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ABSTRACT. In this paper we consider the characterization problem of convex
polyhedrons in the three dimensional hyperbolic space H3. Consequently we can
give a characterization of circle patterns in the Riemann sphere with dihedral angle
0 ≤ Θ < π. That is, for any circle pattern on Ĉ, its quasiconformal deformation
space can be naturally identified with the product of the Teichmüller spaces of its
interstices.

Mathematics Subject Classification. 52C26, 30F60, 30F15.

0. INTRODUCTION

Let P be a circle pattern in the Riemann sphere Ĉ. It is a collection of circles in
Ĉ in which no circle has its interior contained in the union of the interior of two
others. Define the contact graph G = GP of the pattern P to be a graph whose
vertices correspond to the circles in P, and an edge appears in G if and only if the
corresponding circles intersect each other. Please see [5, 6, 14, 15]. Let P(v) denote
the circle in P corresponding to the vertex v ∈ V . For any edge e = [v,w] of G, the
dihedral angle ΘP(e) of the pair of intersecting circles P(v) and P(w) is defined to be
the angle in [0, π) between the clockwise tangent of P(v) and the counterclockwise
tangent of P(w) at a point of P(v) ∩ P(w). Please see Figure 1.
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Figure 1

Let H3 denote the 3-dimensional hyperbolic space. If Π ⊂ H3 is any hyperbolic
plane, then Π is the intersection of H3 with a sphere orthogonal to ∂H3 = Ĉ. Thus
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the intersection ∂Π ∩ Ĉ is a circle. Furthermore, for any two hyperbolic planes
Π,Π′, if they intersect, then we have the following

Observation 0.1. The dihedral angle of the circles ∂Π ∩ Ĉ and ∂Π′ ∩ Ĉ is the dihedral
angle at the edge Π ∩ Π′.

This simple observation will play an important role throughout this paper.

In order to state our main results, let us introduce some definitions (see [10, 11]).
A finite convex polyhedron P ⊂ H3 is a subset with non-empty interior, which is

an intersection of finite closed half-spaces. Each finite face of P lies in a unique hy-
perbolic plane. Therefore, there is a corresponding circle pattern P on the Riemann
sphere.

When ∂P ∩ ∂H3 , ∅, then the intersection is the union of several closed re-
gions. Each of these closed region I has finitely many boundary components. And
each boundary component is a piece-wise smooth curve formed by finitely many
circular arc or circles. Each (maximal) circular arc or circle on ∂I belongs to the
boundary of some circle. Therefore, this boundary arc is marked by an element
of the vertices set V . The closed region I, together with a marking of the circular
arcs and /or circles on its boundary by elements of V is called an interstice of this
polyhedron.

Each closed region, together with a marking of the circular arcs and/or circles
on its boundary is called an interstice. Therefore it induces the complex structure
from the Riemann sphere.

A hyperbolic plane Π ⊂ H3 is a support hyperplane for a polyhedron P if Π lies
entirely on one side of P and Π contains at least a point of P. In Section 1 we will
give the definition of polar map ∗, which maps a hyperbolic plane Π in H3 to the
set Π∗ ⊂ S2

1 of outward and normal to all of its supporting hyperplanes, where
S2

1 is the de-Sitter space. We refer to Section 1 for background on polar map and
de-Sitter space. Throughout this paper, without otherwise specified, we use the
same V as the vertices set of a graph on Ĉ. We also use V to be the index set of the
finite faces of any finite convex polyhedron in H3.

Let (Q, g) be a metric space with boundary. (Q, g) is called finite admissible if it
satisfies the following conditions.

1. The metric space Q is homeomorphic to a closed region in the Riemann
sphere Ĉ.

2. The metric g has constant curvature 1 away from a finite collection of cone
points {cv}v∈V .

3. The cone angle at each interior cone points cv is greater than 2π.
4. The lengths of all closed local geodesics1 of the metric space (Q, g) are greater

than or equal to 2π. The set G2π = {Γ1,Γ2, · · · ,ΓN} of all geodesics of length equal to
2π is finite. Furthermore, if Γ ∈ G2π, then one of the connected components of Q\Γ
is isometric to the standard open hemisphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, z > 0}.

5. Each boundary component of Q consists of boundary cone points and geo-
desic arcs connecting pairs of adjacent boundary cone points. The length of each
geodesic arc is less than or equal to π.

1a closed local geodesic is the image of a standard circle under a locally distance minimizing map-
ping. At any interior cone points it subtends an angle of at least π on either side. When the geodesic
pass through a boundary cone, it subtends an angle of at least π on the side of the region Q.
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For any pair of adjacent boundary cone points {c1, c2} with distance π, we use
γ[c1,c2] to denote the boundary geodesic arc joining c1 and c2. Note that, by our
assumption, we have L(γ[c1,c2]) = π.

Definition 0.2. For any local geodesic γ ⊂ Q joining the cone points c1 and c2, if
the angles between γ and γ[c1,c2] at c j, j = 1, 2, is greater than or equal to π/2, then
we call γ a semi-closed geodesic.

6. The length of any semi-closed geodesic on (Q, g) is ≥ π. The number of such
semi-closed geodesics is finite. Furthermore, if the length of a semi-close geodesic
is precisely π, then the region between this semi-close geodesic and the geodesic
arc with length π is isometric to the open region {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, y >
0, z > 0}.
Remark 0.3. For any semi-closed geodesic γ with length π/2, then there is at least
one cone point incident to γ except for the two end points. Otherwise, there is
a lung2 abutting the region along γ. Then there are infinite many semi-closed
geodesics in the lung. It would contradict to the condition 6.

Then we have the following result.

Theorem 0.4. The polar images of finite convex polyhedra in the 3-dimensional hyperbolic
space are precisely the finite admissible spaces.

Fixing a polyhedron P0 whose polar image is (Q, g), we have

Theorem 0.5. The set of all polyhedra whose polar image is (Q, g) can be characterized by
the product of the Teichmüller space Πk

iTIi , where {I1, I2, · · · , Ik} are all interstices of P0.

Assume G = (V, E) is an embedded graph Ĉ, where V is the set of vertices in G
and E is its edges set. Suppose that |V | > 5. Let Θ : E → [0, π) be the dihedral angle
function for G. Recall that a circle pattern P is said to realize the data (G,Θ) if its
contact graph is combinatorially isomorphic to a graph G̃ = (V, Ẽ), and its dihedral
angle function Θ̃ satisfies Θ = Θ̃|E .

If (G,Θ) satisfies the conditions (i), (ii), (iii) and (iv) in Section 2, then we can
construct a metric space (Q, g) (see Section 2). By using Observation 0.1 and Theo-
rem 0.5, we have the following result. Please see Theorem 2.1 and Theorem 2.2 in
Section 2.

Theorem 0.6. If the graph (G,Θ) satisfies the conditions (i), (ii), (iii) and (iv) in Section
2, and if the corresponding metric space (Q, g) is finite admissible, then there is at least one
circle pattern P0 realizing the data (G,Θ).

Furthermore, the space of equivalence classes of circle patterns realizing (G,Θ) can be
natural identified with the Teichmüller space Πk

iTIi , where {I1, I2, · · · , Ik} are the interstices
of P0.

In [5] we prove the above theorem under the condition 0 ≤ Θ ≤ π/2. By using
Theorem 0.6, we can give a simple new proof of the following theorem. Please see
Theorem 3.1 in Section 3.

2a lung is a piece of a sphere bounded by two geodesic arcs
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Theorem 0.7. Assume that G = (V, E) is an embedded graph Ĉ with |V | > 5. If 0 ≤ Θ ≤
π/2, then there is a circle pattern P0 realizing (G,Θ). The space of equivalence classes of
circle patterns realizing (G,Θ) can be natural identified with the product of the Teichmüller
spaces of all interstices of the circle pattern P0.

The paper is organized as follows. In Section 1 we introduce some basic termi-
nologies and develop various background necessary for our proofs. The object of
Section 2 is to give the proof of some results on circle patterns. In Section 3 we
give a new proof of the main result in [5]. The proof of Theorem 0.5 is left to the
last section.

Notational Conventions. Through this paper, for any circle pattern P and vertex
v, we denote by P(v) the circle corresponding to v. For any circle c in the complex
plane C, we denote by ρ(c) its euclidean radius.

For any finite set S , we denote by |S | the number of elements in S .

Acknowledgement. We wish to thank Professor Zhengxu He for suggesting
this project.

1. PRELIMINARIES

The main purpose of this section is to define some terms we later use, and to
introduce notations.

For any finite convex polyhedronP ⊂ H3, we describe the Gauss map ofP inH3.
For any vertex V of P, V is mapped by the Gauss map G to a spherical polygon
G(V), whose sides are the images under G of edges incident to the vertex V, and
whose angles are seen to be the angles supplementary to the planar angles of the
faces incident toV. Namely, the edges G(el) and G(ez) meet at angle π−αwhenever
the edges el, e2 of Pmeet at angle α.

Hodgson and Rivin [10, 11] interpret the Gauss image by using the polar map.
For the sake of completeness, we give it here. Denote by R3

1 the linear space R4

equipped with the (3, 1) Minkowski inner product

< x, y >= −x0y0 + x1y1 + x2y2 + x3y3,

where x = (x0, x1, x2, x3), y = (y0, y1, y2, y3). Then we can view the classical hyper-
bolic space

H3 = {x ∈ R3
1 : < x, x >= −1, x0 > 0},

which is the ”sphere” of radius
√−1. Let

S2
1 = {x ∈ R3

1 : < x, x >= 1}.
be the de Sitter space. It is a semi-Riemann submanifold of the space R3

1. The polar
map ∗maps a hyperbolic convex polyhedron P ⊂ H3 to the set P∗ ∈ S2

1 of outward
and normal to all of its supporting hyperbolic planes. Then P∗ has the intrinsic
metric induced from S2

1. Hodgson and Rivin prove that the intrinsic metric on the
polar image P∗ is precisely the usual metric on the Gauss image G(P).

Moreover, Hodgson and Rivin [10, 11] prove the following results.
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Theorem 1.1. A metric space (Q, g) is the polar image of a finite volume polyhedron if
and only if it satisfies the following conditions:
B Q is homeomorphic to the Riemann sphere S2.
B The metric g has constant curvature 1 away from a finite collection {cv}v∈V of cone

points.
B The cone angle αv at cv greater than 2π.
B The lengths of all closed geodesics of (Q, g) are greater than or equal to 2π.
B The set G2π = {Γ1, · · · ,ΓN} of all closed geodesics of length equal to 2π is finite.

Furthermore, if Γ ∈ G2π, then one of the connected components of Q\Γ is isometric to the
standard open hemisphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, z > 0}.

Furthermore, the hemispheres bounded by geodesics of length 2π correspond to ideal
vertices.

Let H = {(x, y, z) ∈ R3 : x2 +y2 +z2 = 1, z > 0} denote the standard closed Northern
hemisphere. Denote E = ∂H = {(x, y, 0) ∈ R3 : x2 + y2 = 1} the equator. The North
pole is the point N = (0, 0, 1).

Definition 1.2. A spherical triangle ABC ⊂ S2 will be called equatorial if A = N
and B,C ∈ E.

Therefore, the segments AB and AC are lines of longitude with length π/2. The
segment BC ⊂ E. The angles at B and C are both equal to π/2 and the angle at A is
equal to the length of BC.

Proof of Theorem 0.4.
For any finite polyhedron P, the length of a closed geodesic of P∗ corresponds

to the sum of the exterior dihedral angles of an immersed cylinder. Therefore, the
polar P∗ is a finite admissible space. Please refer to Section 3 in [11].

Conversely, suppose that (Q, g) is a finite admissible metric space. Namely, it
satisfies the conditions 1 − 6 in Section 0. We index the boundary components of
the metric spaceQ by the set {i}1≤i≤k. For any boundary component γi of Q, suppose
that

γi =

Ni⋃

j=1

γi j,

where {γi j}1≤ j≤Ni are geodesic arcs on γi connecting two adjacent boundary cone
points on γi. Their lengths satisfy 0 < L(γi j) ≤ π.

For any 1 ≤ i ≤ k, 1 ≤ j ≤ Ni, we can construct a singular spherical triangle Hi j

whose sides have lengths {L(γi j), π, π}. More precisely, we construct three equato-
rial triangles with lengths

{L(γi j), π/2, π/2}, {π, π/2, π/2}, {π, π/2, π/2}.
For each of the above three equatorial triangles, two sides have the same length
π/2. Both of the angles opposite the sides are equal to π/2. Then the singular
spherical triangle Hi j is glued out of these three equatorial triangles along their
sides with length π/2. The triangle Hi j is like a hemisphere. The equator of Hi j

consists of three geodesic arc with lengths {L(γi j), π, π}. The equator has lengths
2π+ L(γi j), while correspondingly there is a cone point N(Hi j) with angle 2π+ L(γi j)
in the interior of Hi j, where 1 ≤ i ≤ k, 1 ≤ j ≤ Ni.

Now we can view each singular spherical triangle Hi j as an isoceles spherical
triangle whose sides have equal length π. Each Hi j has the intrinsic orientation
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induced from the equatorial triangles. By using their orientation, and using γi =⋃Ni
j=1 γi j as a skeleton, we can glue {Hi1,Hi2, · · · ,HiNi } into a metric space Qi0. The

boundary γ̃i = ∂Qi0 consists of Ni geodesic arcs {γ̃i j}1≤ j≤Ni with lengths

L(γ̃i j) = L(γi j), 1 ≤ j ≤ Ni.

Recall that γi =
⋃Ni

j=1 γi j are the boundary component ofQ. By using their natural
orientation, we can glue Qi0 with Q by identifying γi j with the corresponding side
γ̃i j. Using this way, we obtain a metric space

Q0 = Q ∪
k⋃

i=1

Qi0.

The space Q0 is homeomorphic to the standard sphere Ĉ. Furthermore, since the
metric spaceQ satisfies the conditions 1−6 in Section 0, we can easily check that the
metric space Q0 satisfies the conditions of Theorem 1.1. It follows from Theorem
1.1 that there is a finite volume hyperbolic polyhedron P̃0 whose polar image is
precisely Q0.

Recall that {cv}v∈V are the cone points of Q. Let Fv be the face of P̃0 corresponding
to the cone point cv. Let the plane of the face Fv be Πv, v ∈ V . Denote byP0 the finite
polyhedron bounded by the hyperbolic planes Πv, v ∈ V . In general, it is very hard
to determine the combinatorial of the convex polyhedron in the de Sitter space.
But in the case of ideal vertices, it is easy to determine the combinatorics structure
of P0 around the ideal vertices from the metric space Q̃0. Please refer to Theorem
1.1.

Therefore we can deduce thatP0 is a finite convex polyhedron with polar image
Q, which implies Theorem 0.4. q.e.d.

The polyhedron P0 has k ideal faces {I1, I2, · · · , Ik}, which are interstices in the
Riemann sphere Ĉ. From the construction of the polar images Q0i, 1 ≤ i ≤ k, it
follows that all the circular arcs on ∂I0i are tangent to a common center circle. But
we will not use this fact in our paper.

Let U,W ⊂ C be any two domains.

Definition 1.3. An orientation preserving map f : U → W is called quasiconformal
if and only if, for some K ≥ 1,

lim sup
r→0+

max|z−ζ |=r | f (z) − f (ζ)|
min|z−ζ |=r | f (z) − f (ζ)| ≤ K, ζ ∈ U.

We refer to [2, 7, 8] for general background on quasiconformal mappings.

For each ideal face I ∈ {I1, I2, · · · , Ik}, it has the natural complex structure in-
duced from Ĉ. Two quasiconformal mappings h1, h2 : I → Ĉ are called equivalent
if h2 ◦ (h1)−1 : h1(I) → h2(I) is isotopic to a conformal homeomorphism g such that
for each circular arc or circle γ ⊂ ∂I, the homeomorphism g maps h1(γ) onto h2(γ).

Definition 1.4. The Teichmüller space of I, denoted by TI , is the space of all equiva-
lence classes of quasiconformal mappings h : I → Ĉ.

If the interstice I is a k-sided polygon, it follows from the classical Teichmüller
theory that the space TI is diffeomorphic to the euclidean space Rk−3. See e.g.
[2, 7, 8].
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2. CIRCLE PATTERNS

For any 0 ≤ θ < π, for notational simplicity, in this section and the next section
we will always denote by θπ = π − θ. Then 0 < θπ ≤ π.

Recall that G = (V, E) is an embedded graph on Ĉ. We can regard G as being
of a cell decomposition of Ĉ. For any triangle of G with vertices {u, v,w} and dihe-
dral angles {θ([u, v]), θ([v,w]), θ([w, u])}, we assume that {θ([u, v]), θ([v,w]), θ([w, u])}
satisfy one of the following conditions:

(i). θ([u, v]) + θ([v,w]) + θ([w, u]) > π and

θ([u, v]) + θ([v,w]) − π ≤ θ([w, u]) ≤ π − |θ([u, v]) − θ([v,w])|.
(ii). θ([u, v]) + θ([v,w]) + θ([w, u]) = π and 0 < θ([u, v]), θ([v,w]), θ([w, u]) < π.
(iii). θ([u, v]) + θ([v,w]) + θ([w, u]) = π, and one of them is 0, and the others are in

(0, π).
(iv). θ([u, v]) + θ([v,w]) + θ([w, u]) < π.

Equivalently,
(i)’. θ([u, v])π + θ([v,w])π + θ([w, u])π < 2π and

|θ([u, v])π − θ([v,w])π| ≤ θ([w, u])π ≤ θ([u, v])π + θ([v,w])π.

(ii)’. θ([u, v])π + θ([v,w])π + θ([w, u])π = 2π, and 0 < θ([u, v])π, θ([v,w])π, θ([w, u])π <
π.

(iii)’. θ([u, v])π + θ([v,w])π + θ([w, u])π = 2π, and one of them is π, and the others
are in (0, π).

(iv)’. θ([u, v])π + θ([v,w])π + θ([w, u])π > 2π.

In the case (i)′ one can construct a spherical triangle (or degenerating spherical
triangle) with lengths {θ([u, v])π, θ([v,w])π, θ([w, u])π}. In the case (ii)′ it is a hemi-
sphere with all its edges lying in the equator. Its angles are {π, π, π}. In the case
(iii)′, without loss of generality we assume that θ([u, v])π = π and

0 < θ([v,w])π, θ([w, u])π < π, θ([v,w])π + θ([w, u])π = π.

We can construct a lung which is a one-quarter sphere. One of its edge is a semi
great circle and the other semi great circle consists of two circular arcs with lengths
θ([v,w]), θ([w, u]). We can regard this lung as being of a triangle with lengths

{
θ([u, v])π = π, θ([v,w]), θ([w, u])

}
.

Its angles are {π, π/2, π/2}. In the cases (ii)′ and (iii)′, we also call them spherical
triangles.

Giving the data (G,Θ), we assume that all the triangles of G satisfy one of the
conditions (i), (ii), (iii) and (iv). For each triangle of G which satisfies one of the
conditions (i), (ii), (iii), we can construct the corresponding spherical triangle. By
using the dual graph G∗ of G as the skeleton, we can combine all there spherical
triangles into a space Q = Q(G,Θ). It is a metric space with boundary. If the metric
space Q satisfies the conditions 1 − 6 in Section 0, by using Theorem 0.5, there is a
polyhedronP0 = P(G,Θ) whose polar is Q. Consequently, the corresponding circle
pattern P0 realizes the embedded graph G. Note that each face of G corresponds
to an interstice of P0 (or P0) if it satisfies either of the conditions:

(a). It has 3 edges and the dihedral angles satisfy the condition (iv).
(b). It has more than 3 edges.
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Then Theorem 0.4 and Theorem 0.5 imply the following two results.

Theorem 2.1. Let P = {P(v), v ∈ V} and Q = {Q(v), v ∈ V} be circle patterns in Ĉ whose
embedded contact graphs are both equivalent to G. Suppose that ΘP = ΘQ : E → [0, π),
and that each interstice of P is conformally equivalent to the corresponding interstice of Q.
Then P and Q are Mobiüs equivalent.

Theorem 2.2. The set of equivalent classes of circle patterns whose embedded graph is
isotopic to G, and whose dihedral angle function is equal to Θ, can be naturally identified
with the product of the Teichmüller space of the interstices of the circle pattern P0.

3. A SIMPLE NEW PROOF OF THEOREM 0.6 WHEN 0 ≤ Θ ≤ π/2
In this section we will give a simple proof of the main result in [5]. Let G be

an embedded graph in Ĉ with vertex V and edge set E. Let Θ : E → [0, π/2]
be the dihedral function. Furthermore, suppose that (G,Θ) satisfies the following
condition.

(C). If the number of elements |V | > 5, and if a simple loop formed by the edges
e1, e2, · · · , ek separates the vertices of the embedded graph G, then

k∑

j=1

Θ(e j)π > 2π.

Under the hypotheses above, we have

Theorem 3.1. There is circle pattern P0 realizing the contact graph (G,Θ) when 0 ≤ Θ ≤
π/2. Moreover, the set of equivalent classes of circle patterns whose embedded graph is
isotopic to G, and whose dihedral angle function is equal to Θ, can be naturally identified
with the product of the Teichmüller space of the interstices of P0.

In order to prove the above theorem 3.1, the following two lemmas are needed.
Let ABC be any spherical triangle whose edge lengths are greater than or equal to
π/2.

Lemma 3.2. Each angle of ABC is greater than or equal to the length of its opposite edge.
In particular, all its angles are greater than or equal to π/2.

Proof. Denote by {a, b, c} the lengths of ABC. Then π/2 ≤ a, b, c ≤ π. By elemen-
tary spherical geometry, we have

(1) cos a = cos c cos b + sin c sin b cos A.

Therefore cos A ≤ 0, which implies that A ≥ π/2. Moreover from (1) it follows that
| cos A| ≥ | cos a|, which implies that A ≥ a. q.e.d.

Lemma 3.3. Let D be any point in the edge BC. Then the length of the line AD is greater
than or equal to π/2.

Proof. Let A = (0, 0, 1) be the North pole. Then B and C are in the South hemi-
sphere. Obviously AD ≥ π/2. q.e.d.

Proof of Theorem 3.1. Since the arguments are rather technical, the proof will
be sketchy.

If 0 ≤ Θ ≤ π/2, then (G,Θ) obviously satisfies the conditions (i), (ii), (iii) and
(iv) in Section 2. Let Q = Q(G,Θ) be the corresponding metric space. To prove
Theorem 3.1, by using Theorem 0.6, it is only need to verify that (Q, g) satisfies the
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conditions 1 − 6 in Section 0. Obviously it satisfies the conditions 1, 2, 5 in Section
0.

Suppose that c ∈ Q is any interior cone point. If there are at least 5 triangles
adjacent to c, from Lemma 3.2 it follows that its cone angle is greater than 2π. If
there are only 3 or 4 triangles adjacent to c, Lemma 3.2 and the above condition
(C) prove that the cone angle at c is greater than 2π, which implies the condition 3
in Section 0.

For any cone points c ∈ Q, we denote by star(c) the union of all spherical trian-
gles adjacent to c. Let int(star(c)) denote the interior of star(c).

Let γ ⊂ Q be a closed geodesic. If γ ∩ int(sta(c)) = ∅ for any cone points {c} ⊂ Q,
then γ consists of several edges of the spherical triangles. From 0 ≤ Θ ≤ π/2 and
the condition (C), it follows that its length L(γ) > 2π.

Now suppose that γ ∩ int(sta(cv)) , ∅ for some cone point cv. If cv ∈ γ, then
Lemma 3.3 implies that the length of γ ∩ int(sta(cv)) ≥ π. If cv < γ, by using ele-
mentary spherical geometry we also prove that the length of γ ∩ int(sta(cv)) ≥ π.
When γ ∩ int(sta(cv)) , ∅ and γ ∩ int(sta(cw)) , ∅ for some cone points cv, cw with
int(sta(cv)) ∩ int(sta(cw)) = ∅, we deduce that the length L(γ) ≥ 2π. Otherwise, we
have γ ∩ int(sta(cv)) , ∅ and γ ⊂ star(cv) for some cone point cv. When cv ∈ γ,
we have L(γ) = 2π. If cv is in the interior of γ, and γ ⊂ int(star(cv)), then by using
elementary spherical geometry we have L(γ) > 2π. The only remaining case is

γ = (∪kek) ∪ (∪ jγ
′
j),

where {ek} are the edges on ∂star(cv) and {γ′j} are the components γ ∩ int(star(cv)).
Note that the length of each edge ei is ≥ π/2 and L(γ′) ≥ π. We can easily deduce
L(γ) ≥ 2π when i > 1 or j > 1. When i = 1 and j = 1, we have γ = e ∪ γ′. Recall that
the angle of c is greater than 2π. Note that the edge length of a spherical triangle
with fixed sides is a strictly increasing function of the opposite angle. Thus

L(γ′) > 2π − L(e).

Therefore L(γ) = L(e) + L(γ′) > 2π, which verifies the condition 4 of Section 0.
By applying the similar reasoning, we can also verify the condition 6 in Section

0. q.e.d.

4. PROOF OF THEOREM 0.5

This section is devoted to Theorem 0.5.
Let I ∈ {I1, I2, · · · , Ik} be any interstices of the finite convex polyhedron P0. De-

note ∂I =
⋃N

j=1 δ j. Recall that V is the index set of all finite faces of P0. Then we
have the corresponding circle pattern P0. Without loss of generality, we assume
that {P0(v1), P0(v2), · · · , P0(vN)} are circles which share circular arcs {δ1, δ2, · · · , δN}
with ∂I, where v1, v2, · · · , vN ∈ V . Note that P0 is a finite convex polyhedron with
polar image Q. It follows that the length of the geodesic arc between the boundary
cone points cv j , cv j+1 ∈ Q is precisely

π − θ([v j, v j+1]), 1 5 j 5 N,

where θ([v j, v j+1]) is the dihedral angle of the circles P0(v j), P0(v j+1).
Let {τ1, · · · , τk} ∈ Πk

i=1TIi be any point in the product of the Teichmüller spaces.
For the given complex structure [τ : I → Ĉ], there are N vertices on τ(I), denoted
by {a1, a2, · · · , ak}. By post-composition with a Mobiüs transformation, we may
assume that the region τ(I) is a bounded domain C.
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Lay down a regular hexagonal packing of circles in C, say each of radius 1/n.
By a small translation we can move the circle packing so that each of {a1, a2, · · · , ak}
is inside a circle. By using the boundary component ∂τ(I) like a cookie-cutter, we
obtain a circle packing Pn which consists of all the circles intersecting the closed
region τ(I). Denote Kn the contact graph of Pn, where n = 1, 2 · · · . By using Kn, we
can construct a new graph Kn as follows. For j = 1, 2, · · · ,N, we add the vertex
v j and edges [v j, v j+1] to the graph Kn. We also add edges [v j, v], where v ∈ {v :
Pn(v) ∩ τ(γ j) , ∅}. Obviously the resulting graph Kn is isomorphic to the one-
skeleton of a triangulation of a closed topological disk D. Therefore it induces a
cell decomposition (Kn;En,Fn) of the closed topological disk D, where En is the set
of edges and Fn is the set of faces. The region τ(I) induces a natural orientation on
the cell decomposition.

Now we can define a (singular) metric g = g(I, n) on the closed region D. Define
the metric g on each edge of En by setting L(e) = π − θ(e) if e = [v j, v j+1], 1 ≤ j ≤ N,
where θ([v j, v j+1]) is the dihedral angle of the circles P0(v j), P0(v j+1). Otherwise,
set L(e) = π. For each face F ∈ Fn with three edges, say {e1, e2, e3}, we can de-
fine the metric g on F so that it becomes a singular triangle with edge lengths
L(e1), L(e2), L(e3). Please see the proof of Theorem 0.4 in Section 1. In this metric
each face F looks like a ”hemisphere” with three edges on its equator. The North
pole of F is a cone point with angle

L(e1) + L(e2) + L(e3) > 2π.

Therefore we obtain a metric space (D, g).
For any 1 ≤ i ≤ k and n ≥ 1, by using the above construction, let Qin denote the

resulting metric space (D, gin), where gin = g(Ii, n). From the above construction the
boundary ∂Qin consists of Ni geodesic arcs with lengths

{L(γi1), L(γi2), · · · , L(γiNi )}.
Recall that γi =

⋃Ni
j=1 γi j, 1 ≤ i ≤ k, are the boundary components of Q. By using

their natural orientation, we can glue Qin to Q by identifying γi j with the corre-
sponding side on ∂Qin. Using this way, we obtain a metric space

Qn = Q ∪
k⋃

i=1

Qin, n = 1, 2, · · · .

The space Qn is homeomorphic to the standard sphere Ĉ. Since Q satisfies the
conditions 1−6, the metric spaces {Qn} satisfy the conditions in Theorem 1.1. Hence
there is a finite volume hyperbolic polyhedron P̃n whose polar is Qn.

Recall that cv, v ∈ V , are cone points of Q. We call cv, v ∈ V , ordinary cone points.
Other cone points of Qn\Q are called special cone points. Let {Fvn} be the face of
P̃n corresponding to the ordinary cone point {cv}. Let the hyperbolic plane of the
face Fvn be Πvn, v ∈ V . {Πvn}v∈V are called ordinary planes. Other hyperbolic planes
corresponding to special cone points of P̃n are called special planes.

We can move P̃n by an isometry if it is necessary. By using a similar argument
as in [10] (Section 5-8), we have

Lemma 4.1. There is an N0 > 0 and R > 0 such that all of the ordinary planes of P̃n

intersect the ball BR(0) for n > N0.
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In general, it is hard to determine the combinatorial structure of the polyhedron
P̃n. Observe that each special cone point of Qn is incident to a closed geodesic
of Q̃n with length 2π. From Theorem 1.1, it follows that the intersections of all
special planes with Ĉ are k hexagonal circle packing and the dual circles of triples
of mutually intersecting circles in these k hexagonal packing. Applying Length-
Area Lemma ([12]), we have

Lemma 4.2. For any R > 0, there is an N0 = N0(R) such that for all special planes Π of
P̃n, we have Π ∩ BR(0) = ∅ for any n > N0.

From Lemma 4.1 and 4.2, it follows that P̃n → Pτ in the Hausdorff topology
as n → ∞. It is easily to verify that Pτ is a finite convex polyhedron with polar
Q. From the following Lemma 4.3, it follows that the interstices of Pτ have the
complex structures τ, which proves the existence part of Theorem 0.5. q.e.d.

Lemma 4.3. The interstices of Pτ do not degenerate.

Proof. If at least interstice of Pτ degenerates, say I1, then it is an ideal vertex of
Pτ. Recall that γ1 = ∪N1

j=1γ1 j is a boundary component of Q. Therefore, in the polar
of Pτ the boundary component γ1 will be the boundary of a hemisphere.

From Lemma 4.1, it follows that all ordinary faces of P̃n will not degenerate.
Hence, in the limiting case, all boundary cone points {cv j }v j∈V ⊂ γi will become
interior cone points of the polar of Pτ. Hence their cone angles are greater than 2π.
It follows that inQ the angle subtend by γ1 at cv j are greater than π. From Condition
6, we can deduce that γ1 ⊂ ∂Q is a closed geodesic. Hence its length is greater than
2π, which contradicts to the fact that γ1 is the boundary of a hemisphere. q.e.d.

In order to prove the uniqueness part of Theorem 0.5, the following two results
are needed. The proofs, included here for completeness, are elementary. Please
see [4, 9, 16].

Let C1,C2,C3 ⊂ C be a tripe of mutually intersecting circles such that their dihe-
dral angles {θ12, θ23, θ31} satisfy one of the conditions (i), (ii),(iii) and (iv) in Section
2. We also suppose that no circle has its interior contained in the union of the
interior of two others.

Let Li j be the line through Ci ∩ C j, and tangent to Ci and C j at Ci ∩ C j in case
θi j = 0. Then the lines L12, L23 and L31 meet in a point O, which is called the dual
center of this tripe of circles. Obviously, if there is a circle orthogonal to these 3
circles, then O is the center of this circle.

Lemma 4.4. Suppose the circles C1,C2,C3 meet pairwise in the fixed dihedral angles
0 ≤ θ12, θ23, θ31 < π. If C1 and C2 are held constant but C3 is varied in such a way that the
dihedral angles θ12, θ23, θ31 are fixed. Let A1, A2, A3 denote the centers of circles C1,C2,C3.

For j = 1, 2, 3, denote ρ j = ρ(C j). Let Θ j = Θ j(ρ1, ρ2, ρ3, θ12, θ23, θ31) denote the angle
of the triangle A1A2A3 at the vertices A j. Then

∂Θ3

∂ log ρ1
=

h13

|A1 − A3| ,

where h13 is the oriented distance from O to the edge A1A3.

In particular,
∂Θ3

∂ log ρ1
does not change if we switch 1 and 3.
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Proof. Fix A3 as the origin. We also assume that A2 lies on the positive real axis.
Let z denote the complex coordinate of A1. Hence z = l2 · eiΘ3 , where l2 = |A1A3|. By
applying the argument of Lemma 3 in [9], we have

(2)
∂z

∂ log ρ1
=
−−−→
OA1.

Moreover,

(3)
∂z

∂ log ρ1
=
∂(l2 · eiΘ3 )
∂ log ρ1

= eiΘ3 (
∂l2

∂ log ρ1
+ il2 · ∂Θ3

∂ log ρ1
).

By combining (2) with (3), we conclude that

∂Θ3

∂ log ρ1
=

h13

|A1 − A3| .

q.e.d.
Suppose that C1,C2,C3,C4 ⊂ C are 4 circles such that C1,C2,C3 are mutually

intersecting and C1,C3,C4 are mutually intersecting and the tripes of dihedral an-
gles {θ12, θ23, θ31} and {θ13, θ34, θ41} satisfy one of the conditions (i), (ii),(iii) and (iv)
in Section 2. We also assume that no circle has its interior contained in the union
of the interior of two others.

Recall that O is the dual center of {C1,C2,C3}. Let O′ denote the dual center of
{C1,C3,C4}. By using Lemma 4.4, we have

Corollary 4.5. Let A j denote the center of C j, 1 ≤ j ≤ 4. If we fix the dihedral angles
0 ≤ θ12, θ23, θ31, θ14, θ34 < π, then

∂∠A2A3A4

∂ log ρ1
=
|OO′|
|A1A3| .

In particular,
∂∠A2A3A4

∂ log ρ1
≥ 0.

Now we are ready to prove the uniqueness part of Theorem 0.5.
If this is not the case, we assume by contrary that there are two polyhedron

P and P′ with the same polar (Q, g), and their corresponding interstices have the
same complex structure τ.

Then there are holomorphic homeomorphisms φi : Ii → Ĩi, 1 ≤ i ≤ p, between
the pairs of corresponding interstices. φi maps circular arcs or circles on ∂Ii to the
corresponding circular arcs or circles on ∂I′i .

Recall that ∗ is the polar map. Then, as metric spaces, both of P∗,P′∗ are isomet-
ric to (Q, g). Note that P∗ and P′∗ may not have the same combinatorial structure.

If P∗ and P′∗ are combinatorially equivalent, then there is nothing to do.
Now we assume that the polar images P∗, P′∗ ⊂ S2

1 are not combinatorially
equivalent. Hence P, P′ ⊂ H3 are not combinatorially equivalent. P∗, P′∗ induce
two different cell decompositions G,G′ of Q with the same vertex set V . By using
these cell decompositionsG,G′, we can give a new cell decomposition G = G(G,G′)
of Q by ”superimposing” the original cell decompositions G,G′. For a more de-
tailed version of this argument, please see [1, 11].

The vertex set of G is the union of V with the set V ′ of the intersections of edges
of P∗ with those of P′∗. The edges of G will be segments of the edges of P∗ and
P′∗. In this way some of edges of P∗,P′∗ ⊂ S2

1 may have an associated dihedral
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angle π. We will call these degenerate edges. Under the polar map ∗ : S2
1 → H3,

the degenerate edges in S2
1 are sent to edges of length 0 in H3. The polar images

P∗,P′∗ ⊂ S2
1 will have two kinds of vertices and edges degeneracy:

(1) At vertices of the cell decomposition G, some degenerate edges may enter
the vertex, but the vertex itself is non-degenerate;

(2) At each vertex of the cell decomposition G, a non-degenerate edge intersects
a degenerate one, and the vertex itself is flat. That is, the vertex is degenerate.

In any case, we can regard P∗,P′∗ as being of the same combinatorial type.

For convenience, to prove the uniqueness we consider the corresponding circle
patterns P, P′ on Ĉ. Recall that {I1, I2, · · · , Ip} (resp. {I′1, I′2, · · · , I′p}) are interstices of
P (resp. P′). By using a Mobiüs transformation, we may assume ∞ ∈ Ip is a fixed
point of φp : Ip → Ĩp. Then φp has the form

(4) φp(z) = z +
c1

z
+

c2

z2 + · · ·
near∞. If there is at least some z ∈ {Ii} such that |φ′i(z)| , 1, without loss of general-
ity, we assume that |φ′i(z)| < 1. Denote by M0 the following
(5)

min
{

log |φ′1|, log |φ′2|, · · · , log |φ′k |, log
ρ(P′(v0))
ρ(P(v0))

, log
ρ(P′(v1))
ρ(P(v1))

, · · · , log
ρ(P′(v|V |−1))
ρ(P(v|V |−1))

}
,

where ρ(P(v)) (resp. ρ(P′(v))) are the radii of the circles P(v) (resp. P′(v)) in the
patterns, where v ∈ V . Then M0 < 0. Then we have the following maximum
principle. Its proof is left to the last part of this section

Lemma 4.6. Let P,P′ be two finite hyperbolic polyhedra with the same polar. Then the
maximum (or minimum) of

ρ(P′(v))
ρ(P(v))

is attained at a boundary vertex v ∈ V , where P, P′ are the corresponding circle patterns.

Let us proceed with the proof of the uniqueness part of Theorem 0.5.
By using Lemma 4.6, it follows that there is some φi, say φ1, such that

(6) log |φ′1(z0)| = M0

or some boundary circles, say P(v0), P′(v0), such that

(7) log
ρ(P′(v0))
ρ(P(v0))

= M0.

Assume the first case holds. If z0 is the intersecting point of two adjacent circles
P(v j), P(v j+1) with dihedral angle θ j = Θ([v j, v j+1]) > 0, or if z0 is not the intersect-
ing point of two adjacent circles, then the strong maximal principle3 immediately
implies

0 >
∂

∂n
log |φ′1(z0)| = 1

ρ(P(v j0 ))
− |φ′1(z0)|
ρ(P′(v j0 ))

.

3The strong maximal principle states that: if a non-constant bounded harmonic function attains its
minimal (resp. maximal) at z0 ∈ ∂Ω, and the boundary ∂Ω satisfies an interior sphere condition at z0,

then the outer normal derivative of u at z0, if it exists, satisfies the strict inequality
∂u
∂n

(z0) > 0 (resp.

< 0). See e.g. Lemma 3.4 of [3].
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Here P(v0) denote some boundary circle of I1 such that z0 ∈ ∂I1∩P(v0). See [13, 5]. It
is immediately that ρ(P′(v j0 ))/ρ(P(v j0 )) < |φ′1(z0)| < 1, which is a contradiction to (6).
If z0 is the tangent point of two adjacent circles P(v j), P(v j+1), a simple calculation
shows that

(8) |φ′1(z0)| =
(

1
ρ(P(v j))

+
1

ρ(P(v j+1))

)
·
(

1
ρ(P′(v j))

+
1

ρ(P′(v j+1))

)−1

.

We can reduce this case to the second case.
Now we assume that the second case holds. Then there is a boundary circle

P(v0) such that log
ρ(P′(v0))
ρ(P(v0))

attains the minimal value M0. Recall that G is the

contact graph. Without loss of generality, let {v1, v2, · · · , vp} denote the vertices of G
which is adjacent to the vertex v0. For 0 ≤ j ≤ p, let A j(resp. A′j) denote the center
of the circle P(v j) (resp. P′(v j)). Let A, Ã (resp. A′, Ã′) denote the end points of the
circular arcs of the interstices adjacent to the circle P(v0) (resp. P′(v0)). Then by
using Corollary 4.5, we have, for 2 ≤ j ≤ p − 1,

(9) ∠A′j−1A′jA
′
j+1 ≤ ∠A j−1A jA j+1,

and

(10) ∠A′A′1A′2 ≤ ∠AA1A2, ∠A′p−1A′pÃ′ ≤ ∠Ap−1ApÃ.

Please see the following Figure 2. Note that we use Corollary 4.5 with 2 degener-
ating circles in (10) .
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ÂB
Ii

Figure 2
On the other hand, we have

(11) ∠A′0A′A′1 = ∠A0AA1, ∠A′0Ã′A′p = ∠A0ÃAp,

which implies that
∠A′A′0Ã′ ≥ ∠AA0Ã,

where ∠AA0Ã (resp. ∠A′A′0Ã′) is the angle opposite to the p circles {P(v j)}1≤ j≤p (resp.
{P′(v j)}1≤ j≤p). It follows from (6) and (7) that on the arc ÂB, we have

(12) M0 =
ρ(P′(v0))
ρ(P(v0))

< |φ′i(z)|, z ∈ ÂB ⊂ ∂Ii.
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Integrating (12) over the circular arc ÂB gives

(13) 2π − ∠A′A′0Ã′ > 2π − ∠AA0Ã.

Combining (11) and (13), we reach a contradiction. Therefore, |φ′i(z)| ≡ 1, z ∈ {Ii},
from which we deduce that

φ(z) ≡ z, z ∈ {Ii}.
Hence there is an isometry M : H3 → H3 such that M(P) = P′. Namely, the polyhe-
dron P is congruent to P′, which completes the proof of Theorem 0.5. q.e.d.

Proof of Lemma 4.6.
Observe that the polyhedra P, P′ have the same polar (Q, g), which is regarded

as an abstract metric space. We can regard P∗,P′∗ as being of the same combinato-
rial type.

We assume the maximum (or minimum) of ρ(P′(v))
ρ(P(v)) is attained at an interior

boundary v0 ∈ V . Let v1, v2, · · · , vp, vp+1 ≡ v1 be the chain of neighboring vertices.
For 0 ≤ j ≤ p, let A j denote the center of the circle P(v j). And set ρ j = ρ(P(v j)). Let
O j denote the dual center of the triple {P(v j−1), P(v j), P(v j+1)}. Then it follows from
Corollary 4.5 that, for all 1 ≤ j ≤ p,

(14)
∂∠A j−1A jA j+1

∂ log ρ0
=
|O j−1O j|
|A0A j| ≥ 0.

Since v0 is an interior point, if v0 is not a degenerate vertex, the ′ ≥′ in (14) can
not be ” = ” for all 1 ≤ j ≤ p. Otherwise, all the dual centers of the triples
{P(v0), P(v j), P(v j+1)}1≤ j≤p are the same, we can deduce that cv0 is flat in the space
(Q, g). This is a contradiction since cv0 is a cone point.

Now we assume that v0 is an interior point of G and it is a degenerate vertex of
G. Then, v0 is the intersection of a non-degenerate edge with a degenerate edge in
S2

1. Without loss of generality, we suppose p = 4. Then v0 = [v1, v3] ∩ [v2, v4], where
[v1, v3] is non-degenerate edge in P∗ and [v2, v4] is degenerate edge in P∗. Please
see Figure 3.
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Figure 3
If all the ′ ≥′ in (14) are ′ =′, all the dual centers of triples {P(v0), P(v j), P(v j+1)}1≤ j≤4
are the same. Hence the center is O or O′, say O. In the metric space (Q, g), the
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cone pints cv j , 1 ≤ j ≤ 4, are incident to a closed geodesic with length 2π. Theo-
rem 1.1 implies this closed geodesic corresponds to ideal vertices of the polyhedra
P, P′. This contradicts to our assumption that v1, v2, · · · , vp, vp+1 ≡ v1 is the chain
of neighboring vertices of v0.

In any way, the sum
∑p

j=1 ∠A j−1A jA j+1 is strictly increasing in ρ0.
On the other hand, since v0 is an interior vertex, we have

∑p
j=1 ∠A j−1A jA j+1 =

(p − 2) · π. Therefore the maximum principle follows. q.e.d.
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