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Abstract In this paper we study the deformation space of certain Kleinian groups. As a result, we

give a new proof of the finite Koebe theorem on Riemann surfaces from a viewpoint of Teichmüller
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1 Introduction
A Riemann surface S̃ is topologically finite if its fundamental group is finitely generated. The
topologically finite Riemann surface S̃ is of type (g, n, m), if there is a closed Riemann surface
S of genus g and a holomorphic embedding i : S̃ → S, so that the set S\i(S̃) includes m closed
disks and n points. When m = 0, we called S̃ conformally finite.

Let Ĉ = C ∪ {∞} be the extended complex plane, which is holomorphically equivalent to
the standard Riemann sphere. In the spherical metric, a domain on the Riemann sphere is said
to be a round domain if each of its boundary components is either a circle or a point. In [1]
Koebe proposed a conjecture: Any domain Ω ⊂ Ĉ can be holomorphically realized as a round
domain on Ĉ. Later he [2] gave an affirmative answer to this problem when Ω is of finite type.

On the Riemann sphere, after giving an appropriate orientation to any circle, one can talk
about its interior and exterior (the interior lies to the left of the circle). For a collection of
circles {Ci} on Ĉ, if they could be given an appropriate orientation so that they have disjoint
closures pairwise, we call {Ci} allowable.

Fixing allowable circles C = {C1, C2, . . . , Cm} on Ĉ, we denote by Ω0 the resulting Riemann
surface by deleting C and its interiors from Ĉ. Suppose Dm is the space of equivalent classes
of allowable m-circles on Ĉ (defined in §2). We have the following:

Theorem 1 For the region Ω0 on the Riemann sphere Ĉ, the space Dm is homeomorphic to
the Teichmüller space T (Ω0) of Ω0.

Also this result will be generalized to closed Riemann surfaces. For simplicity, here we
assume its genus g > 1.

Let S be a closed Riemann surface of genus g. Then it can be represented as a quotient of
its universal covering space D by the covering transformations group Γ. Then S inherits the
hyperbolic metric from that of D. Similarly one can define the allowable m-circles on S.

Let Dm be the space consisting of equivalent classes of allowable m-circles on Riemann
surfaces of genus g (defined in §2). Denoting S∗ the Riemann surface by cutting away the
allowable circles C and its interiors from S, we obtain
Theorem 2 When the genus g > 1, the space Dm is homeomorphic to the Teichmüller space
T (S∗) of S∗.
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As an immediate consequence of these two results, in this paper we will provide a new
approach to the finite Koebe Theorem: Any Riemann surface of finite type can be realized as
a round domain on some compact Riemann surface of the same genus, and this realization is
unique up to conformal mappings between Riemann surfaces.

The main object of this paper is to give a systematic method for solving these problems.
Furthermore the proofs imply that we can solve the Koebe problem by deformation method.

2 Proofs and Main Results
Recall that S̃ is a Riemann surface of type (g, n, m). For simplicity here we assume that S̃ is not
of the following type: (g, n, m) �= (0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 2, 0), (0, 0, 1), (0, 1, 1), (0, 0, 2).

Definition The (reduced) Teichmüller space T (S̃) is defined to be the space of Teichmüller
deformations of the complex structure S̃.

The Teichmüller metric dT (·, ·) on T (S̃) is defined as dT (S̃1, S̃2) = log K, where K is the
maximal dilatation of the Teichmüller deformation map between S̃1 and S̃2. In the metric
topology the space T (S̃) is homeomorphic to the Euclidean space R6g+2n+3m−6, see [3].

Let Γ be a finitely generated discrete subgroup of PSL(2, C). The set of accumulation points
of orbit Γz = {γ(z) : γ ∈ Γ} is called the limit set Λ(Γ). Its complement Ω(Γ) = Ĉ − Λ(Γ) is
the region of discontinuity. The quotient space Ω(Γ)/Γ is a union of Riemann surfaces. The
Ahlfors Finite Theorem shows that Ω(Γ)/Γ includes finite components and each component is
a conformally finite Riemann surface.

Given a finitely generated discrete group Γ ⊂ PSL(2, C), if there exists a quasi-conformal
homeomorphism Φ : Ĉ → Ĉ so that Γ′ = ΦΓΦ−1 is also a discrete group of PSL(2, C), then
we call Γ′ a qc-deformation of Γ. The following is a typical way for constructing such a qc-
deformation of the discrete group Γ.

Suppose μ is a Beltrami differential on the Riemann surfaces Ω(Γ)/Γ with ‖μ‖∞ ≤ k < 1.
By lifting μ to the region of discontinuity Ω(Γ), and extending it to be 0 on the limiting set
Λ(Γ), we obtain a new Beltrami differential μ̃. The differential μ̃ is invariant under the action
of group Γ. The classical Ahlfors–Bers Theorem states that there exists a quasi-conformal
mapping Φ : Ĉ → Ĉ so that Φz̄ = μ̃Φz. Therefore, the group Γ′ = ΦΓΦ−1 ⊂ PSL(2, C) is a
quasi-conformal deformation of the group Γ.

The Theorem of Sullivan [4] implies the above typical constructions include all qc-defor-
mations of Γ. This Theorem plays a crucial role throughout this paper.
Theorem (Sullivan) For any finitely generated discrete group Γ ⊂ PSL(2, C), the space of qc-
deformations of Γ is homeomorphic to the Teichmüller space of the Riemann surfaces Ω(Γ)/Γ,
where Ω(Γ) is the region of discontinuity of Γ acting on Ĉ.

Recall that C = {C1, C2, . . . , Cm} is m allowable circles on the Riemann sphere Ĉ. Each
circle in the set C corresponds to three real parameters-one complex parameter (two real num-
bers) corresponds to the center of the circle, and one real parameter corresponds to for the
radius of the circle. We denote by zi and ri(ri > 0) the center coordinate and radius of the
circle Ci, respectively.

Denote by Dm the set consisting of all allowable m-circles, up to Möbius transformations
(orientation preserving). For m ≥ 3 and any C = {C1, C2, . . . , Cm} ∈ Dm, without lose of the
generality, we assume the circles C1, C2 and C3 have centers 0, 1 and ∞, respectively. Then
each C ∈ Dm is uniquely determined by 3m−6 numbers ri (1 ≤ i ≤ 3) and (z4, r4, . . . , zm, rm).
We can view the set Dm as a subset of R3m−6. Thus set Dm is a topological space.

After denoting by Di the closure of the interior of Ci (i = 1, 2, . . . , m), we set Ω0 =
Ĉ\⋃m

i=1 Di. It is an open Riemann surface of type (0, 0, m).
With the above notation, we are now ready to give

Theorem 1 When m ≥ 3, the space Dm is homeomorphic to the Teichmüller space T (Ω0)
of Ω0.
Proof Let γi be the element generated by reflection of the circle Ci and let ΓC = 〈γ1, γ2, . . . , γm〉
be the group of Möbius transformations (some of them reverse the orientations). It follows
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from the Poincaré Polyhedron Theorem that the action of ΓC on Ĉ is discrete. The surface
Ω0 = Ĉ\⋃m

i=1 Di is a fundamental domain for ΓC acting on Ĉ.
Given any Beltrami differentials [μ] ∈ T (Ω0) with ||μ||∞ ≤ k < 1, one can construct a new

Beltrami differential μ̃ on Ĉ: For any z ∈ γ−1(Ω0)(γ ∈ Γ), we set

μ̃ = μ̃(z)
dz̄

dz
≡

⎧⎪⎪⎨
⎪⎪⎩

μ(γz)dγ(z)
dγ(z) , γ preserves the orientation;

μ(γz)dγ(z)

dγ(z)
, γ reverses the orientation.

And place μ̃ = 0 on other regions of Ĉ.
From the Ahlfors–Bers Theorem, there is a quasi-conformal homeomorphism Φ : Ĉ → Ĉ,

whose dilation is just μ̃. The group Γ′
C = ΦΓC Φ−1 = 〈γ′

1, γ
′
2, . . . , γ

′
m〉 is a finitely generated

discrete group of Möbius transformations. In general it is not true that the image of a circle
under a quasi-conformal mapping is still a circle. But the sets C ′

i = Φ(Ci) are fixing points
of the Möbius transformation γ′

i = ΦγiΦ−1. The fixing points set of an orientation-reversing
Möbius transformation with order 2 is either an empty set (for example z → −1/z̄) or a circle
(for example z → 1/z̄). Therefore C ′ = {C ′

1, C
′
2, . . . , C

′
m} are also allowable m-circles.

Thus we have a mapping H : T (Ω0) → Dm, defined as H([μ]) = C ′ ∈ Dm.
Let ΓC ⊂ ΓC be the subgroup consisting of orientation-preserving elements. Subgroup ΓC

and the element γ1 together generate ΓC . The quotient Riemann surface associated with the
discrete group ΓC is Ω(ΓC )/ΓC = Ω0∪γ1 γ1(Ω0). It is a closed Riemann surface of genus m−1.

For any allowable m-circles C ′ = {C ′
1, C

′
2, . . . , C

′
m}, we denote by ΓC ′ the group generated

by the reflection in the circles C ′. Since ΓC ′ and ΓC are geometrically finite groups, they are
quasiconformally conjugate ([5]). Then ΓC ′ = ΦΓC Φ−1, for some quasi-conformal mapping
Φ. The Theorem of Sullivan implies that the Beltrami differential μΦ of Φ can be obtained
by the extension of a Beltrami differential on Ω(ΓC )/ΓC through the action of group ΓC .
The fact that Φγ1Φ−1 is a Möbius transformation implies γ1(μΦ) = μΦ on Ω(ΓC )/ΓC . Then
μΦ ∈ T (Ω0), which implies that the deformation space of ΓC is uniquely determined by the
complex structures on Ω0. That is, the mapping H is surjective.

On the other hand, Sullivan Theorem implies that H : T (Ω0) → Dm is continuous. By
Brouwer’s theorem on the invariance of domain, we conclude that H is homeomorphic.

Theorem 1 immediately leads to the finite Koebe theorem on the Riemann sphere Ĉ.

Corollary 1 Any domain Ω̃ ⊂ Ĉ of finite type is holomorphically homeomorphic to a round
domain on the Riemann sphere. Furthermore it is unique up to orientation-preserving Möbius
transformations.

Proof First we assume that the open Riemann surface Ω̃ is of type (0, 0, m).
The case m = 1 is just the Riemann Mapping Theorem.
When m = 2, Ω̃ ⊂ Ĉ is a 2-connected domain. Let r(r > 0) be the conformal modulus of

Ω̃. Then Ω̃ is conformally equivalent to the round domain {z : 1 < z < er} ⊂ Ĉ.
Now if m > 2, we use the notation as in the proof of Theorem 1. The Riemann surfaces

Ω̃ and Ω0 are quasi-conformally equivalent. We choose a qc-mapping Ω0 → Ω̃ with Beltami
differential μ. Theorem 1 implies Ω̃ can be realized as a round domain cutting away H([μ]) and
its interiors from the Riemann sphere.

When Ω̃ is of type (0, n, m), there exist an open Riemann surface Ω′ of type (0, 0, m) and
a holomorphic embedding i : Ω̃ → Ω′. The above assertion implies that Ω′ can be realized as a
round domain in Ĉ. Thus Ω̃ can also be realized as a round domain on Ĉ. It is unique up to
orientation-preserving Möbius transformations.

Now we generalize these results to compact Riemann surfaces of genus g > 1.
Let S0 be a smooth closed surface of genus g. We denote by D̃m the set consisting of all

pairs {(S, C )}, where S is a conformal structure on S0 and C = {C, C, . . . , C} are allowable
m-circles on S. The equivalent relation “ ∼ ” in D̃m is defined as:
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(S, C ) ∼ (S ′, C ′) if and only if there exists a conformal homeomorphism h : S → S′, which
is homotopic to the identity mapping, so that h(Ci) = C ′

i for 1 ≤ i ≤ m.
The set Dm = D̃m/ ∼ consists of all equivalent classes of allowable m-circles on closed

Riemann surfaces of genus g. As in the case of g = 0, Dm is a topological space.
Suppose C = {C1, C2, . . . , Cm} are allowable m-circles on the Riemann surface S. Let Di

be the closed disk including Ci and its interior, where i = 1, 2, . . . , m. The open Riemann
surface S∗ = S\⋃m

i=1 Di is of type (g, 0, m). We proceed to show
Theorem 2 When the genus g > 1, the space Dm is homeomorphic to the Teichmüller space
T (S∗).
Remark Since the real dimension of the Teichmüller space T (S∗) is 6g+3m− 6, Theorem 2
implies that the real dimension of Dm is also 6g + 3m − 6.
Proof Assume π : D → S is the universal covering mapping of S and Γ is the transformation
group of π. Then we have S = D/Γ.

Denote by {C̄i} the pre-images {π−1(Ci)} lying in a fundamental domain ΩΓ of the group
Γ. Let γ̄i be the element generated by reflecting of the circle C̄i, where i = 1, 2, . . . , m. We
define the group ΓC to be ΓC = 〈γ̄1, γ̄2, . . . , γ̄m〉 ∗ 〈Γ〉 ∗ 〈γ0〉, where γ0 is the element generated
by reflection of the unit circle in Ĉ. From the Poincaré Polyhedron Theorem, it follows that
ΓC is a finitely generated discrete Möbius transformations group.

Let Γ̄C ⊂ ΓC be the group consisting of all orientation-preserving elements. Geometrically
it is clear that Ω(Γ̄C )/Γ̄C = S∗∪γ̄1 γ̄1(S∗). The rest of this proof is similar to that of Theorem 1.

We conclude the paper with the following finite Koebe Theorem on closed Riemann surfaces:
Corollary 2 Any Riemann surface S̃ of type (g, n, m) can be realized as a round domain S�

on some closed Riemann surface S. Furthermore the pair (S�, S) is unique up to conformal
mappings.

Since the proof of Corollary 2 is similar to that of Corollary 1, we omit it here.
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256–260 (1970); English Transl. in Math. USSR Sb., 12, 255–259 (1970)

[9] Brooks, R.: On the deformation theory of classical Schottky groups. Duke. Math. J., 52(4), 1009–1024

(1985)

[10] Brooks, R.: Circle packings and co-compact extensions of kleinian groups. Invent. Math., 86, 461–469

(1986)

[11] He, Z., Schramm, O.: Fixed points, Koebe uniformization and circle packings. Ann. Math., 137, 369–406

(1993)

[12] Li, Z.: Quasi–Conformal Mappings and Their Applications to the Theory of Riemann Surfaces, Chinese

Academic Press, Beijing, 1988

[13] Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann mapping. J. Diff. Geom., 26,

349–360 (1987)

[14] Thurston, W.: The Geometry and Topology of Three Manifolds, Princeton University Press, Princeton,

1977

[15] Thurston, W.: The finite Riemann mapping theorem, invited address’, International symposium in celebra-

tion of the Proof of the Bieberbach conjecture, Purdue University, Purdue, 1980


