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ON THE TEICHMÜLLER THEORY OF CIRCLE PATTERNS

ZHENGXU HE AND JINSONG LIU

Abstract. Given a circle pattern on the Riemann sphere Ĉ, in this paper we
prove that its quasiconformal deformation space can be naturally identified
with the product of the Teichmüller spaces of its interstices.

1. Introduction

In this paper we consider the characterization problem of circle patterns in the

Riemann sphere Ĉ. A finite circle pattern P on Ĉ is defined to be a collection of
circles in Ĉ in which no circle has its interior contained in the union of interiors of
two other circles. The contact graph G = GP of such a pattern P is a graph whose
vertices correspond to the circles in the pattern, and an edge appears in G if and
only if the corresponding circles intersect each other. Please refer to [2, 6, 14, 19]
for the basic notation on circle patterns (or circle packings).

Let V denote the set of vertices in the contact graph G = GP , and let E denote
the set of edges in G. Sometimes we denote it by G = (V,E). For any vertex
v ∈ V , let P (v) be the circle in the pattern P associated with the vertex v. For
any edge [v, w] ∈ E, the dihedral angle ΘP ([v, w]) of the pair of intersecting circles
P (v) and P (w) is defined to be the angle in [0, π) between the clockwise tangent
of P (v) and the counterclockwise tangent of P (w) at a point of P (v) ∩ P (w). The
function ΘP : E → [0, π) is called the dihedral angle function of P ; see Figure 1.
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Figure 1

For notational simplicity, in this paper we only consider those circle patterns
P with 0 ≤ ΘP ≤ π/2. The more general case, when 0 ≤ Θ < π, is technically
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6518 ZHENGXU HE AND JINSONG LIU

more complicated and it will be considered in a future paper. Also in that paper
we will combine the idea of a ‘polar set’ to generalize a characterization of convex
polyhedra in hyperbolic 3-space, due to I. Rivin and C. Hodgson [13].

For any vertex v ∈ GP , we denote by Av the Euclidean center of the circle
P (v). Then Av lies outside of any other circles of P . For any edge [v, w] ∈ E, the
straight arc AvAw is disjoint from the interior of other circles P (u) with u �= v, w.
In particular the natural map which maps an edge [v, w] ∈ E homeomorphically

onto the arc AvAw ⊂ Ĉ is an immersion of the contact graph GP into Ĉ. The only
possible double points of this immersion is described in Figure 2.
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Figure 2. (a) The configuration of the circles P (vl), 1 ≤ l ≤ 4.
(b) The corresponding contact graph with dihedral angles marked
on the edges.

This special case can be described as follows: the dihedral angles

ΘP ([vl, vl+1]) = π/2, 1 ≤ l ≤ 4,

where v5 ≡ v1 and either ΘP ([v1, v3]) or ΘP ([v2, v4]) is equal to 0. In this case we
can easily show

ΘP ([v1, v3]) = ΘP ([v2, v4]) = 0.

Obviously the straight arc Av1Av3 intersects the straight arc Av2Av4 . In this case
the edges [v1, v3] and [v2, v4] in GP will be called reducible. Then the reduced
contact graph, consisting of the same vertex set V and the irreducible edges in E,
is embedded in Ĉ.

If a simple loop v1, v2, v3, v4, v5 ≡ v1 in a graph G has the property that
Θ([vl, vl+1]) = π/2, l = 1, 2, 3, 4, and Θ([v1, v3]) = 0 as in Figure 2, then let G̃
denote the graph obtained by adding the edge [v2, v4] to the graph G. Define a

new function Θ̃ by letting Θ̃(e) = Θ(e) if e is an edge in G, and Θ̃(e) = 0 if e is in

G̃\G. A circle pattern P is said to realize the data (G,Θ) if its contact graph is

combinatorially isomorphic to G̃ and the corresponding dihedral angle function is
equal to Θ̃.

Before giving the problems, let us introduce some notation.
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ON THE TEICHMÜLLER THEORY OF CIRCLE PATTERNS 6519

For any abstract topological graph G, a map φ : G → Ĉ is called an embedding
if it is a homeomorphism onto its image. Two embedding spaces φ0 : G → Ĉ and
φ1 : G → Ĉ are called isotopic, if there exists a continuous map

Φ : G× [0, 1] → Ĉ,

such that for each t ∈ [0, 1], the map Φt ≡ Φ(·, t) : G → Ĉ is an embedding and

Φ0 = φ0, Φ1 = φ1. An embedded graph in Ĉ means an abstract graph G together
with an embedding into the Riemann sphere Ĉ. Two embedded graphs in Ĉ with
the same vertex set V will be called isomorphic, if they are equal as abstract graphs,
and their embeddings are isotopic in Ĉ.

Note that the graphs G1, G2 in Figure 3 are equivalent as abstract graphs, but
they are not equivalent as embedded graphs in Ĉ.

� �

�

�

.

.....................................................................................................................

..........
..........
..........
..........
..........
.........
..........
.........
..........
.........
..........
.........

.

..............................................................................................................................................................

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..

.............................................................................

...............
...............

...............
...............

...............
.

.

........

........

........

........

........

........

........

........

........

....
v5

v6

v1 v3

v2

v4

� �

�

�

.

.....................................................................................................................

..........
..........
..........
..........
..........
.........
..........
.........
..........
.........
..........
.........

.

..............................................................................................................................................................

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..

.............................................................................

...............
...............
...............
...............
...............
.

.

........

........

........

........

........

........

........

........

........

....
v5

v6

v1 v3

v2

v4

G1 G2

Figure 3

From now on an embedded contact graph will have no self-loops or double edges.
Also, we only consider connected contact graphs of circle patterns. That means,
the union of circles in a circle pattern P is a connected set. The non-connected
case is essentially almost the same and technically more involved. We omit it here.

Let P,Q be two finite circle patterns on Ĉ. The patterns P, Q are called equiv-
alent if and only if there exists a Mobiüs transformation T : Ĉ → Ĉ such that
T (P ) = Q. Of course, if P, Q are equivalent, then the contact graph GP is ob-
viously isomorphic to GQ as embedded graphs, and their dihedral angle functions
ΘP = ΘQ. One of the major problems concerning circle patterns is to find necessary
and sufficient conditions for two circle patterns to be Möbius equivalent.

Suppose that G = (V,E) is an embedded graph in the Riemann sphere and let
Θ : E → [0, π/2] be a function defined on the edges. From now on we fix a circle
pattern P which realizes the data (G,Θ).

A subset of G is said to separate the vertices set V , if there is a pair of vertices in
the complement of this subset so that any path joining the vertices passes through
this subset. Then the dihedral angle function ΘP : E → [0, π/2] of P must satisfy
the following conditions; please refer to [6, 19].

(i) If a simple loop in G formed by three edges e1, e2, e3 separates the vertices
set V , then

3∑
l=1

ΘP (el) < π.
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6520 ZHENGXU HE AND JINSONG LIU

(ii) If v1, v2, v3, v4, v5 ≡ v1 are distinct vertices in G and if [vl, vl+1] ∈ E and
ΘP ([vl, vl+1]) = π/2, 1 ≤ l ≤ 4, then either [v1, v3] or [v2, v4] is an edge in G.

Using V as the 0-skeleton and E as the 1-skeleton, we obtain several faces in
Ĉ, denoted by {F1,F2, · · · ,Fp}. For our purposes we always assume in this paper
that (G,Θ) satisfies the following additional condition:

(iii) Either there are no triangles in the face set {F1,F2, · · · ,Fp} or there is a

triangle in {F1,F2, · · · ,Fp} whose boundary edges {e1, e2, e3} satisfy
∑3

l=1Θ(el) <
π.

Remark 1.1. If the embedded graph G is isomorphic to the skeleton of a trian-
gulation of Ĉ with at least five vertices, and its dihedral angle function satisfies
(i), (ii), (iii), by using Thurston’s interpretation of Andreev’s theorem and a com-

pactness argument, we may show that there exists a circle pattern on Ĉ realizing
the data (G,Θ); see e.g. [6, 12, 19]. If the G is not a triangulation of Ĉ, then we

may also show that there exists a circle pattern on Ĉ realizing (G,Θ). Please refer
to the realization part of Section 3.4

In this paper we shall study the realization problem when the embedded graph

G is not isomorphic to the skeleton of a triangulation of Ĉ and the dihedral angle
function satisfies conditions (i), (ii) and (iii).

Recall that P is the fixed circle pattern with contact graph G = (V,E). For v ∈
V , denote by D(v) the open disk bounded by the circle P (v). For any component I

of Ĉ−
⋃

v∈V D(v), since the circle pattern P is finite, the region I has only finitely
many boundary components; each boundary component is a piecewise smooth curve
formed by finitely many circular arcs or circles. Each (maximal) circular arc or circle
on the boundary ∂I belongs to a unique circle in P , and therefore is marked by an
element of V . The region I, together with a marking of the circular arcs or circles
on its boundary by elements of V is called an interstice of P .

For any interstice I of P , two quasiconformal mappings1 h1, h2 : I → Ĉ are called
equivalent, if h2◦(h1)

−1 : h1(I) → h2(I) is isotopic to a conformal homeomorphism
g such that for each circular arc or circle γ ⊂ ∂I, the homeomorphism g maps h1(γ)
onto h2(γ).

Definition 1.2. The Teichmüller space of I, denoted by TI , is the space of all
equivalence classes of quasiconformal mappings h : I → Ĉ.

If the interstice I is a k-sided polygon, it follows from the classical Teichmüller
theory that TI is diffeomorphic to the Euclidean space Rk−3; see e.g. [1, 10, 11].

The main result of this paper is the following theorem.

Theorem 1.3. Assume G is a graph, not a tetrahedron, embedded in Ĉ and assume
Θ : E → [0, π/2] is a dihedral angle function for G satisfying conditions (i), (ii)
and (iii). Then the space of equivalence classes of circle patterns realizing (G,Θ)
can be naturally identified with the product of the Teichmuller spaces Πp

1TIi , where
{I1, I2, · · · , Ip} are interstices of P .

1An orientation preserving map f : U → W between two regions in C is quasiconformal if and
only if, for some K ≥ 1,

lim sup
r→0+

max|z−ζ|=r |f(z)− f(ζ)|
min|z−ζ|=r |f(z)− f(ζ)|

≤ K, ζ ∈ U.

We refer to [10, 11] for general background on quasiconformal mappings.
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ON THE TEICHMÜLLER THEORY OF CIRCLE PATTERNS 6521

Note the Teichmüller space of a 3-sided polygon consists of a single point. Hence
we have the following corollary.

Corollary 1.4. Let G = (V,E) be the 1-skeleton of a triangulation of Ĉ which
satisfies (i), (ii) and (iii). If P = {P (v) : v ∈ V } and Q = {Q(v) : v ∈ V } are circle

patterns in Ĉ with the same contact graph G such that ΘP = ΘQ : E → [0, π/2],
then P, Q are Mobiüs equivalent.

Remark 1.5. The corollary is weaker than the uniqueness in the Andreev-Thurston
result, which does not assume condition (iii). Also the Marden-Rodin version of
this result assumes (iii); please refer to [12].

Notational conventions. Through this paper, for any round circle c in the com-
plex plane, we denote by ρ(c) its Euclidean radius. For any finite set A, we denote
by |A| the number of elements in A.

2. Proof of the main theorem

Observe that P is the circle pattern with embedded graph G = (V,E) and dihedral
function Θ : E → [0, π/2]. If Q = {Q(v) : v ∈ V } is another circle pattern with
contact graph G and ΘP = ΘQ, then there is a natural one-to-one correspondence
between their interstices; each interstice of Q is quasiconformally equivalent to the
corresponding interstice of P .

Denote by DP the equivalent class space of quasiconformal deformations of P .
Then we have the following.

Lemma 2.1. The space DP is homeomorphic to an open real k-dimensional man-
ifold, where k = 3 · |V | − |E| − 6.

Proof. For each v ∈ V , the center of the circle Q(v) in a circle pattern Q ∈ DP is
determined by three real numbers (x, y, r), where (x, y) is its coordinate and r > 0
is its radius. Each value Θ(e), e ∈ E, gives one restriction to the parameter system
of the deformation space DP .

Note that the dimension of the Mobiüs transformation group is 6. Therefore DP

is homeomorphic to an open real k-dimensional manifold, where k = 3 · |V | − |E| −
6. �
Proof of Theorem 1.3. Recall that {I1, I2, · · · , Ip} is the set of interstices of P .

For any circle pattern P̃ ∈ DP , we denote by {Ĩ1, Ĩ2, · · · , Ĩp} the corresponding
interstices. For each interstice Ii, 1 ≤ i ≤ p, there is a quasiconformal map τi :
Ii → Ĩi ⊂ Ĉ which maps a circle or circular arc on the boundary ∂Ii onto a circle
or circular arc on ∂Ĩi. Then we have a natural map

H : DP →
p∏

i=1

TIi

by sending P̃ to ([τ1], [τ2], · · · , [τp]) ∈
∏p

i=1 TIi , where TIi is the Teichmüller space
of Ii. Obviously H is well defined.

Denote by Γ the faces set {F1,F2, · · · ,Fp} and denote by F the set of interstices
{I1, I2, · · · , Ip} of P . Then p = |F | = |Γ|. When G is connected, each face in Γ is
simply connected. From Euler’s formula, it follows that

|V | − |E|+ |Γ| = 2.
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6522 ZHENGXU HE AND JINSONG LIU

On the other hand,

dimR

p∏
i=1

TIi =
p∑

i=1

dimR TIi =
p∑

i=1

(|Ei| − 3) =

p∑
i=1

(|Ei| − 3) =

p∑
i=1

|Ei| − 3 · |Γ|,

where Ei is the edge set of the interstice Ii and Ei is the edge set of the face
Fi, 1 ≤ i ≤ p. Since each edge in E is the common boundary of two faces in Γ
(maybe the same), we deduce that

dimR(

p∏
i=1

TIi) = 2 · |E| − 3 · |Γ| = 3 · |V | − |E| − 6.

The continuity ofH : DP →
∏p

i=1 TIi follows from basic quasiconformal mapping
theory; please refer to [11].

The proofs of the injectivity and surjectivity of the map H are left to the next
two sections.

Since the spacesDP and
∏p

i=1 TIi have the same dimension, by using the Brouwer
theorem on invariance of domain, we conclude that H : DP →

∏p
i=1 TIi is a home-

omorphism. The proof of the main theorem is complete. �

3. Injectivity and surjectivity of the map H. Part 1

This section and the next section are devoted to the proofs of the injectivity and
surjectivity of H : DP →

∏p
i=1 TIi . This section gives the proofs of the injectivity

and surjectivity of H in case there is at least one face in {F1,F2, · · · ,Fp} with
exactly three vertices. Since the contact graph G is connected, all faces in {Fi}1≤i≤p

are simply connected.

3.1. Some preliminary results. To complete the injectivity and surjectivity of
the map H, the following two lemmas are needed. They characterize configurations
in C consisting of three circles. We refer to [12, 19] for their complete proofs.

Lemma 3.1. For any three angles θ1, θ2, θ3 ∈ [0, π/2] and any three numbers
r1, r2, r3 > 0, there is a configuration of three circles in C, unique up to Euclidean
isometries, having radii {ri} and intersecting in angles {θi}.

Lemma 3.2. Let c1, c2 and c3 be circles in C with radii of r1, r2 and r3. Also we
suppose that c1, c2 and c3 meet pairwise in non-obtuse angles. If c2 and c3 are held
constant, but c1 is varied in such a way that the angles of intersection are constant
but the radius r1 decreases, then

∂α1

∂r1
< 0,

∂α2

∂r1
> 0,

∂α3

∂r1
> 0,

where αi, i = 1, 2, 3, are the corresponding angles of the triangle of centers.

For any interstice I ∈ {I1, I2, · · · , Ip} with k(> 3) circular arcs {γj}1≤j≤k on its
boundary, let {P (v1), P (v2), · · · , P (vk)} be the corresponding circles in P adjacent
to I such that γj = ∂I∩P (vj), 1 ≤ j ≤ k. Denote by θj ≡ Θ([vj , vj+1]) the dihedral
angle between the intersecting circles P (vj) and P (vj+1), where vk+1 ≡ v1. With
this notation, we have the following.

Lemma 3.3. Given a complex structure [τ : I → Ĉ] ∈ TI and {rj > 0}1≤j≤k,
there exists an immersion hτ : I → C such that hτ = Φτ ◦ τ for some analytic
immersion Φτ : τ (I) → C. In addition, hτ (γj) is a circular arc on a circle cτj
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ON THE TEICHMÜLLER THEORY OF CIRCLE PATTERNS 6523

with radius rj and the intersecting angle between the adjacent circles cτj , c
τ
j+1 is θj,

where 1 ≤ j ≤ k.
The map hτ : I → C is uniquely determined up to post-composition with Eu-

clidean isometries.

Remark 3.4. Although the circles {P (vj)} forming the interstice I are not neces-
sarily distinct, the associated circles cτj in the statement are distinct (although in
the ultimate immersions, they may necessarily coincide).

Denote F τ ⊂ C to be the immersed k-polygon by connecting the centers of
the adjacent circles cτj , cτj+1 with straight arcs. It follows from Lemma 3.3 that
all angles of the polygon F τ , denoted by ατ

j , are well defined, 1 ≤ j ≤ k. Let
rj , r̃j , 1 ≤ j ≤ k, be two sets of positive numbers. By using the same complex

structure [τ : I → Ĉ] ∈ TI and the same dihedral angles θj ∈ [0, π/2], 1 ≤ j ≤ k,

we obtain two immersed k-polygons F τ , F̃ τ ⊂ C. Then we have the following.

Lemma 3.5. Suppose there is a proper subset ∅ �= {j1, j2, · · · , jμ} � {1, 2, · · · , k}
such that r̃jλ < rjλ , 1 ≤ λ ≤ μ, and r̃j ≥ rj , j ∈ {1, 2, · · · , k}\{j1, j2, · · · , jμ}.
Then the angles of the polygons F τ , F̃ τ satisfy

μ∑
λ=1

α̃τ
jλ

>

μ∑
λ=1

ατ
jλ
.

The proofs of Lemmas 3.3 and 3.5 are deferred to Section 3.5.

3.2. Sketch of the proof of Theorem 1.3. By our assumption, there is a
triangle in {F1,F2, · · · ,Fp}, say Fp, whose boundary edges {e1, e2, e3} satisfy∑3

j=1 Θ(ej) < π. It will be convenient to label the vertices in V by (v1, v2, v3, · · · ,
v|V |), where v|V |−2, v|V |−1, v|V | are the vertices of the face Fp.

Let r = (r1, r2, · · · , r|V |) be a vector with |V | positive numbers. With the given
data (G,Θ) and any complex structures {τi ∈ TIi}1≤i≤p, then the vector r deter-
mines a polygonal structure on the topological 2-sphere as follows:

For each face Fi with three vertices, say {v1, v2, v3}, we associate the triangle
determined by the centers of three mutually intersecting circles with radii r1, r2 and
r3 and with intersecting angles {Θ([v1, v2])}, {Θ([v2, v3])} and {Θ([v3, v1])}; please
see Lemma 3.1.

For any Fi ∈ {F1,F2, · · · ,Fp} with k(> 3) vertices, we denote its vertices by
{vi1 , vi2 , · · · , vik}. With the positive numbers {rij > 0}1≤j≤k and the complex
structure τi ∈ TIi , Lemma 3.3 shows that there exists a unique Euclidean k-polygon
F τ
i determined by the centers of k circles with radii {rij > 0} and dihedral angles

{Θ([vij , vij+1
])}, where vik+1

≡ vi1 .
Transfer the Euclidean metrics on these Euclidean polygons to the associated

faces of {F1,F2, · · · ,Fp}. This metric is well defined on any edge which is common
to two faces (maybe the same). In this way the topological sphere becomes a
locally Euclidean space with cone type singularities at the vertices. Denote this
metric space by Mr. Using the metric of Mr, for 1 ≤ l ≤ |V |, the apex curvature
kr(vl) at the vertex vl is defined to be kr(vl) ≡ 2π − σ(vl), where σ(vl) is the sum
of the angles at vl of all faces containing vl. Therefore

|V |∑
l=1

kr(vl) =

|V |∑
l=1

(2π − σ(vl)) = 2π · |V | −
p∑

i=1

(|Ei| − 2) · π,
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where Ei is the edges set of Fi. From the Euler formula |V | − |E| + |F | = 2, it
follows that

(1)

|V |∑
l=1

kr(vl) = 2π · |V |+ 2π · |F | − 2π · |E| = 4π.

For λ > 0, the two metric spaces Mr, Mλ·r are similar in the sense that the
corresponding angles are equal. Therefore kr(vl) = kλ·r(vl). It turns out to be
advantageous to normalize the map

(2) r → f(r) = (kr(v1), kr(v2), · · · , kr(v|V |))

by restricting its domain to the simplex

(3) X ≡ {(r1, r2, · · · , r|V |) ∈ R|V |
+ : r1 + r2 + · · ·+ r|V | = 1}.

It follows from (1) that the range of f can be taken as the hyperplane

(4) Y ≡ {(y1, y2, · · · , y|V |) ∈ R|V | : y1 + y2 + · · ·+ y|V | = 4π}.

To prove the uniqueness and existence assertions of Theorem 1.3, it is sufficient
to verify that the map f : X → Y is injective and the point

(5) p0 = (0, 0, · · · , 0, 4π/3, 4π/3, 4π/3) ∈ f(X).

Assume the injectivity of f for the moment, and assume that f(r0) = p0 for
some

r0 = (r01, r02, · · · , r0|V |) ∈ R|V |
+ .

Then the local Euclidean space Mr0 is homeomorphic to Ĉ. Recall that {e1, e2, e3}
are the edges of the face Fp with three edges. The loop in G formed by e1, e2, e3
divides Ĉ into two simply connected regions Δ1 and Δ2 ≡ Ĉ\Fp. Then there is
a local homeomorphism φ : Δ2 → C (please compare to Lemma 3.8). The image
φ(Δ2) is an immersed polygon in C. Note that a local embedding of a topological
disk into the complex plane which is an actual embedding on the boundary must
be a global embedding. We conclude that the isometric immersions φ : Δ2 → C is
a global embedding.

If we center a circle with radius r0l at the point φ(vl), 1 ≤ l ≤ |V |, from the
definition of Mr0 it follows that we have an immersed circle pattern in C with
contact graph G. Denote by A1, A2, A3 the vertex of the polyhedron φ(Δ2). It
will be useful when we discuss uniqueness to observe that the triangle A1A2A3

is necessarily equilateral. If we weld another copy of triangle A1A2A3 along the
corresponding edges, then we have an isometric image of all of Mr0 . The curvature
at the vertex Ai is 2π minus the sum of all angles in the isometric image with the
vertex Ai. By the definition of Mr0 , the curvature at the vertex Ai, 1 ≤ i ≤ 3, must
turn out to be 4π/3. Thus 4π/3 = 2π−2 ·m(Ai), where m(Ai) is the angle measure
of the angle Ai in the triangle A1A2A3. We conclude that m(Ai) = π/3, i = 1, 2, 3.
Thus A1A2A3 is an equilateral triangle. Stereographic projection transforms this
circle pattern to a circle pattern in Ĉ with the same property.

The uniqueness assertion of Theorem 1.3 follows from the injectivity of f : X →
Y . Therefore the proof will be complete once we establish the injectivity of f :
X → Y and claim (5).

Licensed to Academia Sinica. Prepared on Fri Aug 22 06:35:42 EDT 2014 for download from IP 124.16.148.3.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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3.3. Proof of the injectivity of H : DP →
∏p

i=1 TIi . We will show that f : X →
Y is injective in this subsection.

Let r̃ = (r̃1, r̃2, · · · , r̃|V |) and r = (r1, r2, · · · , r|V |) be two distinct points in X.
Let V0 ⊂ V denote the set of vertices vl for which r̃l < rl. Note that the definition
of X in (3) implies that ∅ �= V0 � V .

Let {F1, F2, · · · , Fp} denote the faces in Mr. Denote by Q0 ⊂ {Fi}1≤i≤p the
subset consisting of all the faces such that there is at least one vertex in V0. Write

(6) Q0 = QN ∪QA,

where F ∈ QN if and only if a proper subset of its vertices set is in V0, and F ∈ QA

if and only if all of its vertices are in V0. We then have

(7)
∑
v∈V0

kr(v) =
∑
v∈V0

(2π − σr(v)) = 2π · |V0| −
∑

F∈QN

∑
j

αr
j −

∑
F∈QA

∑
j

βr
j ,

where {αr
j} is the angle at the vertices of F ∈ QN included in V0, and {βr

j } is the
angle set of the face F ∈ QA.

For each face F ∈ QN , Lemma 3.2 (if it has three sides) or Lemma 3.5 (if it has
k(> 3) sides) implies that if r is replaced by r̃, then

(8)
∑
j

αr
j <

∑
j

αr̃
j .

Also, if a face F ∈ QA has k sides, then

(9)
∑
j

βr
j =

∑
j

βr̃
j = (k − 2) · π.

Note that ∅ �= V0 � V and not all faces of Mr are in QA. The combination of (8)
and (9) gives

(10)
∑
v∈V0

kr(v) >
∑
v∈V0

kr̃(v),

which implies that f : X → Y is injective.

3.4. Proof of the surjectivity of H : DP →
∏p

i=1 TIi . For any boundary point
s = (s1, s2, · · · , s|V |) ∈ ∂X, we now examine the behavior of the function f(r) as
r → s ∈ ∂X. Then there is at least one sl = 0, where 1 ≤ l ≤ |V |. Denote
L(s) ≡ {1 ≤ l ≤ |V | : sl = 0}. Therefore ∅ �= L(s) � {1, 2, · · · , |V |}. For simplicity
of notation, we sometimes use L instead of L(s). Denote

(11) V L
1 ≡ {vl ∈ V : sl = 0}.

Then ∅ �= V L
1 � V . Recall that {F1, F2, · · · , Fp} are faces of the metric space Mr.

Denote by

(12) Q1 ⊂ {Fi}1≤i≤p

the subset consisting of all the faces such that there is at least one vertex in V L
1 .

For any face F ∈ Q1 with three vertices, we assume that its vertices are v1, v2, v3
∈ V . As before, let αr

1, α
r
2, α

r
3 be the angles of F at the center of the circles

P (v1), P (v2), P (v3). Then as r → s ∈ ∂X, we have three cases to distinguish:
when only one radius approaches to 0, say ρ(P (v1)) → 0, then

(13) αr
1 → π −Θ([v2, v3]).
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When two radii of circles shrink to zero, say P (v1), P (v2), then

(14) αr
1 + αr

2 → π.

When all the radii ρ(P (v1)), ρ(P (v2)), ρ(P (v3)) → 0+, obviously

(15) αr
1 + αr

2 + αr
3 ≡ π.

For any face F ∈ Q1 with k(> 3) sides, without loss of generality we assume
that its vertices are

v1, v2, · · · , vk, vk+1 ≡ v1, vk+2 ≡ v2, · · · .
Denote V F

1 ≡ V L
1 ∩{v1, v2, · · · , vk}. If |V F

1 | = k or k− 1, then we can easily obtain

(16) lim
r→s

∑
vj∈V F

1

αr
j → (k − 2) · π.

When |V F
1 | = k− 2, if vj1 , vj2 ∈ {v1, v2, · · · , vk}\V F

1 are a pair of adjacent vertices
in the boundary of F , then

(17)
∑

vj∈V F
1

αr
i → (k − 2) · π −Θ([vj1 , vj2 ]).

If vj1 , vj2 are not a pair of adjacent vertices in the boundary of F , then

(18)
∑

vj∈V F
1

αr
i → (k − 2) · π.

As r → s ∈ ∂X, observing F r ∈ Q1 and all interstices Ir have the same given
complex structure for all r, then we have the Euclidean diameters,

diam(Ir) → 0.

If there are μ(≥ 3) boundary circles of Ir, say {vj1 , vj2 , · · · vjμ}, whose radii do not
approach to 0+, then the μ limiting circles

{P (vj1)
s, P (vj2)

s, · · · , P (vjμ)
s}

will meet in a single point in the limiting case. Mapping this point to ∞ by a
Möbius transformation, we conclude that their dihedral angles satisfy

(19)

μ∑
λ=1

Θ(P (vjλ)
s, P (vjλ+1

)s) = (μ− 2) · π.

Of course, we have

(20) Θ(P (vjλ)
s, P (vjλ+1

)s) = Θ([vjλ , vjλ+1
])

when jλ+1 − jλ = 1. From Lemma 3.3 and Remark 3.4, it follows that the dihedral
angles Θ(P (vjλ)

s, P (vjλ+1
)s) may be > π/2 if jλ+1 − jλ > 1.

Let {P (vjλ), P (vjλ+1), P (vjλ+2), · · · , P (vjλ+1
)} be any boundary circles chain

with jλ+1 − jλ > 1, where 1 ≤ λ ≤ μ. If jλ < j < jλ+1, then their radii

ρ(P (vj)
r) → 0,

as r → s ∈ ∂X. As before, let αr
j , jλ < j < jλ+1, denote the angles of F r at the

center of the circles P (vj)
r. By a simple computation, as r → s ∈ ∂X,

(21)
∑

jλ<j<jλ+1

αr
j → (jλ+1 − jλ − 1) · π +Θ(P (vjλ)

s, P (vjλ+1
)s);

Licensed to Academia Sinica. Prepared on Fri Aug 22 06:35:42 EDT 2014 for download from IP 124.16.148.3.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON THE TEICHMÜLLER THEORY OF CIRCLE PATTERNS 6527

please see Figure 4. From (21) it follows that

(22) lim
r→s

∑
vj∈V F

1

αr
j → (k − μ) · π +

∑
jλ+1−jλ>1

Θ(P (vjλ)
s, P (vjλ+1

)s).

In view of (19), (20) and (22), we have

lim
r→s

∑
vj∈V F

1

αr
j → (k − 2) · π −

∑
jλ+1−jλ=1

Θ(P (vjλ)
s, P (vjλ+1

)s)

= (k − 2) · π −
∑

jλ+1−jλ=1

Θ([vjλ , vjλ+1
]).

(23)

Obviously we can view (13)–(15) and (16)–(18) as special cases of (23).
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Figure 4

Recall that Q1 ⊂ {Fi}1≤i≤p is the subset consisting of all the faces of Mr such
that there is at least one vertex in V L

1 . Denote by Q1(L) ⊂ {Fi} the surfaces
associated with Q1. By summing up (23) over all faces of the metric space Mr,

(24) lim
r→s∈∂X

∑
v∈V L

1

kr(v) = 2π|L| − π ·
∑

F∈Q1(L)

(kF − 2) +
∑

F∈Q1(L)

∑
eF∈{eF}

Θ(eF ),

where kF is the number of edges of the face F , and {eF} consists of all edges of F
whose end points are both in V \V L

1 .
For any non-empty proper subset L � {1 ≤ l ≤ |V |}, denote by Y (L) ⊂ Y the

half space

(25)

{
y :

∑
l∈L

yl > 2π|L| − π ·
∑

F∈Q1(L)

(kF − 2) +
∑

F∈Q1(L)

∑
eF∈{eF}

Θ(eF )

}
,

where y = (y1, y2, · · · , y|V |). Then we have the following lemma.

Lemma 3.6. The image of the map f : X → Y is

f(X) = Y ∩
⋂
L
Y (L),

where L varies over all non-empty proper subsets of {1, 2, · · · , |V |}.
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6528 ZHENGXU HE AND JINSONG LIU

Proof. Let Y0 ≡ Y ∩
⋂

L Y (L). From (10) and (24) it follows that the image f(X)
lies in the convex polyhedron Y0. From (24), we have seen that the accumulation
points of f(r) as r → ∂X lie in the hyperplanes

∑
l∈L

yl = 2π|L| − π ·
∑

F∈Q1(L)

(kF − 2) +
∑

F∈Q1(L)

∑
eF∈{eF}

Θ(eF ),

which form the boundary of Y0.
Since f : X → Y0 is a continuous, one-to-one mapping, by invariance of the

domain, the map f : X → Y0 is a homeomorphism.
Therefore f(X) = Y ∩

⋂
L Y (L). �

The rest of this subsection is devoted to proving the following.

Theorem 3.7. The point p0 = (0, 0, · · · , 0, 4π/3, 4π/3, 4π/3) is in the image f(X).

It implies the surjectivity of the map H : DP →
∏p

i=1 TIi .

Proof. Lemma 3.6 implies that we only need to check that p0 ∈ Y (L) for any non-
empty proper subset L of {1, 2, · · · , |V |}. If L �= ∅, we denote by V L

1 ⊂ V the
subset which is defined in (11). To simplify the following computation, we extend

the contact graph G to a triangulation G ≡ G(L) of Ĉ by adding some new edges
as follows.

(1) If a face F ∈ {Fi} has three vertices, there is nothing to do.
(2) If F has at least four vertices and it has no vertices in V L

1 , then a triangu-
lation of F is given by adding k − 3 edges in F (e.g. {[v1, vj ]}3≤j≤k−1) to connect
the vertices of F .

(3) If F ∈ {Fi} has at least k > 3 vertices and it has at least one vertex in V L
1 ,

say v1 ∈ V L
1 , then we give a triangulation of F by adding k − 3 edges in F (e.g.

{[v1, vj ]}3≤j≤k−1) to connect the vertices of F .
Let VG (resp. EG , FG) denote the 0-complex (resp. 1-complex, 2-complex) of G.

Obviously VG ≡ V . Define a new function θ on the edges set by letting θ(e) = Θ(e)
if e is an edge of G, and θ(e) = 0 if e is a new edge of G\G. Note the triangulation
G ≡ G(L) may not be a contact graph because it may have double edges. Also
note that G and θ are not geometric and they are only devices for computing angle
sums. By using G and θ, we can greatly simplify the computation in this proof.

For any face F ∈ Q1(L), using the triangulation G, the term (kF − 2) on the
right side of the claim (25) can be rewritten as

(26) kF − 2 = no. of 2-complexes in FG which are subfaces of F .

Also, when vij , vij+1
/∈ V L

1 and ij+1 − ij = 1, the 2-complex {v1, vij , vij+1
} ∈ FG .

Also,

(27) Θ([vij , vij+1
]) = θ(e),

where e ≡ [vij , vij+1
] ∈ EG . The 2-complex {v1, vij , vij+1

} has only one vertex v1 in

the vertices subset V L
1 . Denote by FL

G ⊂ FG the set of 2-complexes with only one
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vertex in V L
1 . By using G and θ, we can rewrite (25) as

Y (L) =
{∑

l∈L
yl > 2π|L| − π · (no. of 2-complexes

in FG with a vertex in V L
1 ) +

∑
Δ∈FL

G

θ(eΔ)

}
,

(28)

where eΔ ∈ EG is the unique edge opposite the vertex of Δ lying in V L
1 ; see e.g.

[12, 19]. In view of the construction of G, all new edges of G are not in the set {eΔ}.
Therefore θ(eΔ) = Θ(eΔ).

The following process is analogous to [12]. For the sake of completeness we give
it here. To prove that p0 = (0, 0, · · · , 0, 4π/3, 4π/3, 4π/3) ∈ Y (L), by using (28),
we only need to check that, for any ∅ �= L � {1 ≤ l ≤ |V |},
(29)∑
l∈L

pl > 2π|L| − π · (no. of 2-complexes in FG with a vertex in V L
1 ) +

∑
Δ∈FL

G

θ(eΔ),

where p0 = (p1, p2, · · · , p|V |).

If |L| = |V | − 1, then (29) obviously holds. Indeed, there are no faces in FL
G .

Hence ∑
Δ∈FL

G

θ(eΔ) = 0.

On the other hand, each face of FG has a vertex in V L
1 . Therefore, by using the

Euler formula, the right-hand side of (29) is

2π · (|V | − 1)− π · |FG | = 2π.

The left side of (29) is 8π/3 or 12π/3. Therefore p0 satisfies the inequality (29).
If |L| = |V | − 2, then the left-hand side of (29) is at least 4π/3. The Euler

formula implies

2π|L| − π · (no. of faces in FG with a vertex in V L
1 ) = 2π · (|V | − 2)− π · |FG | = 0.

We have
∑

Δ∈FL
G
θ(eΔ) ≤ π since there can be at most two faces in the set FL

G .

Thus (29) holds in this case as well.
When 1 ≤ |L| ≤ |V | − 3, we shall show that p0 satisfies (29) by proving that the

right-hand side of (29) is negative in these cases. Let f1, f2, f3 denote, respectively,
the number of faces in FG which have exactly 1, 2, 3 vertices in V L

1 . In fact we have
f1 = |FL

G |. Then

(30) 2π|L|−π · (no. of faces in FG with a vertex in V L
1 ) = π · (2|L|−f1−f2−f3).

Let ε2 denote the number of edges of G which have both of their boundary vertices
in VL. Then the simplicial complex CL spanned by the vertices of V L

1 has Euler
characteristic χL = |L| − ε2 + f3. Since

3f3 + f2 = 2ε2,

we have 2χL = 2|L| − f3 − f2. Hence (29) can be rewritten as

(31)
∑
l∈L

pl > π · (2χL − f1) +
∑

Δ∈FL
G

θ(eΔ) = 2π · χL −
∑

Δ∈FL
G

(π − θ(eΔ)),
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where π/2 ≤ π − θ(eΔ) ≤ π is taken over all the edges of the triangles Δ ∈ FL
G

opposite the angle at the vertex in VL.
To prove that the right-hand side of (31) is negative, we may assume that the

complex CL is connected (therefore χL ≤ 1). Unless CL has Euler characteristic
0 or 1, both terms on the right-hand side of (31) are non-positive, and the sum
is negative. If χL = 0, then |FL

G | ≥ 1 (see e.g. §8 in [12]). The negative of the
right-hand side of (31) is clear. If χL = 1, then the connectivity of CL is 1. That is,
all vertices of V \VL are contained in a connected component of the graph G. Then
|FL

G | ≥ 3 (see e.g. §8 in [12]).

The right-hand side of (31) will also be negative if χL = 1 and |FL
G | ≥ 5.

The remaining cases χL = 1 and |FL
G | = 3 or 4 are covered by conditions

(i), (ii) and (iii) of Section 1. In case |FL
G | = 3, if at least one of the vertices

v|V |−2, v|V |−1, v|V | are in V L
1 , then the left-hand side of (31) is at least 4π/3 and

the desired inequality obviously holds, even though the right-hand side may be
0. When v|V |−2, v|V |−1, v|V | /∈ V L

1 , let {v∗1 , · · · , v∗n} be the adjacent vertices set

of CL. Since |FL
G | = 3, we have n = 3. If {v∗1 , v∗2 , v∗3} = {v|V |−2, v|V |−1, v|V |},

then by using (iii) in Section 1 and the assumption at the beginning of Subsec-

tion 3.2, we have
∑|V |

j=|V |−2 Θ([vj , vj+1]) < π, which is the desired result. When

{v∗1 , v∗2 , v∗3} �= {v|V |−2, v|V |−1, v|V |}, the loop formed by three edges

(32) [v∗1 , v
∗
2 ], [v

∗
2 , v

∗
3 ], [v

∗
3 , v

∗
1 ]

separates the set V . If at least one of the edges of (32) is in G\G, observing
that {v∗1 , v∗2 , v∗3} ⊂ V \V L

1 is adjacent to CL, this contradicts the rule (2) of our
construction of G. Therefore, [v∗1 , v

∗
2 ], [v

∗
2 , v

∗
3 ], [v

∗
3 , v

∗
1 ] ∈ G. By using (i) of Section

1, we show that the right-hand side of (31) is negative.
Similarly, by using (ii), we conclude that the right-hand of (31) is negative when

χL = 1 and |FL
G | = 4.

Therefore, the point p0 = (0, 0, · · · , 0, 4π/3, 4π/3, 4π/3) ∈ f(X). �

3.5. Proof of Lemmas 3.3 and 3.5. Before giving the proofs of Lemmas 3.3 and
3.5, we give some notation.

Let G∗ = (V∗, E∗) be an embedded graph isomorphic to the skeleton of a trian-
gulation T of a closed topological disk. A vertex v0 ∈ V∗ is called interior if there is
a closed chain of neighboring vertices v1, v2, · · · , vk, vk+1 = v1, where either k ≥ 4
or k = 3 and each edge [v0, vj ], 1 ≤ j ≤ 3, is irreducible. Otherwise it is called
a boundary vertex. If a boundary component of G∗ has k(> 3) vertices, and if
conditions (i) and (ii) in Section 1 hold, then a vertex is interior precisely when it
lies in the interior of the closed topological disk.

To prove Lemmas 3.3 and 3.5, the following lemma is needed. It is a straight
generalization of Andreev’s theorem as interpreted by Thurston in [19].

Lemma 3.8. Suppose that Θ∗ : E∗ → [0, π/2] is a dihedral angle function. And
suppose that conditions (i), (ii) and (iii) in Section 1 hold. For any boundary vertex
v of G∗, let ρ(v) > 0 be given. Then there is an immersed circle pattern Q in the
complex plane C realizing the data (G∗,Θ∗), such that ρ(Q(v)) = ρ(v) for each
boundary vertex v ∈ V∗.

Moreover the circle pattern Q is unique up to Euclidean isometries.
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Proof. For completeness, we sketch an elementary proof here. For its detail, we
refer to [6, 19].

Denote by N the cardinality of the interior vertices set V int
∗ . Let RN

+ denote the

space of functions ψ : V int
∗ → R+ = (0,+∞). Similarly, denote by RN the set of

functions K : V int
∗ → R.

Then we can construct a transformation f : RN
+ → RN as follows.

For any ψ ∈ RN
+ , we define κ : V∗ → R+ by κ(v) = ψ(v) for v ∈ V int

∗ and
κ(v) = ρ(v) for each boundary vertex v ∈ V∗. Then κ defines a path metric in the
complex space T (1). In this metric space we have the curvature

K(v) = 2π − σ(v), v ∈ V int
1 ,

where σ(v) is the sum of the angles at v of the 2-simplexes which contain the vertex
v. Then our transformation f takes ψ to the curvature function K. By the same
argument as in [19], we deduce that f is one-to-one, and maps RN

+ onto some open

domain in the space RN bounded by a finite number of hyperplanes. By using
conditions (i) and (ii), we deduce that the curvature K = 0 ∈ RN is always in the
correct side of the hyperplanes. Hence it is in the image of the map f . Then the
corresponding pre-image κ : V∗ → R+ will define an immersed circle pattern Q in
C, which realizes the data (G∗,Θ∗) and satisfies the required boundary condition.

Clearly, the uniqueness of Q up to Euclidean isometries follows from the unique-
ness of the map κ. �

Proof of Lemma 3.3. Now we can prove the existence part of this lemma.
Note that {P (v1), P (v2), · · · , P (vk)} are circles which share circular arcs

{γ1, γ2, · · · , γk} with the boundary of the interstice I. Also there are k marked
vertices on ∂I, which are the intersecting points of the circles P (vj) and P (vj+1),
where 1 ≤ j ≤ k.

For the given complex structure [τ : I → Ĉ], there are k vertices on τ (I), denoted
by {a1, a2, · · · , ak}. By post-composition with a Mobiüs transformation, we may

assume that the region τ (I) ⊂ Ĉ is a bounded domain in the complex plane C. Lay
down a regular hexagonal packing of circles in C, say each of radius 1/n. By a small
translation, we may assume that each boundary vertex of {a1, a2, · · · , ak} lies inside
a circle. By using the boundary component ∂τ (I) like a cookie-cutter, we obtain
a circle packing Qn which consists of all the circles intersecting the closed region
τ (I). The circles in Qn which meet the boundary ∂τ (I) will be called boundary
circles of Qn.

Denote by Kn the contact graph of Qn. By using the contact graph Kn, we
construct a new graph Kn as follows. For j = 1, 2, · · · , k, we add the vertex vj (using
the same notation) to the graph Kn, and add edges [vj , vj+1], 1 ≤ j ≤ k, where
vk+1 ≡ v1. Then we add edges [vj , v], where v ∈ {v ∈ ∂Kn : Qn(v) ∩ τ (γi) �= ∅}.
Obviously the resulting graph Kn is isomorphic to the 1-skeleton of a triangulation
of a closed topological disk.

Let En denote the edge set of Kn. Define a dihedral angle function θn : En →
[0, π/2] by setting θn(e) = Θ(e) if e = [vj , vj+1], 1 ≤ j ≤ k. Otherwise set θn(e) = 0.
Since k > 3, we can easily check that (Kn, θn) satisfies conditions (i), (ii) and (iii).
Lemma 3.8 implies that there exists a unique immersed circle pattern Qn in C
realizing (Kn, θn). Also its boundary circles have radii ρ(Qn(vj)) = rj , 1 ≤ j ≤ k.
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Let F τ
n be the carrier2 of the circle packing Qn. Then we have a simplicial map

An : F τ
n → C determined by the correspondence of centers of circles in the circle

patterns Qn and Qn. By the Ring Lemma in [14], An : F τ
n → C is a quasiregular

function. Letting n → ∞, the following Proposition 3.9 and the quasicomformality
implies that {An} will converge to an analytic immersion Aτ : τ (I) → C; see e.g.
[14]. It is clear that the map hτ ≡ Aτ ◦ τ : I → C has the desired properties.

Proposition 3.9. The analytic map Aτ : τ (I) → C does not degenerate.

Proof. Observe that {Qn(v1),Qn(v2), · · · ,Qn(vk)} are the boundary circles of Qn,
and for all n ≥ 1 they have radii ρ(Qn(vj)) = rj , 1 ≤ j ≤ k. If the limit Aτ :
τ (I) → C degenerates to a constant z0, then the circle patterns {Qn} will converge
to a circle pattern Q with ρ(Q(vj)) = rj , 1 ≤ j ≤ k and all circles {Q(vj)} meet
at z0.

By using a Möbius transformation, we map z0 to ∞. Under this transformation,
the new circle pattern Q (use the same notation) meets at ∞. Therefore all circles
of Q are straight lines. Since k ≥ 4, Q(v1) and Q(v3) are a pair of parallel lines
in C. Also Q(v2) and Q(v4) are a pair of parallel lines. Therefore k = 4 and∑4

j=1 Θ([vj , vj+1]) = 2π. Hence Θ([vj , vj+1]) = π/2, 1 ≤ j ≤ 4. By condition (ii),
this contradicts our assumption that I is an interstice of the fixed circle pattern P
with k(> 3) vertices. �

To show the uniqueness part of Lemma 3.3, we assume, by contradiction, that
hτ : I → C and h̃τ : I → C are two immersed maps with the desired properties
stated in Lemma 3.3.

For simplicity, at first we assume hτ , h̃τ are injective. Then there exists a
holomorphic homeomorphism φ ≡ h̃τ ◦ h−1

τ : hτ (I) → h̃τ (I). Obviously the
homeomorphism φ can be extended to a homeomorphism between the closures
of hτ (F ), h̃τ (F ), denoted by the same notation φ.

Since hτ , h̃τ map the circular arc γj ⊂ ∂I to circular arcs with the same radius
rj , where 1 ≤ j ≤ k. Then the harmonic function log |φ′(w)|, w ∈ hτ (I), satisfies
the following Dirichlet-Neumann boundary condition

∂

∂n
log |φ′(w)| = 1

rj
− |φ′(w)|

rj
, w ∈ hτ (γj), 1 ≤ j ≤ k,

where the operator ∂/∂n denotes differentiation with respect to the exterior normal
on the boundary curve of hτ (I). For more details, please refer to the Appendix of
this paper.

Suppose that the harmonic function log |φ′(w)| attains its minimal at a point
w0 ∈ ∂hτ (I). Then w0 ∈ hτ (γj) for some 1 ≤ j ≤ k. There are three cases to
distinguish:

(1) When w0 is not an intersecting point of two adjacent boundary circles, we
have

0 ≥ ∂

∂n
log |φ′(w0)| =

1

rj
− |φ′(w0)|

rj
,

from which we deduce that |φ′(w0)| ≥ 1.

2The carrier of a circle packing is by definition the union of all interior of the circles and all
interstices of the circle pattern.
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(2) If w0 is an intersecting of two adjacent circles with the dihedral angle �= 0,
then

0 ≥ ∂

∂n
log |φ′(w0)| =

1

rj
− |φ′(w0)|

rj
.

Hence |φ′(w0)| ≥ 1.
(3) If w0 is the tangent point of two adjacent circles, simple computation shows

that |φ′(w0)| = 1.

The above three cases imply that |φ′(w)| ≥ 1, ∀w ∈ hτ (I).

Similarly, by considering the point where log |φ′(w)| attains its maximal value,
we deduce that |φ′(w)| ≤ 1, ∀w ∈ hτ (I). Therefore, |φ′(w)| ≡ 1, ∀w ∈ hτ (I), which

shows h̃τ = g ◦ hτ for some Euclidean similarity g.

When either of the immersions hτ , h̃τ is not a holomorphic homeomorphism, we
use the Riemann region Dτ ≡ {(z, hτ (z)) ⊂ C2 : z ∈ I} (resp. D̃τ ≡ {(z, h̃τ (z)) ⊂
C2 : z ∈ I}) rather than the region hτ (I) (resp. h̃τ (I)); see e.g. §1.4 in [17] for
the definition. In this case the proof is essentially a repetition of the above so it is
omitted. Therefore this completes the proof of Lemma 3.3. �
Proof of Lemma 3.5. As in the proof of Lemma 3.3, we assume that hτ : I →
hτ (I), h̃τ : I → h̃τ (I) are both global holomorphic homeomorphisms. Then there
exists a holomorphic homeomorphism

φ ≡ h̃τ ◦ h−1
τ : hτ (I) → h̃τ (I).

Obviously the holomorphic homeomorphism φ can be extended to a homeomor-
phism between their closures. Then the harmonic function log |φ′(w)| satisfies

∂

∂n
log |φ′(w)| = 1

rj
− |φ′(w)|

r̃j
, w ∈ hτ (γj), 1 ≤ j ≤ k,

where rj (resp. r̃j) is the radius of the circle cτj (resp. c̃τj ). Let w0 be the point
where |φ′(w0)| attains its maximal value. Then w0 ∈ ∂hτ (I). Observe that r̃j ≤
rj , 1 ≤ j ≤ k. Obviously there are three cases:

If w0 is the tangent point of two adjacent circles cτj , c
τ
j+1 for some 1 ≤ j ≤ k,

then simple computation shows that

(33) |φ′(w0)| ≤
(

1

rj
+

1

rj+1

)
·
(

1

r̃j
+

1

r̃j+1

)−1

≤ 1.

If w0 is the intersecting point of two adjacent circles cτj , c
τ
j+1 with dihedral angle

θj = Θ([vj , vj+1]) > 0, then

(34) |φ′(w0)| ≤ r̃j/rj ≤ 1.

If w0 is not the intersecting point of two adjacent circles, then we also have

(35) |φ′(w0)| ≤ r̃j/rj ≤ 1.

From (33), (34) and (35), it follows that |φ′(w)| ≤ 1 holds on the closure of
the region hτ (I). Moreover, if w ∈ hτ (γj) and w is not an end point of the arc
hτ (γi), 1 ≤ j ≤ k, then the strong maximal principle3 implies that

(36) |φ′(w)| < 1.

3The strong maximal principle states that: if a non-constant bounded harmonic function
attains its minimal (resp. maximal) at z0 ∈ ∂Ω, and the boundary ∂Ω satisfies an interior sphere
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Let Aj (resp. Ãj), 1 ≤ j ≤ k, be the Euclidean center of the circle cτj (resp. c̃τj ).
Denote by Bj the vertex of the interstice hτ (I) which is an intersecting point of cτj
and cτj+1 (see Figure 5). Similarly we denote by B̃j the corresponding vertex of the

region h̃τ (I).
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Figure 5

First we assume that r̃jλ < rjλ , 1 ≤ λ ≤ μ, and r̃j = rj , j ∈ {1, 2, · · · , k}
\{j1, j2, · · · , jμ}. For any 1 ≤ λ ≤ μ, we consider the circles chain

{cτjλ , c
τ
jλ+1, c

τ
jλ+2, · · · , cτjλ+1−2, c

τ
jλ+1−1, c

τ
jλ+1

},
where cτjμ+1

≡ cτj1 . Then their radii satisfy

rj = r̃j , jλ < j < jλ+1, and r̃jλ < rjλ , r̃jλ+1
< rjλ+1

.

Therefore

∠ÃjλÃjλ+1B̃jλ ≤ ∠AjλAjλ+1Bjλ ,

∠Ãjλ+1
Ãjλ+1−1B̃jλ+1−1 ≤ ∠Ajλ+1

Ajλ+1−1Bjλ+1−1.

Using (36) and integrating |φ′(w)| over the circular arc hτ (γj) gives ∠B̃j−1ÃjB̃j <
∠Bj−1AjBj , jλ < j < jλ+1. We have

(37)
∑

jλ<j<jλ+1

α̃j <
∑

jλ<j<jλ+1

αj .

Summing up (37) over all 1 ≤ λ ≤ μ, and using
∑k

j=1 α̃j =
∑k

j=1 αj = (k − 2) · π,
we have proved that

μ∑
λ=1

α̃jλ >

μ∑
λ=1

αjλ ,

which completes the proof in case r̃j = rj , j ∈ {1, 2, · · · , k}\{j1, j2, · · · , jμ}.
Let us assume that r̃jλ < rjλ , 1 ≤ λ ≤ μ, and

r̃j ≥ rj , j ∈ {1, 2, · · · , k}\{j1, j2, · · · , jμ}.

condition at z0, then the outer normal derivative of u at z0, if it exists, satisfies the strict inequality
∂u

∂n
(z0) > 0 (resp. < 0); see e.g. Lemma 3.4 of [5].
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Define a new positive numbers set {Rj}1≤j≤k by setting Rj ≡ rj if j ∈ {j1, j2, · · · ,
jμ}. Otherwise, set Rj ≡ r̃j . Using the complex structure [τ : I → Ĉ] ∈ TI and
the radii {Rj > 0}1≤j≤k, it follows from Lemma 3.3 that there exists an immersion
Hτ : I → C such that Hτ (γj) is a circular arc on a circle Cτ

j with radius Rj , and
the intersecting angle between the adjacent circles Cτ

j , C
τ
j+1 is θj , 1 ≤ j ≤ k. Write

ϑj , 1 ≤ j ≤ k, the angles of the polygon by connecting the centers of the adjacent
circles Cτ

j , C
τ
j+1 with straight arcs. As in the first part of this proof, it follows that

(38)

μ∑
λ=1

α̃jλ >

μ∑
λ=1

ϑjλ .

Similarly, by applying the same argument to hτ and Hτ ,

(39)
∑

j /∈{j1,j2,··· ,jμ}
αj ≥

∑
j /∈{j1,j2,··· ,jμ}

ϑj .

With
∑k

j=1 αj =
∑k

j=1 ϑj = (k − 2) · π, it follows from (39) that

(40)

μ∑
λ=1

αjλ ≤
μ∑

λ=1

ϑjλ .

Combining (38) with (40) gives

μ∑
λ=1

α̃jλ >

μ∑
λ=1

αjλ ,

which completes the proof of Lemma 3.5. �

4. Injection and surjection of the map H. Part 2

When there are no triangles in {F1,F2, · · · ,Fp}, in this section we give the proof
of the injection and surjection parts of Theorem 1.3.

To prove the surjective part, recall that P is the fixed circle pattern with the
graph G and {I1, I2, · · · , Ip} are the interstices of P . For any interstice Ii ⊂
{I1, I2, · · · , Ip} with k(> 3) circular arcs {γj} on its boundary, let P (vi1);
P (vi2); · · · ;P (vik) be the corresponding circles in P adjacent to Ii such that γj =
∂Ii ∩ P (vij); 1 ≤ j ≤ k.

The proof is similar to that of Lemma 3.3 in Section 3.5. For the given complex
structure [τ : Ii → Ĉ], we assume that τ (Ii) ⊂ Ĉ is a bounded domain in C. Lay
down a regular hexagonal packing of circles in C, say each of radius 1/n. We obtain
a circle packing Qin which consists of all the circles intersecting the closed region
τ (Ii). Assume that any boundary vertices of τ (Ii) lie inside of some boundary circles
of Qin. Denote by Kin the contact graph of Qin. By using the contact graph G and
Kin of Qin, 1 ≤ i ≤ p, we can construct a contact graph of Ĉ by adding edges from
the vertex vij to the boundary vertices {v ∈ ∂Kin : Qin(v)∩ τ (γj) �= ∅} and adding
edges between vij and vi(j+1), 1 ≤ j ≤ k. The resulting graph Gn is isomorphic to

the 1-skeleton of a triangulation of Ĉ.
Let En denote the edges set of Gn. Define a dihedral angle function Θn : En →

[0, π/2] by setting Θn(e) = Θ(e) if e = [v, w] ∈ E. Otherwise set Θn(e) = 0. Since
G can be viewed as a subgraph of Gn, denote by the same notation {v1, v2, · · · , v|V |}
the vertices of Gn associated with the vertices of V .
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Obviously (Gn,Θn) satisfies conditions (i), (ii) and (iii) in Section.1. The result

in the previous section implies that there is a circle pattern Pn in Ĉ realizing
(Gn,Θn). It is unique up to Mobiüs transformations. We partially normalize this

circle pattern such that the disk associated with v1 is D(v1) = Ĉ\{|z| < 1}. There
is a correspondence of circles c → c′. Fixing a point z0 ∈ τ (I1), let c0 be a circle
in Q1n whose flower4 contains z0. We further normalize the situation by a Mobiüs
transformation which fixes the unit disk such that c′0 is centered at 0 ∈ {|z| ≤ 1}.

Denote by F τ
in the carrier of Qin, 1 ≤ i ≤ p. Then we have simplicial maps

{Ain : F τ
in → C} determined by the correspondence of centers of circles in the

circle patterns Qn and Pn. By the Ring Lemma in [14], Ain : F τ
in → C is an

injective quasiconformal map. Letting n → ∞, for 1 ≤ i ≤ p, Ain will converge to
an analytic injective map Aτ

i : τ (Ii) → C or a constant; see e.g. [14].
Suppose that Pn → P∞. Then the following proposition implies that the circle

pattern P∞ has the desired property.

Proposition 4.1. The circle pattern P∞ does not degenerate.

Proof. By contradiction, let us assume that the limit circle pattern P∞ degenerates.
Denote by W+ the set of vertices v in the graph G for which limn→∞ ρ(Pn(v)) > 0,
and W− = V −W+. Note v1 ∈ W+. Replacing by a subsequence if necessary, we
may assume that for each v ∈ W+, the sequence of circles Pn(v) converges to some
circle P∞(v) ⊂ C.

First, suppose that W− = ∅. That is, all circles in P∞ do not degenerate. Then
at least one of the interstices, say I∞1 , degenerates. Hence I∞1 degenerates to a
point. Then all the boundary circles {P∞(v1j)}1≤j≤k meet at a single point in C.
Since k ≥ 4, the circles P∞(v11) and P∞(v13) are tangent. P∞(v12) and P∞(v14)
are also tangent. Moreover Θ([v1j , v1(j+1)]) = π/2, 1 ≤ j ≤ 4, which contradicts
(ii) in Section 1.

Now suppose that W− �= ∅. If |W+| ≤ 2, then all interstices in P∞ degenerate.
It is impossible by our normalization condition that the origin 0 ∈ {|z| ≤ 1} lies in
the interstice Iτ1 .

From now on we assume that |W+| ≥ 3. Let G∞ denote the contact graph of
P∞. If there are vertices v, w ∈ G which do not share an edge in G but they share
an edge in the contact graph G∞ of P∞, then the circles P∞(v) and P∞(w) should
then be tangent, since any interstice will degenerate to a point if it degenerates.
P∞(v) together with P∞(w) cannot bound an interstice with any other circles in
P∞. Therefore there exist v′, w′ ∈ G∞ such that w1 ≡ v, w2 ≡ v′, w3 ≡ w,w4 ≡ w′

form a simple loop of four edges in the graph G∞. Furthermore Θ([wj , wj+1]) =
π/2, 1 ≤ j ≤ 4, which implies [wj , wj+1] ∈ G. Therefore [v, w] ∈ G, which is a
contradiction.

If there are no new edges in the graph G∞, we can then view G∞ as a subgraph of
G. Note that there are no triangles in G, which implies that there are no triangles in
G∞. The subgraph G∞ divides the Riemann sphere into several connected domains
{F∞

i } (1 ≤ i ≤ p′). There exists a domain F∞
i such that

F∞
i = Fi1 ∪ Fi1 · · · ∪ Fiq

for some p ≥ q > 1, where {Fij} ⊂ {Fi}1≤i≤p. Each interstice I∞ij , 1 ≤ j ≤ q, of

P∞ degenerates to a point, which implies that the interstice I∞i degenerates to a

4The flower centered at c is the closed set consisting of c and its interior, all circles tangent to
c and their interiors, and the interiors of all the triangular interstices formed by these circles.
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point. Therefore all boundary circles of I∞i must pass through a single point. It
contradicts our assumption that there are no new edges in G∞. �

To prove the injectivity of the map H : DP →
∏p

i=1 TIi , by contradiction, let us

assume that there are circle patterns Q, Q̃ on Ĉ such that H(Q) = H(Q̃). That

is, there are holomorphic homeomorphisms φi : Ii → Ĩi, 1 ≤ i ≤ p, between the
pairs of corresponding interstices, which map circular arcs or circles on ∂Ii to the
corresponding circular arcs or circles on ∂Ĩi.

Our goal is to prove that φi = T |Ii for some Mobiüs transformation T : Ĉ → Ĉ
independent of 1 ≤ i ≤ p. By using a Mobiüs transformation, we may assume
∞ ∈ Ip is a fixed point of φp : Ip → Ĩp. Then φp has the form

(41) φp(z) = z +
c1
z

+
c2
z2

+ · · ·

near ∞. If |φ′
i(z)| ≡ 1 for all z ∈ Ii, 1 ≤ i ≤ p, we deduce that

(42) φi(z) ≡ z, z ∈ Ii.

Otherwise, there is at least some z ∈ {Ii} such that |φ′
i(z)| �= 1. Supposing |φ′

i(z)| <
1, then

min{log |φ′
1|, log |φ′

2|, · · · , log |φ′
p|} < 0.

Hence there is some φi, say φ1, such that

(43) log |φ′
1(z0)| = min{log |φ′

1|, log |φ′
2|, · · · , log |φ′

p|} < 0.

The maximal principle immediately implies that z0 ∈ ∂I1. Let v1, v2, · · · , vk be the

vertices of F1. Write ∂I1 =
⋃k

j=1 γj , where γj = ∂I1 ∩ Q(vj) and write φ1(γj) =

∂Ĩ1 ∩ Q̃(vj), 1 ≤ j ≤ k.
Suppose that z0 ∈ γj0 for some 1 ≤ j0 ≤ k. We assume that z0 is not an end

point of the circular arc γj0 (otherwise, we can apply (33) or (34) to obtain the

same results). Denote rj ≡ ρ(Q(vj)) (resp. r̃j ≡ ρ(Q̃(vj))), 1 ≤ j ≤ k. Then the
harmonic map log |φ′

1(z)| satisfies the Dirichlet-Neumann condition

0 ≥ ∂

∂n
log |φ′

1(z0)| =
1

rj0
− |φ′(z0)|

r̃j0
,

where the operator ∂/∂n denotes differentiation with respect to the exterior normal
on γj0 . Therefore r̃j0/rj0 ≤ |φ′

1(z0)| < 1. It follows from (43) that, for 1 ≤ i ≤ p,

(44) r̃j0/rj0 ≤ |φ′
i(z)|, z ∈ Ii.

If the circle Q(vj0) is tangent to all other circles in the pattern Q, then (44) gives

(45) 2π · r̃j0 =

∫
Q(vj0 )

|φ′
1(z)||dz| ≥

∫
Q(vj0 )

r̃j0
rj0

|dz| = 2π · r̃j0 ,

which implies that |φ′
1(z)| ≡ r̃j0/rj0 , z ∈ Q(vj0). Therefore

∂

∂n
log |φ′

1(z)| = 0, ∀z ∈ Q(vj0).

The strong maximal principle implies

(46) log |φ′
1(z)| ≡ r̃j0/rj0 , ∀z ∈ I1.

If Q(vj0) is not isolated in Q, then Q(vj0) belongs to a loop of circles or a chain
of circles. For notational simplicity we assume that Q(vj0) lies in a loop of circles
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Q(v1), Q(v2), · · · , Q(vk), Q(vk+1) = Q(v1). If Q(vj0) lies in a chain of circles, the
proof is essentially the same and we omit it.
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Figure 6

For 1 ≤ j ≤ k, let Aj denote the center of Q(vj) and let Bj , Ej denote the
intersecting points of Q(vj) and Q(vj+1). Let δj denote the circular arc between

Ej−1 and Ej ; see Figure 6. Denote by Ãj , B̃j , Ẽj the corresponding points in Q̃

and denote by δ̃j the corresponding arcs in Q̃. If |φ′
1(z)| is not a constant in the

interstice I1, from (44) and the strong maximal principle, then it follows that the
length of the circular arc

(47) L(γ̃j0) =

∫
γj0

|φ′
1(z)||dz| >

r̃j0
rj0

· L(γj0).

On the other hand, it follows from (43) that L(δ̃j0) ≥
r̃j0
rj0

·L(δj0), where {δj0} are all

other boundary curves on the circle Q(vj0) adjacent to some interstices. Therefore,

(48) ∠Bj0−1Aj0Bj0 < ∠B̃j0−1Ãj0B̃j0 .

For all other boundary curves δj0 , (44) implies that |φ′
2(z)| ≥ r̃j0/rj0 , ∀z ∈ δj0 .

Hence

(49) ∠Ej0−1Aj0Ej0 ≤ ∠Ẽj0−1Ãj0Ẽj0 .

For notational simplicity we assume that there are only two circles Q(vj0−1) and
Q(vj0+1) adjacent to Q(vj0). For 1 ≤ j ≤ k, let ηj (resp. η̃j) denote the angle

∠BjAjEj (resp. ∠B̃jÃjẼj), and let ζj (resp. ζ̃j) denote the angle ∠Bj−1AjEj−1

(resp. ∠B̃j−1ÃjẼj−1). From (48) and (49), it follows that η̃j0 < ηj0 or ζ̃j0 < ζj0 .
Assuming

(50) η̃j0 < ηj0 ,

and using ΘQ([vj0 , vj0+1]) = ΘQ̃([vj0 , vj0+1]), we now obtain r̃j0+1/rj0+1 < r̃j0/rj0 ,
which proves

G1 ≡ {v : ρ(Q̃(v))/ρ(Q(v)) < r̃j0/rj0} �= ∅.
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Without loss of generality, let the chain {vj0+1, · · · , vj1−1} be the maximal con-
nected subgraph of G1 containing vj0+1. Then their radii satisfy

r̃j0
rj0

>
r̃j0+1

rj0+1
,
r̃j0+2

rj0+2
, · · · , r̃j1−1

rj1−1
and

r̃j0
rj0

≤ r̃j1
rj1

.

Hence

(51) ζ̃j1 ≤ ζj1 .

Suppose that φij (δj) = δ̃j for some ij ∈ {1, 2, · · · , p}. Using (44) and integrating
|φ′

ij
| (resp. |φ′

jj
|) on the circular arc δj (resp. γj), we have thus proved that, for

j0 + 1 ≤ j ≤ j1 − 1,

η̃j + ζ̃j < ηj + ζj .

Therefore it follows from ΘQ([vj , vj+1]) = ΘQ̃([vj , vj+1]), j0 ≤ j ≤ j1, that ηj0 +

ζj1 < η̃j0 + ζ̃j1 , which contradicts (50) and (51). Hence φ′
1(z) ≡ c, ∀z ∈ I1 for

some constant c ∈ C. Therefore, “≥” should be “=” in (45), which contradicts
(47). Hence φ′

i(z) ≡ c for those Ii adjacent to the circle Q(vj0). By induction on
all interstices {Ii} and using the normalization (41), we conclude φi(z) ≡ z, ∀z ∈
Ii, 1 ≤ i ≤ p.

Therefore, there is a Mobiüs transformation T : Ĉ → Ĉ such that T (Q) = Q̃,
which implies that H : DP →

∏p
i=1 TIi is injective. �

Appendix: Some classical results.

In order to obtain Lemmas 3.3 and 3.5, the following results are needed. These
results are classical. Please refer to [15].

Suppose that D, D̃ ⊂ C are domains bounded by circular arcs or circles Cj , C̃j ,

where j = 1, 2, · · · , k. Let w = f(z) : D → D̃ be a univalent conformal map

which maps a circular arc or circle Cj ⊂ ∂D onto a circular arc or circle C̃j ⊂ ∂D.
Denote by C one of the boundary components bounded by q circular arcs or circles
Cj , j = 1, 2, · · · , q, where q ≤ k.

Suppose that z = z(s) is the parametric representation of the boundary curves
in terms of the arc length s. If Lj is the length of the circular arc Cj , then the
variable s will run from 0 to L =

∑
Lj , and z(s) will be an analytic function of s,

except at the corners s = L1, L1 + L2, · · · . We have the following Frenet formula
for the curvature

(52) k(s) =
1

i

z̈

ż
, ż =

dz

ds
.

By our assumption, the univalent conformal map w = f(z) carries the curve

system {Cj}1≤j≤k into the system of circular arcs {C̃j}1≤j≤k in the w-plane. We

assume that f(z) is analytic in the closed domain D = D ∪ ∂D, where ∂D =
⋃
Cj .

Again, the analytic curve system C̃ =
⋃
C̃j bounds the domain D̃. Let s′ be the

arc length parameter on C̃. Since

(53)
dσ

ds
= |f ′(z)|, z = z(s),

we obtain that
dw

dσ
= f ′(z)ż|f ′(z)|−1,
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and hence by logarithmic differentiation with respect to the parameter σ:

d2w

dσ2

(
dw

dσ

)−1

=

[
f ′′

f ′ ż +
z̈

ż
− d

ds
log |f ′(z)|

]
ds

dσ.

Comparing imaginary parts on both sides and using the formula (52) and its anal-
ogous for the domain F , we obtain that

(54) k̃(σ)dσ = k(s)ds+ �{d log f ′(z)},

where k̃(σ) denotes the curvature of the curve C̃ at the point w(σ). Using (53) and
the Cauchy-Riemann equations, we may bring (54) into the form

(55)
∂

∂n
log |f ′(z)| = k(s)− k̃(σ)|f ′(z)|,

where the operator ∂/∂n denotes differentiation with respect to the exterior normal
on the boundary curves C.

Since the boundary curve Cj , 1 ≤ j ≤ k, is a circular arc or circle, then k(s)
must be constant 1/rj on the curve Cj , where rj is the radius of the circle Cj .

Similarly k̃(σ) = 1/r̃j , where r̃j is the radius of C̃j . Therefore, for 1 ≤ j ≤ k,

∂

∂n
log |f ′(z)| = 1

rj
− |f ′(z)|

r̃j
.
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