ERRATA: REAL ANALYSIS

ELIAS M. STEIN & RAMI SHAKARCHI

- (p.3) The **boundary** of *E* is the set of points which are in the closure of *E* but not in its interior.
- (p.30) The formula for the product fg should read:

$$fg = \frac{1}{4}[(f+g)^2 - (f-g)^2].$$

- (p.32) To complete the proof of Theorem 4.3 in fact requires the argument given on the following page.
- (p.166) In the middle of the page, the quantity $||S_N(f) S_M(f)||$ should be replaced by $||S_N(f) S_M(f)||^2$.
- (p.169) $\sum_{k=1}^{\infty} a_k e'_k$ should read $g = \sum_{k=1}^{\infty} a_k e'_k$.
- (p.171) At the bottom of the page, one should read $e^{inx}2\pi a_n$ instead of $e^{inx}a_n$.
- (p.170) In the discussion of completion, the end of the last paragraph should read: To see that \mathcal{H} is complete, let $\{F^k\}_{k=1}^{\infty}$ be a Cauchy sequence in \mathcal{H} , with each F^k represented by $\{f_n^k\}_{n=1}^{\infty}, f_n^k \in \mathcal{H}_0$. If we define $F \in \mathcal{H}$ as represented by the sequence $\{f_n\}$ with $f_n = f_{N(n)}^n$, where N(n) is so that $|f_{N(n)}^n - f_j^n| \leq 1/n$ for $j \geq N(n)$, then we note that $F^k \to F$ in \mathcal{H} .
- (p.188) The definition of a compact set should read: "a set $X \subset \mathcal{H}$ is **compact** if for every sequence $\{f_n\}$ in X, there exists a subsequence $\{f_n\}$ that converges in the norm to an element *in* X". In other words, the sequence $\{f_n\}$ need not be bounded.
- (p.194 Exercise 3) $\operatorname{Re}(f,g)$ should be $2\operatorname{Re}(f,g)$.
- (p.301) At the bottom of the page reference should be made to Theorem 1.3 in Chapter 3 (and not Theorem 4).
- (p.302) H_m should be replaced by $A_m(H)$, thus reading

 $\mu(E_{\alpha}) \le \mu(E'_{\alpha}) \le \mu(\{x: \ 2 \sup_{m} |A_{m}(H)(x)| > \alpha\}).$

- (p.302) One should read "we know by Theorem 5.1 that $A_m(f)$ converges".
- (p.303) In the proof of Corollary 5.6, the quantity $|P'(f) \int_X f \, d\mu|$ should be replaced by $||P'(f) \int_X f \, d\mu||_{L^1}$.
- (p.312) In Exercise 1, make the additional assumption that \mathcal{M} is closed under finite intersections.

1

Date: August 14, 2009.

• (p.321 - Problem 7^{*}) In the conclusion $\int_{E_0} f^{\#}(x) dx \ge 0$, the function $f^{\#}$ should be replaced by f.