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Abstract. In this paper, we prove that the quasihyperbolic metrics are quasi-

invariant under a quasisymmetric mapping between two suitable metric spaces.
Meanwhile, we also show that quasi-invariance of the quasihyperbolic metrics

implies that the corresponding map is quasiconformal. At the end of this

paper, as an application of above theorems, we prove that the composition of
two quasisymmetric mappings in metric spaces is a quasiconformal mapping.

1. Introduction

During the past few decades, modern geometric function theory of quasisym-
metric and quasiconformal mappings has been studied from several points of view.
Quasisymmetric mappings on the real line were first introduced by Beurling and
Ahlfors [1]. They found a way to extend each quasisymmetric self-mapping of the
real line to a quasiconformal self-mapping of the upper half-planes. This concept
was later promoted by Tukia and Väisälä [11], who introduced and studied qua-
sisymmetric mappings between arbitrary metric spaces. In 1990, based on the idea
of quasisymmetry, Väisälä developed a ”dimension-free” theory of quasiconformal
mappings in infinite-dimensional Banach spaces. See also [18, 19, 20, 21, 22]. In
1998, Heinonen and Koskela [8] showed that these concepts, quasiconformality and
quasisymmetry, are quantitatively equivalent in a large class of metric spaces, which
includes Euclidean spaces. Since these two concepts are equivalent, mathematicians
show much interest in the research of quasisymmetric mappings between suitable
metric spaces.

Following analogous notations and terminologies of [7, 8, 22, 12], now we give
the definitions of quasisymmetry and quasiconformality.

Definition 1.1. Given a homeomorphism f : X → Y between two metric spaces,
f is said to be quasisymmetric if there is a constant H < ∞, for all x ∈ X and all
r > 0,

(1.1) Hf (x, r) =
Lf (x, r)
lf (x, r)

≤ H,
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where

(1.2) Lf (x, r) := sup
|y−x|≤r

{|f(y)− f(x)|}

and

(1.3) lf (x, r) := inf
|y−x|≥r

{|f(y)− f(x)|}.

Note that here and hereafter we use the distance notation |x− y| in any metric
space.

The slightly different formulation used here can be easily turned into the follow-
ing stronger quasisymmetry condition.

Definition 1.2. A homeomorphism f : X → Y between two metric spaces is called
η-quasisymmetric if there is a homeomorphism η : [0,∞) → [0,∞) such that

(1.4) |x− a| ≤ t|x− b| implies |f(x)− f(a)| ≤ η(t)|f(x)− f(b)|
for each t > 0 and for each triple x, a, b of points in X.

Obviously, (1.4) implies quasisymmetry as defined in (1.1). In general, these two
notions are not equivalent. However, in any path-wise connected doubling metric
spaces we know that (1.1) implies (1.4). Please refer to [17].

Quasiconformal mappings are homeomorphisms that distort the shape of infin-
itesimal balls by a uniformly bounded amount. This requirement makes sense in
every metric space.

Definition 1.3. A homeomorphism f from a metric space X to a metric space Y
is said quasiconformal if there is a constant H < ∞ so that

(1.5) lim sup
r→0

Hf (x, r) ≤ H

for all x ∈ X, where Hf (x, r) is defined in (1.1).

In [8], Heinonen and Koskela proved that quasiconformal mappings between
Ahlfors Q(> 1)-regular metric measure spaces are quasisymmetric, provided that
the source is a Loewner space and the target space satisfies a quantitative connec-
tivity condition.

Gehring and others [3, 4] introduced the quasihyperbolic metric. It is an impor-
tant tool in the research of quasisymmetric and quasiconformal mappings between
metric spaces. In [3] (Theorem 3), Gehring and Osgood [3] proved that quasihyper-
bolic metric is quasi-invariant under any K-quasiconformal mappings of a domain
D ⊂ Rn. We wish to point out that the use of the term ”quasiconformal” in [3]
differs from its use in this paper. Their result can be stated as follows:

Theorem 1.4. There exists a constant c depending only on n and K with the
following property. If f is a K-quasiconformal mapping of domain D onto D′, then

kD′
(
f(x1), f(x2)

) ≤ c max
(
kD(x1, x2), kD(x1, x2)α

)
, α = K1/(1−n),

for all x1, x2 ∈ D.

Remark 1.5. For any metric space X, a non-empty subset D ⊆ X is said a
domain if it is open and connected. For the concept of kD(·, ·) and kD′(·, ·), please
see Definition 2.2 in Section 2.
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In 1990, Väisälä studied quasiconformal mappings between infinite-dimensional
Banach spaces and obtained a series of novel results. He also obtained an alternative
version to Theorem 1.4.

Under suitable geometric conditions (see Section 2), in this paper we shall prove
a more general result (Theorem 1.6) for metric spaces. Our proof is based on a
refinement of the method due to Väisälä [22].

Theorem 1.6. Let X be a c-quasiconvex complete metric space and let Y be a
c′-quasiconvex metric space. Suppose that G  X and G′  Y are two domains
and f is an H-quasisymmetry from G onto G′. Then there exists a non-decreasing
function ψ : (0,∞) → (0,∞) such that, for all x, y ∈ G,

k′
(
f(x), f(y)

) ≤ ψ
(
k(x, y)

)
.

Note that the function ψ depends only on c, c′,H and satisfies ψ(t) → 0 as t → 0.

It is clear that the converse to Theorem 1.6 is also an interesting problem. To
study this problem, we introduce the following definition.

Definition 1.7. Let D ⊆ X be a domain in a metric space X. A point x ∈ D
is said to be a cut point if D\{x} is not connected. A domain D is said to be a
non-cut-point domain if it has no cut points.

For any two c-convex (see Section 2) and complete metric spaces, we prove that
quasi-invariance of the quasihyperbolic metrics implies the corresponding map is
quasiconformal.

Theorem 1.8. Let X be a c-quasiconvex, complete metric space and G  X be a
non-cut-point domain. Let G′  Y be be a domain in a metric space Y . Suppose
that f : G → G′ is a homeomorphism. If for any sub-domain E ⊆ G and ∀x, y ∈ E,

(1.6) kE′
(
f(x), f(y)

) ≤ ϕ
(
kE(x, y)

)
,

where E′ = f(E) and ϕ is an increasing function, then f is an H-quasiconformal
mapping with

H = eϕ(2c) − 1.

In the appendix we will give an example to show the non-cut-point assumption
indeed can not be ruled out.

As an application of Theorem 1.6 and Theorem 1.8, we show that the composite
mapping of two quasisymmetric mappings in a large class of metric spaces is a
quasiconformal mapping.

Theorem 1.9. Let X(resp. Y ) be a c1(resp. c2)-quasiconvex and complete metric
space and let Z be a c3-quasiconvex metric space. Suppose that G  X is a non-
cut-point domain. For any two domains G′  Y and G′′  Z, if f : G → G′ is an
H1-quasisymmetric mapping and g : G′ → G′′ is an H2-quasisymmetric mapping,
then g ◦ f is an H-quasiconformal mapping, where H depends only on the above
data.

In [8], Heinonen and Koskela showed that quasiconformal mappings between
metric spaces of ”bounded geometry” are quasisymmetric. Their result is as follows:

Theorem 1.10. Suppose that X and Y are bounded Q-regular metric spaces with
Q > 1, Furthermore, suppose that X is a Loewner space and Y is linearly locally
connected. If f is a quasiconformal map from X onto Y , then f is quasisymmetric.
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Using the same assumptions as in Theorem 1.9, by combing Theorem 1.9 and
Theorem 1.10, we shall now have the following corollary.

Corollary 1.11. Suppose that X and Z are bounded Q-regular metric spaces
with Q > 1. Furthermore, suppose that X is a Loewner space and Z is linearly
locally connected. If f : G → G′ and g : G′ → G′′ are quasisymmetric, then their
composition g ◦ f is quasisymmetric.

2. Quasihyperbolic metric

Let X be a metric space and let

B(x, r) = {y : |y − x| ≤ r}, U(x, r) = {y : |y − x| < r}
be the closed and open balls with center x ∈ X and radius r > 0. Denote

S(x, r) = {y : |y − x| = r}.
If Br = B(x, r) (or Ur = U(x, r)), then λBr = B(x, λr) (or λUr = U(x, λr)) for
any λ > 0. The closure of a set A is denoted by A.

By a curve we mean any continuous mapping γ : [a, b] → X. The length of γ is
defined by

l(γ) = sup

{
n∑

i=1

|γ(ti)− γ(ti+1)|
}

,

where the supremum is taken over all partitions a = t0 < t1 < · · · < tn = b. The
curve is rectifiable if l(γ) < ∞.

The length function associated with a rectifiable curve γ : [a, b] → X is sγ :
[a, b] → [0, l(γ)], given by sγ(t) = l(γ|[a,t]). For any rectifiable curve γ : [a, b] →
X, there is a unique curve γs : [0, l(γ)] → X such that γ = γs ◦ sγ . More-
over, l

(
γs|[0,t]

)
= t for every t ∈ [0, l(γ)]. The curve γs is called the arc length

parametrization of γ.
If γ is a rectifiable curve in X, the line integral over γ of each nonnegative Borel

function % : X → [0,∞] is
∫

γ

% ds =
∫ l(γ)

0

% ◦ γs(t) dt.

Definition 2.1. Let X be a connected metric space and G  X be a non-empty
open set. For any x ∈ G, we denote by δG(x) the distance between x and the
boundary of G. That is,

δG(x) = dist(x, ∂G).

Remark 2.2. In Definition 2.1, the boundary of G is not empty. Otherwise, G is
both open and closed which contradicts that X is connected. Hence

∂G 6= ∅.
For 0 < r < δ(x), the ball U(x, r) is not necessarily contained in G. Thus, we need
to consider G as a metric space whose metric is the restriction of the metric of X.
The closed and open balls in G with the center x and the radius r are denoted by:

BG(x, r) = {y ∈ G : |y − x| ≤ r}
= B(x, r) ∩G;

UG(x, r) = {y ∈ G : |y − x| < r}
= U(x, r) ∩G.
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Definition 2.3. Let γ be a rectifiable curve in an open set G  X. The quasihy-
perbolic length of γ in G is

lqh(γ) =
∫

γ

ds

δG(x)
.

The quasihyperbolic distance between x and y in G is defined by

kG(x, y) = inf
γ

lqh(γ),

where γ runs over all rectifiable curves in G joining x and y. If there is no rectifiable
curve in G joining x and y, we define

kG(x, y) = +∞.

Definition 2.4. Let X be a metric space. An open set D of X is said to be
rectifiably connected if, for any two points x, y ∈ D, there is a rectifiable curve in
D joining x and y.

If G  X is a rectifiably connected open set, it is clear that kG(x, y) < ∞ for
any two points x, y ∈ G. Thus it is easy to verify that kG(·) is a metric in G, called
the quasihyperbolic metric of G.

Definition 2.5. For c ≥ 1, a metric space X is c-quasiconvex if each pair of points
x, y ∈ X can be joined by an curve γ with length l(γ) ≤ c|x− y|.
Observation 2.6. If X is a c-quasiconvex metric space, then any domain G  X
is is rectifiably connected.

Proof. Choose x0 ∈ G and define

Dx0 =
{
y ∈ G : there is a rectifiable curve in G joining x0 and y

}
.

It is clear that x0 ∈ Dx0 .
We claim that Dx0 and G\Dx0 are both open in G. For any y0 ∈ Dx0 , since

G is open, there exists a r > 0 such that B(y0, r) ⊆ G. If z ∈ B
(
y0, r/c

)
, by the

definition of quasiconvex, then there is a rectifiably curve γ joining y0 and z with

l(γ) ≤ c|y0 − z| ≤ r.

This implies that γ ⊆ G. Thus,

B
(
y0, r/c

) ⊆ Dx0 ,

which implies Dx0 is open in G.
With a similar argument, we can deduce that G\Dx0 is also open in G. Since G

is connected, we have Dx0 = G. Therefore, G is rectifiably connected. ¤
Hereafter we will use the abbreviations δ(x) = δG(x) and k(·) = kG(·). The

following result gives a basic fact about the function δ(x) which is necessary for our
proofs.

Theorem 2.7. Let X be a c-quasiconvex metric space and let G  X be a domain.
Then

(1) |x− y| ≤ (
ek(x,y) − 1

)
δ(x), ∀x, y ∈ G;

(2) If z ∈ G, 0 < t ≤ 1/2, and x, y ∈ BG

(
z, tδ(z)/(4c)

)
, then

(2.1)
1

1 + 2t

|x− y|
δ(z)

≤ k(x, y) ≤ c

1− t

|x− y|
δ(z)

.
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Proof.
(1) By Observation 2.6, we know that G is rectifiably connected. For any rectifi-

able curve γ joining x and y in G, let γs : [0, L] → G be the arclength parametriza-
tion of γ with γs(0) = x. We have, for each t ∈ [0, L],

δ (γs(t)) ≤ δ(x) + |γs(t)− x| ≤ δ(x) + l
(
γs(t)|[0,t]

)
= δ(x) + t.

Hence

lqh(γ) ≥
∫ L

0

dt

δ(x) + t
≥ ln

(
1 +

|x− y|
δ(x)

)
.

So we obtain (1).

(2) Suppose that x, y ∈ BG

(
z, tδ(z)/(4c)

)
. Since X is a c-quasiconvex space,

there is a rectifiable curve γ in X joining x to y with l(γ) ≤ c|x− y|.
For any u ∈ γ, it is clear that

|u− z| ≤ |u− x|+ |x− z|
≤ l(γ) + tδ(z)/(4c)

≤ c|x− y|+ tδ(z)/(4c)

<
(
(2c + 1)/(4c)

)
tδ(z)

(
since c ≥ 1

)

< tδ(z).

(2.2)

The inequality (2.2) implies that

γ ⊆ U
(
z, tδ(z)

)
.

We claim: γ ⊆ G.
Suppose that γ * G. From the connectedness of γ, it follows that there is a

point

u0 ∈ ∂G ∩ γ.

Combing the inequality (2.2), we get dist
(
z, ∂G

) ≤ tδ(z) which implies δ(z) ≤ tδ(z).
This is a contradiction since 0 < t < 1 and δ(z) > 0. Hence, our claim is proved.

For each u ∈ γ, since γ ⊆ G, the function δ(u) is well defined. Furthermore, we
have

δ(u) ≥ δ(z)− |u− z| ≥ (1− t)δ(z).

Let L = l(γ) and let γs : [0, L] → γ be the arc length parametrization of γ. Hence

(2.3) k(x, y) ≤
∫ L

0

dr

δ(γs(r))
≤ L

(1− t)δ(z)
≤ c

1− t

|x− y|
δ(z)

.

Now we prove the left inequality of the inequality (2.1). Since G is rectifiably
connected, the set of rectifiable curves joining x and y is not empty. We assume
that γ : [a, b] → G is any rectifiable curve joining x and y in G.

Case 1. γ ⊆ B
(
z, 2tδ(z)

)
.

Thus, for all u ∈ γ,

δ(u) ≤ |u− z|+ δ(z) ≤ (1 + 2t)δ(z).
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Therefore, it follows

lqh(γ) =
∫ l(γ)

0

dr

δ(γs(r))

≥ l(γ)
1 + 2t

1
δ(z)

≥ |x− y|
(1 + 2t)δ(z)

,

(2.4)

where γs is the arc length parametrization of γ.
Case 2. γ * B

(
z, 2tδ(z)

)
.

From the connectedness of γ, we know that γ has two sub-curves γ1, γ2 ⊆
B

(
z, 2tδ(z)

)
joining the spheres S

(
z, tδ(z)

)
and S

(
z, 2tδ(z)

)
. For any u ∈ γi

(i = 1, 2) we have δ(u) ≤ (1 + 2t)δ(z). Since l(γi) ≥ tδ(z) ≥ 2c|x − y|, we again
obtain (2.4).

This proves (2.1). ¤

Theorem 2.8. Let X be a c-quasiconvex metric space and G  X be a domain.
Suppose that x, y ∈ G and either |x− y| ≤ δ(x)/(8c) or k(x, y) ≤ 1/8. Then

(2.5)
1
2c

|x− y|
δ(x)

≤ k(x, y) ≤ 2c
|x− y|
δ(x)

.

Proof. If |x− y| ≤ δ(x)/(8c), then (2.5) follows from Theorem 2.7 with t = 1/2.
Thus we may assume that |x− y| > δ(x)/(8c) and k(x, y) ≤ 1/8. It follows that

k(x, y) ≤ c|x− y|/δ(x).

So we need only to prove the left inequality in (2.5). Let r̃ = k(x, y) ≤ 1/8. From
the definition of k(x, y) it follows that, for any ε > 0, there is a rectifiable curve γ
joining x and y in G such that

(2.6)
∫ l(γ)

0

dt

δ(γs(t))
< r̃ + ε.

Here γs is the arc length parametrization of γ and l(γ) is the length of γ.
For each t ∈ [0, l(γ)], we have

δ(γs(t)) ≤ δ(x) + |γs(t)− γs(0)|
≤ δ(x) + l(γs|[0, t])

= δ(x) + t.

Substituting the above estimation into (2.6), we get

r̃ + ε >

∫ l(γ)

0

dt

δ(x) + t

= ln
(

1 +
l(γ)
δ(x)

)

≥ ln
(

1 +
|x− y|
δ(x)

)
.

Let ε → 0, we obtain

r̃ ≥ ln
(

1 +
|x− y|
δ(x)

)
.
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Therefore, |x− y| ≤ (er̃ − 1) δ(x) ≤ 2r̃ δ(x). It follows that

k(x, y) = r̃ ≥ 1
2c

|x− y|
δ(x)

,

which implies the theorem. ¤

Corollary 2.9. Let X be a c-quasiconvex metric space and G  X be a domain.
Then the quasihyperbolic metric and the metric of X define the same topology in
the domain G.

Theorem 2.10. Let X be a c-quasiconvex metric space and G  X be a domain.
Let γ be a rectifiable path in G and let lk(γ) be the length of γ in the metric space(
G, k(·)). Then

(1) lqh(γ)/c ≤ lk(γ) ≤ lqh(γ).
(2) The metric space

(
G, k(·)) is a 2-quasiconvex metric space.

Proof. (1) Let γs is the arc length parametrization of γ and L is the length of γ.
Let 0 = t0 < t1 < · · · < tn = L be a partition of [0, L]. Then

n∑

j=1

k
(
γs(tj−1), γs(tj)

) ≤
n∑

j=1

lqh

(
γs|[tj−1,tj ]

) ≤ lqh(γ).

Hence lk(γ) ≤ lqh(γ)
Now we prove the left inequality in (1). By the definition of lqh(γ), it is follows

that

lqh(γ) =
∫ L

0

g(t)dt,

where g(t) = 1/δ
(
γs(t)

)
. Let 0 < ε < 1/2. Since g is continuous, a simple compact

argument of γ shows that there is a partition 0 = t0 < t1 < · · · < tn = L of [0, L]
such that, for xi = γs(ti) and γi = γs|[ti−1,ti], we have

lqh(γ) ≤
n∑

i=1

g(ti)(ti − ti−1) + ε

and γi ⊆ U
(
xi, ε δ(xi)/(8c)

)
for all 1 ≤ i ≤ n.

For each 1 ≤ i ≤ n, we choose successive points xi−1 = xi,0, xi,0, · · · , xi,ni = xi

of γi such that

l(γi) ≤
ni∑

j=1

|xi,j−1 − xi,j |+ ε/n.

With the aid of the estimate (2.1) in Theorem 2.7, we get that, for all 1 ≤ i ≤ n
and 1 ≤ j ≤ ni,

|xi,j−1 − xi,j |
δ(xi)

≤ c(1 + 2ε)k
(
xi,j−1, xi,j

)
.

Since ti − ti−1 = l(γ) and g(ti) = 1/δ(xi), these estimates imply

lqh(γ) ≤ c(1 + 2ε)
∑

i

∑

j

k
(
xi,j−1, xi,j

)
+ 2ε.

Here the double sum is at most lk(γ). Since ε is arbitrary, this yields the desired
inequality.
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(2) Let a 6= b be two points in G. Choose a path γ joining a and b with
lqh(γ) < 2k(a, b). By (1), we get lk(γ) < 2k(a, b), which implies that

(
G, k(·, ·)) is

2-quasiconvex.
¤

3. Quasisymmetry and ring property

In order to prove Theorem 1.6, we need the following fact.

Fact 3.1. Let G  X be a domain in a c-quasiconvex metric space X. For any
x ∈ G, if 0 < r < δ(x), then

G\BG(x, r) 6= ∅ and SG(x, r) 6= ∅.
Proof. By Remark (2.1), we know that ∂G 6= ∅ and δ(x) is well defined. If
G\BG(x, r) = ∅, then

G ⊆ BG(x, r) ⊆ B(x, r).

It follows that G ⊆ B(x, r) which implies ∂G ⊆ B(x, r). Thus,

δ(x) = dist
(
x, ∂G

) ≤ r,

which is a contradiction. Hence, G\BG(x, r) 6= ∅.
Since ∂G 6= ∅ and 0 < r < δ(x), we can choose a point z′ ∈ ∂G such that

|z′ − x| > r.

From the definition of c-quasiconvex of X, there is a curve γ : [a, b] → X joining
the points x and z′. Set

W := {t ∈ [a, b] : γ|[a,t] ⊆ UG(x, r)}.
Since UG(x, r) = U(x, r) ∩G is an open set of X, it is clear that W is an open set
of [a, b] and a ∈ W . Define

t0 = sup{t : t ∈ W}.
Clearly, t0 > a. Since γ|[a,t0) ⊆ UG(x, r) ⊆ G, we know that

(3.1) γ(t0) ∈ G and |γ(t0)− x| ≤ r.

We claim that γ(t0) ∈ SG(x, r).
Since γ(t0) ∈ G, we know that

γ(t0) ∈ G ∪ ∂G.

If γ(t0) ∈ ∂G, by (3.1), then we get

dist(x, ∂G) = δ(x) ≤ r,

which contradicts r < δ(x). Thus, we have

γ(t0) ∈ G and |γ(t0)− x| ≤ r.

If |γ(t0) − x| < r, by the definition of t0, then t0 ∈ W . This is a contradiction
since W is an open set. Therefore we have

γ(t0) ∈ G and |γ(t0)− x| = r,

which implies that γ(t0) ∈ SG(x, r). Hence, SG(x, r) 6= ∅. ¤
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Let X, Y be c, c′-quasiconvex metric spaces and let G  X, G′  Y be two
domains. If x ∈ G and if M > 0, α > 1 be two positive real numbers, we denote

rx,α =
δ(x)
α

, BG
x,r = BG(x, r) and αUG

x,r = UG(x, αr).

Definition 3.2. We say that a homeomorphism f : G → G′ has (M, α)-ring
property if

sup
0<r<rx,α

{
diameter

(
f(BG

x,r)
)

dist
(
f(BG

x,r), G′\f(αUG
x,r)

)
}
≤ M.

Remark 3.3. Since αr < δ(x) and Fact 3.1, we know that G′\f(αUG
x,r) 6= ∅ which

implies Definition 3.2 is well defined.

Proof of Theorem 1.6. In what follows, we will divide the proof into four steps,
and prove the result step by step.

Step 1. We prove that f has (2H2(H + 1), 3)-ring property.

Suppose that x ∈ G and 0 < r < rx,3. By Fact 3.1, we know that

SG(x, r) 6= ∅ and G\(3UG
x,r

) 6= ∅.
Suppose that a, b are any two points in BG

x,r. Let y be any point on SG(x, r) and
let z be any point in G\(3UG

x,r

)
.

Claim 1.1. diameter
(
f(BG

x,r)
) ≤ 2H2|f(z)− f(y)|.

Since f is H-quasisymmetric, it follows from the definition that
sup{|f(u)− f(x)| : u ∈ BG(x, r)}

inf{|f(u)− f(x)| : u ∈ G\UG(x, r)} ≤ H.

Meanwhile, since a ∈ BG(x, r) and y ∈ SG(x, r), we have

|f(a)− f(x)| ≤ sup{|f(u)− f(x)| : u ∈ BG(x, r)}
≤ H · inf{|f(u)− f(x)| : u ∈ G\UG(x, r)}
≤ H|f(y)− f(x)|.

With a similar argument, we obtain

|f(b)− f(x)| ≤ H|f(y)− f(x)|.
Therefore,

(3.2) |f(a)− f(b)| ≤ 2H|f(y)− f(x)|.
Moreover, since |z − y| ≥ |x − y|, by using the definition of H-quasisymmetry,

we have

(3.3) |f(x)− f(y)| ≤ H|f(z)− f(y)|.
From (3.2) and (3.3), we deduce |f(a) − f(b)| ≤ 2H2|f(z) − f(y)|. Hence, Claim
1.1 is proved.

Let c be any point in Br.
Claim 1.2. |f(z)− f(y)| ≤ (H + 1)|f(z)− f(c)|.

Sice c ∈ BG
x,r, it follows that

|y − c| ≤ 2r, |z − c| ≥ 2r and

|f(z)− f(y)| ≤ |f(z)− f(c)|+ |f(c)− f(y)|.(3.4)
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Hence, by the definition of quasisymmetry, we have

|f(y)− f(c)| ≤ sup{|f(v)− f(c)| : v ∈ BG(c, r)}
≤ H · inf{|f(v)− f(c)| : v ∈ G\UG(c, r)}
≤ H|f(c)− f(z)|.

(3.5)

So, from (3.4) and (3.5), Claim 1.2 is obtained.
Combing Claim 1.1 with Claim 1.2, we have thus proved that

diameter
(
f(BG

x,r)
) ≤ 2H2(H + 1)|f(c)− f(z)|.

Since c and z are arbitrary, it follows that

diameter
(
f(BG

x,r)
) ≤ 2H2(H + 1) · dist

(
f(BG

x,r), G
′\f(3UG

x,r)
)
.

Therefore, f has (2H2(H + 1), 3)-ring property. ¤

Let X, Y,G, G′, f be as in Theorem 1.6. Remark 2.2 implies that

∂G′ 6= ∅.
Let x ∈ G, rx,2c+1 = δ(x)/(2c + 1) and BG

x,r = BG(x, r). In order to prove our
result, we need the following lemma.

Lemma 3.4. If 0 < r < rx,2c+1 and z′ ∈ ∂G′, then

dist
(
z′, f(BG

x,r)
)

> 0.

Proof. Otherwise, there is a point z′0 ∈ ∂G′ such that dist
(
z′0, f(BG

x,r)
)

= 0.

It follows that there are points {yn} in f(BG
x,r) with yn → z0. Furthermore,

there are points {xn} in BG
x,r such that f(xn) = yn.

Step 3.2.1. We show that {xn}∞n=1 is a Cauchy sequence.

If it is not so, then there is a positive real number ε0 > 0 such that, for each
k ∈ N, there is j(k) > k with |xk − xj(k)| ≥ ε0. Let k ∈ N and let zk ∈ {xk, xj(k)}
be a point with |zk − x1| ≥ ε0/2.
Claim 3.2. For all that k ∈ N,

|f(x1)− f(xj(1))| ≤ M |f(zk)− f(x1)|.
Here the constant M depends only on H, c, r, ε0.

We distinguish two cases to prove Claim 3.2.
Case 1. |x1−xj(1)| ≤ |zk−x1|. It follows from the definition of H-quasisymmetry
that |f(x1)− f(xj(1))| ≤ H|f(zk)− f(x1)| .
Case 2. |x1−xj(1)| > |zk−x1|. Since the metric space X is c-quasiconvex, we can
join x1 to xj(1) by a curve γ : [a, b] → X with l(γ) ≤ c|x1 − xj(1)|. For any point
p ∈ γ, it is clear that

|p− x| ≤ |p− x1|+ |x1 − x|
≤ l(γ) + r

≤ c|x1 − xj(1)|+ r
(
since x1, xj(1) ∈ BG

x,r

)

≤ (2c + 1)r.

(3.6)
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If γ * G, from the connectedness of γ, then there exists a point p0 ∈ γ ∩ ∂G.
By the inequality (3.6), we deduce that

δ(x) = dist(x, ∂G) ≤ (2c + 1)r,

which contradicts the assumption r < rx,2c+1. Hence γ ⊆ G.
Let γs : [0, L] → G be the arc length parametrization of γ where L is the

length of γ and L ≤ c|x1 − xj(1)|. Define inductively the successive points x1 =
p0, p1, · · · , ps−1, ps = xj(1) of γs as follows. Let t0 = 0,

tj = sup
t
{t ∈ [0, L] : γs(t) ∈ BG

(
pj−1, |zk − x1|

)}

and pj = γs(tj), 0 ≤ j ≤ s.
From the construction of tj , it is clear that ti− ti−1 ≥ |zk−x1| for 1 ≤ i ≤ s−1.

Thus, we have L ≥ ts−1 ≥ (s− 1)|zk − x1|. In addition,

s ≤ L

|zk − x1| + 1 (since |zk − x1| ≥ ε0/2)

≤ 2L

ε0
+ 1

≤ 2c|x1 − xj(1)|
ε0

+ 1 (since x1, xj(1) ∈ B(x, r))

≤ 4cr

ε0
+ 1.

(3.7)

Moreover, since |x1 − xj(1)| > |zk − x1|, we have s ≥ 2, |pj−1 − pj | = |zk − x1|
for 1 ≤ j ≤ s − 1 and |ps−1 − ps| ≤ |zk − x1|. Since f is H-quasisymmetric in G
and p0 = x1, we have

|f(p1)− f(p0)| ≤ H|f(zk)− f(x1)|;
|f(p2)− f(p1)| ≤ H|f(p1)− f(p0)| ≤ H2|f(zk)− f(x1)|;

· · ·
|f(ps)− f(ps−1)| ≤ H|f(ps−1)− f(ps−2)| ≤ · · · ≤ Hs|f(zk)− f(x1)|.

Summation gives

|f(xj(1))− f(x1)| ≤ (H + H2 + · · ·+ Hs)|f(zk)− f(x1)| ≤ sHs|f(zk)− f(x1)|.
Combining this estimate with (3.7), we now have

(3.8) |f(x1)− f(xj(1))| ≤ M1|f(zk)− f(x1)|,
where M1 depends only on H, c, r, ε0.

Since zk ∈ {xk, xj(k)}, by repeated use of the above argument, we can deduce

(3.9) |f(x1)− f(zk)| ≤ M2|f(xk)− f(xj(k))|,
where M2 depends only on H, c, r, ε0. Therefore, using (3.8) and (3.9), we now
obtain

|f(x1)− f(xj(1))| ≤ M |f(xk)− f(xj(k))|,
where M depends only on H, c, r, ε0.

Let k → ∞, we get |f(xk) − f(xj(k))| → 0 as f(xk) = yk → z0 and j(k) > k.
Thus, we obtain f(x1) = f(xj(1)). It follows that x1 = xj(1) which contradicts
|xj(1) − x1| ≥ ε0 > 0.

Therefore, the sequence of {xn}∞n=1 is a Cauchy sequence in Br.
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Step 3.2.2. We prove z′0 ∈ G′.
Since X is complete, there is a point x0 ∈ X such that xn → x0. As {xn} ⊂ BG

x,r,
it follows that x0 ∈ G ∩B(x, r).

If x0 ∈ ∂G, then

dist
(
x, ∂G

) ≤ |x− x0|
≤ r,

which contradicts the assumption r < δ(x). Hence x0 ∈ G.
Since f is continuous, it follows that f(xn) = yn → f(x0) ∈ G′. Thus z′0 =

f(x0) ∈ G′ as yn → z′0. Hence z′0 ∈ G′ which contradicts that z′0 ∈ ∂G′ and G′ is
an open set.This completes the proof of Lemma 3.3. ¤

Let us proceed with the proof of Theorem 1.6.

Step 2. We show that f satisfies

(3.10)
|f(x)− f(y)|

δ′(f(x))
≤ θ

( |x− y|
δ(x)

)
,

for all x, y ∈ G with

|x− y| < δ(x)
33(2c + 1)

.

Here

θ(t) =
24(ln 3)H5(H + 1)2c′

ln
(
1/(2c + 1)t

) .

Suppose that |x − y| = t · δ(x), where 0 < t < 1/
(
33(2c + 1)

)
. Let m be the

largest integer with

(3.11) 3m(2c + 1) t < 1.

Then m ≥ 3. Set

(3.12) rj = 3j t δ(x), UG
j = UG(x, rj) and BG

j = BG(x, rj) for 0 ≤ j ≤ m.

Choose a point z′ ∈ ∂G′ with

(3.13) |z′ − f(x)| ≤ 2 δ′
(
f(x)

)
.

Since Y is a c′-quasiconvex metric space, there is a rectifiable curve γ : [a, b] → Y
joining f(x) and z′ with

(3.14) length(γ) ≤ c′|z′ − f(x)|.
Define

(3.15) tj = sup
t

{
t ∈ [a, b] : γ|[a,t] ⊆ f(BG

j )
}

and yj = γ(tj).

Since UG
j is an open set of X and f is a homomorphism from G onto G′, f(UG

j ) is
an open set of Y . As γ(a) = f(x) ∈ f(UG

j ), it follows that tj > a. Meanwhile, by
(3.11) and (3.12), we have

rj < rx,2c+1.

which implies γ(b) = z′ ∈ ∂G′. Together with Lemma 3.4, it follows that dist
(
γ(b), f(Bj)

)
>

0. Therefore tj < b.
We prove a < tj < b.

Claim 2.1. yj = γ(tj) ∈ f
(
SG(x, rj)

)
.
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We divide the proof of Claim 2.1 into two steps.

Step 2.1. yj is a boundary point of f
(
BG

j

)
in Y , that is, yj ∈ ∂Y f

(
BG

j

)
.

Suppose N ⊆ Y is an open neighborhood of yj . Then γ−1(N) is an open
neighborhood of tj . Since a < tj < b, there exists a positive number σ > 0 such
that

(tj − σ, tj + σ) ⊂ γ−1(N).

From the definition of tj , it is clear that γ|[a,tj) ⊆ f(BG
j ). Thus we have

γ
(
(tj − σ, tj)

) ∩ f(BG
j ) 6= ∅;

γ
(
[tj , tj + σ)

) ∩ (
Y \ f(BG

j )
) 6= ∅.

Therefore N ∩f(BG
j ) 6= ∅ and N ∩ (Y \f(BG

j )) 6= ∅. Then yj ∈ ∂Y

(
f(BG

j )
)

follows.
Note that ∂Y

(
f(BG

j )
)

is the boundary of f(BG
j ) in Y (not in G′).

Step 2.2. We show that yj ∈ f
(
SG(x, rj)

)
.

Since yj ∈ ∂Y f(BG
j ), it follows that

(3.16) dist
(
yj , f(BG

j )
)

= 0.

As f(BG
j ) ⊆ G′, we know that yj belongs to the closure of G′.

If yj ∈ ∂Y G′, by Lemma 3.4, we get dist(yj , f(BG
j )) > 0, which contradicts

(3.16). Hence yj 6∈ ∂Y G′. Since yj ∈ G′ and G′ is open, it follows that yj ∈ G′.
Since f(BG

j ) is a relative close set in G′, we deduce

f(BG
j ) =the closur of f(BG

j ) in G′

=f(BG
j ) ∩G′

=
{
f
(
BG

j

) ∪ ∂Y f(BG
j )

} ∩G′.

(3.17)

By using yj ∈ ∂Y f(BG
j ) and yj ∈ G′, we get

yj ∈ f
(
BG

j

)
.

Thus, there exists a point xj ∈ BG
j such that f(xj) = yj .

If xj ∈ UG
j , that is |xj − x| < rj and xj ∈ G, then it follows immediately that

yj = f(xj) is an inner point of f(BG
j ). This fact contradicts that yj ∈ ∂Y f(BG

j ).
Hence xj ∈ SG(x, rj) and Claim 2.1 is proved.

Now suppose xj ∈ SG(x, rj) such that f(xj) = yj . Denote

λ = |y1 − f(x)|.
Claim 2.2. λ ≤ 4H3(H + 1)c′ · δ′(f(x)

)
/(m− 1).

Since |x1 − x| = r1 and |xj−1 − x| ≥ r1, j ≥ 2, from the definition of H-
quasisymmetry, we have

|f(x1)− f(x)| ≤ sup
{|f(v)− f(x)| : v ∈ BG(x, r1)

}

≤ H · inf{|f(v)− f(x)| : v ∈ G\UG(x, r1)}
≤ H|f(xj−1)− f(x)|.

(3.18)

That is
λ ≤ H|yj−1 − f(x)| for j ≥ 2.
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From the Step 1 of the proof of Theorem 1.6, we know that f has
(
2H2(H+1), 3

)
-

ring property. In view of the fact 3 rj < δ(x) and 3UG
j−1 = UG

j , we have, for
2 ≤ j ≤ m,

|yj−1 − f(x)| ≤ diameter
(
f(BG

j−1)
)

≤ 2H2(H + 1) dist
(
f(BG

j−1), G
′\f(3UG

j−1)
)

= 2H2(H + 1) dist
(
f(BG

j−1), G
′\f(UG

j )
)

≤ 2H2(H + 1)|yj−1 − yj |.

(3.19)

Therefore, for j ≥ 2,

λ ≤ 2H3(H + 1)|yj−1 − yj | ≤ 2H3(H + 1) · length
(
γ|[tj−1,tj ]

)
.

Summing over these j and noting (3.13) and (3.14), we obtain

(m− 1)λ ≤ 2H3(H + 1)
m∑

j=2

length
(
γ|[tj−1,tj ]

)

≤ 2H3(H + 1) · length(γ)

≤ 2H3(H + 1)c′|z′ − f(x)|
≤ 4H3(H + 1)c′ · δ′(f(x)

)
.

(3.20)

Thus the proof of Claim 2.2 is completed.
Since y ∈ G, |x− y| = t · δ(x) and r0 = t δ(x), we have y ∈ B0. Note that f has

(2H2(H + 1), 3)-ring property. We deduce that

|f(y)− f(x)| ≤ diameter
(
f(BG

0 )
)

≤ 2H2(H + 1) dist
(
f(BG

0 ), G′\f(UG
1 )

)

≤ 2H2(H + 1)|f(x)− y1| = 2H2(H + 1)λ.

(3.21)

Together with (3.20) and (3.21), it follows that

(3.22)
|f(y)− f(x)|

δ′
(
f(x)

) ≤ 8H5(H + 1)2c′

m− 1
.

Since 3m+1(2c + 1)t ≥ 1, we have

m + 1 ≥ ln
(
1/(2c + 1)t

)

ln 3
.

Furthermore, 33(2c + 1)t < 1 implies 3 ln 3 < ln
(
1/(2c + 1)t

)
. Hence

(3.23) m− 1 ≥ ln
(
1/(2c + 1)t

)− 2 ln 3
ln 3

≥ ln
(
1/(2c + 1)t

)

3 ln 3
.

By combing (3.22) with (3.23), we have the desired estimate

(3.24)
|f(y)− f(x)|

δ′
(
f(x)

) ≤ 24 ln 3H5(H + 1)2c′

ln
(
1/(2c + 1)t

) = θ(t) = θ

( |x− y|
δ(x)

)
.

Here

θ(t) =
24 ln 3H5(H + 1)2c′

ln
(
1/(2c + 1)t

) .

It is obvious that θ(t) is an increasing function and θ(t) → 0 as t → 0.
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Since θ(t) → 0 as t → 0, we choose a constant t1 > 0 such that

(3.25) t1 <
1

332c(2c + 1)
and θ(2ct1) ≤ 1

8c
.

Define the function φ(t) as follows:

(3.26) φ(t) = 2c θ(2ct) =
48 cH5(H + 1)2c′ ln 3

ln 1
2c(2c + 1)t

.

Step 3. We prove that

(3.27) k′
(
f(x), f(y)

) ≤ φ
(
k(x, y)

)

for all x, y ∈ G with
k(x, y) ≤ t1.

From the definition of t1, it follows t1 < 1/8. Suppose that x, y ∈ G with
k(x, y) ≤ t1. Thus, by Theorem 2.8, we have

(3.28)
|x− y|
δ(x)

≤ 2ck(x, y) ≤ 2ct1 <
1

33(2c + 1)
.

From the conclusion of Step 2 and (3.25), (3.28), it follows that

|f(x)− f(y)|
δ′(f(x))

≤ θ

( |x− y|
δ(x)

)

≤ θ(2ct1) ≤ 1/(8c).

Applying Theorem 2.8 again, we get that

k′
(
f(x), f(y)

) ≤ 2c|f(x)− f(y)|
δ′(f(x))

≤ 2cθ

( |x− y|
δ(x)

)

≤ 2cθ
(
2c · k(x, y)

)

= φ
(
k(x, y)

)
.

This proves Step 3.

Define the function ψ(t) as follows:

ψ(t) =





φ(t) + 2t
t1

[φ(t1)− φ(t1/2)] for 0 < t ≤ t1/2;
2A(t− t1/2) + B for t1/2 ≤ t ≤ t1;
At + B for t1 ≤ t,

(3.29)

where

(3.30) A =
2φ(t1)

t1
and B = φ(t1).

Then the function ψ has all the properties which are stated in Theorem 1.6.

Step 4. We show that

(3.31) k′
(
f(x), f(y)

) ≤ ψ
(
k(x, y)

)

for all x, y ∈ G.
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Since G is rectifiable connected, by Theorem 2.8, we know that
(
G, k(·)) is 2-

quasiconvex. Therefore, for any given x, y ∈ G, there is a path γ ⊂ G joining x and
y with lk(γ) ≤ 2k(x, y).

Let p ≥ 0 be the unique integer satisfying

p t1 < lk(γ) ≤ (p + 1) t1.

Let γk
s : [0, lk(γ)] → G be the arc length parametrization of γ with metric k(·).

Denote
tj =

j

p + 1
lk(γ) and xj = γk

s (tj)

for all 0 ≤ j ≤ p + 1. Thus,

k
(
xj−1, xj

) ≤ lk
(
γk

s |[tj−1,tj
]

)
= tj − tj−1 =

lk(γ)
p + 1

≤ t1.

By using the conclusion of Step 3, it follows that

k′
(
f(xj−1), f(xj)

) ≤ φ
(
k(xj−1, xj)

) ≤ φ(t1),

for all 1 ≤ j ≤ p + 1. Hence

(3.32) k′
(
f(x), f(y)

) ≤
p+1∑

j=1

k′
(
f(xj−1), f(xj)

) ≤ (p + 1)φ(t1).

Since p t1 < lk(γ) ≤ 2k(x, y), it follows from (3.32) that, for all x, y ∈ G,

(3.33) k′
(
f(x), f(y)

) ≤ Ak(x, y) + B.

If 0 < k(x, y) ≤ t1/2, using the conclusion of Step 3, we know that

k′
(
f(x), f(y)

) ≤ φ
(
k(x, y)

) ≤ ψ
(
k(x, y)

)
.

If t1/2 < k(x, y) ≤ t1, by the conclusion of Step 3, we deduce that

k′
(
f(x), f(y)

) ≤ φ
(
k(x, y)

) ≤ φ(t1) = B ≤ ψ
(
k(x, y)

)
.

If t1 < k(x, y), according to (3.33), we get that

k′
(
f(x), f(y)

) ≤ Ak(x, y) + B = ψ
(
k(x, y)

)
.

Therefore, we obtain

k′
(
f(x), f(y)

) ≤ ψ
(
k(x, y)

)
,

for all x, y ∈ G. Hence, Theorem 1.6 is proved. ¤

4. Quasi-invariance of quasihyperbolic metric implies
quasiconformality

Proof of Theorem 1.8. Define a homeomorphism η : [0,∞) → [0,∞) by

η(t) = et − 1.

Suppose that x, y ∈ G, |y − x| = t · δG(x) with 0 < t < 1/(8c). It follows
immediately from Theorem 2.7 and Theorem 2.8 that

k(y, x) ≤ 2c t,
|f(y)− f(x)|

δG′
(
f(x)

) ≤ η
(
k′(f(y), f(x))

)
.

It follows from Theorem 1.8 that
|f(y)− f(x)|

δG′
(
f(x)

) ≤ θ̃

( |y − x|
δG(x)

)
,
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where θ̃(t) = η ◦ ϕ(2c t). Note that θ̃ is an increasing function.
Let a ∈ G, |a − x| ≤ δG(x)/(8c) and let b ∈ G with |a − x| ≤ |b − x|. In what

follows, we distinguish two cases to prove

(4.1)
|f(a)− f(x)|
|f(b)− f(x)| ≤ θ̃(1).

Case 1. |b− x| > δG(x).
Denote D = G\{b} and D′ = f(D). Since G is a non-cut-point domain, by using

Observation 2.6, we know that D is a sub-domain of G. Since |b − x| > δG(x), it
follows that δD(x) = δG(x). Thus, we have

|a− x|
δD(x)

=
|a− x|
δG(x)

< 1.

Applying Theorem 1.8 to the sub-domain D, we get

|f(a)− f(x)|
δD′

(
f(x)

) ≤ θ̃

( |a− x|
δD(x)

)
≤ θ̃(1).

Since δD′
(
f(x)

) ≤ |f(b)− f(x)|, it follows immediately that

|f(a)− f(x)| ≤ θ̃(1)δD′
(
f(x)

) ≤ θ̃(1)|f(b)− f(x)|.
Case 2. |b− x| ≤ δG(x).

Denote D = G\{b} and D′ = f(D). It is clear that δD(x) = |b − x|. Thus, it
follows that

|a− x|
δD(x)

=
|a− x|
|b− x| ≤ 1.

Use a similar argument in Case 1, we can obtain the inequality (4.1).
Now, it follows immediately from the inequality (4.1) that

lim sup
r→0

Hf (x, r) ≤ θ̃(1).

Hence, the mapping f is a H-quasiconformal mapping with

H = θ̃(1) = eϕ(2c) − 1.

5. The composition of two quasisymmetric mappings is
quasiconformal

Proof of Theorem 1.9. Set

(5.1) α0 = (2c1 + 1)3n,

where
n = 8[c1H

2
1 (H1 + 1)] + 9.

Claim: The map g ◦ f has
(
2H2

2 (H2 + 1), α0

)
-ring property.

Let x ∈ G and δG(x) =dist(x, ∂G). Suppose that

rx,α0 =
δG(x)

α0
and 0 < r < rx,α0 .

Define
rj = 3jr, Uj = UG(x, rj) and Bj = BG(x, rj)

for all 0 ≤ j ≤ n. Denote
R = diameter

(
f(B0)

)
.
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Step 5.1. We show that

(5.2) dist
(
f(B0), G′\f(α0U0)

)
> 3R and 3R < δG′

(
f(x)

)
.

From Fact 3.1, it follows that

G′\f(
α0 U0

) 6= ∅.
Suppose that y0 ∈ f(BG) and z ∈ G′\f(

α0 U0

)
are any two points. Since Y is a

c2-quasiconvex metric space, there exists a rectifiable curve γ : [a, b] → Y jointing
y0 and z with length(γ) ≤ c2|y0 − z|.

For 1 ≤ j ≤ n, let

(5.3) tj = sup
t

{
t ∈ [a, b] : γ|[a,t] ⊆ f(Bj)

}
and yj = γ(tj).

Since (2c1 + 1)rj < δG(x), by repeated use of the argument in Step 2 in the proof
Theorem 1.6, we deduce that a < tj < b and

(5.4) yj = γ(tj) ∈ f
(
SG(x, rj)

)
for all 1 ≤ j ≤ n.

Since f is homomorphic, it follows that

(5.5) yi 6= yj for i 6= j.

From the definition of tj and 5.4, it is clear that

γ|[a,tj ] ⊆ f(Bj) ⊆ f(Uj+1).

Thus, we have tj < tj+1. Again, this implies that

(5.6) a < t1 < t2 < · · · < tn < b.

In addition, since f has
(
2H2

1 (H1 + 1), 3
)
-ring property, yj−1 ∈ f(3j−1B0) and

yj ∈ G′\f(3jU0), we deduce that, for 2 ≤ j ≤ n,

length
(
γ|[tj−1,tj ]

) ≥ |yj−1 − yj |
≥ dist

(
f(3j−1B0), G′\f(3jU0)

)

≥ 1
2H2

1 (H1 + 1)
diameter

(
f(3j−1B0)

)

≥ 1
2H2

1 (H1 + 1)
diameter

(
f(B0)

)
.

(5.7)

Summing these inequalities from j = 2 to n, by noting (5.6), we obtain

length(γ) ≥ n− 1
2H2

1 (H1 + 1)
diameter

(
f(B0)

)
.

From the definition (5.1) of n and length(γ) ≤ c2|y0 − z|, it follows that

|y0 − z| ≥ 1
c2

length(γ)

≥ n− 1
2c2H2

1 (H1 + 1)
diameter

(
f(B0)

)

≥ 4diameter
(
f(B0)

)
.

(5.8)

Since y0 and z are arbitrary, we obtain

(5.9) dist
(
f(B0), G′\f(3nU0)

)
> 3 diameter

(
f(B0)

)
.
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Thus, the first inequality of Step 5.1 is obtained.
By repeated use of the above argument, we deduce that

3R < dist
(
f(x), ∂G′

)
,

that is,

3R < δG′
(
f(x)

)
.

Step 5.2. We claim that

BG′
(
f(x), 3R

) ⊆ f
(
α0U0

)
.

Suppose that

BG′
(
f(x), 3R

)
* f

(
α0U0

)
.

Then there exists a point ỹ with ỹ ∈ BG′
(
f(x), 3R

)
and ỹ ∈ G′\f(

α0U0

)
. From

(5.9), it follows that

|f(x)− ỹ| ≥ dist
(
f(B0), G′\f(α0U0)

)

> 3R,

which contradicts ỹ ∈ BG′
(
f(x), 3R

)
. This proves Step 5.2.

Denote

B∗ = BG′
(
f(x), R

)
and U∗ = UG′

(
f(x), R

)
.

Step 5.2 implies that

(5.10) 3U∗ ⊆ f
(
α0U0

)
.

From the definition of R, it is clear that

(5.11) f(B0) ⊆ B∗.

Since g : G′ → G′′ has
(
2H2

2 (H2 + 1), 3
)
-ring property, we deduce that

(5.12) diameter
(
g(B∗)

) ≤ 2H2
2 (H2 + 1) · dist

(
g(B∗), G′′\g(

3U∗)).

Combing (5.10), (5.11) and (5.12), it follows that

diameter
(
g ◦ f(B0)

) ≤ diameter
(
g(B∗)

)

≤ 2H2
2 (H2 + 1) · dist

(
g(B∗), G′′\g(

3U∗))

≤ 2H2
2 (H2 + 1) · dist

(
g ◦ f(B0), G′′\g ◦ f

(
3nU0

))
.

(5.13)

Therefore, the map g ◦ f has
(
2H2

2 (H2 + 1), n
)
-ring property.

Combination of Step 1 to Step 4 in the proof of Theorem 1.6 and Theorem 1.8
gives that g ◦ f is a quasiconformal mapping. Hence, Theorem 1.9 is proved.
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6. Appendix

For the sake of completeness, we give an example to show that the assumption
of non-cut-point in Theorem 1.8 is necessary.

Example 6.1. For each positive integer n ≥ 1, we define the functions fn(x) on
[0, 1] as follows:

fn(x) =





nx for x ∈ [0, 1
2 ]

x + n−1
2 for x ∈ [ 12 , 1].

Let X = R = Y and G = (0,∞) = G′. Define a homeomorphism f : G → G′ as
follows:

f(x) =





f1(x) for x ∈ (0, 1]
f2(x− 1) + f1(1) for x ∈ [1, 2]
· · · · · ·
fn

(
x− (n− 1)

)
+ fn−1(n− 1) for x ∈ [n− 1, n] and n ≥ 3

· · · · · ·
By Definition 1.3, it is clear that

lim sup
r→0

Hf (n, r) = n + 1

which implies that f(x) is not a quasiconformal mapping.
In the follows we show that the homeomorphism f(x) satisfies the requirements

of Theorem 1.8. Let x ∈ G = (0,∞). We write

L∗(x, f) = lim sup
y→x

|f(y)− f(x)|
|y − x| .

Suppose that x ∈ (m− 1,m] for some positive integer m. If m = 1, then

L∗(x, f) ≤ 2,

δG(x) = x and

δG′
(
f(x)

)
= x.

If m ≥ 2, then

L∗(x, f) ≤ m + 1,

δG(x) = x ≤ m and

δG′
(
f(x)

) ≥ (m− 1)m/4.

Hence, for all x ∈ (0,∞),
L∗(x, f) δG(x)

δG′
≤ 12.

By Theorem 4.6 of [18], we know that, ∀x, y ∈ G,

kG′
(
f(x), f(y)

) ≤ 12 · kG(x, y).

By Theorem 4.7 of [18], it follows that, for any sub-domain E ⊆ G and ∀x, y ∈ E,

kE′
(
f(x), f(y)

) ≤ 576 · kE(x, y),

where E′ = f(E).
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22. Väisälä, J.,The free quasiworld: freely quasiconformal and related maps in Banach spaces.
Quasiconformal geormetry and dynamics (Lublin 1996), Banach Center Publications, Vol. 48,

Polish Academy of Science, Warsaw, 1999, 55-118.

23. Vuorinen, M., Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math.,
1319 Springer-Verlag, NewYork, 1988.

College of Mathematics and Statistics, Chongqing University, Chongqing 401331,

China



QUASIHYPERBOLIC METRIC AND QUASISYMMETRIC MAPPINGS IN METRIC SPACES23

Mathematical Sciences Research Institute in Chongqing, Chongqing 401331, China
E-mail address: hxj@cqu.edu.cn

HUA Loo-Keng Key Laboratory of Mathematics, Chinese Academic of Sciences, Bei-
jing 100190, China

Institute of Mathematics, Academic of Mathematics & System Sciences, Chinese Aca-
demic of Sciences, Beijing 100190, China

E-mail address: liujsong@math.ac.cn


