u‖

Ḃs
p,∞

sup
x∈Rn

(1 + |x|)n+1|f(x)|. (6.8.8)

Thus, ∣∣∣∣∣
〈∑
k<0

∆̇ku, f

〉∣∣∣∣∣ 6 C‖u‖
Ḃs

p,r
sup
x∈Rn

(1 + |x|)n+1|f(x)|. (6.8.9)

For high frequencies k > 0, we can use, as in (6.4.11),

∆̇ku = 2−kl
∑
|α|=l

∂α(2kngα(2
k·) ∗ ∆̇ku), gα := (2π)−n/2aαF−1

[
(−iξ)α

|ξ|2l
ϕ(ξ)

]
.

(6.8.10)

Then, it holds for l ∈ N0 and any f ∈ S ,

〈∆̇ku, f〉 =2−kl
∑
|α|=l

〈∂α(2kngα(2k·) ∗ ∆̇ku), f〉

=2−kl
∑
|α|=l

〈(∆̇ku), 2
kngα(−2k·) ∗ (−∂)αf〉

6C‖∆̇ku‖∞2−kl sup
x∈Rn
|α|=l

(1 + |x|)n+1|∂αf(x)|

6C2k
(
n
p
−s−l

)
2ks‖∆̇ku‖p sup

x∈Rn
|α|=l

(1 + |x|)n+1|∂αf(x)|.

Thus, for large l > n
p − s, it follows that∣∣∣∣∣∣

〈∑
k>0

∆̇ku, f

〉∣∣∣∣∣∣ 6 C‖u‖
Ḃs

p,r
sup
x∈Rn
|α|=l

(1 + |x|)n+1|∂αf(x)|.
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Therefore, we obtain

|〈u, f〉| 6
∑
k∈Z

|〈∆̇ku, f〉| 6 C‖u‖
Ḃs

p,r
sup
x∈Rn
|α|6l

(1 + |x|)n+1|∂αf(x)|, ∀f ∈ S , (6.8.11)

which implies Ḃs
p,r ↪→ S ′.

Step 2. To prove the completeness. Let {uℓ}ℓ∈N is a Cauchy sequence in Ḃs
p,r,

where s < n
p or s = n

p and r = 1. Replacing u by uℓ − uj in (6.8.11), there exists a
u ∈ S ′ such that

uℓ
S ′
−→ u ∈ S ′, as `→ ∞.

Step 2.1. To show u ∈ S ′
h. For s < n

p , by the assumption, it is clear that uℓ ∈ S ′
h

for any ` ∈ N. Similar to (6.8.8), we have for any ` ∈ N and j ∈ Z

|〈Ṡjuℓ, f〉| 6
∑
k6j−1

|〈∆̇kuℓ, f〉| 6
∑
k6j−1

‖∆̇kuℓ‖∞‖f‖1

6Cs2j
(
n
p
−s
)

sup
ℓ

‖uℓ‖Ḃs
p,r
‖f‖1.

From uℓ
S ′
−→ u ∈ S ′, it follows that

|〈Ṡju, f〉| 6 Cs2
j
(
n
p
−s
)

sup
ℓ

‖uℓ‖Ḃs
p,r
‖f‖1, ∀f ∈ S .

Hence, we get

lim
j→−∞

Ṡju = 0, i.e., u ∈ S ′
h.

For the case s = n
p and r = 1, since {uℓ} is Cauchy in Ḃ

n
p

p,1 ↪→ Ḃ0
∞,1, we have ∀ε > 0,

∃`0 ∈ N, s.t. ∀j ∈ Z and ` > `0∑
k6j−1

‖∆̇kuℓ‖∞ 6
∑
k6j−1

‖∆̇k(uℓ − uℓ0)‖∞ +
∑
k6j−1

‖∆̇kuℓ0‖∞

6‖uℓ − uℓ0‖Ḃ0
∞,1

+
∑
k6j−1

‖∆̇kuℓ0‖∞

6ε
2
+
∑
k6j−1

‖∆̇kuℓ0‖∞.

We can choose j0 so small that∑
k6j−1

‖∆̇kuℓ0‖∞ <
ε

2
, ∀j 6 j0.

Thus, it follows that for uℓ ∈ S ′
h, we have, ∀j 6 j0, ∀` > `0

‖Ṡjuℓ‖∞ 6
∑
k6j−1

‖∆̇kuℓ‖∞ < ε. (6.8.12)

Since Ḃ
n
p

p,1 ↪→ Ḃ0
∞,1 ↪→ L∞, {uℓ}ℓ∈N is also a Cauchy sequence in L∞, i.e., uℓ → u ∈

L∞ as `→ ∞. Taking `→ ∞ in (6.8.12) yields

‖Ṡju‖∞ 6 ε, ∀j 6 j0,

which indicates u ∈ S ′
h.

Step 2.2. To show u ∈ Ḃs
p,r. From the definition of Besov spaces, it follows that

for any fixed k, {∆̇kuℓ}ℓ∈N is a Cauchy sequence in Lp. By the completeness of Lp,
there exists ūk ∈ Lp such that

lim
ℓ→∞

‖∆̇kuℓ − ūk‖p = 0.
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Since uℓ
S ′
−→ u as `→ ∞, we have ∆̇kuℓ

a.e.−→ ∆̇ku as `→ ∞. Then, ūk = ∆̇ku. Thus,

lim
ℓ→∞

2ks‖∆̇kuℓ‖p = 2ks‖∆̇ku‖p, ∀k ∈ Z.

For ` ∈ N, {2ks‖∆̇kuℓ‖p} is bounded in `r(Z), then so does {2ks‖∆̇ku‖p}. It follows
that u ∈ Ḃs

p,r from Lemma 6.8.9.
Step 2.3. To show the convergence in Ḃs

p,r. For any givenK > 0, due to ∆̇kum →
∆̇ku in Lp as m→ ∞, we get ∑

|k|6K

(
2ks‖∆̇k(uℓ − u)‖p

)r 1
r

= lim
m→∞

 ∑
|k|6K

(
2ks‖∆̇k(uℓ − um)‖p

)r 1
r

.

Noticing that {uℓ}ℓ∈N is Cauchy in Ḃs
p,r, thus, for any ε > 0, there exists an `0 ∈ N

independent of K such that for all ` > `0, we have ∑
|k|6K

(
2ks‖∆̇k(uℓ − u)‖p

)r 1
r

< ε.

Taking K → ∞, it yields that uℓ → u in Ḃs
p,r as ` → ∞. Thus, we complete the

proof. �

Remark 6.8.12. The realization Ḃs
p,r coincides with the general definition Ḃs

p,r when
s < n/p, or s = n/p and r = 1. However, if s > n/p (or s = n/p and r > 1), then
Ḃs
p,r is no longer a Banach space. This is due to a breakdown of convergence for

low frequencies, the so-called infrared divergence.

Example 6.8.13. Let χ(ξ) ∈ D(R) with value 1 when |ξ| < 8/9 and suppχ = {ξ :

|ξ| 6 9/10}. Define

fk

∨

(ξ) =


χ(ξ)

ξ ln |ξ|
, |ξ| > 2−k,

0, otherwise.

It is clear that for k > ` > 0

fk

∨

(ξ)− fℓ

∨

(ξ) =


0, |ξ| > 2−ℓ,

1

ξ ln |ξ|
, 2−k < |ξ| < 2−ℓ,

0, |ξ| 6 2−k.

Thus, we have

‖fk − fℓ‖Ḃ1/2
2,∞

= sup
j∈Z

2j/2‖∆̇j(fk − fℓ)‖2 = sup
j∈Z

2j/2

(∫
2−k<|ξ|<2−ℓ

∣∣∣∣ ϕj(ξ)ξ ln |ξ|

∣∣∣∣2 dξ
)1/2

6 sup
j∈Z

2j/2
1

` ln 2

(∫
R

∣∣∣∣ϕ(2−jξ)ξ

∣∣∣∣2 dξ
)1/2

=
1

` ln 2

(∫
R

∣∣∣∣ϕ(ξ)ξ
∣∣∣∣2 dξ

)1/2

→ 0, as k, `→ ∞,

namely, {fk} is Cauchy in Ḃ
1/2
2,∞. However, it holds

lim
k→∞

fk

∨

(ξ) =
χ(ξ)

ξ ln |ξ|
, ∀ξ > 0,
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which is not integrable near {0}, therefore lim
k→∞

fk /∈ S ′
h and then lim

k→∞
fk /∈ Ḃ

1/2
2,∞.

Finally, we give the dual of realized homogeneous Besov spaces. Observe that
in Littlewood-Paley theory, the duality on S ′

h reads for φ ∈ S ,

〈u, φ〉 =
∑

|k−j|61

〈∆̇ku, ∆̇jφ〉 =
∑

|k−j|61

∫
Rn

∆̇ku(x)∆̇jφ(x)dx.

As for the Lp space, we can estimate the norm in Ḃs
p,r by duality.

Proposition 6.8.14.

For all s ∈ R and p, r ∈ [1,∞],
Ḃs
p,r × Ḃ−s

p′,r′ −→ R

(u, φ) 7→
∑

|k−j|61

〈∆̇ku, ∆̇jφ〉

defines a continuous bilinear functional on Ḃs
p,r × Ḃ−s

p′,r′ . Let

Q−s
p′,r′ :=

{
φ ∈ S ∩ Ḃ−s

p′,r′ : ‖φ‖Ḃ−s
p′,r′

6 1

}
.

If u ∈ S ′
h, then we have for p, r ∈ (1,∞],

‖u‖
Ḃs

p,r
6 C sup

ϕ∈Q−s
p′,r′

〈u, φ〉.

Proof. For |k − j| 6 1, by Hölder’s inequality, we have

|〈∆̇ku, ∆̇jφ〉| 6 2|s|2ks‖∆̇ku‖p2−js‖∆̇jφ‖p′ .

Again using Hölder’s inequality, we deduce that

|〈u, φ〉| 6 Cs‖u‖Ḃs
p,r
‖φ‖

Ḃ−s
p′,r′

.

In order to prove the second part, for N ∈ N, let

Qr
′
N :=

{
(αk) ∈ `r

′
(Z) : ‖(αk)‖ℓr′ 6 1, with αk = 0 for |k| > N

}
.

By the definition of the Besov norm and the dual properties of `r, we get

‖u‖
Ḃs

p,r
= sup
N∈N

∥∥∥(χ|k|6N (k)2
ks‖∆̇ku‖p

)
k

∥∥∥
ℓr

= sup
N∈N

sup
(αk)∈Qr′

N

∑
|k|6N

‖∆̇ku‖p2ksαk (by duality of `r)

= sup
N∈N

sup
(αk)∈Qr′

N

∑
|k|6N

2ksαk sup
ϕ̃∈S

∥ϕ̃∥p′61

〈∆̇ku, φ̃〉, (by duality of Lp).

By definition of supremum, for |k| 6 N and any ε > 0, there is a φk ∈ S with
‖φk‖p′ 6 1 such that

sup
ϕ̃∈S

∥ϕ̃∥p′61

〈∆̇ku, φ̃〉 < 〈∆̇ku, φk〉+
ε2−ks

(1 + |αk|)(1 + |k|2)
.

Let

ΦN := sup
(αk)∈Qr′

N

∑
|k|6N

αk2
ks∆̇kφk.
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Then, for r′ ∈ [1,∞)

‖ΦN‖Ḃ−s
p′,r′

=

∑
j∈Z

2−jsr
′

∥∥∥∥∥∥ sup
(αk)∈Qr′

N

∑
|k|6N

αk2
ks∆̇j∆̇kφk

∥∥∥∥∥∥
r′

p′


1/r′

=

∑
j∈Z

2−jsr
′

∥∥∥∥∥∥ sup
(αk)∈Qr′

N

∑
|k|6N

χ[j−1,j+1](k)αk2
ks∆̇j∆̇kφk

∥∥∥∥∥∥
r′

p′


1/r′

6C

3r
′−1
∑
j∈Z

sup
(αk)∈Qr′

N

∑
|k|6N

|αk|r
′
χ[j−1,j+1](k)2

(k−j)sr′ ‖φk‖r
′

p′

1/r′

6C

3r
′−1
∑
j∈Z

sup
(αk)∈Qr′

N

 ∑
|k|6N

|αk|r
′

 sup
|k|6N

χ[j−1,j+1](k)2
(k−j)sr′

1/r′

6C2|s|
(
3 · 3r′−1

)1/r′
63C2|s|,

which is independent of N .
Thus, for any N ,∥∥∥(χ|k|6N (k)2

ks‖∆̇ku‖p
)
k

∥∥∥
ℓr
<〈u,ΦN 〉+ sup

(αk)∈Qr′
N

∑
|k|6N

2ks|αk|
ε2−ks

(1 + |αk|)(1 + |k|2)

6〈u,ΦN 〉+ ε.

Therefore, we complete the proof. �

§ 6.9 Hölder spaces

Definition 6.9.1.

Let 0 < α < 1. Define the Hölder (or Lipschitz) space Cα as

Cα = {f ∈ L∞(Rn) : ‖f(x− t)− f(x)‖∞ 6 A|t|α}.
The Cα norm is then given by

‖f‖Cα = ‖f‖∞ + sup
|t|>0

‖f(x− t)− f(x)‖∞
|t|α

. (6.9.1)

The first thing to observe is that the functions in Cα may be taken to be continu-
ous, and so the relation |f(x− t)− f(x)| 6 A|t|α holds for every x. More precisely,

Proposition 6.9.2.

Every f ∈ Cα may be modified on a set of measure zero such that it becomes
continuous.

Proof. The proof can be carried out by using the device of regularization. Any
smooth regularization will do, and we shall use here that of the Poisson integral.
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Thus, we consider

u(x, y) =

∫
Rn

Py(t)f(x− t)dt, Py(t) =
cny

(|t|2 + y2)(n+1)/2
, y > 0.

Then, since
∫
Rn Py(t)dt = 1, we have

u(x, y)− f(x) =

∫
Rn

Py(t)[f(x− t)− f(x)]dt,

and for 0 < α < 1,

‖u(x, y)− f(x)‖∞ 6
∫
Rn

Py(t)‖f(x− t)− f(x)‖∞dt

6Acny
∫
Rn

|t|α

(|t|2 + y2)(n+1)/2
dt

t=ys
==Acny

α

∫
Rn

|s|α

(|s|2 + 1)(n+1)/2
ds = A′yα.

In particular, ‖u(x, y1) − u(x, y2)‖∞ → 0, as y1 and y2 → 0, and since u(x, y) is
continuous in x, then u(x, y) converges uniformly to f(x) as y → 0. Therefore, f(x)
may be taken to be continuous. �

We begin by giving a characterization of f ∈ Cα in terms of their Poisson inte-
grals u(x, y).

Proposition 6.9.3.

Suppose f ∈ L∞(Rn) and 0 < α < 1. Then f ∈ Cα(Rn) if and only if∥∥∥∥∂u(x, y)∂y

∥∥∥∥
∞

6 Ay−1+α. (6.9.2)

Remark 6.9.4. If A1 is the smallest constant A for which (6.9.2) holds, then ‖f‖∞ +

A1 and ‖f‖Cα give equivalent norms.

Proof. For Poisson kernel, we have

∂Py(x)

∂y
=cn

(|x|2 + y2)(n+1)/2 − y n+1
2 (|x|2 + y2)(n−1)/2 · 2y

(|x|2 + y2)n+1

=cn
|x|2 + y2 − (n+ 1)y2

(|x|2 + y2)(n+1)/2+1
= cn

|x|2 − ny2

(|x|2 + y2)(n+1)/2+1
, (6.9.3)

and then ∣∣∣∣∂Py(x)∂y

∣∣∣∣ 6 c

(|x|2 + y2)(n+1)/2
, y > 0. (6.9.4)

Differentiating
∫
Rn Py(x)dx = 1 w.r.t. y, we obtain∫

Rn

∂Py(x)

∂y
dx = 0, y > 0. (6.9.5)

Thus, it follows
∂u

∂y
(x, y) =

∫
Rn

∂Py(t)

∂y
f(x− t)dt =

∫
Rn

∂Py(t)

∂y
[f(x− t)− f(x)]dt.

Hence, by changing variables, we have∥∥∥∥∂u(·, y)∂y

∥∥∥∥
∞

6‖f‖Cα

∫
Rn

∣∣∣∣∂Py(t)∂y

∣∣∣∣ |t|αdt 6 c‖f‖Cα

∫
Rn

|t|α

(|t|2 + y2)(n+1)/2
dt

6c‖f‖Cα

∫
Rn

1

(|t|2 + y2)(n+1−α)/2dt
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t=ys
===c‖f‖Cαy−1+α

∫
Rn

1

(|s|2 + 1)(n+1−α)/2ds 6 C‖f‖Cαy−1+α.

This proves the necessariness part.
For the sufficiency part, it is far more enlightening, as it reveals an essential

feature of the spaces in question, although it is not much more difficult. This insight
is contained in the lemma below and the comments that follow. Then we shall
return to the proof of the second part (to be continued). �

Lemma 6.9.5.

Suppose f ∈ L∞(Rn) and 0 < α < 1. Then the single condition (6.9.2) is
equivalent with the n conditions∥∥∥∥∂u(x, y)∂xj

∥∥∥∥
∞

6 A′y−1+α, j = 1, ..., n. (6.9.6)

Remark 6.9.6. The smallest A in (6.9.2) is comparable to the smallest A′ in (6.9.6).

Proof. From the Poisson kernel, we can derive
∂Py(x)

∂xj
= − (n+ 1)cnyxj

(|x|2 + y2)(n+1)/2+1
,

∣∣∣∣∂Py(x)∂xj

∣∣∣∣ 6 C

(|x|2 + y2)(n+1)/2
, y > 0. (6.9.7)

For y = y1 + y2, it follows from Corollary 2.1.24 that Py = Py1 ∗ Py2 , with
y1, y2 > 0. Thus,

u(x, y) = Py ∗ f = Py1 ∗ Py2 ∗ f = Py1 ∗ u(x, y2),

and therefore, with y1 = y2 = y/2, we get

∂2u

∂y∂xj
=
∂Py/2

∂xj
∗ ∂u(x, y/2)

2∂y2
.

By Young’s inequality, (6.9.7) and (6.9.2), we get∥∥∥∥ ∂2u

∂y∂xj

∥∥∥∥
∞

6
∥∥∥∥∂Py/2∂xj

∥∥∥∥
1

∥∥∥∥∂u(x, y/2)2∂y2

∥∥∥∥
∞

6C
∫
Rn

dx

(|x|2 + y2/4)(n+1)/2
· 2−αAy−1+α

x=yt/2
===CAy−2+α

∫
Rn

dt

(|t|2 + 1)(n+1)/2
= A1y

−2+α.

(6.9.8)

However, by Young’s inequality and (6.9.7),∥∥∥∥ ∂

∂xj
u(x, y)

∥∥∥∥
∞

=

∥∥∥∥∂Py∂xj
∗ f
∥∥∥∥
∞

6
∥∥∥∥∂Py∂xj

∥∥∥∥
1

‖f‖∞ 6 c‖f‖∞
y

.

So
∂

∂xj
u(x, y) → 0, as y → ∞,

and therefore,
∂

∂xj
u(x, y) = −

∫ ∞

y

∂2u(x, y′)

∂y′∂xj
dy′.

Then, for α < 1, (6.9.8) gives that∥∥∥∥ ∂u∂xj
∥∥∥∥
∞

6 A1

∫ ∞

y
y′−2+αdy′ 6 A2y

−1+α.
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Conversely, suppose that (6.9.6) is satisfied. Reasoning as before, we get that
‖∂2u
∂x2j

‖∞ 6 A3y
−2+α, j = 1, ..., n. However, since u is harmonic, that is because

∂2u
∂y2

= −
∑n

j=1
∂2u
∂x2j

, we have ‖∂2u
∂y2

‖∞ 6 A4y
−2+α. Then, a similar integration argu-

ment shows that ‖∂u∂y ‖∞ 6 A5y
−1+α. �

We can now prove the converse part of Proposition 6.9.3.

Proof of Proposition 6.9.3 (continue). Suppose ‖ ∂
∂yu(x, y)‖∞ 6 Ay−1+α. Then

Lemma 6.9.5 also shows that ‖ ∂
∂xj

u(x, y)‖∞ 6 A′y−1+α. We write

f(x+ t)− f(x) =[u(x+ t, y)− u(x, y)] + [f(x+ t)− u(x+ t, y)]

− [f(x)− u(x, y)].

Here y does not necessarily depend on t but it is best to choose y = |t|. Now, we
have |u(x + t, y) − u(x, y)| 6

∫
L |∇xu(x + s, y)|ds where L is the line segment (of

length |t|) joining x with x+ t. Thus, it follows

|u(x+ t, y)− u(x, y)| 6 |t|
n∑
j=1

‖uxj (x, y)‖∞ 6 C|t||t|−1+α = C|t|α.

Since

f(x+ t)− u(x+ t, y) = −
∫ y

0

∂

∂y′
u(x+ t, y′)dy′,

we get

|f(x+ t)− u(x+ t, y)| 6
∫ y

0

∥∥∥∥ ∂u∂y′
∥∥∥∥
∞
dy′ 6 Cyα = C|t|α.

With a similar estimate for f(x) − u(x, y), the proof of the proposition is con-
cluded. �

Similar to Lemma 6.9.5, we can prove the following lemma, and remaind the
proof to interested readers.

Lemma 6.9.7.

Suppose f ∈ L∞(Rn), and α > 0. Let k and l be two integers, both greater
than α. Then the two conditions∥∥∥∥∂ku(x, y)∂yk

∥∥∥∥
∞

6 Aky
−k+α, and

∥∥∥∥∂lu(x, y)∂yl

∥∥∥∥
∞

6 Aly
−l+α

are equivalent. Moreover, the smallest Ak and Al holding in the above in-
equalities are comparable.

The utility of this lemma will be apparent soon.
We now can define the space Cα(Rn) for any α > 0. Suppose that k = dαe is the

smallest integer greater than α, i.e., the ceiling function of α. We set

Cα =

{
f ∈ L∞(Rn) :

∥∥∥∥ ∂k∂yk u(x, y)
∥∥∥∥
∞

6 Ay−k+α
}
. (6.9.9)

If Ak denotes the smallest A appearing in the inequality in (6.9.9), then we can
define the Cα norm by

‖f‖Cα = ‖f‖∞ +Ak. (6.9.10)

According to Proposition 6.9.3, when 0 < α < 1, this definition is equivalent
with the previous one and the resulting norms are also equivalent. Lemma 6.9.7
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also shows us that we could have replaced the ∂ku(x,y)
∂yk

by the corresponding esti-

mate for ∂lu(x,y)
∂yl

where l is any integer greater than α.
A remark about the condition in (6.9.9) is in order. The estimate∥∥∥∥ ∂k∂yk u(x, y)

∥∥∥∥
∞

6 Ay−k+α

is of interest only for y near zero, since the inequality
∥∥∥ ∂k

∂yk
u(x, y)

∥∥∥
∞

6 Ay−k (which
is stronger away from zero) follows already from the fact that f ∈ L∞, (as the
argument of Lemma 6.9.5 shows). This observation allows us to assert the inclusion
Cα ↪→ Cα

′
, if α > α′.

In the case of 0 < α < 1, we considered the first order difference, next, we will
consider the case 0 < α < 2, it would be better to use the second order differences.
We recall the m-th order difference operator Mmt

Mmt f(x) =

m∑
k=0

Ckm(−1)kf(x+ kt).

Thus, M2
t f(x) = f(x)− 2f(x+ t) + f(x+ 2t). But for simplicity, we denote

M2
t f(x) = f(x− t)− 2f(x) + f(x+ t)

in this section.

Proposition 6.9.8.

Suppose 0 < α < 2. Then f ∈ Cα if and only if f ∈ L∞(Rn) and ‖f(x− t)−
2f(x) + f(x+ t)‖∞ 6 A|t|α. The expression

‖f‖∞ + sup
|t|>0

‖f(x− t)− 2f(x) + f(x+ t)‖∞
|t|α

is equivalent with the Cα norm.

Proof. Differentiating
∫
Rn Py(t)dt = 1 twice w.r.t. y, we obtain∫

Rn

∂2Py(t)

∂y2
dt = 0, y > 0. (6.9.11)

From (6.9.3), we have
∂2Py(t)

∂y2
= −cn(n+ 1)(3|t|2 − ny2)y

(|t|2 + y2)(n+5)/2
,

and then
∂2Py(t)

∂y2
=
∂2Py(−t)
∂y2

,

∣∣∣∣∂2Py(t)∂y2

∣∣∣∣ 6 c

(|t|2 + y2)(n+2)/2
. (6.9.12)

Thus, we get

∂2

∂y2
u(x, y) =

1

2

∫
Rn

∂2

∂y2
Py(t)[f(x− t)− 2f(x) + f(x+ t)]dt,

and so, for α < 2,∥∥∥∥ ∂2∂y2u(x, y)
∥∥∥∥
∞

6Ac
2

[
y−n−2

∫
|t|6y

|t|αdt+
∫
|t|>y

|t|−n−2+αdt

]

6C
[
y−n−2

∫ y

0
rα+n−1dr +

∫ ∞

y
r−3+αdr

]
6Cy−2+α.

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



§6.9. Hölder spaces - 233 -

To prove the converse, we observe that if F has two orders continuous deriva-
tives, then we have

M2
t F (x) =

∫ |t|

0

∫ s

−s

d2

dτ2
F (x+ t′τ)dτds, where t′ = t/|t|.

It follows immediately that

‖ M2
t F (x)‖∞ 6 |t|2

∑
i,j

∥∥∥∥ ∂2F

∂xi∂xj

∥∥∥∥
∞
. (6.9.13)

By the definition (6.9.9), it is clear that f ∈ Cα ⇒ f ∈ Cα
′

where α′ < α. If we
choose an α′ < 1, then by the results in Propositions 6.9.2 and 6.9.3, we get

‖u(x, y)− f(x)‖∞ → 0, and y‖uy(x, y)‖∞ → 0, as y → 0. (6.9.14)

Thus, the identity

f(x) = u(x, 0) =

∫ y

0
y′
∂2

∂y′2
u(x, y′)dy′ − y

∂u

∂y
(x, y) + u(x, y) (6.9.15)

is obtained by noticing that the derivative w.r.t. y of the extreme r.h.s. vanishes, and
by the use of the end-point conditions (6.9.14). However, the arguments of Lemma
6.9.5 and 6.9.7 show that the inequality ‖∂

2u(x,y)
∂y2

‖∞ 6 Ay−2+α implies the estimates∥∥∥∥∂2u(x, y)∂xi∂xj

∥∥∥∥
∞

6 A′y−2+α,

∥∥∥∥ ∂3u(x, y)∂y∂xi∂xj

∥∥∥∥
∞

6 A′y−3+α.

Thus, by using(6.9.13) to the last two terms of the r.h.s. of (6.9.15),

‖ M2
t f‖∞

6‖ M2
t

∫ y

0
y′
∂2

∂y′2
u(x, y′)dy′‖∞ + y‖ M2

t

∂u

∂y
(x, y)‖∞ + ‖ M2

t u(x, y)‖∞

64

∫ y

0
y′‖ ∂2

∂y′2
u(x, y′)‖∞dy′ + |t|2

∑
i,j

[
y

∥∥∥∥ ∂3u

∂y∂xi∂xj

∥∥∥∥
∞

+

∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥
∞

]
6C

∫ y

0
y′y′−2+αdy′ + C|t|2[yy−3+α + y−2+α]

6Cyα + C|t|2y−2+α.

Taking y = |t| gives

‖M2
t f‖∞ 6 C|t|α, if α > 0,

which is the desired result. �

Proposition 6.9.9.

Suppose α > 1. Then f ∈ Cα if and only if f ∈ L∞ and ∂f
∂xj

∈ Cα−1, j =

1, ..., n. The norms ‖f‖Cα and ‖f‖∞ +
∑n

j=1 ‖
∂f
∂xj

‖Cα−1 are equivalent.

Proof. Let us suppose for simplicity that 1 < α 6 2, the other cases can be argued
similarly.

We first prove that ∂f
∂xj

∈ L∞. We have ‖∂3u
∂y3

‖∞ 6 Ay−3+α since f ∈ Cα, which

implies, as we know, ‖ ∂3u
∂y2∂xj

‖∞ 6 Ay−3+α. Equivalently, we see that ‖ ∂3u
∂y2∂xj

‖∞ 6
Ay−1−β , where 0 6 β < 1 since 1 < α 6 2. We restrict to 0 < y 6 1, then an
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integration in y gives ∫ 1

y

∂3u

∂y2∂xj
dy =

[
∂2u

∂y∂xj

]
y=1

− ∂2u

∂y∂xj
,

and then∥∥∥∥ ∂2u

∂y∂xj

∥∥∥∥
∞

6
∫ 1

y

∥∥∥∥ ∂3u

∂y2∂xj

∥∥∥∥
∞
dy +

∥∥∥∥∥
[
∂2u

∂y∂xj

]
y=1

∥∥∥∥∥
∞

6 Cy−β + C.

Another integration,∫ y2

y1

∂2u

∂y∂xj
dy =

∂

∂xj
u(x, y2)−

∂

∂xj
u(x, y1),

then shows that ∥∥∥∥ ∂

∂xj
u(x, y2)−

∂

∂xj
u(x, y1)

∥∥∥∥
∞

6
∫ y2

y1

[Cy−β + C]dy = C(y1−β2 − y1−β1 ) + C(y2 − y1).

Thus, { ∂
∂xj

u(x, y)} is Cauchy in the L∞ norm as y → 0, and so its limit can be taken

to be ∂f
∂xj

. The argument also gives the bound∥∥∥∥ ∂f∂xj
∥∥∥∥
∞

6
∥∥∥∥ ∂u∂xj

∥∥∥∥
∞

6 CAy−1+α 6 CA 6 C‖f‖Cα ,

since 0 < y 6 1 and α > 1.
Since the (weak) derivative of f is ∂f

∂xj
, the Poisson integral of the latter is ∂u

∂xj
.

But ‖ ∂3u
∂y2∂xj

‖∞ 6 Ay−3+α. Therefore, ∂f
∂xj

∈ Cα−1. The converse implication is
proved in the same way. �

The last proposition reduces the study of the spaces Cα to those α such that
0 < α 6 1. Concerning the space Cα, 0 < α 6 1, the following additional remark is
in order.

Remark 6.9.10. When 0 < α < 1, Proposition 6.9.8 shows that if f ∈ L∞, the two
conditions ‖f(x+ t)− f(x)‖∞ 6 A|t|α and ‖f(x− t)− 2f(x) + f(x+ t)‖∞ 6 A′|t|α

are equivalent. However, this is not the case when α = 1.

Example 6.9.11. There exists f ∈ L∞(Rn) such that

‖f(x− t)− 2f(x) + f(x+ t)‖∞ 6 A|t|, |t| > 0,

but ‖f(x+ t)− f(x)‖∞ 6 A′|t| fails for all A′.

Solution. One can construct such f by lacunary series, and more particularly as
Hardy-Weierstrass non-differentiable functions. To do this, we consider the func-
tion of one variable x, given by f(x) =

∑∞
k=1 a

−ke2πia
kx. Here a > 1, for simplicity,

we take a to be an integer and this makes f periodic. Now

f(x− t)− 2f(x) + f(x+ t) =

∞∑
k=1

a−k[e2πia
k(x−t) − 2e2πia

kx + e2πia
k(x+t)]

=
∞∑
k=1

a−k[e−2πiakt − 2 + e2πia
kt]e2πia

kx = 2
∞∑
k=1

a−k[cos 2πakt− 1]e2πia
kx.

Therefore, (assume |t| < 1 without loss of generalities)

‖f(x− t)− 2f(x) + f(x+ t)‖∞
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62
∑

ak|t|61

a−kB(akt)2 + 4
∑

ak|t|>1

a−k

62B|t|2
∑

k6[loga |t|−1]

ak + 4
∑

k>[loga |t|−1]

a−k

62B|t|2a
[loga |t|−1]+1 − 1

a− 1
+ 4

a−[loga |t|−1]−1

1− a−1

6A|t|.
We have used merely the fact that | cos 2πakt − 1| 6 min(B(akt)2, 2) with B = 2π2

since sinx 6 x for any x > 0.
However, if we had ‖f(x+ t)− f(x)‖∞ 6 A′|t|, then by Bessel’s inequality for

L2 periodic functions we would get

(A′|t|)2 >
∫ 1

0
|f(x+ t)− f(x)|2dx =

∫ 1

0

∣∣∣∣∣
∞∑
k=1

a−k[e2πia
kt − 1]e2πia

kx

∣∣∣∣∣
2

dx

>
∞∑
k=1

a−2k|e2πiakt − 1|2 >
∑

ak|t|<1/2

a−2k|e2πiakt − 1|2.

In the range ak|t| < 1/2, we have |e2πiakt − 1|2 > 16(akt)2 due to the inequality
sinx
x > 2

π for any x ∈ (−π/2, π/2), and so we would arrive at the contradiction

(A′|t|)2 > 16|t|2
∑

ak|t|<1/2

1 > 16|t|2
∑

16k6[loga |t|−1/2]−1

1,

which implies that A′2 > 16
[
loga |t|−1/2

]
− 16 and so A′ → ∞ as |t| → 0. �

Now, we give a relation between Hölder spaces and Besov spaces.

Corollary 6.9.12.

Let s > 0. Then we have Bs
∞,∞ = Cs.

Proof. By Theorem 6.7.1 with p = r = ∞ and m = 2, and Proposition 6.9.8, for
0 < s 6 1, we can take N = 0 and then

‖f‖Bs
∞,∞ ∼ ‖f‖∞ + sup

t>0
t−sω2

∞(t, f) = ‖f‖Cs .

By Proposition 6.9.9, we can extend to any s > 1. This completes the proof. �

References

[BCD11] Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin. Fourier Anal-
ysis and Nonlinear Partial Differential Equations, volume 343 of GMW.
Springer-Verlag, Berlin Heidelberg, 2011.

[BL76] Jöran Bergh and Jörgen Löfström. Interpolation spaces. An introduction.
Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen Wis-
senschaften, No. 223.

[Gra14] Loukas Grafakos. Modern Fourier analysis, volume 250 of Graduate
Texts in Mathematics. Springer, New York, third edition, 2014.

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



- 236 - Chengchun HAO

[HMOW11] Hichem Hajaiej, Luc Molinet, Tohru Ozawa, and Baoxiang Wang.
Necessary and sufficient conditions for the fractional Gagliardo-
Nirenberg inequalities and applications to Navier-Stokes and gener-
alized boson equations. In Harmonic analysis and nonlinear partial dif-
ferential equations, RIMS Kôkyûroku Bessatsu, B26, pages 159–175. Res.
Inst. Math. Sci. (RIMS), Kyoto, 2011.

[Jaw77] Björn Jawerth. Some observations on Besov and Lizorkin-Triebel
spaces. Math. Scand., 40(1):94–104, 1977.

[MWZ12] Changxing Miao, Jiahong Wu, and Zhifei Zhang. Littlewood-Paley the-
ory and its application in hydrodynamic equations, volume 126 of Funda-
mental Series in Mordon Mathematics. Science Press, Beijing, 2012.

[Saw18] Yoshihiro Sawano. Theory of Besov spaces, volume 56 of Developments
in Mathematics. Springer, Singapore, 2018.

[Ste70] Elias M. Stein. Singular integrals and differentiability properties of func-
tions. Princeton Mathematical Series, No. 30. Princeton University
Press, Princeton, N.J., 1970.

[Tri83] Hans Triebel. Theory of function spaces, volume 78 of Monographs in
Mathematics. Birkhäuser Verlag, Basel, 1983.

[WHHG11] Baoxiang Wang, Zhaohui Huo, Chengchun Hao, and Zihua Guo. Har-
monic analysis method for nonlinear evolution equations, volume I. World
Scientific Publishing Co. Pte. Ltd., 2011.

Lecture Notes on Harmonic Analysis Updated: April 28, 2020



VII
BMO and Carleson MeasuresBMO and Carleson Measures

7.1. The sharp maximal functions and BMO spaces . . . . . . . . . . 237

7.2. John-Nirenberg theorem . . . . . . . . . . . . . . . . . . . . . . . 243

7.3. Non-tangential maximal functions and Carleson measures . . . 248

7.4. BMO functions and Carleson measures . . . . . . . . . . . . . . . 253

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

§ 7.1 The sharp maximal functions and BMO spaces

Functions of bounded mean oscillation were introduced by F. John and L. Niren-
berg [JN61], in connection with differential equations.

Definition 7.1.1.

The mean oscillation of a locally integrable function f (i.e. a function be-
longing to L1

loc(Rn)) over a cube Q in Rn is defined as the following integral:

f̃Q =
1

|Q|

∫
Q
|f(x)− Avg

Q
f |dx,

where Avg
Q

f is the average value of f on the cube Q, i.e.

Avg
Q

f =
1

|Q|

∫
Q
f(x)dx.

Definition 7.1.2.

A BMO function is any function f belonging to L1
loc(Rn) whose mean oscil-

lation has a finite supremum over the set of all cubesa Q contained in Rn. For
f ∈ L1

loc(Rn), we define the maximal BMO function or the sharp maximal
function

M#f(x) = sup
Q∋x

1

|Q|

∫
Q
|f(t)− Avg

Q
f |dt,

where the supremum is take over all cubes Q in Rn that contains the given
point x, and M# is called the sharp maximal operator. Then we denote the
norm of f in this space by ‖f‖BMO = ‖M#f‖∞. The set

BMO(Rn) = {f ∈ L1
loc(Rn) : ‖f‖BMO <∞}

is called the function space of bounded mean oscillation or the BMO space.

aThe use of cubes Q in Rn as the integration domains on which the mean oscillation is
calculated, is not mandatory: Wiegerinck (2001) uses balls instead and, as remarked by Stein
([Ste93], p. 140), in doing so a perfectly equivalent of definition of functions of bounded mean
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oscillation arises.

Several remarks are in order. First, it is a simple fact that BMO(Rn) is a linear
space, that is, if f, g ∈ BMO(Rn) and λ ∈ C, then f + g and λf are also in BMO(Rn)
and

‖f + g‖BMO 6‖f‖BMO + ‖g‖BMO,

‖λf‖BMO =|λ|‖f‖BMO.

But ‖ · ‖BMO is not a norm. The problem is that if ‖f‖BMO = 0, this does not
imply that f = 0 but that f is a constant. Moreover, every constant function c

satisfies ‖c‖BMO = 0. Consequently, functions f and f + c have the same BMO
norms whenever c is a constant. In the sequel, we keep in mind that elements of
BMO whose difference is a constant are identified. Although ‖ · ‖BMO is only a
semi-norm, we occasionally refer to it as a norm when there is no possibility of
confusion.

We give a list of basic properties of BMO.

Proposition 7.1.3.

The following properties of the space BMO(Rn) are valid:

(1) If ‖f‖BMO = 0, then f is a.e. equal to a constant.

(2) L∞(Rn) ↪→ BMO(Rn) and ‖f‖BMO 6 2‖f‖∞.

(3) Suppose that there exists an A > 0 such that for all cubes Q in Rn there
exists a constant cQ such that

sup
Q

1

|Q|

∫
Q
|f(x)− cQ|dx 6 A. (7.1.1)

Then f ∈ BMO(Rn) and ‖f‖BMO 6 2A.

(4) For all f ∈ L1
loc(R

n), we have
1

2
‖f‖BMO 6 sup

Q

1

|Q|
inf
cQ

∫
Q
|f(x)− cQ|dx 6 ‖f‖BMO.

(5) If f ∈ BMO(Rn), h ∈ Rn and τh(f) is given by τh(f)(x) = f(x− h), then
τh(f) is also in BMO(Rn) and

‖τh(f)‖BMO = ‖f‖BMO.

(6) If f ∈ BMO(Rn) and λ > 0, then the function δλ(f) defined by δλ(f)(x) =
f(λx) is also in BMO(Rn) and

‖δλ(f)‖BMO = ‖f‖BMO.

(7) If f ∈ BMO(Rn), then so is |f |. Similarly, if f , g are real-valued BMO
functions, then so are max(f, g) and min(f, g). In other words, BMO is a
lattice. Moreover,

‖|f |‖BMO 62‖f‖BMO,

‖max(f, g)‖BMO 63

2
(‖f‖BMO + ‖g‖BMO) ,
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‖min(f, g)‖BMO 63

2
(‖f‖BMO + ‖g‖BMO) .

(8) For f ∈ L1
loc(R

n), define

‖f‖BMOballs = sup
B

1

|B|

∫
B
|f(x)− Avg

B
f |dx, (7.1.2)

where the supremum is taken over all balls B in Rn. Then there are
positive constants cn, Cn such that

cn‖f‖BMO 6 ‖f‖BMOballs 6 Cn‖f‖BMO.

Proof. To prove (1), note that f has to be a.e. equal to its average cN over every
cube [−N,N ]n. Since [−N,N ]n is contained in [−N − 1, N + 1]n, it follows that
cN = cN+1 for all N . This implies the required conclusion.

To prove (2), observe that

Avg
Q

|f − Avg
Q

f | 6 Avg
Q

(
|f |+ |Avg

Q
f |

)
6 2Avg

Q
|f | 6 2‖f‖∞.

For (3), note that

|f − Avg
Q

f | 6 |f − cQ|+ |Avg
Q

f − cQ| 6 |f − cQ|+
1

|Q|

∫
Q
|f(t)− cQ|dt.

Averaging over Q and using (7.1.1), we obtain that ‖f‖BMO 6 2A.
The lower inequality in (4) follows from (3) while the upper one is trivial. (5) is

immediate.
For (6), note that Avg

Q
δλ(f) = Avg

λQ
f and thus

1

|Q|

∫
Q
|f(λx)− Avg

Q
δλ(f)|dx =

1

|λQ|

∫
λQ

|f(x)− Avg
λQ

f |dx.

The first inequality in (7) is a consequence of the fact that∣∣∣∣∣|f(x)| − Avg
Q

|f |

∣∣∣∣∣ =
∣∣∣∣|f(x)| − 1

|Q|

∫
Q
|f(t)|dt

∣∣∣∣ = ∣∣∣∣ 1

|Q|

∫
Q
(|f(x)| − |f(t)|)dt

∣∣∣∣
6
∣∣∣∣ 1

|Q|

∫
Q
(|f(x)− f(t)|)dt

∣∣∣∣
6
∣∣∣∣∣ 1

|Q|

∫
Q
|f(x)− Avg

Q
f |+ 1

|Q|

∫
Q
|Avg

Q
f − f(t)|dt

∣∣∣∣∣
6|f − Avg

Q
f |+ Avg

Q
|f − Avg

Q
f |.

The second and the third inequalities in (7) follow from the first one in (7) and the
facts that

max(f, g) = f + g + |f − g|
2

, min(f, g) = f + g − |f − g|
2

.

We now turn to (8). Given any cube Q in Rn, let B be the smallest ball that
contains it. Then |B|/|Q| = 2−nVn

√
nn due to |Q| = (2r)n and |B| = Vn(

√
nr)n, and

1

|Q|

∫
Q
|f(x)− Avg

B
f |dx 6 |B|

|Q|
1

|B|

∫
B
|f(x)− Avg

B
f |dx 6 Vn

√
nn

2n
‖f‖BMOballs .

It follows from (3) that

‖f‖BMO 6 21−nVn
√
nn‖f‖BMOballs .
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To obtain the reverse conclusion, given any ball B find the smallest cube Q that
contains it, with |B| = Vnr

n and |Q| = (2r)n, and argue similarly using a version of
(3) for the space BMOballs. �

Example 7.1.4. It is trivial that any bounded function is in BMO, i.e., L∞ ↪→ BMO.
The converse is false, that is, L∞(Rn) is a proper subspace of BMO(Rn). A simple
example that already typifies some of the essential properties of BMO is given by
the function f(x) = ln |x|. To check that this function is in BMO, for every x0 ∈ Rn

and R > 0, we find a constant Cx0,R such that the average of | ln |x| − Cx0,R| over
the ball B(0, R) = {x ∈ Rn : |x− x0| 6 R} is uniformly bounded. The constant
Cx0,R = ln |x0| if |x0| > 2R and Cx0,R = lnR if |x0| 6 2R has this property. Indeed,
if |x0| > 2R, then

1

VnRn

∫
|x−x0|6R

|ln |x| − Cx0,R| dx

=
1

VnRn

∫
|x−x0|6R

∣∣∣∣ln |x|
|x0|

∣∣∣∣ dx
6max

(
ln 3

2
,

∣∣∣∣ln 1

2

∣∣∣∣)
= ln 2,

since 1
2 |x0| 6 |x| 6 3

2 |x0| when |x− x0| 6 R and |x0| > 2R. Also, if |x0| 6 2R, then
1

VnRn

∫
|x−x0|6R

|ln |x| − Cx0,R| dx

=
1

VnRn

∫
|x−x0|6R

∣∣∣∣ln |x|
R

∣∣∣∣ dx 6 1

VnRn

∫
|x|63R

∣∣∣∣ln |x|
R

∣∣∣∣ dx
=

1

Vn

∫
|x|63

|ln |x|| dx =
ωn−1

Vn

∫ 3

0
rn−1| ln r|dr

=n

∫ 1

0
(−1)rn ln rdr

r
+ n

∫ 3

1
rn−1 ln rdr

6n
∫ ∞

0
te−ntdt+ n ln 3

∫ 3

1
rn−1dr

=
1

n
+ 3n ln 3.

Thus, ln |x| is in BMO.

It is interesting to observe that an abrupt cutoff of a BMO function may not give
a function in the same space.

Example 7.1.5. The function h(x) = χx>0 ln 1
x is not in BMO(R). Indeed, the prob-

lem is at the origin. Consider the intervals (−ε, ε), where ε ∈ (0, 1/2). We have
that

Avg
(−ε,ε)

h =
1

2ε

∫ ε

−ε
h(x)dx =

1

2ε

∫ ε

0
ln 1

x
dx =

1

2

∫ 1

0

(
ln 1

ε
+ ln 1

y

)
dy =

1 + ln 1
ε

2
.

But then
1

2ε

∫ ε

−ε
|h(x)− Avg

(−ε,ε)
h|dx > 1

2ε

∫ 0

−ε
| Avg
(−ε,ε)

h|dx =
1 + ln 1

ε

4
,

and the latter is clearly unbounded as ε→ 0.
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A useful related fact is the following, which describes the behavior of BMO
functions at infinity.

Theorem 7.1.6.

Let f ∈ BMO, then f(x)(1 + |x|n+1)−1 is integrable on Rn, and we have

I =

∫
Rn

|f(x)− Avg
Q0

f |

1 + |x|n+1
dx 6 C‖f‖BMO,

where C is independent of f , and Q0 = Q(0, 1).

Proof. Let Qk = Q(0, 2k), Sk = Qk \Qk−1 for k ∈ N, S0 = Q0, and

Ik =

∫
Sk

|f(x)− Avg
Q0

f |

1 + |x|n+1
dx, k ∈ N0.

Then, we have

I = I0 +

∞∑
k=1

Ik.

Since

I0 =

∫
Q0

|f(x)− Avg
Q0

f |

1 + |x|n+1
dx 6

∫
Q0

|f(x)− Avg
Q0

f |dx 6 |Q0| ‖f‖BMO,

it suffices to prove Ik 6 Ck‖f‖BMO and
∑

k Ck <∞. For x ∈ Sk, we have |x| > 2k−2

and then

1 + |x|n+1 > 1 + 2(k−2)(n+1) > 4−(n+1)2k(n+1).

Hence,

Ik 64n+12−k(n+1)

∫
Qk

|f(x)− Avg
Q0

f |dx

64n+12−k(n+1)

∫
Qk

[|f(x)− Avg
Qk

f |+ |Avg
Qk

f − Avg
Q0

f |]dx

64n+12−k(n+1) |Qk| (‖f‖BMO + |Avg
Qk

f − Avg
Q0

f |)

=4n+12−k(n+1)2kn(‖f‖BMO + |Avg
Qk

f − Avg
Q0

f |).

The second term can be controlled as follows:

|Avg
Qk

f − Avg
Q0

f | 6
k∑
i=1

|Avg
Qi

f − Avg
Qi−1

f |

6
k∑
i=1

1

|Qi−1|

∫
Qi−1

|f(x)− Avg
Qi

f |dx

6
k∑
i=1

2n

|Qi|

∫
Qi

|f(x)− Avg
Qi

f |dx

6k · 2n‖f‖BMO. (7.1.3)

Therefore,

Ik 6 4n+12−k(n+1)2nk(1 + k2n)‖f‖BMO,

where Ck = Ck2−k and
∑

k Ck <∞. This completes the proof. �
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Let us now look at some basic properties of BMO functions. As the same as in
(7.1.3), we observe that if a cube Q1 is contained in a cube Q2, then

|Avg
Q1

f − Avg
Q2

f | =

∣∣∣∣∣ 1

|Q1|

∫
Q1

fdx− Avg
Q2

f

∣∣∣∣∣ 6 1

|Q1|

∫
Q1

|f − Avg
Q2

f |dx

6 1

|Q1|

∫
Q2

|f − Avg
Q2

f |dx

6 |Q2|
|Q1|

‖f‖BMO. (7.1.4)

The same estimate holds if the sets Q1 and Q2 are balls.

A version of this inequality is the first statement in the following proposition.
For simplicity, we denote by ‖f‖BMO the expression given by ‖F‖BMOballs in (7.1.2),
since these quantities are comparable. For a ball B and a > 0, aB denotes the ball
that is concentric with B and whose radius is a times the radius of B.

Proposition 7.1.7.

(i) Let f ∈ BMO(Rn). Given a ball B and a positive integer m, we have

|Avg
B

f − Avg
2mB

f | 6 2nm‖f‖BMO. (7.1.5)

(ii) For any δ > 0, there is a constant Cn,δ such that for any ball B(x0, R)

we have

Rδ
∫
Rn

|f(x)− Avg
B(x0,R)

f |

(R+ |x− x0|)n+δ
dx 6 Cn,δ‖f‖BMO. (7.1.6)

An analogous estimate holds for cubes with center x0 and side length
R.

(iii) There exists a constant Cn such that for all f ∈ BMO(Rn), we have

sup
y∈Rn

sup
t>0

∫
Rn

|f(x)− (Pt ∗ f)(y)|Pt(x− y)dx 6 Cn‖f‖BMO. (7.1.7)

Here

Pt(x) =
Γ
(
n+1
2

)
π

n+1
2

t

(t2 + |x|2)
n+1
2

denotes the Poisson kernel.

(iv) Conversely, there is a constant C ′
n such that for all f ∈ L1

loc(Rn) for
which ∫

Rn

|f(x)|
(1 + |x|)n+1

dx <∞,

we have f ∗ Pt is well-defined and

C ′
n‖f‖BMO 6 sup

y∈Rn
sup
t>0

∫
Rn

|f(x)− (Pt ∗ f)(y)|Pt(x− y)dx. (7.1.8)

Proof. (i) We have the desired result as the same as (7.1.3).

(ii) In the proof below, we take B(x0, R) to be the ball B = B(0, 1) with radius
1 centered at the origin. Once this case is known, given a ball B(x0, R), we replace
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the function f by the function f(Rx+ x0). When B = B(0, 1), we have∫
Rn

|f(x)− Avg
B

f |

(1 + |x|)n+δ
dx

6
∫
B

|f(x)− Avg
B

f |

(1 + |x|)n+δ
dx+

∞∑
k=0

∫
2k+1B\2kB

|f(x)− Avg
2k+1B

f |+ | Avg
2k+1B

f − Avg
B

f |

(1 + |x|)n+δ
dx

6
∫
B
|f(x)− Avg

B
f |dx+

∞∑
k=0

2−k(n+δ)
∫
2k+1B

(|f(x)− Avg
2k+1B

f |+ | Avg
2k+1B

f − Avg
B

f |)dx

6Vn‖f‖BMO +

∞∑
k=0

2−k(n+δ)(1 + 2n(k + 1))(2k+1)nVn‖f‖BMO

=C ′
n,δ‖f‖BMO.

(iii) The proof of (7.1.7) is a reprise of the argument given in (ii). SetBt = B(y, t).
We first prove a version of (7.1.7) in which the expression (Pt ∗ f)(y) is replaced by
Avg
Bt

f . For fixed y, t we have by (ii)

Γ
(
n+1
2

)
π

n+1
2

∫
Rn

t|f(x)− Avg
Bt

f |

(t2 + |x− y|2)
n+1
2

dx 6 C ′′
n‖f‖BMO. (7.1.9)

Moving the absolute value outside, this inequality implies∫
Rn

|(Pt ∗ f)(y)− Avg
Bt

f |Pt(x− y)dx =|(Pt ∗ f)(y)− Avg
Bt

f |

6
∫
Rn

Pt(x− y)|f(x)− Avg
Bt

f |dx

6C ′′
n‖f‖BMO.

Combining this last inequality with (7.1.9) yields (7.1.7) with constant Cn = 2C ′′
n.

(iv) Conversely, let A be the expression on the right in (7.1.8). For |x − y| 6 t,
we have Pt(x− y) > cnt(2t

2)−(n+1)/2 = c′nt
−n, which gives

A >
∫
Rn

|f(x)− (Pt ∗ f)(y)|Pt(x− y)dx > c′n
tn

∫
|x−y|6t

|f(x)− (Pt ∗ f)(y)|dx.

Proposition 7.1.3 (3) now implies that

‖f‖BMO 6 2A/(Vnc
′
n).

This concludes the proof of the proposition. �

§ 7.2 John-Nirenberg theorem

Having set down some basic facts about BMO, we now turn to a deeper prop-
erty of BMO functions: their exponential integrability. We begin with a preliminary
example.

Example 7.2.1. Let f(x) = ln |x|, I = (0, b), and

Eα = {x ∈ I : | lnx− Avg
I
f | > α},

then we have

Eα ={x ∈ I : lnx− Avg
I
f > α} ∪ {x ∈ I : lnx− Avg

I
f < −α}
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={x ∈ I : x > e
α+Avg

I
f
} ∪ {x ∈ I : x < e

−α+Avg
I
f
}.

Whenα is large enough, the first set is an empty set and the second one is (0, e
−α+Avg

I
f
).

Thus

|Eα| = e
−α+Avg

I
f
.

By Jensen’s inequality, we get

e
Avg
I
f
6 1

|I|

∫
I
eln tdt =

|I|
2
.

Therefore,

|Eα| 6
1

2
|I|e−α.

Although the above relation is obtained from the function ln |x| over (0, b), it
indeed reflects an essential property for any BMO function in the BMO space.

Theorem 7.2.2: The John-Nirenberg theorem

For all f ∈ BMO(Rn), for all cubes Q, and all α > 0, we have∣∣∣∣∣{x ∈ Q : |f(x)− Avg
Q

f | > α}

∣∣∣∣∣ 6 e|Q|e−Aα/∥f∥BMO (7.2.1)

with A = (2ne)−1.

Proof. Since inequality (7.2.1) is not altered when we multiply both f and α by the
same constant, it suffices to assume that ‖f‖BMO = 1. Let us now fix a closed cube
Q and a constant b > 1 to be chosen later.

We apply the Calderón-Zygmund decomposition to the function f − Avg
Q

f in-

side the cube Q. We introduce the following selection criterion for a cube R:
1

|R|

∫
R
|f(x)− Avg

Q
f |dx > b. (7.2.2)

Since
1

|Q|

∫
Q
|f(x)− Avg

Q
f |dx 6 ‖f‖BMO = 1 < b,

the cube Q does not satisfy the selection criterion (7.2.2). Set Q(0) = Q and sub-
divide Q(0) into 2n equal closed subcubes of side length equal to half of the side
length ofQ. Select such a subcubeR if it satisfies the selection criterion (7.2.2). Now
subdivide all nonselected cubes into 2n equal subcubes of half their side length by
bisecting the sides, and select among these subcubes those that satisfy (7.2.2). Con-
tinue this process indefinitely. We obtain a countable collection of cubes {Q(1)

j }j
satisfying the following properties:

(A-1) The interior of every Q(1)
j is contained in Q(0).

(B-1) b <
∣∣∣Q(1)

j

∣∣∣−1 ∫
Q

(1)
j

|f(x)− Avg
Q(0)

f |dx 6 2nb.

(C-1)

∣∣∣∣∣∣Avg
Q

(1)
j

f − Avg
Q(0)

f

∣∣∣∣∣∣ 6 2nb.

(D-1)
∑

j

∣∣∣Q(1)
j

∣∣∣ 6 1
b

∑
j

∫
Q

(1)
j

|f(x)− Avg
Q(0)

f |dx 6 1
b

∣∣Q(0)
∣∣.
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(E-1) |f − Avg
Q(0)

f | 6 b a.e. on the set Q(0) \ ∪jQ(1)
j .

We call the cubes Q(1)
j of first generation. Note that the second inequality in (D-

1) requires (B-1) and the fact that Q(0) does not satisfy (7.2.2). We now fix a selected
first-generation cube Q(1)

j and we introduce the following selection criterion for a
cube R:

1

|R|

∫
R
|f(x)− Avg

Q
(1)
j

f |dx > b. (7.2.3)

Observe that Q(1)
j does not satisfy the selection criterion (7.2.3). We apply a similar

Calderón-Zygmund decomposition to the function

f − Avg
Q

(1)
j

f

inside the cube Q(1)
j . Subdivide Q(1)

j into 2n equal closed subcubes of side length

equal to half of the side length of Q(1)
j by bisecting the sides, and select such a sub-

cubeR if it satisfies the selection criterion (7.2.3). Continue this process indefinitely.
Also repeat this process for any other cube Q(1)

j of the first generation. We obtain a

collection of cubes {Q(2)
l }l of second generation each contained in some Q(1)

j such
that versions of (A-1)-(E-1) are satisfied, with the superscript (2) replacing (1) and
the superscript (1) replacing (0). We use the superscript (k) to denote the genera-
tion of the selected cubes.

For a fixed selected cube Q(2)
l of second generation, introduce the selection cri-

terion
1

|R|

∫
R
|f(x)− Avg

Q
(2)
l

f |dx > b. (7.2.4)

and repeat the previous process to obtain a collection of cubes of third generation
insideQ(2)

l . Repeat this procedure for any other cubeQ(2)
l of the second generation.

Denote by {Q(3)
s }s the thus obtained collection of all cubes of the third generation.

We iterate this procedure indefinitely to obtain a doubly indexed family of
cubes Q(k)

j satisfying the following properties:

(A-k) The interior of every Q(k)
j is contained in Q(k−1)

j′ .

(B-k) b <
∣∣∣Q(k)

j

∣∣∣−1 ∫
Q

(k)
j

|f(x)− Avg
Q

(k−1)

j′

f |dx 6 2nb.

(C-k)

∣∣∣∣∣∣Avg
Q

(k)
j

f − Avg
Q

(k−1)

j′

f

∣∣∣∣∣∣ 6 2nb.

(D-k)
∑

j

∣∣∣Q(k)
j

∣∣∣ 6 1
b

∑
j′

∣∣∣Q(k−1)
j′

∣∣∣.
(E-k) |f − Avg

Q
(k−1)

j′

f | 6 b a.e. on the set Q(k−1)
j′ \ ∪jQ(k)

j .

We prove (A-k)-(E-k). Note that (A-k) and the lower inequality in (B-k) are
satisfied by construction. The upper inequality in (B-k) is a consequence of the fact
that the unique cube Q(k)

j0
with double the side length of Q(k)

j that contains it was
not selected in the process. Now (C-k) follows from the upper inequality in (B-
k). (E-k) is a consequence of the Lebesgue differentiation theorem, since for every
point inQ(k−1)

j \∪jQ(k)
j there is a sequence of cubes shrinking to it and the averages
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of

|f − Avg
Q

(k−1)

j′

f |

over all these cubes is at most b. It remains to prove (D-k). We have∑
j

∣∣∣Q(k)
j

∣∣∣ <1

b

∑
j

∫
Q

(k)
j

|f(x)− Avg
Q

(k−1)

j′

f |dx

=
1

b

∑
j′

∑
j corresp. to j′

∫
Q

(k)
j

|f(x)− Avg
Q

(k−1)

j′

f |dx

61

b

∑
j′

∫
Q

(k−1)

j′

|f(x)− Avg
Q

(k−1)

j′

f |dx

61

b

∑
j′

∣∣∣Q(k−1)
j′

∣∣∣ ‖f‖BMO

=
1

b

∑
j′

∣∣∣Q(k−1)
j′

∣∣∣ .
Having established (A-k)-(E-k) we turn to some consequences. Applying (D-k) suc-
cessively k − 1 times, we obtain∑

j

∣∣∣Q(k)
j

∣∣∣ 6 b−k
∣∣∣Q(0)

∣∣∣ . (7.2.5)

For any fixed j we have that |Avg
Q

(1)
j

f − Avg
Q(0)

f | 6 2nb and |f − Avg
Q

(1)
j

f | 6 b a.e. on

Q
(1)
j \ ∪lQ

(2)
l . This gives

|f − Avg
Q(0)

f | 6 2nb+ b a.e. on Q(1)
j \ ∪lQ

(2)
l ,

which, combined with (E-1), yields

|f − Avg
Q(0)

f | 6 2n2b a.e. on Q(0) \ ∪lQ
(2)
l . (7.2.6)

For every fixed l, we also have that |f − Avg
Q

(2)
l

f | 6 b a.e. on Q
(2)
l \ ∪sQ(3)

s , which

combined with |Avg
Q

(2)
l

f − Avg
Q

(1)

l′

f | 6 2nb and |Avg
Q

(1)

l′

f − Avg
Q(0)

f | 6 2nb yields

|f − Avg
Q(0)

f | 6 2n3b a.e. on Q(2)
l \ ∪sQ(3)

s .

In view of (7.2.6), the same estimate is valid on Q(0) \ ∪sQ(3)
s . Continuing this

reasoning, we obtain by induction that for all k > 1 we have

|f − Avg
Q(0)

f | 6 2nkb a.e. on Q(0) \ ∪sQ(k)
s . (7.2.7)

This proves the almost everywhere inclusion{
x ∈ Q : |f(x)− Avg

Q
f | > 2nkb

}
⊂ ∪jQ(k)

j

for all k = 1, 2, 3, · · · . (This also holds when k = 0.) We now use (7.2.5) and (7.2.7)
to prove (7.2.1). We fix an α > 0. If

2nkb < α 6 2n(k + 1)b
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for some k > 0, then∣∣∣∣∣
{
x ∈ Q : |f(x)− Avg

Q
f | > α

}∣∣∣∣∣ 6
∣∣∣∣∣
{
x ∈ Q : |f(x)− Avg

Q
f | > 2nkb

}∣∣∣∣∣
6
∑
j

∣∣∣Q(k)
j

∣∣∣ 6 1

bk

∣∣∣Q(0)
∣∣∣

=|Q|e−k ln b

6|Q|be−α ln b/(2nb),

since −k 6 1− α
2nb . Choosing b = e > 1 yields (7.2.1). �

Having proved the important distribution inequality (7.2.1), we are now in a
position to deduce from it a few corollaries.

Corollary 7.2.3.

Every BMO function is exponentially integrable over any cube. More pre-
cisely, for any γ < 1/(2ne), for all f ∈ BMO(Rn), and all cubes Q we have

1

|Q|

∫
Q
e
γ|f(x)−Avg

Q
f |/∥f∥BMO

dx 6 1 +
2ne2γ

1− 2neγ
.

Proof. Using identity (1.1.2) with ϕ(t) = et − 1, we write
1

|Q|

∫
Q
ehdx =1 +

1

|Q|

∫
Q
(eh − 1)dx

=1 +
1

|Q|

∫ ∞

0
eα |{x ∈ Q : |h(x)| > α}| dα

for a measurable function h. Then we take h = γ|f(x) − Avg
Q

f |/‖f‖BMO and we

use inequality (7.2.1) with γ < A = (2ne)−1 to obtain

1

|Q|

∫
Q
e
γ|f(x)−Avg

Q
f |/∥f∥BMO

dx

61 +

∫ ∞

0
eαee

−A(α
γ
∥f∥BMO)/∥f∥BMOdα

=1 + e

∫ ∞

0
eα(1−1/(2neγ))dα = 1 +

2ne2γ

1− 2neγ
,

thus, we complete the proof. �
Another important corollary is the following.

Corollary 7.2.4.

For all 1 < p <∞, there exits a finite constant Bp,n such that

sup
Q

(
1

|Q|

∫
Q
|f(x)− Avg

Q
f |pdx

)1/p

6 Bp,n‖f‖BMO(Rn). (7.2.8)

Proof. This result can be obtained from the one in the preceding corollary or di-
rectly in the following way:

1

|Q|

∫
Q
|f(x)− Avg

Q
f |pdx =

p

|Q|

∫ ∞

0
αp−1

∣∣∣∣∣{x ∈ Q : |f(x)− Avg
Q

f | > α}

∣∣∣∣∣ dα
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6 p

|Q|
e|Q|

∫ ∞

0
αp−1e−Aα/∥f∥BMOdα

=pΓ(p)
e

Ap
‖f‖pBMO,

whereA = (2ne)−1. SettingBp,n = (pΓ(p) e
Ap )1/p = (pΓ(p))1/pe1+1/p2n, we conclude

the proof. �
Since the inequality in Corollary 7.2.4 can be reversed via Hölder’s inequality,

we obtain the following important Lp characterization of BMO norms.

Corollary 7.2.5.

For all 1 < p <∞ and f ∈ L1
loc(R

n), we have

sup
Q

(
1

|Q|

∫
Q
|f(x)− Avg

Q
f |pdx

)1/p

≈ ‖f‖BMO. (7.2.9)

Proof. One direction follows from Corollary 7.2.4. Conversely, the supremum in
(7.2.9) is bigger than or equal to the corresponding supremum with p = 1, which is
equal to the BMO norm of f , by definition. �

§ 7.3 Non-tangential maximal functions and Carleson measures

We recall the definition of a cone over a point given in Definition 5.1.9.

Definition 7.3.1: Cone

Let x ∈ Rn. We define the cone over x:

Γ(x) = {(y, t) ∈ Rn+1
+ : |x− y| < t}.

Definition 7.3.2: Non-tangential maximal function

Let F : Rn+1
+ → C and define the non-tangential maximal function of F :

M∗F (x) = sup
(y,t)∈Γ(x)

|F (y, t)| ∈ [0,∞].

Remark 7.3.3. (i) We observe that if M∗F (x) = 0 for almost all x ∈ Rn, then f is
identically equal to zero on Rn+1

+ . To establish this claim, suppose that |F (x0, t0)| >
0 for some point (x0, t0) ∈ Rn × R+. Then for all z with |z − x0| < t0, we have
(x0, t0) ∈ Γ(z), hence M∗F (z) > |F (x0, t0)| > 0. Thus, M∗F > 0 on the ball
B(x0, t0), which is a set of positive measure, a contradiction.

(ii) Given a Borel measure µ on Rn+1
+ , we can define the non-tangential maximal

function M∗
µ w.r.t. µ by replacing sup with ess sup. Note then that M∗

µ is defined µ-
a.e.

Proposition 7.3.4.

M∗F is lower semi-continuous and hence Borel.
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Proof. Let α > 0 and x ∈ Rn such that M∗F (x) > α. Now, there exists a (y, t) ∈
Γ(x) such that |F (y, t)| > α. Therefore, for all z ∈ B(y, t), we have (y, t) ∈ Γ(z) and
hence M∗F (z) > |F (y, t)| > α. That is, x ∈ B(y, t) ⊂ {x ∈ Rn :M∗F (x) > α}. �

Definition 7.3.5: Tent

Let B = B(x0, r) ⊂ Rn be an open ball. We define the cylindrical tent over
B to be the "cylindrical set"

T (B) = {(x, t) ∈ Rn+1
+ : x ∈ B, 0 < t 6 r} = B × (0, r].

Similarly, for a cube Q in Rn, we define the tent over Q to be the cube

T (Q) = Q× (0, `(Q)].

Definition 7.3.6: Carleson measure

A Carleson measure is a positive measure µ on Rn+1
+ such that there exists a

constant C <∞ for which

µ(T (B)) 6 C|B|
for all B = B(x, r). We define the Carleson norm as

‖µ‖C = sup
B

µ(T (B))

|B|
.

Remark 7.3.7. In the definition of the Carleson norm, B and T (B) can be replaced
by the cubes Q and T (Q), respectively. One can easily verify that they are equiva-
lent.

The following measures are not Carleson measures.

Example 7.3.8. (i) The Lebesgue measure dµ(x, t) = dxdt since no such constant C
is possible for large balls.

(ii) dµ(x, t) = dxdtt since µ(B × (0, r]) = |B|
∫ r
0
dt
t = ∞.

(iii) dµ(x, t) = dxdt
tα for α ∈ R. Note that

µ(B × (0, r]) = |B|
∫ r

0

dt

tα
=

|B| r
1−α

1− α
, 1− α > 0,

∞, otherwise.

So we only need to consider the case α < 1 but in this case, we cannot get uniform
control via a constant C.

The following are examples of Carleson measures.

Example 7.3.9. (i) dµ(x, t) = χ[a,b](t)dx
dt
t where 0 < a < b <∞. Then, the constant

C = ln b
a .

(ii) dµ(y, t) = χΓ(x)(y)dy
dt
t . Then,

µ(B × (0, r]) 6
∫ r

0
|B(x, t)|dt

t
=

∫ r

0
tn|B(0, 1)|dt

t
=
rn|B(0, 1)|

n
=

|B|
n
.

(iii) Let L be a line in R2. For measurable subsets A ⊂ R2
+, define µ(A) to be

the linear Lebesgue measure of the set L ∩A. Then µ is a Carleson measure on R2
+.

Indeed, the linear measure of the part of a line inside the box [x0 − r, x0 + r]× (0, r]

is at most equal to the diagonal of the box, i.e.,
√
5r.
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Definition 7.3.10: Carleson function

The Carleson function of the measure µ is defined as

C (µ)(x) = sup
B∋x

µ(T (B))

|B|
∈ [0,∞].

Observe that ‖C (µ)‖∞ = ‖µ‖C .

Theorem 7.3.11: Carleson’s Lemma

There exists a dimensional constant Cn such that for all α > 0, all measure µ
on Rn+1

+ , and all µ-measurable functions F : Rn+1
+ → C, the set Ωα = {x ∈

Rn :M∗F (x) > α} is open (thus M∗F is Lebesgue measurable) and we have

µ({(x, t) ∈ Rn+1
+ : |F (x, t)| > α}) 6 Cn

∫
{M∗F>α}

C (µ)(x)dx. (7.3.1)

In particular, if µ is a Carleson measure, then

µ({|F | > α}) 6 Cn‖µ‖C |{M∗F > α}|. (7.3.2)

Proof. We first prove that for any µ-measurable function F , the set Ωα is open, and
consequently, M∗F is Lebesgue measurable. Indeed, if x0 ∈ Ωα, then there exists
a (y0, t0) ∈ Γ(x0) = {(y, t) ∈ Rn × R+ : |y − x0| < t} such that |F (y0, t0)| > α.
If d0 is the distance from (y0, t0) to the sphere formed by the intersection of the
hyperplane t0 + Rn with the boundary of the cone Γ(x0), then |x0 − y0| = t0 − d0.
It follows the open ball B(x0, d0) ⊂ Ωα since for z ∈ B(x0, d0) we have |z − y0| 6
|z − x0|+ |x0 − y0| < d0 + t0 − d0 = t0, hence M∗F (z) > |F (y0, t0)| > α.

Let {Qk} be the Whitney decomposition (i.e., Theorem 3.1.2) of the set Ωα. For
each x ∈ Ωα, set δα(x) = dist (x,Ωcα). Then for z ∈ Qk we have

δα(z) 6
√
n`(Qk) + dist (Qk,Ωcα) 6 5

√
n`(Qk) (7.3.3)

in view of Theorem 3.1.2 (iii). For each Qk (centered at z0), let Bk be the smallest
ball that contains Qk. Then Bk is of radius

√
n`(Qk)/2 and centered at z0. Combine

this observation with (7.3.3) to obtain that for any z ∈ Qk and y ∈ B(z, δα(z))

|y − z0| 6 |y − z|+ |z − z0| 6 δα(z) +
√
n`(Qk)/2 6 11

2

√
n`(Qk) 6 11rad(Bk),

namely,

z ∈ Qk =⇒ B(z, δα(z)) ⊂ 11Bk.

This implies that ⋃
z∈Ωα

T (B(z, δα(z))) ⊂
⋃
k

T (11Bk). (7.3.4)

Next, we claim that

{|F | > α} ⊂
⋃
z∈Ωα

T (B(z, δα(z))). (7.3.5)

Indeed, let (x, t) ∈ Rn+1
+ such that |F (x, t)| > α. Then by the definition of M∗F , we

have that M∗F (y) > α for all y ∈ Rn satisfying |x− y| < t. Thus, B(x, t) ⊂ Ωα and
so δα(x) > t. This gives that (x, t) ∈ T (B(x, δα(x))), which proves (7.3.5).

Combining (7.3.4) and (7.3.5), we obtain

{|F | > α} ⊂
⋃
k

T (11Bk).
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Applying the measure µ and using the definition of the Carleson function, we ob-
tain

µ({|F | > α}) 6
∑
k

µ(T (11Bk))

6
∑
k

|11Bk| inf
x∈11Bk

C (µ)(x)

6
∑
k

|11Bk| inf
x∈Qk

C (µ)(x) (∵ Qk ⊂ 11Bk)

611n
∑
k

|Bk|
|Qk|

∫
Qk

C (µ)(x)dx

6(11
√
n/2)nVn

∫
Ωα

C (µ)(x)dx.

This proves (7.3.1). It follows (7.3.2) in view of ‖C (µ)‖∞ = ‖µ‖C . �

Corollary 7.3.12.

For any Carleson measure µ and every µ-measurable function F on Rn+1
+ ,

we have ∫
Rn+1
+

|F (x, t)|pdµ(x, t) 6 Cn‖µ‖C

∫
Rn

(M∗F (x))pdx (7.3.6)

for all p ∈ [1,∞).

Proof. From (7.3.2), applying Theorem 1.1.4 twice, we get∫
Rn+1
+

|F (x, t)|pdµ(x, t) =p
∫ ∞

0
αp−1µ({|F | > α})dα

6Cn‖µ‖C p

∫ ∞

0
αp−1|{M∗F > α}|dα

=Cn‖µ‖C

∫
Rn

(M∗F (x))pdx.

�
A particular example of this situation arises when F (x, t) = f ∗ Φt(x) for some

nice integrable function Φ. Here and in the sequel, Φt(x) = t−nΦ(t−1x). For in-
stance, one may take Φt to be the Poisson kernel Pt.

Theorem 7.3.13.

Let Φ be a function on Rn that satisfies for some 0 < C, δ <∞,

|Φ(x)| 6 C

(1 + |x|)n+δ
. (7.3.7)

Let µ be a Carleson measure on Rn+1
+ . Then for every 1 < p < ∞, there is a

constant Cp,n(µ) such that for all f ∈ Lp(Rn) we have∫
Rn+1
+

|(Φt ∗ f)(x)|pdµ(x, t) 6 Cp,n(µ)

∫
Rn

|f(x)|pdx, (7.3.8)

where Cp,n(µ) 6 C(p, n)‖µ‖C .
Conversely, suppose that Φ is a non-negative function that satisfies

(7.3.7) and
∫
|x|61Φ(x)dx > 0. If µ is a measure on Rn+1

+ such that for
some 1 < p < ∞ there is a constant Cp,n(µ) such that (7.3.8) holds for all
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f ∈ Lp(Rn), then µ is a Carleson measure with norm at most a multiple of
Cp,n(µ).

Proof. If µ is a Carleson measure, we may obtain (7.3.8) as a sequence of Corollary
7.3.12. Indeed, for F (x, t) = (Φt ∗ f)(x), we have

M∗F (x) = sup
t>0

sup
y∈Rn

|y−x|<t

|(Φt ∗ f)(y)|

6 sup
t>0

sup
y∈Rn

|y−x|<t

∫
Rn

|Φt(y − z)||f(z)|dz

= sup
t>0

sup
y∈Rn

|y−x|<t

∫
Rn

|Φt(y − x+ x− z)||f(z)|dz

6 sup
t>0

 sup
y∈Rn

|y−x|<t

|Φt(y − x+ ·)| ∗ |f |

 (x)

= sup
t>0

(Ψt ∗ |f |)(x),

where

Ψ(x) := sup
|u|61

|Φ(x− u)| 6


C, |x| 6 1,

C

|x|n+δ
, |x| > 1,

by the condition (7.3.7). Thus, it is clear that ‖Ψ‖L1(Rn) 6 C(Vn+ωn−1/δ). It follows
from Theorem 3.2.12 that

M∗F (x) 6 C(n, δ)M(|f |)(x).

Then, by Theorem 3.2.7, we obtain∫
Rn

(M∗F (x))pdx 6 C(n, δ)

∫
Rn

(M(|f |)(x))pdx 6 C(n, δ, p)

∫
Rn

|f(x)|pdx.

Therefore, from Corollary 7.3.12, (7.3.8) follows.
Conversely, if (7.3.8) holds, then we fix a ball B = B(x0, r) in Rn with center x0

and radius r > 0. Then for (x, t) ∈ T (B), we have

(Φt ∗ χ2B)(x) =

∫
2B

Φt(x− y)dy =

∫
x−2B

Φt(y)dy

>
∫
B(0,t)

Φt(y)dy =

∫
B(0,1)

Φ(y)dy = cn > 0,

since B(0, t) ⊂ x− 2B(x0, r) whenever t 6 r. Therefore, we have

µ(T (B)) =

∫
T (B)

dµ(x, t) 6 1

cpn

∫
T (B)

cpndµ(x, t)

6 1

cpn

∫
T (B)

|(Φt ∗ χ2B)(x)|pdµ(x, t)

6 1

cpn

∫
Rn+1
+

|(Φt ∗ χ2B)(x)|pdµ(x, t)

6Cp,n(µ)
cpn

∫
Rn

|χ2B(x)|pdµ(x, t)
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=
2nCp,n(µ)

cpn
|B|.

This proves that µ is a Carleson measure with ‖µ‖C . �

§ 7.4 BMO functions and Carleson measures

We now turn to an interesting connection between BMO functions and Carleson
measures. We have the following.

Theorem 7.4.1.

Let b ∈ BMO(Rn) and Ψ ∈ L1(Rn) with
∫
Rn Ψ(x)dx = 0 satisfying

|Ψ(x)| 6 A(1 + |x|)−n−δ (7.4.1)

for some 0 < A, δ < ∞. Consider the dilation Ψt = t−nΨ(t−1x) and define
the Littlewood-Paley operators ∆̇jf = f ∗Ψ2−j .
(i) Suppose that

sup
ξ∈Rn

∑
j∈Z

|Ψ

∨

(2−jξ)|2 6 B2 <∞ (7.4.2)

and let δ2−j (t) be Dirac mass at the point t = 2−j . Then there is a constant
Cn,δ such that

dµ(x, t) =
∑
j∈Z

|(Ψ2−j ∗ b)(x)|2dxδ2−j (t)dt

is a Carleson measure on Rn+1
+ with norm at most Cn,δ(A+B)2‖b‖2BMO.

(ii) Suppose that

sup
ξ∈Rn

∫ ∞

0
|Ψ

∨

(tξ)|2dt
t

6 B2 <∞. (7.4.3)

Then the continuous version dν(x, t) of dµ(x, t) defined by

dν(x, t) = |(Ψt ∗ b)(x)|2dx
dt

t

is a Carleson measure on Rn+1
+ with norm at most Cn,δ(A + B)2‖b‖2BMO for

some constant Cn,δ.
(iii) Let δ,A > 0. Suppose that {Kt}t>0 are functions on Rn × Rn that satisfy

|Kt(x, y)| 6
Atδ

(t+ |x− y|)n+δ
(7.4.4)

for all t > 0 and all x, y ∈ Rn. Let Rt be the linear operator

Rt(f)(x) =

∫
Rn

Kt(x, y)f(y)dy,

which is well-defined for all f ∈
⋃

p∈[1,∞]

Lp(Rn). Suppose that Rt(1) = 0 for

all t > 0 and that there is a constant B > 0 such that∫ ∞

0

∫
Rn

|Rt(f)(x)|2
dxdt

t
6 B2‖f‖2L2(Rn) (7.4.5)

for all f ∈ L2(Rn). Then for all b ∈ BMO, the measure

|Rt(b)(x)|2
dxdt

t
is Carleson with norm at most a constant multiple of (A+B)2‖b‖2BMO.
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Proof. (i) The measure µ is defined so that for every µ-integrable function F on
Rn+1
+ , we have∫

Rn+1
+

F (x, t)dµ(x, t) =
∑
j∈Z

∫
Rn

|(Ψ2−j ∗ b)(x)|2F (x, 2−j)dx, (7.4.6)

since
∫
R+ δ2−j (t)F (x, t)dt = F (x, 2−j).

For a cube Q ⊂ Rn, let Q∗ be the cube with the same center and orientation
whose side length is 3

√
n`(Q), where `(Q) is the side length of Q. Fix a cube Q ⊂

Rn, take F = χT (Q), and split b as

b = (b− Avg
Q

b)χQ∗ + (b− Avg
Q

b)χ(Q∗)c + Avg
Q

b.

Since Ψ has mean value zero, ∆̇j Avg
Q

b = Ψ2−j ∗ Avg
Q

b = 0. Then (7.4.6) gives

µ(T (Q)) =
∑

2−j6ℓ(Q)

∫
Q
|∆̇jb(x)|2dx 6 2Σ1 + 2Σ2,

where

Σ1 =
∑
j∈Z

∫
Rn

|∆̇j((b− Avg
Q

b)χQ∗)(x)|2dx,

Σ2 =
∑

2−j6ℓ(Q)

∫
Q
|∆̇j((b− Avg

Q
b)χ(Q∗)c)(x)|2dx.

Using Plancherel’s theorem twice and (7.4.2), we obtain

Σ1 6 sup
ξ

∑
j∈Z

|Ψ
∨

(2−jξ)|2
∫
Rn

|((b− Avg
Q

b)χQ∗)
∨

(η)|2dη

6B2

∫
Q∗

|b(x)− Avg
Q

b|2dx

62B2

∫
Q∗

|b(x)− Avg
Q∗

b|2dx+ 2B2|Q∗||Avg
Q∗

b− Avg
Q

b|2

62B2

∫
Q∗

|b(x)− Avg
Q∗

b|2dx+ 2B2cn‖b‖2BMO|Q|

6CnB2cn‖b‖2BMO|Q|,

in view of Proposition 7.1.7 (i) and Corollary 7.2.4. To estimate Σ2, we use the size
estimate (7.4.1) of the function Ψ to obtain

|(Ψ2−j ∗ (b− Avg
Q

b)χ(Q∗)c)(x)| 6
∫
(Q∗)c

A2−jδ|b(y)− Avg
Q

b|

(2−j + |x− y|)n+δ
dy. (7.4.7)

Denote cQ the center of Q, then for x ∈ Q and y ∈ (Q∗)c, we get

2−j + |x− y| >|y − x| > |y − cQ| − |cQ − x|

>1

2
|cQ − y|+ 3

√
n

4
`(Q)− |cQ − x| (∵ |y − cQ| >

1

2
`(Q∗) =

3
√
n

2
`(Q))

>1

2
|cQ − y|+ 3

√
n

4
`(Q)−

√
n

2
`(Q)

=
1

2

(
|cQ − y|+

√
n

2
`(Q)

)
.
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Inserting this estimate in (7.4.7), integrating over Q, and summing over j with
2−j 6 `(Q), we obtain

Σ2 6Cn
∑

j:2−j6ℓ(Q)

2−2jδ

∫
Q

A∫
Rn

|b(y)− Avg
Q

b|

(`(Q) + |cQ − y|)n+δ
dy


2

dx

6CnA2|Q|

A∫
Rn

`(Q)δ|b(y)− Avg
Q

b|

(`(Q) + |cQ − y|)n+δ
dy


2

6Cn,δA2|Q|‖b‖2BMO

in view of (7.1.6). This proves that

Σ1 +Σ2 6 Cn,δ(A
2 +B2)|Q|‖b‖2BMO,

which implies that µ(T (Q)) 6 Cn,δ(A
2 +B2)|Q|‖b‖2BMO.

(ii) The proof can be obtained as similar fashion as in (i).
(iii) This is a generalization of (ii) and is proved likewise. We sketch its proof.

Write

b = (b− Avg
Q

b)χQ∗ + (b− Avg
Q

b)χ(Q∗)c + Avg
Q

b

and note that Rt(Avg
Q

b) = 0. We handle the term containing Rt((b − Avg
Q

b)χQ∗)

using an L2 estimate over Q∗ and condition (7.4.5), while for the term containing
Rt((b − Avg

Q
b)χ(Q∗)c), we use an L1 estimate and condition (7.4.4). In both cases,

we obtain the required conclusion in a way analogous to that in (i). �
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Vn: the volume of the unit ball in Rn, 6
Bs
p,r: non-homogeneous Besov space, 206

F sp,r: non-homogeneous Triebel-Lizorkin
space, 206

Hk, 132
Hs
p(Rn): non-homogeneous Sobolev spaces

, 195
Is: Riesz potential, 185
Js: Bessel potential, 189
Lp∗: weak Lp spaces, 5
Lp,q: Lorentz space, 23
W k,p(Rn): Sobolev space , 193
C: complex number field, 31
Cα: Hölder (or Lipschitz) space , 228
C0(Rn), 34
D(Rn) := C∞

c (Rn), 34
Γ-function, 6
Hk: solid spherical harmonics of degree

k, 132
Mp(Rn): the space of Fourier multiplier

on Lp(Rn), 72
N0 = N ∪ {0}, 49
Pk: homogeneous polynomials of de-

gree k, 132
R: real number field, 31
S ′
h(Rn), 219

Ḃs
p,r: homogeneous Besov space, 206

Ḟ sp,r: homogeneous Triebel-Lizorkin space,
206

Ḣs
p(Rn): homogeneous Sobolev spaces ,

195
Ḃs
p,r, 221

Ṡ (Rn), 194
ωn−1: surface area of the unit sphere Sn−1,

6, 39
σ-algebra, 1
σ-finite, 1
g∗λ-function, 162

Abel method of summability, 36

Bernstein inequalities, 198
Besov spaces, 206

Bessel potential, 189
BMO function, 237
BMO space, 237
Bochner’s relation, 135

Calderón-Zygmund decomposition
for functions, 96
of Rn, 94

Calderón-Zygmund kernel, 116
Calderón-Zygmund singular integral op-

erator, 116
Calderón-Zygmund Theorem, 114
Carleson function, 250
Carleson measure, 249
Cauchy-Riemann equations, 104

generalized ..., 130
centered Hardy-Littlewood maximal op-

erator, 83
cone, 248
convergence in measure, 7
Cotlar inequality, 146

decreasing rearrangement, 19
dilation, 31
dilation argument, 118
Dini-type condition, 144
directional Hilbert transform, 142
directional maximal Hilbert transforms,

142
distribution function, 2
distributional derivatives, 57
dyadic decomposition of Rn, 174

elliptic homogeneous polynomial of de-
gree k, 141

Fourier inversion theorem, 42
Fourier transform, 31

Gagliardo-Nirenberg-Sobolev inequality,
92

Gauss summability, 36
Gauss-Weierstrass integral, 40
Gauss-Weierstrass kernel, 38
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gradient condition, 114
Green theorem, 160

Hörmander condition, 114
Hadamard three lines theorem, 10
Hardy inequality, 25
Hardy-Littlewood maximal function, 83
Hardy-Littlewood-Paley theorem on Rn,

47
Hardy-Littlewood-Sobolev theorem, 187
Hardy-Weierstrass non-differentiable func-

tions, 234
harmonic conjugate, 103
harmonic function, 101
Hausdorff-Young inequality, 46
heat equation, 44
Hecke’s identity, 134
Heisenberg uncertainty principle, 53
higher Riesz transforms, 138
Hilbert transform, 106
Hilbert transform

Characterization, 109

least decreasing radial majorant, 88
Lebesgue differentiation theorem, 91
Littlewood-Paley g-function, 155
Littlewood-Paley square function theo-

rem, 174, 204
locally integrable function, 2
Lorentz space, 23
Lusin’s S-function, 162

Marcinkiewicz interpolation theorem, 26
maximal BMO function, 237
maximal function, 82
maximal function theorem, 85
maximal Hilbert transform, 112
maximal singular integral, 120
maximum principle, 12
mean oscillation, 237
Mean-value formula for harmonic func-

tions, 130
measurable sets, 1
measure space, 1
multiplication formula, 39
multiplier theorem

Bernstein’s multiplier theorem, 76
Hörmander’s multiplier theorem, 167

Marcinkiewicz’ multiplier theorem,
181

Mikhlin’s multiplier theorem, 166

Non-tangential maximal function, 248

partial g-functions, 156
partial sum operator, 170
Phragmen-Lindelöf theorem, 12
Plancherel theorem, 45
Poisson integral, 40, 101, 102
Poisson kernel, 38, 102
Poisson-Jensen formula, 15
positive measure, 1
principal value of 1/x, 105

quasi-linear mapping, 25

Rademacher functions, 174
Riemann-Lebesgue lemma, 34
Riesz potential, 185
Riesz transform, 126
Riesz-Thorin interpolation theorem, 10

Schwartz class, 49
sharp maximal function, 237
sharp maximal operator, 237
simple function, 2

countably simple, 2
finitely simple function, 2

Sobolev embedding theorem, 197
solid spherical harmonics of degree k, 132
Stein interpolation theorem, 18
sublinear operator, 13

tempered distribution, 54
tent, 249
The equivalent norm of Lp, 4
translation, 31
translation invariant, 66
Triebel-Lizorkin spaces, 206
truncated Hilbert transform, 107
truncated operator, 116
truncated singular integral, 120

unitary operator, 45

Vitali covering lemma, 79

Weierstrass kernel, 38
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Weighted inequality for Hardy-Littlewood
maximal function, 97

Whitney covering lemma, 80

Young’s inequality for convolutions, 13
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