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ABSTRACT

The contacts graph (or nerve) of a packing is a combinatorial graph

which describes the combinatorics of the packing. Let G be the 1-skeleton

of a triangulation of an open disk and let P be a rectangle packing

with contact graph G. In this paper a topological criterion for deciding

whether G is an α-EL parabolic graph is given. Our result shows the

internal relation between the topological property of the packing P and

the combinatorial property of the contacts graph G of P .

1. Introduction

A packing is a collection of compact connected sets with disjoint interiors in

the complex plane C or the Riemann sphere Ĉ. In this paper we shall consider

rectangle packings with edges parallel to the coordinate axes in C.
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Given an indexed packing P = (Pv : v ∈ V ), one can define its contacts

graph (or nerve) G = G(P ) as follows. The set of vertices of G is V , the

indexing set for P , and an edge 〈u, v〉 appears in G precisely when the sets Pu

and Pv intersect. Thus G encodes some of the combinatorics of P .

The circle packing theorem [12] says that for any finite planar graph G there

is some packing of geometric circles in the plane with contacts graph G. This

fantastic theorem has received much attention since Thurston conjectured that

the Riemann map from a simply connected domain to the unit disk can be ap-

proximated by using circle packings with the prescribed nerves. The conjecture

was later proved by Rodin and Sullivan [17]. Some proofs of the circle packing

theorem appear in [1], [2], [6], [22], [16], [14], [18], [21], [11].

The circle packing is well studied. Therefore, it seems to be of some interest

to investigate other special cases. In [19], according to Thurston’s suggestions,

O. Schramm investigated the case where the packing sets are rectangles. He

showed how the squares tile a rectangle with the special combinatorial structure.

What makes the case of rectangles especially interesting? If P is a packing of

rectangles with edges parallel to the coordinate axes, and if the contacts graph

of P is a triangulation of an open topological disk (that is, the 1-skeleton of a

triangulation of an open topological disk), then the packing is actually a tiling.

This follows from the following easy observation which shows that there will be

no “gaps” between the rectangles.

Observation 1.1: Let Ra, Rb, Rc be three rectangles whose edges are par-

allel to the coordinate axes. Suppose that the intersection of each pair of the

rectangles is nonempty. Then Ra ∩Rb ∩Rc �= ∅.
In order to state other results, we introduce the notion of fat sets. Heuristi-

cally, a set is fat if its area is roughly proportional to the square of its diameter.

This property also holds locally.

Here is the precise definition.

Definition 1.2: The open disk with center x and radius r will be denotedD(x, r).

Let τ > 0. A measurable set X ⊂ Ĉ is τ -fat, if for every x ∈ X , x �= ∞,

and for every r > 0 such that D(x, r) does not contain X , the inequality

area(X ∩D(x, r)) ≥ τ area(D(x, r)) holds.
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In [7], Z. X. He and O. Schramm gave a type characterization theorem for

those infinite fat packing P = (Pv : v ∈ V ), where each Pv is a smooth disk

and a τ -fat set. Here the real number τ is independent of the vertex v.

Therefore, there is a natural problem about the packings of rectangles: Can

we give a similar type characterization result for the packings of rectangles?

Suppose that P = (Pv : v ∈ V ) is a rectangle packing. Though each rectangle

is a τv-fat set, there is no fixed number τ > 0 such that P is a τ -fat packing.

At the same time a rectangle is not a smooth disk.

In order to give an answer to the above question, we shall introduce the

notions of an α-EL parabolic graph and an α∗-EL parabolic graph. α-EL (or

α∗-EL) parabolicity is a combinatorial property. It is defined by using Cannon’s

vertex extremal length [5]. The precise definitions will appear later.

By using these notions, we shall prove

Theorem 1.3 (Type Characterization Theorem): Let P = {Pv : v ∈ V } be a

rectangle packing in C whose edges are parallel to the coordinate axes. And let

α : V → (0, 1] be an assignment of weights to the vertices with α(v) = Hv/Wv,

where Hv is the height of the rectangle Pv and Wv is its width with Hv ≤ Wv.

Denote by G = (V,E) the contacts graph of P . Assume that G is locally finite

and connected.

(1) If the rectangle packing P is locally finite in C, then G is α-EL parabolic.

(2) Conversely, suppose the contact graph G is a triangulation of an open

topological disk. If it is α∗-EL parabolic, then P is locally finite in C.

In the Appendix we will give an example of an α-EL parabolic packing that

is not locally finite in the complex plane C.

Remark: In this paper we say a packing P = {Pv : v ∈ V } is locally finite in

C if, for every compact subset K of C,

Pv ∩K = ∅,
except for a finite number of Pv in P . We say a graph G = (V,E) is locally

finite if, for every vertex v ∈ V , the degree of v is finite. Here the degree of a

vertex v ∈ V is the number of edges it emanates.

This paper is organized as follows. In Section 2 we introduce the notion of

discrete extremal length and give some basic properties of discrete extremal

length. In Section 3 we give some elemental properties of fat sets and give the
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proof of the first part of Theorem 1.3. Some topological lemmas on rectangle

packings are introduced in Section 4. The object of Section 5 is to show the

connection between the α-Extremal Length and the α∗-Extremal Length. The

proof of the second part of Theorem 1.3 was left to Section 6. In the Appendix

we construct an example of an α-EL parabolic packing that is not locally finite

in C.

Notational Conventions: Throughout the paper, for any set A we denote by |A|
the cardinality of A. We will denote by G = (V,E) a locally finite, infinite,

connected graph, where E = E(G) is the set of edges in G and V = V (G) is

the set of its vertices.

Acknowledgements. This work was partially done when the first author

visited the Graduate School of the City University of New York in the USA.

The first author would like to thank Prof. Yunping Jiang for his hospitality. We

also wish to express our sincere gratitude to the anonymous referee for his/her

careful reading and very useful suggestions.

2. Discrete extremal length

In this section we shall define the general discrete extremal length in an

infinite graph. The extremal length of a set of paths in a graph is the dis-

crete counterpart of the extremal length of a family of curves in a Riemannian

manifold. It was first introduced by Duffin (1962) for finite graphs and was

subsequently studied in the infinite case by J. Cannon, Z. X. He, O. Schramm

and others (see, e.g., [5], [7]).

We present here the basic definitions and properties which will be used in the

sequel. Let G = (V,E) be a locally finite connected graph. It will always be a

simple graph; that is, each edge has two distinct vertices, and there is at most

one edge joining any two vertices.

A path γ ⊂ G is a finite or infinite sequence (v0, v1, . . .) of vertices such that

〈vi, vi+1〉 ∈ E for i = 0, 1, . . .. Denote by V (γ) = {v0, v1, . . .} the vertices of γ.

For convenience we write v ∈ γ instead of v ∈ V (γ). Similarly, for any set of

paths Γ = {γ} in the graph G, we set V (Γ) = {V (γ) : γ ∈ Γ}. A set A ⊂ V

of vertices is said to be connected, if for every v, w ∈ A, there is a path γ in

G from v to w with V (γ) ⊂ A. (We allow trivial paths which contain only one

vertex.)
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Let a function α : V → (0, 1] be an assignment of weights to the vertices. A

nonnegative function m : V → [0,∞) is called a (discrete) metric on G. Given

a path γ and a metric m, we define the m-length and the m-dual-length of

γ, respectively, to be

Lengthm(γ) =
∑
v∈γ

m(v);

Dual-Lengthm(γ) =
∑
v∈γ

α(v)m(v).

Note that a shortest path from a vertex v0 to itself is the path γ0 = (v0), and

its length (or dual-length) is Lengthm(γ0) = m(v0) (or Dual-Lengthm(γ0) =

α(v0)m(v0)).

If Γ is a collection of paths of G, then we define its m-length (or m-dual-

length) to be the least m-length (or m-dual-length) of a path in Γ:

Lengthm(Γ) = inf
γ∈Γ

{Lengthm(γ) }

(or Dual-Lengthm(Γ) = inf
γ∈Γ

{Dual-Lengthm(γ) }).

For any metric m : V → [0,∞) on G, we define its α-area ‖ m ‖2α by

areaα(m) =‖ m ‖2α=
∑
v∈V

α(v) ·m(v)2.

The collection of all metrics m on G with 0 < areaα(m) < ∞ will be denoted

by Mα(V ).

Finally, the α-extremal length and the α∗-extremal length of Γ are,

respectively, defined as

ELα(Γ) = sup

{(
Lengthm(Γ)

)2
areaα(m)

: m ∈ Mα(V )

}
;

EL∗
α(Γ) = sup

{(
Dual-Lengthm(Γ)

)2
areaα(m)

: m ∈ Mα(V )

}
.

These are two numbers in [0,∞]. Note that the ratio
(
Lengthm(Γ)

)2
/areaα(m)

(or
(
Dual-Lengthm(Γ)

)2
/areaα(m)) is independent of a positive constant mul-

tiple of the metric m.

Given subsets A,B ⊂ V , we denote by Γ(A,B) = ΓG(A,B) the set of all

paths in G with initial point in A and terminal point in B. The α-extremal
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length ELα and α∗-extremal length ELα between A and B are, respectively,

defined by

ELα = ELα(A,B) = ELα(Γ(A,B));

EL∗
α = EL∗

α(A,B) = EL∗
α(Γ(A,B)).

An infinite path γ in G is transient if it contains infinitely many distinct

vertices. The set of transient paths in G with the initial point in A will be

denoted by Γ(A,∞). The α-extremal length and α∗-extremal length from

A to ∞ are, respectively, defined as

ELα(A,∞) = ELα(Γ(A,∞));

EL∗
α(A,∞) = EL∗

α(Γ(A,∞)).

To make the definitions of ELα(A,∞) and EL∗
α(A,∞) more explicit, we have

ELα(A,∞) = sup
m

inf
γ

{(
Lengthm(γ)

)2
areaα(m)

}

= sup
m

inf
γ

⎧⎪⎨⎪⎩
(∑

v∈γ m(v)
)2

∑
v∈V α(v) ·m(v)2

⎫⎪⎬⎪⎭ ;

EL∗
α(A,∞) = sup

m
inf
γ

{(
Dual-Lengthm(γ)

)2
areaα(m)

}

= sup
m

inf
γ

⎧⎪⎨⎪⎩
(∑

v∈γ α(v)m(v)
)2

∑
v∈V α(v) ·m(v)2

⎫⎪⎬⎪⎭ .

Here m runs over Mα(V ) and γ runs over ΓG(A,∞). Of course, these make

sense only for an infinite graph G.

An infinite graph G is α-EL parabolic (or α∗-EL parabolic) if

ELα({v},∞) = ∞ (or EL∗
α({v},∞) = ∞) for some v ∈ V . Otherwise, G is

α-EL hyperbolic (or α∗-EL hyperbolic).

For a metric m, we let d∗m(A,B) (respectively, d∗m(A,∞)) denote the dual-

distance from A to B(respectively, from A to ∞) in the metric m. That is,

d∗m(A,B) = Dual-Lengthm(Γ(A,B)) = inf{Dual-Lengthm(γ) : γ ∈ Γ(A,B)},

d∗m(A,∞) = Dual-Lengthm(Γ(A,∞)) = inf{Dual-Lengthm(γ) : γ ∈ Γ(A,∞)}.
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These definitions give a discrete analog for the classical notion of extremal

length ([13] is a good introduction to continuous extremal length). The vertex

extremal length was introduced by J. Cannon [5]. Cannon’s motivation was to

obtain criteria for deciding whether a group acts conformally on the Riemann

sphere Ĉ. Later, Z. He and O. Schramm [7] discovered that the extremal met-

rics of vertex extremal length give square tilings of rectangles with prescribed

contacts. That is, these metrics realize the supremum in the definition of the

extremal length.

At the end of this section, we give an elementary combinatorial of the infinite

graph, which will be needed below.

Proposition 2.1: Let G = (V,E) be an infinite graph and v0 ∈ V be a vertex.

Let a function α : V → (0, 1] be an assignment of weights to the vertices and

let β : V → [0,∞) be a non-negative function of the vertices. Let M = Mα(V )

and Γ = Γ({v0},∞). Then

sup
m∈M

inf
γ∈Γ

⎧⎪⎨⎪⎩
(∑

v∈γ β(v)m(v)
)2

∑
v∈V α(v) ·m(v)2

⎫⎪⎬⎪⎭ = ∞

if and only if there exists a finite α-area metric m0 ∈ Mα(V ) such that

inf

{∑
v∈V

β(v)m0(v) : γ ∈ Γ

}
= ∞.

Proof. The sufficiency of this proposition is obvious, so we only need to prove

the necessity. In what follows, for notational convenience we denote

dβm ≡ inf

{∑
v∈V

β(v)m(v) : γ ∈ Γ

}
,

where m ∈ Mα(V ) is any metric.

Now we prove the necessity. Suppose that

sup
m∈M

inf
γ∈Γ

⎧⎪⎨⎪⎩
(∑

v∈γ β(v)m(v)
)2

∑
v∈V α(v) ·m(v)2

⎫⎪⎬⎪⎭ = ∞.

Then, for any j ∈ N, there exists a metric m̃j ∈ Mα(V ) such that

(2.1)
(dβm̃j

)2

‖ m̃j ‖2α
> 2j .
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If dβm̃j
= ∞ for some j, then the conclusion obviously holds. In fact m̃j is

the metric we need. So we assume without loss of generality that dβm̃j
< ∞ for

every j ∈ N. Since m̃j ∈ Mα(V ) (that is 0 <‖ m̃j ‖α< ∞), and dβm̃j
satisfies

the inequality (2.1), we have 0 < dβm̃j
< ∞. Define a series of new metrics as

follows:

mj(v) =
1

dβm̃j

· m̃j(v) for each v ∈ V.

Note that dβc m̃j
= c · dβm̃j

when c is a positive constant. Therefore, we have

dβmj
= 1 and

1

‖ mj ‖2α
=

(dβmj
)2

‖ mj ‖2α
=

(dβm̃j
)2

‖ m̃j ‖2α
> 2j.

Hence

(2.2) ‖ mj ‖2α=
∑
v∈V

α(v)m2
j (v) < 2−j .

Define a metric m0 on G by setting

m0(v) =

∞∑
j=1

mj(v)

j
for each v ∈ V.

It follows from (2.2) that, for each v ∈ V ,

(2.3)

α(v)m2
0(v) =

( ∞∑
j=1

√
α(v)

mj(v)

j

)2

≤
( ∞∑

j=1

1

j2

)( ∞∑
j=1

α(v)m2
j (v)

)

≤
( ∞∑

j=1

1

j2

)( ∞∑
j=1

‖ mj ‖2α
)

<

( ∞∑
j=1

1

j2

)( ∞∑
j=1

2−j

)
< ∞.

Since α(v) > 0, the inequality (2.3) shows that 0 ≤ m0(v) < ∞ for each

v ∈ V . This implies that the new metric m0 is well defined. Using the Schwartz
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inequality and (2.2), we get an estimate for the α-area of m0 as follows:

(2.4)

areaα(m0) =
∑
v∈V

α(v)m2
0(v)

=
∑
v∈V

( ∞∑
j=1

√
α(v)mj(v)

j

)2

≤
∑
v∈V

{( ∞∑
j=1

1

j2

)( ∞∑
j=1

α(v)m2
j (v)

)}

=

( ∞∑
j=1

1

j2

)( ∞∑
j=1

∑
v∈V

α(v)m2
j (v)

)

<

( ∞∑
j=1

1

j2

)( ∞∑
j=1

2−j

)
< C1,

where C1 > 0 is a universal constant. Noting ‖m0‖2α ≥ ‖m̃1‖2α/(dβm̃1
)2 > 0,

thus m0 ∈ Mα(V ).

Since dβmj
= 1, we have ∑

v∈γ

β(v)mj(v) ≥ 1

for every γ ∈ Γ. So for each γ ∈ Γ it follows that∑
v∈γ

β(v)mj(v)

j
≥ 1

j
.

Therefore, for each γ ∈ Γ, we have

∑
v∈γ

β(v)m0(v) =

∞∑
j=1

∑
v∈γ

β(v)mj(v)

j
= ∞.

Note m0 ∈ Mα(V ). We get dβm0
= ∞. So we complete the proof of Proposition

2.1.

3. Some geometric behavior of rectangle packing

In Section 1 we give the definition of a fat set. Here we will show some basic

properties of such sets.
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Fact 3.1: Let F be a τ -fat set, τ > 0. Then, for every z ∈ C and r > 0,

(3.1) area(D(z, 3r) ∩ F ) ≥ πτ diameter(D(z, r) ∩ F )2

holds.

Proof. Let x, y ∈ D(z, r) ∩ F . It is clear that D(x, |y − x|) ⊂ D(z, 3r). By the

τ -fatness of F , we have

area(D(z, 3r) ∩ F ) ≥ area(D(x, |y − x|) ∩ F ) ≥ πτ |y − x|2.

The fact follows.

Lemma 3.2: Let F be a connected τ -fat set in Ĉ and let g be a Möbius trans-

formation. Then F ∗ = g(F ) is a τ∗-fat set, where τ∗ = τ/200.

Remark: For the proof of Lemma 3.2 refer to [20].

Fact 3.3: Let R be a rectangle whose edges are parallel to the coordinate axes.

Suppose that h is the height of the rectangle and w its width with h ≤ w. Let

k = h/w. Then the rectangle R is a k/(π(k2 + 1))-fat set.

Proof. Let R = [a, b] × [c, d] be a rectangle with four vertices zi, i = 1, . . . , 4.

See Figure 1. So R has height h = d− c and width w = b− a.

Obviously, for any positive number r > 0, D(z1, r) does not contain R if and

only if 0 < r ≤ √
w2 + h2. Hence, for 0 < r ≤ √

w2 + h2, we have a low bound

of area(D(z1, r) ∩R)/area(D(z1, r)).

(a) (b)

Figure 1
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If 0 < r ≤ h, it is easy to see that

area(D(z1, r) ∩R)

area(D(z1, r))
= 1/4.

If h<r≤ w, let S= Ω∩D(z1, r)−R, where Ω={(x, y)∈R
2 : x < b and y > c}

(the shaded region in Figure 1 (a)). It is clear that

area(S) = (1/2) (θr2 − r2 sin θ cos θ)

= (r2/4)(2θ − sin(2θ)),

where the angle θ is as in Figure 1 (a). Thus we have

area(S)

area(D(z1, r))
= (1/(4π))(2θ − sin(2θ)).

Therefore, it follows that

area(D(z1, r) ∩R)

area(D(z1, r))
=

area(D(z1, r) ∩Ω)

area(D(z1, r))
− area(S)

area(D(z1, r))

= 1/4− (1/(4π))(2θ − sin(2θ)).

We know that (1/(4π))(2θ − sin(2θ)) is an increasing function of θ ∈ (0, π/2).

So area(D(z1, r) ∩R)/area(D(z1, r)) is a decreasing function of r ∈ (h,w].

If w < r ≤ √
w2 + h2, let S1 be the connected component of Ω∩D(z1, r)−R

which contains the point z2 = (b, d), and let S2 be the connected component

of Ω ∩ D(z1, r) − R which contains the point z4 = (a, c) (the shaded regions,

respectively, in Figure 1 (b)). It is clear that

area(S1) = (1/2) (θr2 − r2 sin θ cos θ)

= (r2/4)(2θ − sin(2θ));

area(S2) = (1/2) (ϕr2 − r2 sinϕ cosϕ)

= (r2/4)(2ϕ− sin(2ϕ)),

where the angles θ and ϕ are as in Figure 1 (b). Thus we have

area(S1) + area(S2)

area(D(z1, r))
= (1/(4π))(2θ − sin(2θ)) + (1/(4π))(2ϕ− sin(2ϕ)).

Therefore,

area(D(z1, r) ∩R)

area(D(z1, r))
=

area(D(z1, r) ∩ Ω)

area(D(z1, r))
− area(S1) + area(S2)

area(D(z1, r))

= 1/4− (1/(4π))(2θ − sin(2θ))− (1/(4π))(2ϕ− sin(2ϕ)).
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By the same reasoning we deduce that area(D(z1, r) ∩R)/area(D(z1, r)) is a

decreasing function of r ∈ (w,
√
h2 + w2].

So, for 0 < r ≤ √
h2 + w2, we get

area(D(z1, r) ∩R)

area(D(z1, r))
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1/4 for 0 < r ≤ h;

1/4− (1/(4π))(2θ − sin(2θ)) for h < r ≤ w;

1/4− (1/(4π))(2θ − sin(2θ))

− (1/(4π))(2ϕ− sin(2ϕ)) for w < r ≤ √
w2 + h2.

By the above arguments, we conclude that the function

s(r) =
area(D(z1, r) ∩R)

area(D(z1, r))

is a non-increasing function of r ∈ (0,
√
h2 + w2]. Thus, for any 0 < r ≤√

h2 + w2, we have

area(D(z1, r) ∩R)

area(D(z1, r))
≥ area(D(z1,

√
h2 + w2) ∩R)

area(D(z1,
√
h2 + w2))

=
w · h

π(h2 + w2)

=
k

π(k2 + 1)
,

where k = h/w.

Let z ∈ R be any point in the rectangle R and r > 0 be any positive real

number with D(z, r) not containing R. Without loss of generality, we assume

the vertex z1 of the rectangle nearest to z. Then D(z1, r) does not contain R,

and
area(D(z, r) ∩R)

area(D(z, r))
≥ area(D(z1, r) ∩R)

area(D(z1, r))
≥ k

π(k2 + 1)
,

where k = h/w. It implies that R is a k
π(k2+1) -fat set. We complete the proof

of Fact 3.3.

Lemma 3.4: Let P = {Pv : v ∈ V }, α : V → (0, 1] and G = (V,E) be defined

as in Theorem 1.3. Suppose that the rectangle packing P is locally finite in C.

Let K ⊂ C be a compact set. For every A ⊂ C, let V (A) denote the set of

vertices v ∈ V such that Pv intersects A. Then

sup
W

{ELα(V (K), V (W )) : C−W is compact subset of C} = ∞.
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Proof. Denote by C(z, r) = ∂D(z, r) the circle with center z and radius r.

Since K is a compact set and the rectangle packing P is locally finite in C, we

deduce that the cardinality |V (K)| < ∞. Equivalently, the set
⋃

v∈V (K) Pv is a

compact set. This implies that there is a positive real number r1 such that the

closure D(0, r1) ⊃
⋃

v∈V (K) Pv.

We define inductively a sequence of positive numbers r1 < r2 < · · · .
The first number r1 in this sequence has been defined already. We assume

that, for some n > 1, the numbers r1, . . . , rn−1 have been defined. We set

V ∗ ≡ {v ∈ V : Pv ∩D
(
0, 2rn−1

) �= ∅}.
Since the packing P is locally finite in C, we have |V ∗| < ∞. Therefore

⋃
v∈V ∗ Pv

is a compact set, which implies

(3.2) ρ = sup
{ |z| : z ∈

⋃
v∈V ∗

Pv

}
< ∞.

Now we let rn be sufficiently large so that rn > 2rn−1+ρ. From the choice of rn

and V ∗, it follows from (3.2) that, for each vertex v ∈ V , either Pv∩C(0, rn) = ∅
or Pv ∩ C(0, 2rn−1) = ∅. That is,

(3.3) V
(
C(0, 2rn−1)

) ∩ V
(
C(0, rn)

)
= ∅.

For each n let An be the closed annulus bounded by C(0, rn) and C(0, 2rn).

Define a metric m on G by setting

m(v) =
∞∑

n=1

diameter(Pv ∩ An)

nrn
,

for each v ∈ V . By the construction of the sequence rn and (3.3), at most one

term in this sum is nonzero.
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Note that {Pv} is a packing. From what we have just proved (Fact 3.1 and

Fact 3.3), it follows that

(3.4)

areaα(m) =
∑
v∈V

α(v)

( ∞∑
n=1

diameter(Pv ∩ An)

nrn

)2

=

∞∑
n=1

∑
v∈V

diameter(Pv ∩ An)
2 · α(v)

n2r2n

≤
∞∑
n=1

∑
v∈V

diameter(Pv ∩D(0, 2rn))
2 · α(v)

n2r2n

≤
∞∑
n=1

∑
v∈V

area(Pv ∩D(0, 6rn)) · (α(v)2 + 1)

n2r2n

≤ 2

∞∑
n=1

∑
v∈V

area(Pv ∩D(0, 6rn))

n2r2n

≤ 2
∞∑
n=1

area(D(0, 6rn))

n2r2n

= 72π

∞∑
n=1

1

n2

< C2,

where C2 is a universal constant. So m ∈ Mα(V ).

Fix a positive integer N , and consider some path γ from V (K) to

V
(
C − D(0, rN )

)
. For each integer n ∈ [1, N − 1] the union

⋃
v∈V (γ) Pv is

a connected set that intersects the two circles C(0, rn) and C(0, 2rn) which

form the boundary of An. Therefore, for such n,
∑

v∈γ diameter(Pv ∩An) ≥ rn.

This then implies that

(3.5)

Lengthm(γ) =
∑
v∈γ

∞∑
n=1

diameter(Pv ∩ An)

nrn

≥
N−1∑
n=1

∑
v∈γ

diameter(Pv ∩An)

nrn

≥
N−1∑
n=1

1

n
,
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which tends to infinity as N → ∞. Since areaα(m) < ∞, we get

ELα

(
V (K), V (C−D(0, rN ))

)→ ∞,

as N → ∞, which proves the lemma.

Proof of theorem 1.3 (1) . Pick some v0 ∈ V . Denote Γ = Γ({v0},∞). In what

follows, we will prove that ELα({v0,∞}) = ∞.

We assume, by contradiction, that there exists a finite positive number M

such that

(3.6) ELα({v0},∞) = sup
m

inf
γ

{(
Lengthm(γ)

)2
areaα(m)

}
= M.

Here, m runs over Mα(V ) and γ runs over Γ({v0},∞). From Lemma 3.4 with

K = Pv0 , it follows that there exists an open setW with C−W being a compact

such that

(3.7) ELα(V (K), V (W )) > 3M.

Hence there exists a metric m0 ∈ Mα(V ) such that

(3.8)

(
Lengthm0

(γ)
)2

areaα(m0)
> 3M,

for every γ ∈ Γ(K,W ).

By equation (3.6), we know that

inf
γ∈Γ({v0},∞)

(
Lengthm0

(γ)
)2

areaα(m0)
≤ M.

Therefore, there exists a transient path γ̃ ∈ Γ({v0},∞), γ̃ = (u0, u1, . . . , un, . . .),

such that

(3.9)

(
Lengthm0

(γ̃)
)2

areaα(m0)
< 2M.

We claim that there exists a vertex uj ∈ γ̃ such that uj ∈ V (W ). That is,

Puj ∩W �= ∅. If each vertex un ∈ γ̃ satisfies un �∈ V (W ), then

Pun ⊆ C−W.

Choose a point zn ∈ P ◦
un

. Noting C−W is a compact set, without loss of gener-

ality, we assume that zn → z0 for some point z0 ∈ C−W . Since γ̃ is a transient

path, we obtain that {Pun} contains infinitely many distinct rectangles. So the
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point z0 is an accumulation point of the packing P = {Pv : v ∈ V }, which
contradicts the assumption that P is locally finite in C.

Therefore, there exists a vertex uj ∈ γ̃ such that uj ∈ V (W ). Let γ∗ =

(u0, . . . , uj). So γ∗ ∈ Γ(K,W ) and Lengthm0
(γ∗) ≤ Lengthm0

(γ̃). By (3.8) and

(3.9), we get

3M <

(
Lengthm0

(γ∗)
)2

areaα(m0)
≤
(
Lengthm0

(γ̃)
)2

areaα(m0)
< 2M.

This contradiction implies that ELα({v0,∞})=∞. Thus G is α-EL parabolic.

4. Topological behavior of rectangle packing

In this section we gather a few elementary topological lemmas which will be

needed below. The reader is advised to skip the proofs at the first reading, and

return to them later.

Recall that P = {Pv : v ∈ V } is a packing of rectangles in the plane C and

G = (V ;E) is the contacts graph of P .

Lemma 4.1: Suppose that G is a disk triangulation graph. Then, for any

rectangles Pu �= Pv, we have either Pu ∩ Pv = ∅ or |Pu ∩ Pv| = ∞.

Proof. Since the edges of every rectangle in P are parallel to the coordinate

axes, it is clear that, for any u, v ∈ V , there are only three cases for Pu ∩ Pv:

(i) Pu ∩ Pv = ∅; (ii) |Pu ∩ Pv| = 1; (iii) |Pu ∩ Pv| = ∞.

We assume, by contradiction, that |Pu ∩ Pv| = 1. Denote Pu ∩ Pv = {p} (see

Figure 2 (a)). Thus the edge 〈u, v〉 ∈ E. By the definition of the triangulation

of an open disk, we know that there are exactly two vertices w1, w2 such that

〈u, v, w1〉 and 〈u, v, w2〉 are two faces in G. This means Pw1 ∩ Pw2 = {p}.
Since the graph G is the contacts graph of the packing P and Pw1 ∩Pw2 �= ∅,

there exists an edge 〈w1, w2〉 ∈ E connecting the vertices w1 and w2. Combining

the definition of the triangulation with the case that 〈w1, w2〉 ∈ E, we deduce

that there exist exactly two vertices u∗, v∗ such that 〈w1, w2, u
∗〉 and 〈w1, w2, v

∗〉
are two faces in G.

We claim that {u∗, v∗} = {u, v}. We assume that {u∗, v∗} �= {u, v}. Without

loss of generality, we suppose that u∗ �= u, u∗ �= v. Thus, by Observation

1.1, Pw1 ∩ Pw2 ∩ Pu∗ = {p}. This implies that the point {p} belongs to five
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(a) (b)

Figure 2

distinct rectangles Pw1 , Pw2 , Pu, Pv, Pu∗ , which contradicts our assumption that

P = (Pv : v ∈ V ) is a packing.

So there are four distinct faces in G which are 〈u, v, w1〉, 〈u, v, w2〉, 〈w1, w2, u〉
and 〈w1, w2, v〉 (see Figure 2 (b)). Note that the graph G is a disk triangulation

graph. We can embed G onto the complex plane C, denoted by g.

If 〈x, y, z〉 is a face in G, we denote by D〈x,y,z〉 the bounded component of

C− {g(〈x, y〉) ∪ g(〈y, z〉) ∪ g(〈z, x〉)}, which is the interior of g(〈x, y, z〉).
Let

γ = g(〈w1, v〉) ∪ g(〈v, w2〉) ∪ g(〈w2, u〉) ∪ g(〈u,w1〉).
It is clear that γ is a Jordan curve and

D〈u,v,w1〉 ∪D〈u,v,w2〉 ∪ {g(〈u, v〉)− [g(u) ∪ g(v)]}
is the bounded component of C−γ. So the open arc g(〈w1, w2〉)−[g(w1)∪g(w2)]

is contained in the unbounded component ofC−γ. LetW denote the unbounded

component of C − γ. Since the closed arc g(〈w1, w2〉) is a cross-cut in Jordan

domain W , by the cross-cut theorem (Theorem 11-8, p. 119, [15]), we deduce

that W − g(〈w1, w2〉) = W1 ∪W2, where Wi, i = 1, 2, are two components of

W − g(〈w1, w2〉); and
∂W1 = g(〈w1, u〉) ∪ g(〈u,w2〉) ∪ g(〈w1, w2〉);

∂W2 = g(〈w1, v〉) ∪ g(〈v, w2〉) ∪ g(〈w1, w2〉).
Thus one of two components of W − g(〈w1, w2〉) must be unbounded.

We assume without loss generality that W2 is unbounded. This means that

D〈w1,w2,v〉 ∩W2 = ∅ and D〈w1,w2,v〉 = W1. Hence

C = W1 ∪W2 ∪D〈u,v,w1〉 ∪D〈u,v,w2〉 ∪ some edges.
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For any edge g(〈x, y〉) ⊂ C, we have D〈w1,w2,v〉 ∩ g(〈x, y〉) = ∅. Furthermore,

we have

D〈w1,w2,v〉 ∩Wi = ∅, i = 1, 2,

and

D〈w1,w2,v〉 ∩D〈u,v,w2〉 = ∅.
These imply D〈w1,w2,v〉 ∩ C = ∅, which is a contradiction. Thus we complete

the proof of Lemma 4.1.

The following two lemmas for the smooth disks case appeared in [7]. For the

sake of completeness we give their proofs here.

Lemma 4.2: Let P = {Pv : v ∈ V } be a packing of rectangles in the plane C,

and suppose that the contacts graph G = (V ;E) of P is a disk triangulation

graph. Let v0 ∈ V be some vertex, and let N ⊂ V −{v0} be the set of neighbors

of v0. Then there is a Jordan curve γ ⊂ ⋃
v∈N Pv − Pv0 which separates Pv0

from
⋃

v∈V−(N∪{v0}) Pv in C.

Proof. From Lemma 4.1, it follows that, if 〈u, v〉 is an edge in G, the intersection

of Pu and Pv is a segment. So we can construct an embedding of G in C, denoted

by f , such that the image of any edge 〈v1, v2〉 is contained in Pv1 ∪ Pv2 and is

disjoint from all other rectangles in the packing (see Figure 3). For each v ∈ V

let Cv be the center point of the rectangle Pv, and for each edge 〈v1, v2〉 let

pv1,v2 be the center point of the intersection segment of Pv1 ∩Pv1 . We may then

write

f(〈v1, v2〉) = {(1−t)Cv1+tpv1,v2 : 0 ≤ t ≤ 1}∪{(1−t)pv1,v2+tCv2 : 0 ≤ t ≤ 1}.

Figure 3
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In the following we will view G as the 1-skeleton of a triangulation T of an

open disk.

Let 〈v1, v2, v3〉 be any triangle in T . For j = 1, 2, 3, let Vj be the neighbors

of vj in G. Clearly, for each j = 1, 2, 3, the vertices set V ′
j = Vj − {v1, v2, v3}

is connected. Since any pair of the sets V ′
1 , V

′
2 , V

′
3 intersect, the union V ′ =

V ′
1 ∪ V ′

2 ∪ V ′
3 is connected. Since G is connected and any path from a vertex

v ∈ V − {v1, v2, v3} to a vertex in {v1, v2, v3} must intersect V ′, it follows that
any two vertices in G−{v1, v2, v3} can be connected by a path in G−{v1, v2, v3}.
If (u1, u2, . . . , un) is a path in G−{v1, v2, v3}, then the path

⋃n−1
j=1 f(〈uj , uj+1〉)

is disjoint from Pv1 ∪ Pv2 ∪ Pv3 , and intersects both Pu1 and Pun . We con-

clude that every Pv, v ∈ V − {v1, v2, v3} is contained in the same connected

component of C − (f(〈v1, v2〉) ∪ f(〈v2, v3〉) ∪ f(〈v3, v1〉)). Note that the set

f(〈v1, v2〉)∪f(〈v2, v3〉)∪f(〈v3, v1〉) is a simple closed curve. Denote by Bv1,v2,v3

the component of C− (f(〈v1, v2〉)∪f(〈v2, v3〉)∪f(〈v3, v1〉)) that is disjoint from⋃
v∈V−{v1,v2,v3} Pv. For any two distinct triangles 〈v1, v2, v3〉, 〈w1, w2, w3〉 in

T , the intersection of the two Jordan curves ∂Bv1,v2,v3 , ∂Bw1,w2,w3 is empty or

consists of a single point or a segment. Therefore, either Bv1,v2,v3 , Bw1,w2,w3

are disjoint, or one is contained in the other. Suppose, without loss of gen-

erality, that w1 �∈ {v1, v2, v3}. Then ∂Bw1,w2,w3 intersects Pw1 , which is dis-

joint from the closure of Bv1,v2,v3 . We conclude that Bw1,w2,w3 is not con-

tained in Bv1,v2,v3 . Similarly, Bv1,v2,v3 is not contained in Bw1,w2,w3 . Hence

Bw1,w2,w3 ∩Bv1,v2,v3 = ∅.
Let n0, n1, . . . , nk−1 be the neighbors of v0 in clockwise circular order around

v0, and let curve γ be the Jordan curve γ =
⋃k−1

j=0 f(〈nj , nj+1〉), where nk ≡ n0.

Then γ ⊂ ⋃v∈N Pv and γ ∩ Pv0 = ∅.
We say two distinct triangles 〈v1, v2, v3〉, 〈w1, w2, w3〉 in T are neighbors if

they share an edge. Suppose that 〈v1, v2, v3〉 is a triangle of T that does not

contain v0, and one of the neighboring triangles contains v0, say 〈v0, nj , nj+1〉.
Then Bv1,v2,v3 and Bv0,nj,nj+1 lie on opposite sides of the arc f(〈nj , nj+1〉).
Consequently, Bv1,v2,v3 is not in the same connected component of C − γ as

Pv0 . If 〈v1, v2, v3〉 and 〈w1, w2, w3〉 are two neighboring triangles that do not

contain v0, then it is clear that Bv1,v2,v3 and Bw1,w2,w3 are in the same con-

nected component of C − γ. Hence it easily follows that for every triangle
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〈v1, v2, v3〉 that does not contain v0, the set Bv1,v2,v3 is disjoint from the con-

nected component of C−γ that contains Pv0 . This implies that γ separates Pv0

from
⋃

v∈V −(N∪{v0}) Pv, and the lemma follows since γ ⊂ ⋃v∈N Pv −Pv0 .

Lemma 4.3: Let P = {Pv : v ∈ V } and G = (V ;E) be as in Lemma 4.2, and

let u ∈ V , C ⊂ V − {u}. Suppose that C is finite and u is contained in a finite

component of G−C. Then
⋃

v∈C Pv separates Pu from the set of accumulation

points of P .

Proof. Let V0 be the set of vertices that are contained in the same connected

component of G − C as u. Let K ⊂ C − ⋃v∈C Pv be a connected set that

intersects Pu. For w ∈ V , let N(w) ⊂ V − w denote the neighbors of w in

G. From Lemma 4.2 it follows that for each w ∈ V0 there is a Jordan curve

γw ⊂ ⋃v∈N(w) Pv − Pw that separates Pw from
⋃

v∈V −(N(w)∪{w}) Pv.

Let Qw denote the component of C − γw that contains Pw, and let Q =⋃
v∈V0

Qv. Suppose that p ∈ K ∩ ∂Qw, where w ∈ V0. Then p ∈ K ∩ γw. Since

K is disjoint from
⋃

v∈C Pv and γw ⊂ ⋃
v∈N(w) Pw, we conclude that p ∈ Qw′

with w′ ∈ V0. Thus ∂Qw ∩K ⊂ Q for every w ∈ V0. Since V0 is finite, we have

∂Q ⊂ ⋃v∈V0
∂Qv. The above implies that ∂Q∩K ⊂ Q, and because Q is given,

∂Q∩K = ∅. Hence Q∩K is a relatively open and relatively closed subset of K.

As Q ∩K �= ∅ and K is connected, we conclude that K ⊂ Q. Because each Qv

intersects finitely many of the sets in the packing P , the lemma follows.

5. Duality

In this section we will show the connection between the α-Extremal Length and

the α∗-Extremal Length. We will present some propositions of the locally finite,

infinite, connected graph G = (V,E). For any vertices W ⊆ V , ∂W denotes the

set of vertices that are not in W but neighbor with some vertex in W . Suppose

the metric mid(v) = 1 for every vertex v ∈ V and γ is a path in G. We denote

by CL(γ) ≡ Lengthmid
(γ) the combinatorial length of the path γ. This means

CL(γ) = n if γ = (v1, v2, . . . , vn).

Proposition 5.1: For any locally finite, infinite, connected graph G = (V,E),

let {v0} be a fixed vertex and {vn : n = 1, 2, . . .} be infinite number of distinct

vertices in V ≡ V (G). For each n ≥ 1, let γn be a path from v0 to vn. Then

there exists a transient path γ∗ = (v∗1 , v
∗
2 , . . . , v

∗
n, . . . ) with the property: for
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each j ≥ 1, there exists a path γnj such that

V (γ∗
j ) ⊆ V (γnj ),

where γ∗
j = (v∗1 , v

∗
2 , . . . , v

∗
j ) is a finite sub-path of γ∗ with CL(γ∗

j ) = j.

Proof. Let W0 = {v0}. For every k = 1, 2, . . . , we define Wk inductively by

setting Wk+1 = Wk∪∂Wk. For a fixed integer N ≥ 1, it is clear that |WN | < ∞
since G is locally finite.

Let

SN(v0) = {γ : γ is a path with initial point v0 and CL(γ) = N}.

Then |SN (v0)| ≤ |WN |N−1. This implies that the total number of paths with

the initial point v0 and with the same combinatorial length is finite.

So we can rearrange the paths {γn} according to their combinatorial length.

Let {γ1
n} be the rearrangement of {γn} according to their combinatorial length.

This means that

CL(γ1
1) ≤ CL(γ1

2) ≤ · · · ≤ CL(γ1
n) ≤ · · · .

Since |SN (v0)| is finite, it is obvious that limn→∞ CL(γ1
n) = ∞.

Now we will define a collection of subsequences {γk
n} of {γ1

n} such that {γk+1
n }

is a subsequence of {γk
n}. Suppose that the paths {γ1

n} are written as follows:

γ1
1 =(u1

11, u1
12, u1

13, . . . , u1
1p1

1
);

γ1
2 =(u1

21, u1
22, u1

23, . . . , u1
2p1

2
);

...
...

...

γ1
n =(u1

n1, u1
n2, u1

n3, . . . , u1
np1

n
);

...
...

...

where p1n = CL(γ1
n) with p11 ≤ p12 ≤ · · · ≤ p1n ≤ · · · and limn→∞ p1n = ∞.

Since {γ1
n} have the same initial point v0 and G is locally finite, the total

number of vertices which neighbor v0 is finite. Thus we can extract an infinite

subsequence {γ2
n} of {γ1

n} such that the second vertex in every path γ2
n is the
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same vertex. If the sequence γ2
n is written as follows:

γ2
1 =(u2

11, u2
12, u2

13, . . . , u2
1p1

1
);

γ2
2 =(u2

21, u2
22, u2

23, . . . , u2
2p1

2
);

...
...

...

γ2
n =(u2

n1, u2
n2, u2

n3, . . . , u2
np1

n
);

...
...

...

then we have

v0 = u2
11 = u2

21 = · · · = u2
n1 = · · · ;

u2
12 = u2

22 = · · · = u2
n2 = · · · .

From the construction, it is clear that CL(γ2
n) ≥ 2 for each n and

limn→∞ CL(γ2
n) = ∞.

The general inductive step in the definition is now easy to formulate. We

have the array

γ1
1 , γ1

2 , . . . , γ1
n, . . .

γ2
1 , γ2

2 , . . . , γ2
n, . . .

...
...

...

γk
1 , γk

2 , . . . , γk
n, . . .

...
...

...

where each row is a subsequence of the row above. Furthermore, we have

CL(γk
n) ≥ k for each n and limn→∞ CL(γk

n) = ∞.

Now consider the diagonal sequence {γ1
1 , γ2

2 , . . . , γn
n , . . . } which is a subse-

quence of γn. Define the vertex

v∗n = the n-th vertex of the path γn
n

= un
nn.

Hence, from the above construction, it follows that the path

γ∗ = (v∗1 , v∗2 , . . . v∗n, . . . )

is the transient path we need. So the proposition is proved.
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Theorem 5.1: Let {v0} be a fixed vertex in the graph G = (V,E). Write

Γ = Γ(v0,∞). Denote by Γ∗ the collection of all subsets C ⊂ V − {v0} such

that C intersects every γ ∈ Γ. If EL∗
α(Γ) = ∞, then ELα(Γ

∗) = 0.

Proof. Because EL∗
α(Γ) = EL∗

α({v0},∞) = ∞, by Proposition 2.1 (taking

β(v) = α(v) for each v ∈ V ), there exists a metric m0 ∈ Mα(V ) such that

d∗m0
({v0},∞) = ∞. Thus, for any positive number L > 0 and every γ ∈ Γ, we

have

Dual-Lengthm0
(γ) > L+ 1.

For v ∈ V , define the height of v by

(5.1)
h(v) = d∗m0

({v0}, v)
= inf{Dual-Lengthm0

(γ) : γ is a path from v0 to v}.

Let Iv = [h(v)−α(v)m0(v), h(v)]. For t ∈ R, let Vt denote the set of vertices

v ∈ V such that

h(v)− α(v)m0(v) ≤ t ≤ h(v).

In order to prove Theorem 5.1, we need the following facts.

Fact 5.2: Suppose d∗m0
({v0},∞) = ∞. Then we have:

(1) For each real numberM > 0, there are only finitely many vertices v ∈ V

with h(v) ≤ M .

(2) For each real number M > 0, there are only finitely many intervals Iv

with Iv ∩ [0,M ] �= ∅.
Proof. If conclusion (1) is not true, there exist infinite distinct vertices

{vn : vn ∈ V } with h(vn) ≤ M . By the definition of the weight func-

tion h(vn), we deduce that there exists the path γn from v0 to vn such that

Dual-Lengthm0
(γn) ≤ M + 1. By Proposition 5.1, we can find a transient path

γ∗ such that Dual-Lengthm0
(γ∗) ≤ M + 1, which contradicts the assumption

d∗m0
({v0},∞) = ∞.

To obtain conclusion (2), we only need to show that there are finitely many

vertices v ∈ V satisfying h(v)− α(v)m0(v) ≤ M .

If (2) does not hold, then there exists an infinite sequence of vertices {vn}∞n=1

such that

h(v)− α(v)m0(v) ≤ M.
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We claim that there exists a subsequence of vertices {up = vnp} ⊂ {vn} which

satisfies that, for every pair vertices ui �= uj in such a subsequence,

∂{ui} ∩ ∂{uj} = ∅.
Recall that ∂W0 denotes the set of vertices that are not in W0 but neighbor

with some vertex in W0 for a finite subset W0 of V .

Indeed, we define inductively a sequence 0 < n1 < n2 < · · · of positive

integers such that {up = vnp} is such a sequence we need. For k = 0, 1, 2, . . . ,

let Wk be defined inductively by Wk+1 = Wk ∪ ∂Wk. Let n1 = 1 and u1 =

vn1 . Suppose that p > 1, and that n1, n2, . . . , np−1 have been defined. We set

W p−1
0 = {vnp−1}. Since G = (V,E) is locally finite, then

W p−1
2 = (W p−1

0 ∪ ∂W p−1
0 ) ∪ ∂(W p−1

0 ∪ ∂W p−1
0 )

is a finite set (that is, |W p−1
2 | < ∞).

Thus, there exists an integer np > np−1 such that, for allm ≥ np, vm �∈ W p−1
2 .

Therefore, we choose up = vnp . The choice of {up} shows that, for any i �= j,

∂W i
0 ∩ ∂W j

0 = ∅,
where W i

0 = {ui} and W j
0 = {uj}.

Therefore, we can find an infinite set of vertices {up} with

h(up)− α(up)m0(up) ≤ M , and, for any i �= j, we have ∂W i
0 ∩ ∂W j

0 = ∅.
Since h(up) − α(up)m0(up) < M + 1, by using the definition of h(·), we

conclude that there exists a path γp = (vp0 , v
p
1 , . . . , v

p
lp
), vp0 = v0 and vplp = up,

such that

Dual-Lengthm0
(γp) =

∑
v∈γp

α(v)m0(v)− α(up)m0(up) < M + 1.

Let γ̃p = (vp0 , v
p
1 , . . . , v

p
lp−1) be a sub-path of γp, and wp = vplp−1. Then we have

h(γ̃p) ≤ Dual-Lengthm0
(γ̃p) < M + 1.

Note that wi ∈ ∂W i
0 and ∂W i

0 ∩ ∂W j
0 = ∅ (i �= j), where W i

0 = {ui} and

W j
0 = {uj}. We get wi �= wj for any i �= j, which implies that we can find

infinite distinct vertices {wp} with h(wp) < M +1. This contradicts conclusion

(1). So conclusion (2) is proved.

Fact 5.3: For every t ∈ [c0, L], Vt ∈ Γ∗, where c0 = α(v0)m0(v0) + 1 and Γ∗ is

the collection of all subsets S ⊂ V − {v0} such that S intersects every γ ∈ Γ.
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Proof. For every t ∈ [c0, L], by the definition of Γ∗, we only need to prove that

v0 �∈ Vt and γ ∩ Vt �= ∅ for every γ ∈ Γ.

Since t > c0 > h(v0) = α(v0)m0(v0), from the definition of Vt, it follows that

v0 �∈ Vt.

Suppose γ0 ∩ Vt = ∅ for some path γ0 ∈ Γ. In the following, we will get a

contradiction. Denote

V1 = {v ∈ γ0 : h(v) < t};

V2 = {v ∈ γ0 : h(v)− α(v)m0(v) > t}.
It is clear that V1 ∩ V2 = ∅. Since γ0 ∩ Vt = ∅, we get γ0 = V1 ∪ V2.

Suppose that γ0 = (u0, u1, u2, . . . , un, . . . ) where u0 ≡ v0. Since

h(v0)− α(v0)m0(v0) = 0,

we have u0 �∈ V2, which implies u0 ∈ V1. Fact 5.2 implies that there are only

finitely many vertices in γ0 satisfying h(v) ≤ L. Therefore, we can find a vertex

un0 ∈ γ0 such that h(un0) > L ≥ t. This shows that un0 �∈ V1. By using

γ0 ∩ Vt = ∅ and γ0 = V1 ∪ V2, we have un0 ∈ V2.

Let γ̃0 = (u0, u1, . . . , un0) be a sub-path of γ0. Now we define an integer set

B as follows:

B = {1 ≤ j ≤ n0 : uj ∈ V1 ∩ γ̃0}.
Now we let the integer k be the largest integer in the set B. Since u0 ∈ V1 and

un0 ∈ V2, we have 0 < k < n0. From the definition of k, it follows that uk ∈ V1,

uk+1 ∈ V2 and (uk, uk+1) is an edge in graph G. These imply

(5.2) h(uk) < t

and

(5.3) t < h(uk+1)− α(vk+1)m0(vk+1).

By the definition of function h(·) and the fact that (uk, uk+1) ∈ E(G), we get

(5.4) h(uk+1) ≤ h(uk) + α(uk+1)m0(uk+1).

Combining (5.3) with (5.4), we obtain

h(uk) ≥ h(uk+1)− α(uk+1)m0(uk+1) > t,

which contradicts inequality (5.2). So Fact 5.3 is proved.
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Proof of Theorem 5.1, continued. Now let m∗ ∈ Mα(V ) be any metric, and set

L∗ = inf{Lengthm∗(S) : S ∈ Γ∗}.
By Fact 5.3, we have Vt ∈ Γ∗ for t ∈ [c0, L]. Define a function f(t) =∑

v∈Vt
m∗(v) for t ∈ [c0, L]. Since there are only finite intervals Iv satisfy-

ing Iv ∩ [0, L] �= ∅ ((2) of Fact 5.2), we know that the function f(t) is a finite

step function. That is, f(t) is an integrable function on [0, L]. Thus

L∗(L− c0) ≤
∫ L

c0

Lengthm∗(Vt) dt ≤
∫ L

0

Lengthm∗(Vt) dt =

∫ L

0

∑
v∈Vt

m∗(v) dt.

For any v ∈ V , the set of t such that v ∈ Vt is an interval of length α(v)m0(v).

Therefore, the above inequality yields

L∗(L− c0) ≤
∑
v∈V

m∗(v)α(v)m0(v) ≤
√
areaα(m∗)

√
areaα(m0),

which gives
L∗2

areaα(m∗)
≤ areaα(m0)

(L − c0)2
.

Since m0 ∈ Mα(v) is a fixed metric, c0 is a constant and L is an arbitrary

positive number, we get

ELα(Γ
∗) = sup

{(
inf{Lengthm∗(S) : S ∈ Γ∗})2

areaα(m∗)
: m∗ ∈ Mα(V )

}
= 0.

So Theorem 5.1 is proved.

6. Parabolic rectangle packing

Proof of Theorem 1.3 (2), continued. By the assumption in Theorem 1.3, let

v0 ∈ V be the vertex which satisfies EL∗
α({v0},∞) = ∞.

Now we distinguish two cases:

Case 1: The point ∞ is an accumulation point of the packing P .

LetM(z) be a Möbius transformation such that {z ∈ C : |z| ≥ 1} is contained
in P̂v0 = M(Pv0). Denote P̂ = M(P ) = {P̂v = M(Pv) : v ∈ V }. Obviously,

M(∞) ∈ D(0, 1).

Let Z be the set of accumulation points of the normalized packing P̂ . The

assumption implies that the point M(∞) ∈ Z. Our immediate goal is to verify

that Z is connected in the extended complex plane Ĉ. Note that the graph

G is locally finite. We can find a sequence of finite sunsets of V , denoted by
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V1 ⊂ V2 ⊂ · · · , such that V =
⋃

n Vn. For each n, let Qn denote the set of

vertices in the infinite connected component of G− Vn, and let Q̃n denote the

closure of
⋃

v∈Qn
Pv. Obviously we have Q̃1 ⊃ Q̃1 ⊃ · · · , and each set Q̃n is

compact and connected in Ĉ. Since a nested intersection of compact connected

sets is connected, it follows that Z is connected in Ĉ.

Let m be the v-metric on G defined by

m(v) =

⎧⎨⎩diameter(P̂v) for v �= v0,

0 for v = v0.

From Lemma 3.2 and Fact 3.3, it follows that, for each v ∈ V , the set P̂v is

a α(v)/(200π(α2(v) + 1))-fat set. Since P̂v ⊂ D(0, 1) for v �= v0, we have

areaα(m) =
∑

v∈V−{v0}
α(v)

(
diameter(P̂v)

)2
≤ 200

∑
v∈V−{v0}

(α2(v)) + 1)area(P̂v)

≤ C1 · area(D(0, 1))

< ∞,

where C1 is a constant. So m ∈ Mα(V ).

Let C be any finite subset of V −{v0} such that v0 is disjoint from the infinite

connected component of G−C. The collection of all such subsets C ⊂ V −{v0}
is denoted by Γ1. From Lemma 4.3 it follows that the union

⋃
v∈C Pv separates

Pv0 from Z. By the general Alexander’s theorem (Theorem 16.1, p. 125, [15]),

we deduce that there is a connected component of
⋃

v∈C Pv that separates Pv0

from Z. This implies that, for every C ∈ Γ1,

(6.1)
∑
v∈C

m(v) ≥ diameter (Z).

Recall that

Γ = Γ({v0},∞)

and

Γ∗ = {S ⊂ V − {v0} : S intersects every γ ∈ Γ}.
Since EL∗

α(Γ) = ∞, by Theorem 5.1 we get

(6.2) inf
S∈Γ∗

∑
v∈S

m(v) = 0.
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But every such S ∈ Γ∗ contains a finite C ⊂ S such that v0 is not in the infinite

connected component of G − C (for example, the neighbors of the connected

component of G− S containing v0). This implies

inf
S∈Γ∗

∑
v∈S

m(v) ≥ inf
C∈Γ1

∑
v∈C

m(v).

Together with equation (6.2), we deduce that

(6.3) inf
C∈Γ1

∑
v∈C

m(v) = 0.

Therefore, (6.1) and (6.3) show that diameter (Z) = 0, which implies the set

Z has only one point. Since M(∞) ∈ Z, then Z = {M(∞)}. Thus the packing

P̂ = M(P ) is locally finite in Ĉ− Z. Equivalently, P is locally finite in C.

Case 2: There exists a positive number R such that the packing P is

contained in the disk D(0, R).

Let Z1 be the set of accumulation points of the packing P . Define η : (0,∞)→C

by setting η(t) = t exp(θ), where θ ∈ [0, 2π) is any fixed number. Then η is an

open half-line. Since P is contained in the disk D(0, R) and G is an open disk

triangulation graph, we deduce that

image(η) ∩ Z1 �= ∅.
Thus |Z1| = ∞. But, by the same argument of Case 1, we get |Z1| = 1, which

is a contradiction.

Hence we complete the proof of Theorem 1.3.

7. Appendix

For the sake of completeness, in this section we will construct an α-EL parabolic

rectangle packing that is not locally finite in the complex plane C.

Example 7.1: Define a constant u (= π2/6) with

u =
∞∑
n=1

1

n2
.

Step 1. Let

R1 = [−u, u]× [−1, 1]

be the center rectangle in the complex plane C (see Figure 4).
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Figure 4

Step 2. For each n ≥ 2, we construct 8 rectangles as follows (see Figure 5).

For i = 1, 2, . . . , 8, let

Rni = [ani, bni]× [cni, dni]

be rectangles in C, where

an1 = −
n∑

k=1

1

k2
; bn1 = −an1;

cn1 = −
n∑

k=1

1

k2
; dn1 = cn1 +

1

n2
= −

n−1∑
k=1

1

k2
,

and

an3 = u+ u
n−1∑
k=1

k2; bn3 = an3 + un2 = u+ u
n∑

k=1

k2;

cn3 = −
n∑

k=1

1

k2
; dn3 = −cn3,

and

an2 = bn1; bn2 = bn3;

cn2 = cn1; dn2 = −dn1,
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and

an4 = an2; bn4 = bn2;

cn4 = −dn2; dn4 = −cn2.

an5 = an1; bn5 = bn1;

cn5 = cn4; dn5 = dn4.

an6 = −bn4; bn6 = −an4;

cn6 = cn4; dn6 = dn4.

an7 = an6; bn7 = −an3;

cn7 = cn3; dn7 = dn3.

an8 = an6; bn8 = an1;

cn8 = cn1; dn8 = dn1.

(See Figure 5).

Figure 5

Step 3. Denote

P = R1 ∪
( ∞⋃

n=1

8⋃
i=1

Rni

)
.

Then P is an infinite rectangle packing the complex plane C. It is clear that

the contacts graph of P is a triangulation of an open topological disk (see Figure

5 and Figure 6).
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Figure 6

It is obvious that the points (0, u) and (0,−u) are accumulation points of the

packing P . Therefore, the packing P is not locally finite in the plane.

Now, we show that the packing P is an α-EL parabolic packing.

Let α : P → (0, 1] be an assignment of weights to the vertices of packing P

with α(R) = H(R)/W (R), where H(R) is the height of the rectangle R and

W (R) its width and H(R) ≤ W (R). It clear that

α(R1) = 1/u ≤ 1.

For n ≥ 2, from the construction of the packing P , it follows that, for 1 ≤ i ≤ 8,

(7.1) α(Rni) ≤ 2

n2
≤ 1.

Define the metric mid with

mid(R) = 1 for each R ∈ P.
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Now we will show that mid ∈ Mα(P ). Using the construction of packing P and

(7.1), we obtain

areaα(mid) =α(R1) +

∞∑
n=2

8∑
i=1

α(Rni)m
2
id(Rni)

≤ 1

u
+ 16

∞∑
n=2

1

n2

<∞.

Therefore mid ∈ Mα(P ). Since mid(R) = 1 for each rectangle R ∈ P , we have

dmid
({R1},∞) = ∞.

Proposition 2.1 (taking β(R) = 1 for each R ∈ P ) implies that the packing P

is an α-EL parabolic packing.
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