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Let So be a smooth 2-dimensional closed manifold, i . e .  a compact surface without bound- 
ary. The famous Riemann moduli problem claimed that the equivalent classes of complex struc- 
tures on the closed surface So of genus g />  1 could be holomorphically parametrized by 3 g - 3 

complex parameters. Let ~r (S0) denote the space of all complex structures on So, and let Diff0 
be the group of diffeomorphisms isotopic to the identity on So, which acts by pulling back on 
7 ' (S0) .  The TeichmUller space of So, T ( S 0 ) ,  is defined as the quotient space 7'( S0)/Diff0. 

Teichmtlller defined the natural metric dr (defined below) on T(So)  and proved that the space 

is homeomorphic to the unit ball in R 6g -6  in the metric topology. 
It is a well-known fact that besides the Teichmtiller coordinate, there are many other global 

coordinates for T ( S o ) ,  for instance, the Nielsen-Fenchel coordinate and the Fricke coordi- 

nate FIl . The main purpose of this paper is to give T ( S o )  a new global coordinate by using 
quadratic differentials on the Riemann surface. Also the topological structures for the trajectories 
of a certain class of Jenkins-Strebel quadratic differentials will be studied. 

Unless otherwise stated, all surfaces considered in this paper will be assumed to be oriented 
and of genus g > 1. All mappings between surfaces will be assumed to be bijective and orienta- 
tion-preserving. 

1 Background materials 

The smooth compact surface So may be given a complex structure S~ by pulling back through 
a diffeomorphism a : So--~S, where S is the Riemann surface of the same genus as So. Let SI 
and $2 be two Riemann surfaces of genus g ,  and let f be a quasiconformal mapping between S1 

3,fdz 
and $2. As usual, we denote by p f ( z )  - the Behrami coefficients of f between SI and 

3 =fdz 
1 + I  ,z(zo) I 

$2, and by K[f] = esssuP,o~ s the maximal dilatation o f f .  The Teichmtiller met- 
1 - i , u s ( z o )  I 

ric d r ( ' , "  ) is defined as dr(  [ S :  ] ,  [ S, 2 ] ) = suplogK[ h ] ,  where the supremum is taken over 

all quasiconformal mappings h ~-id: Sa--~S,2. It is well known that Teichmtiller space T(So)  

is a complete metric space in Teichmtiller metric d r ( ' , '  ) (cf. ref. [ 2 ] ) .  
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We denote by Q ( S ) the space of all holomorphic quadratic differentials cp = ~o ( z ) dz 2 on 

S.  It is a Banach space with Ll-norm: 

II ~ l l  = ~ I ~ l d x d y -  
s 

As a conclusion from Riemann-Roch Theorem Q ( S ) is a vector space of real dimension 6g  - 6.  

Each nonzero ~vE Q ( S )  induces a singular metric ds = I~(z)t'/Zldz I on S;  the ~p-length of 

any curve )' C S is defined as 

l~(~ ' )  = ~ I ~ ( z ) l l / 2 1 d z l .  
7 

We call z0 a critical point of ~ if ~ ( x ) = 0 ,  otherwise a regular point. At the regular point z0, 

there is a natural parameter w with d w 2 =  q~(z)dz 2, where w(z) = u + iv = q~  (note that 

~/~ is a holomorphic 1-form). If z0 is a zero of order p ,  there is a local chart w with ~o = 

wPdw 2 around Eo. The metric ds has a eone-like singularity with ( p  + 2 )~  degrees at Zo. 
In this paper we will use the notion of the ~0-height of a curve )' C S .  
Defmtfion 1.  Let ~o be a nonzero holomorphic quadratic differential on S.  For any eurve 

the infimum h~ ( ) ' )  = inf ,_  r I~ I ~ vc-~I , where ~' varies over all rectifiable curves in the ) ' ,  

homotopy class of ) ' ,  is called the height of Z with respect to 9 -  
The arc on S is called a horizontal (vertical) line of ~ if r > 0 ( < 0)  along it. The maxi- 

mal horizontal (vertical) arc is called a horizontal (vertical) trajectory. A trajectory is said to be 
critical if it meets a singularity (named critical point) of ~o when it is continued in either direc- 
tion. 

A system of finitely many smooth closed curves I ) ' l ,  ) ' 2 , ' " ,  )'p } C So are called admissi- 
ble,  if none of the curves is homotopically trivial (homotopic zero) and any two curves ) ' /and )'j 
neither intersect nor are freely homotopic for i # j .  On So, the maximal numbers of closed curves 

in an admissible system is 3g  - 3. A ring domain Ro C So is said to be of homotopy type ;r if 

a simple closed curve )'0 C R0,  as separating its two boundary components, is freely homotopic 
to ) ' .  Let { )'~, )'2, " " ,  )'p } be an admissible system, a set of non-overlapping ring domains { RI ,  

R 2 , ' " ,  Rp t on So is said to be of homotopy type I )'1, ~ ' 2 , " ' ,  )'v } ' if each Ri is of homotopy 

type )'i. 
I)efinilion 2 .  A nonzero holomorphic quadratic differential ~ E Q ( S )  is called a Jenkins- 

Strebel quadratic differential if all its non-critical trajectories are closed. The Jenkins-Strebel dif- 
ferential ~ is said to be of homotopy type { ~q, ) ' 2 , " " ,  )'p }, if its characteristic ring domains are 

of the type { )'1, ) ' 2 , " " ,  )'p} �9 
It is well known that tp E Q ( S )  is a Jenkins-Strebel differential if and only if the set of its 

critical trajectories with their end points is compact. In other words, a Jenkins-Strebel differential 
on s divides the Riemann surfaces into several ring domains. 

Jenkins proved an extremal length problems in Riemann surface theory 'by using this kind of 

quadratic differentials ~33 . Later, Strebel studied the general theory of quadratic differentials 

deeply [53 . The following theorem proved simultaneously by Hubbard-Masur N3 and Reneh is cru- 
cial to this paper. 

Theorem A I51 . Let { )'1, )'2, "'", )'p } be an admissible system on a compact Riemann 
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surface S. Then, for arbitrarily given numbers bi > 0 ( i = 1, " " ,  p ) ,  there exists a Jenkins- 
Strebel quadratic differential 9 on S,  whose character ring domains Ri ( i = 1 , 2 ,  "'", p ) have 
type ~'i and height bi (metric by 9 ) .  Moreover, 9 is uniquely determined. 

2 Pants and its complex structure 

Let ~ be a surface of (0 ,3 )  form, i . e .  it is the resulting surface that cut three disks from 
the topological sphere, and label the border components of ~ b y  {3! ,32,33t .  Let ap be a com- 
plex structure on ~ .  We call the resulting Riemann surface P a pant if none of its boundaries de- 
generates. Pants are blocks for all compact Riemann surfaces of genus greater than one. By the 

process of Schottky doublinj P ,  we get a compact Riemann surface pd of genus g = 2. The 

boundary curves {31 ,32,33 of P are an admissible curves system on pal. By Theorem A, there 

is a unique quadratic differential 9p~ on pal, which has the type {31,32,33 }, and each character 
ring domain Ri ( i = 1 ,2 ,3 )  has height 2. We denote by 9F the restriction of 9 d  to P ,  and call 
9p the characteristic quadratic differential of P .  From symmetry, it is obvious that the three 

boundary curves {a I ,32,33 are the core curves of the three character domains. 
The following two theorems show that the complex structure equivalence classes on ~ can be 

uniquely determined by Ii = 1~ (31),  12 = 1~0(32) and 13 = I, (33) ,  where 9p is the character- 

istic differential on P .  
Theorem 1. Suppose that a is a complex structure on ~ ,  and it determines a Riemann 

surface P .  Then the complex structure of P is uniquely determined up to eonformal mapping 
which is homotopic to the identity by the triple (lm, 12,/3) given above. 

Proof.  For convenience, we discuss the general condition first. 
Suppose that {~1, a2,83} are the border components of P and 9 is any Jenkins-Strebel 

quadratic differential on pd which has the type {31 , 32 , 331 . Because the genus of pd is 2, by 
Riemann-Roch Theorem, the total orders of the critical points of 9 are 4. Clearly, there is no 
critical point of 9 on the three boundaries of P .  Thus the total orders of the critical points of 
in P are 2, i . e .  9 has a critical point of order 2 or two critical points of order 1 on P .  The crit- 
ical graph ~ ( t h e  dotted curves in fig. 1 ) of ~o has only 3 topological structures. 

(a) (b) (c) 

Fig. 1. (a) 9 has two critical points of order 1 in P;  none of the end points of one critical trajectory is the 
same. ~ineludes three critical trajectories, each of which joins the two critical points of 9 .  The length of any 

boundary trajectory is less than the sum of the other two. (b)  9 has two critical points of order 1 in P and the 
critical graph ~ includes critical trajectory, whose two end points are the same critical point of 9 .  In this case, 

~includes two close curves and the third trajectory joins the two critical points. The length of one boundary trajec- 

tory is greater than the sum of the other two. (c) 9 has only one critical point 0 of order 2, and there exist 4 

critical horizontal trajectories that end at 0 .  The only topological structure for the critical graph ~of  9 in P is a 
closed curve tmmvetsing itself at O. The length of one boundary trajectory is equal to the sum of the other two. 

In the pant P ,  we assume li = l , ( 3 i ) ,  and set L = ( l l ,  12,/3). If we have another triple 
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L = ( 2 , ,  12,13) with respect to another pant P and its characteristic differential ~ ,  and if L = 
I , ,  then the critical graphs of q~p and 9k are topologically equivalent on ~ .  Without losing gener- 
ality, we suppose that their critical graphs meet case ( a ) .  For i = 1 , 2 , 3 ,  the ring domains 

Ri C P and Ri C F' have the same height I ( in the respective characteristic differential singular 

metrics) and l~, ( a i )  = l~, ( 0 i ) ;  thus Ri and Ri have the same module. We can construct a 

holomorphic homeomorphism hi between Ri and R~ satisfying hi(  OI ) = O I and hi ( 0 2 )  = 9 2 ,  
where Oi (Oi) are the two critical points of ~p (~v~). The holomorphic mappings hi ( i  = 1 , 2 , 3 )  

can be wedded into a holomorphic mapping h between P and P meeting h(3  i ) = ai. Further- 
more, h - - / d  : ~ - - ~ .  Thus we can reach the theorem. 

Theorem 2.  For any positive numbers triple L = ( l l ,  12,13 ) ,  there is a complex struc- 
ture a on ~ ,  so the resultant pant P satisfies the condition: with respect to the characteristic 
quadratic differential ~vp on P ,  we have li = l ~ p ( 3 i )  , i = 1 , 2 , 3  (from Theorem 1, it is unique- 

ly determined).  

P roo f .  On the complex z- plane, we have the ring domain Ri = z : 1 < I z I < exp 

- -  o n  R i ( i = 1 , 2 , 3 )  In terms of the parameter z,  and the quadratic differential ~oi = 27r! ~ z " 

the horizontal trajectories of q~i are the circle I z : I z I = r }, where 1 < r < exp . The ~i- 

lengths of the two boundaries of Ri are 1 i and the 9~i-height of the ring domain Ri is 1. 
There is a critical graph ~ on ~ with respect to the triple ( l l ,  12, 13). We can wed the 

three ring domains Ri into a pant P .  At the same time, three quadratic differentials ~i are wed- 
ded into a quadratic differential ~Op on P with type 131 ,32 ,33 } and height bi = 1. The horizontal 
trajectories of ~p are just taken from that of ~i on the respective ring domains Ri (c f .  ref. [5]  ) .  
Therefore the resulting pant P has the propositions states as Theorem 2.  

Now, let 1-' = I ~'1, ~'2, " " ,  ~3g-3} be a fixed admissible curves system on So. Then F di- 
vides So into 2 g  - 2  surfaces of ( 0 , 3 )  form, which are labeled by { ~ , ~ 2 , " "  , ~ g - 2 }  �9 Associ- 

ated to each complex structure a on So, a unique Jenkins-Strebel differential ~ r  = 9 ~ ( z ) d z  2 has 
type /-', and height bl = 2 ( i = 1 ,2 ,  "'" , 3 g  - 3)  appears. We call ~r the characteristic quadrat- 
ic differential of S~. 

Here and hereinafter, we set ~§  = I x E R I x > 0} . To each [ ~ ] E T ( S o ) ,  we set lo ( ) ' i )  
= l ~  ( )'i ) ,  where )'i is the core curve of the character domain R i of ~ r .  Consider the mapping 

L : T ( S o )  -~  ,~3g-3 

ESa] ~ (/a(~'l), la(~2),"" ,la(~3g-3))" 
Proposi t ion 1.  L:  r (So)- -~  :~:3s- 3 is a well defined function on the Teichmttller space 

T(So) .  
Proof .  This is the straightforward consequence of the definition of the Teichmtiller space 

T (  So)  . 

Proposi t ion 2 .  L : T ( S o ) - - ~ 3 + g  - 3 is onto. 
ProoL In order to prove the above proposition, we introduce the notion of cubic 

graphs [6] . 

A cubic graph is a finite 3-regular connected graph, which is the combinatorial skeleton for 
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the pasting of pairs of pants. For our purposes it is 
convenient to view each edge of the cubic graph as the 
union of two half-edges, and each half-edge as emanat- 
ing from one of the two connected vertices. A graph 
is called 3-regular, if every vertex has three emanating 
edges. In the construction of the compact Riemann sur- 
face, each pant with its three boundary horizontal tra- 
jectories will be interpreted as a vertex with its three 

half-edges (fig. 2 ) .  Two 3-graph ~ C  So and .c~C So 
are called equivalent if and only if there is a homeomor- 

phism f = / d :  So --~ So satisfying f ( . ~ )  = ~'~. 
Associated to the maximal curves system /-', an 

/ \ 

@ 
Fig. 2 

equivalent elass of cubic graphs ,~on So occurs. For i = 1 , 2 , " "  , 2 g -  2, we denote the three 

border components o f ~ / b y  a/i , j = 1 , 2 , 3 .  To each ( 11,12, " " ,  13g-3) E~3+ s-3 , we construct a 
unique pant Pi meeting the condition that the ~ov.-length of its boundary curves 3~j is l~i, and each 

ring domain has ~ov-height 1. It is possible to glue these pants together now. We can determine 

the local relationship of all the P,(  i = 1 ,2 ,  "'" ,2g  - 2) via the cubic graph ~ ,  and then we need 
to identify the pants' edges. It could be done simply by picking two pants arbitrarily and then go- 
ing on with the eharaeteristie quadratic differential length of arc as a parameter towards the posi- 
tive direction of the loops. With this construction, one can get a Riemann surface S~ and the 
characteristic quadratic differential ~0r on S~, with L( [ S~ ] ) = ( 11,12 , ' " ,  13s-3). 

Since the map L is onto, in order to study T( So) ,  we have to consider the fiber of L. Be- 
cause the ~v- lengths of the three border edges uniquely determine the complex structure P on ~ ,  
we must study how many different complex structures can be obtained by gluing these 2g - 2 
pants. The only freedom in the construction is to twist a certain angle along the edges before glu- 
ing it to the other, so other 3 g - 3 real parameters corresponding to the angles have to be taken 
into aeeount. Obviously, with this method, one can obtain all the possible complex structures on 
So from the fixed value of L,  and it turns out that these complex structures are pairwise non- 

equivalent. Thus T(So)  can be parametrized by ~3+s-3 x ~3g-3. 
On S ,  we suppose the border components of the pant Pi to be 3ij.(j = 1 , 2 , 3 ) ;  for conve- 

nience, we set 3~4 = 3;~. Let r~ be a simple path joining 8~ to a~(j+~). Doubling the pant P~, 

we can obtain the surfaee Pi g of genus 2 endowed with the characteristic quadratic differential 
~0v, which is the same as the characteristic differential ~0r restriction to Pi.  Moreover, rq pro- 

duees a non-trivial simple loop - '  r q  o n  P, .  

Now we consider the ~v-geodesies in the isotopy class of r'0.. Considering the lifting of Pig 

and ~ov to the universal covering spaee r~;, there are two possibilities by Theorem 14.3 of ref. 

[5]: 
- t  

( i)  there exists only one ~ov-geodesie rq in the isotopy class of r q ; 

(ii) there exist infinite ~0v.-geodesics in the isotopy class of r~.. In this ease, any two of 

them bind a ring domain which is swept out by parallel O-trajectories isotopic to r~.  We denote 

by 6~ the maximal ring domain on Pig which is swept out by all parallel O-trajectories isotopic to 
r'q, and we denote the core curve of .Jg by rq. Obviously, we have 0 = rt/2 from the symmetry. 
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Let ~',j denote the intersecting point of rij with 3iy. ~ij is a unique basepoint on O ij. Suppose 
that the pants Pi, a n d  Pi2 share the same boundary 7~(note that P i  a n d  Pi2 may be the same) ,  

with the above process, we get the unique basepoint ~', on 7i from P i ,  and another point ~'~ on 

7i from P i .  We consider the left twist between the two points ~i and ~'i, and denote it by 

r (So) (note that the notion of left twist depends only on the orientation of S~ and no orientation 

r 
of 7~ is involved). We set Oi (S~) = 2~ ~ l ~ '  and call Oi (S~) the angle parameters. 

R e m a r k .  t l , ,  Oil ( i = 1 , 2 , " -  , 3 g  - 3) are the global real coordinates on T( So) ,  and 
t Oil are unique up to the choice of the basepoint. 

3 Main result 

The goal of this section is to give the proof of the main theorem in this paper. 
The basic tool used in the proof of the main theorem is the theory of measure foliations. First 

of all, we recall that a measured foliation ~ "  on a surface is a foliation equipped with a measure 
on the space of the leaves. For every regular point z on the leaves of ~,, we have a neighborhood 

and a chart r : U --~ R 2 , which sends the leaves of . 7  to horizontal line of R 2 . If two neighbor- 
hoods Ui and Uj overlap, there is a translation function r defined on Cj (Uj )  such that r o ~j = 
r on Uif"l Uj, with the property that r is of the form 4~ij(x,y) = ( f ( x , y ) , c  + y ) ,  where c 

is a constant. The measure defined on leaves o f g i s  I dy l  for each local chart r  U--~R 2. Ob- 
viously, this definition of measure is independent of the choice of the local charts. Letting 5'. be 
all non-trivial homotopy classes of simple closed curves on So, for each y E 5'. and the measure 

foliation .7, we define the intersection number of-3-and 7 as i ( ~ , , a )  = inf / ~ For example, 

on any Riemann surface S ,  a nonzero quadratic differential 9 = 9 ( z )  dz 2 E Q ( s ) induces the 
measure foliation on S ,  whose leaves are the horizontal trajectories and the measure P dy  t = 

1 ~ / 9 ( z ) d z  2 �9 It is clear that i ( 9 , 7 ) = h ~ ( 7 ) .  

Two measure foliations ~ and ~ on So are called measure equivalent if and only if for each 
7 E ~ ,  i ( ~ ( ,  7 ) = i(5~2, 7 ) ,  and we denote by ~ / ~ "  the measure foliation space, i . e .  the 
measure equivalent classes of measure foliations. Then we have the mapping 

i .  : ~5~---,- R ~ , 

i ~ ( . ~ ) ( y )  = i ( ~ , , 7 ) .  
By definition, i .  is an injection, so we can view ~ as a subspace of R x . The product topo- 

logical structure on R x induces the topological structure on Lf'$g. Then lim ~ / =  ..~ if and only if 

for each y E  F~, i(~Jii, Y)---~i(37,, u  . 
Although the following two results will not be used in the context, we cite it here for the 

completeness. The first theorem is due to Thurston. 

Theorem 3 ~sl . The space .///~5~ is homeomorphic to ~:~6g- 6. 

As noted earlier, the horizontal trajectories of each nonzero quadratic differential 9 on S in- 

duces a measure foliation. Conversely, Kerckhoff [7] , Hubbard and Masur I"l have proved the fol- 
lowing perfect theorem. 

Theorem 4 I4'71 . For any compact Riemann surface S and the measure foliation ~ ' E  

. / ~ , ,  there is exactly one differential 9 E Q ( s ) ,  whose horizontal measure foliation is measure 
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equivalent to ,~. 
Consider/~: Q---~ T ( S 0 ) ,  whose fiber over a point S~ is the quadratic differential space 

Q ( So ) �9 The union of these spaces Q can yield the structure of a vector bundle the cotangent 

bundle of the Teiehmtiller spaee. L e t / "  = { ~'i : i = 1 , 2 , ' " ,  3 g - 3 t be the fixed admissible sys- 
tem on So, and let ;~r C Q he the space of all the Jenkins-Strebel differentials whose associate 

system of curves is homotopie to U .  Denote PF: ~ - ~  T ( S o )  x ~3+g-3, the mapping whose first 
factor is the canonical projection p restricted to ~v and whose second factor gives the heights of 
the cylinders with respect to curve 7i- 

Hubbard and Masur obtained the following result E41 . 

Theorem B E41 . The mapping P r :  ~---~T(So)  x ]~s+s-3 is a homeomorphism. 
From the result in see.  2 ,  we have the mapping as follows: 

]~ : T (S0 )  - 3g-3. __~ ~.+ ~, ~ '@g-3 , 

L ( [ S a ] )  = ( L ( S a ) , O l ( S a ) , ' " , O 3 g _ 3 ( S a ) ) .  

Main Theo rem.  The mapping L:  T( S0)--~R3. g -3 x ~3g-3 is a homeomorphism. 

According to Main Theorem, ]~ gives another global coordinate system on T ( S o ) ,  which is 
different from the previous Fenehel-Nielsen coordinate of T ( S o ) ,  etc.  

P roof  of  Main  Theorem.  The proof of the theorem proceeds in three steps: 
(1)  L is a continuous mapping; 
(2)  L is surjective; 
(3)  Z is injeetive. 

Let (Sk ,  k = 1 ,2 ,  "'" ) C  T ( S o )  be a sequence satisfying S~-~S in the Teiehmtiller mettle 

as k ---~ ao . We set ~3+g-3 = t 2 , 2 ,  "'" ,2t  in Theorem B. Since the aforementioned mapping is a 
homeomorphism, the differentials - 9k must be close to - 9 ( in / d d ~ )  as k--~ o0, where 
9 k ( 9 )  are the characteristic differentials of S k ( S ) .  So we have l i ( S k )  = h_ ~ ( ) ' i ) - ' } l i ( S )  = 

h _ ,  ( )t i ) ,  i : l ,  2 , ' ' ' ,  3 g  -- 3.  For each )t i ~ /~, we assume that ~/,  and ~ / s h a r e  )'i as the 

same boundary component on So and set ~ =  ~ / / U  )t i U ~/2" Furthermore, fix a simple closed 

curve 8 C ~ w h i c h  intersects )'i. Then i ( - 9k, ~)--"  i ( - 9 , 8 ) .  Using Theorem 25.4  in ref. 

[5] we have r162  thus Os(Sk)= 2zc r r ' li ( Sk ) --~ Os ( S ) = 2~ li (s---l) " As a conse- 

quence we prove ( 1 ) ,  i . e .  I, is continuous. 
From the construction of the Riemann surface S , ,  we have already proved that L is a surjec- 

tive. 
Finally we have to show that L is injective. Suppose that [ S ] and [ S ]  are any two points 

in T(So) ,  and ] ~ ( S ) =  [ . ( S ) .  Then L ( S ) =  L ( S ) .  The corresponding pants P; C S and k~ 

C S have the same length of boundary edges in the respective characteristic quadratic differen- 
tials. According to Theorem 1, we can construct a holomorphic homeomorphism h i between Pi 
and E'i such that hi maps the boundary edges of P~ onto the corresponding boundary edges of F'i. 
Since 0 j ( S )  = 0 y ( S ) ( j  = 1 , 2 , " "  , 3 g -  3 ) ,  by Painlev6' s theorem and the cubic graph ~ ,  all 
the holomorphic homeomorphism hi between Pi and Pi can be glued together into a holomorphic 
homeomorphism h between S and S ,  which is isotopic to the identity mapping, we have [ S ] = 
[ S ] ,  which implies that L is injective. According to Brouwer' s theorem on the invariance of do- 
main, 
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~ 7~(~)  ~ ~ - 3  x ~38-3 

is a homeomorphism. 
Remark.  We can directly prove that ?.-1: !~3+s- 3 x ~3s -  3_.~ T(So)  is continuous. If we 

use quasiconformal mapping instead of using Brouwer Theorem, then we can give a new proof to 
the case where the Teichmtll]er space T(So)  is homeomorphic to the unit ball in the 6 8  - 6 - d i -  
mensional Euclidean space. 
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