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ABSTRACT. With the aid of the logarithmic spiral mapping

sλ(ρ, θ) = (ρ, θ + λ log ρ),

we construct an n (≥ 3)-dimensional K-quasiconformal homeo-
morphism fn,λ : Rn → Rn (to be defined in Section 1) with the
following property: if U0 ⊂ Rn is any domain and 0 ∈ U0, then
the restriction K-quasiconformal map fn,λ |U0 admits no “minimal”
factorizations. That is, for any 0 < s < 1, we have

fn,λ |U0 6= f2 ◦ f1,

where f1 is Ks-quasiconformal and f2 is K1−s-quasiconformal.

1. INTRODUCTION

Let n ≥ 2 be an integer. Suppose that f : U → V be a sense-preserving
homeomorphism of domains in Rn. We define

Hf (ζ) ≡ lim sup
r→0+

max|z−ζ|=r |f(z)− f(ζ)|
min|z−ζ|=r |f(z)− f(ζ)| , ζ ∈ U.

Denote by

K[f ] =





∞, if sup
ζ∈U

Hf (ζ) = ∞,

ess sup
ζ∈U

Hf (ζ), if sup
ζ∈U

Hf (ζ) 6= ∞,

the maximal (linear) distortion of f . If

(1) K[f ] ≤ K,

where 1 ≤ K < ∞, we call f a K-quasiconformal homeomorphism.
Thus roughly speaking, a quasiconformal homeomorphism distorts
the relative distance of nearby points by a bounded factor. For any
quasiconformal maps f and g, we obviously have

K[g ◦ f ] ≤ K[g] ·K[f ].
1
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H. Grötzsch [8] first introduced plane quasiconformal homeomor-
phisms in 1928. Later M. A. Lavrentieff [13], C. B. Morrey [18] gener-
alized a classical result due to Gauss on the existence of isothermal co-
ordinates by establishing the Measurable Riemann Mapping Theorem for
plane quasiconformal maps. At about the same time, O. Teichmüller
[22, 23] used plane quasiconformal homeomorphisms to study the de-
formation spaces of closed Riemann surfaces. Under the influence of
the work of Teichmüller, L. Ahlfors and L. Bers [2, 3, 5] gave a system-
atic study of the general theory of plane quasiconformal homeomor-
phisms. Now plane quasiconformal maps play important roles in a
variety of areas in complex analysis, including complex dynamics and
kleinian groups, etc (see e.g. [5, 6, 21]).

Higher dimensional quasiconformal maps (n ≥ 3) were first con-
sidered by M. A. Laverentieff [14], A. Markuševič [17] and M. Kreines
[12] in 1938-1941. The above definition (1), free of all differentiabil-
ity requirements, goes back to M. A. Laverentieff [14] in 1935. Since
1959, higher dimensional quasiconformal mappings have been studied
rather extensively by C. Löwner [16], F. W. Gehring [9, 10, 11], J. Väisälä
[24] and others in several countries.

But no analogous results exist for the distortion of length or angle in
n (≥ 3)-dimensions because the corresponding system of partial dif-
ferential equations is over determined. Geometrically, the lack of such
a result reflects the lack of nontrivial conformal mappings in higher
dimensional space.

If f is a plane quasiconformal homeomorphism with maximal dis-
tortion K, the Measurable Riemann Mapping Theorem implies that a
“minimal” factorization f = f2 ◦ f1 always exists. That is, f1 is Ks-
quasiconformal and f2 is K1−s-quasiconformal with 0 < s < 1. In
particular for any given ε > 0, we can always write

(2) f = fm ◦ fm−1 ◦ · · · ◦ f1,

where K[fi] < 1 + ε (1 ≤ i ≤ m) and m = m(ε,K).
Using this fact, L. Ahlfors [1] gave a quasiconformal extension of

each quasiconformal map of Ĉ to the 3-dimensional upper half spaces
H3.

Contrary to plane quasiconformal maps, little is known on factoring
higher dimensional quasiconformal mappings. F. Gehring [10] conjec-
tured that there exist higher dimensional quasiconformal maps which
do not admit “minimal” factorizations. In this paper we will affirm
Gehring’s conjecture.
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Suppose λ > 0 and let

s
λ
(ρ, θ) = (ρ, θ + λ log ρ) : R2 → R2

be the logarithmic spiral mapping, where (ρ, θ) are the polar coor-
dinates of R2 and log denotes natural logarithmic. Obviously s

λ
has

Betrami differential

µλ(z) =
iλ

2 + iλ
· z

z̄
.

Therefore s
λ

has maximal dilatation

(3) K =
√

4 + λ2 + λ√
4 + λ2 − λ

.

We recall that a homeomorphism s : U → V of domains in Rn is an
L-bi-lipschitz if L ≥ 1 and

(4) L−1 |z − z′| ≤ |s(z)− s(z′)| ≤ L |z − z′|, ∀ z, z′ ∈ U.

The smallest L ≥ 1 for which (4) holds is called the isometric distortion
of s.

By computing its Jacobian, we can easily check that s
λ

is a bi-lipschitz
homeomorphism with isometric distortion

√
K.

Furthermore, in [7] M. Freedman and the first author established
that it requires at least λ/

√
L2 − 1 factors to write s

λ
into a composi-

tion of L-bi-lipschitz homeomorphisms. On the other hand, as noted
in (2), the minimal factors of s

λ
with conformal distortions ≤ L grows

like 2 logL λ when λ is large. Thus for large λ, the number of factors
with small isometric distortion needed to “unwind” the spiral map s

λ

is much greater that the number of factors with the same conformal
distortion.

Noting that s−λ
= s−1

λ
, we can handle the map s

λ
(λ < 0) by similar

methods.

Let f
n,λ

: Rn → Rn (n ≥ 3) be a homeomorphism defined by

(5) f
n,λ

(z, t1, · · · , tn−2) = (s
λ
(z), t1/

√
K, · · · , tn−2/

√
K).

where z ∈ R2 and (t1, · · · , tn−2) ∈ Rn−2. Obviously f
n,λ

is a quasicon-
formal homeomorphism with maximal distortion K.

Denote T = {(z, t1, · · · , tn−2) ∈ Rn| z ≡ 0}. When U0 ⊂ Rn is a
domain with U0 ∩ T 6= ∅, we have the following main result.

Theorem. The n-dimensional restriction quasiconformal map f
n,λ
|U0 :

U0 → V0 = f
n,λ

(U0) admits no “minimal” factorizations. That is, for
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any given 0 < s < 1, we have

f
n,λ
|U0 6= f2 ◦ f1,

where f1 is a Ks-quasiconformal map and f2 is a K1−s-quasiconformal
map.

Note that each L-bi-lipschitz homeomorphism is an L2-quasiconformal
homeomorphism. The above Theorem immediately implies that that

f
n,λ
|U0 6= s2◦s1, for any K

s
2 -bi-Lipschitz map s1 and K

1−s
2 -bi-Lipschitz

map s2.

We note that the following problem is open even for U = Rn.

Open Problem. (Gehring [10, 11]). Supposing that 1 < K̃ < K, is
there an n-dimensional (n ≥ 3) quasiconformal map f : U → V with
maximal dilatation K and

f 6= f1 ◦ f2 ◦ · · · ◦ fm,

for any K̃-quasiconformal maps fi, 1 ≤ i ≤ m?

There are examples show that the above open problem is almost cer-
tainly not true without further restrictions on the region U . See e.g.
[7].

Notational conventions.
Through the paper, for any matrix A we denote by AT the transpose

of A.
The symbol SO(n) will denote the n-dimensional special orthogonal

group, i.e., Q ∈ SO(n) if and only if Q · QT = In (the n-dimensional
identity matrix) and with determinant det(Q) = 1.

For λi ∈ R (1 ≤ i ≤ n), we denote diag (λ1, λ2, · · · , λn) to be the
diagonal matrix

diag (λ1, λ2, · · · , λn) =




λ1

λ2

. . .
λn


 .

Acknowledgement. The first author wishes to thank Professor Michael
H. Freedman for teaching him the problems and the methods.
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2. BASIC MATERIALS

A quasiconformal homeomorphism f : U → V possesses the following
properties, see e.g. [24].

(1). f is A. C. L (Absolutely Continuous on Lines). Also it is differ-
entiable with Jacobian Jf (ζ) > 0 almost everywhere;

(2). For any measurable set E ⊂ U , the measure m(E) = 0 implies
m(f(E)) = 0.

Suppose f is differentiable at ζ ∈ U with Jacobian Jf (ζ) > 0. Take
the normalized frame {e1, e2, · · · , en} in the tangent space TζU ∼= Rn,
where

e1 = (1, 0, · · · , 0), e2 = (0, 1, · · · , 0), · · · , en = (0, 0, · · · , 1).

Then we have
∂f

∂e1

∣∣∣∣
ζ

= a11 e1 + a21 e2 + · · ·+ an1 en,

∂f

∂e2

∣∣∣∣
ζ

= a12 e1 + a22 e2 + · · ·+ an2 en,

· · ·
∂f

∂en

∣∣∣∣
ζ

= a1n e1 + a2n e2 + · · ·+ ann en.

Hence the Jacobian matrix of f at ζ is

Df(ζ) =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann


 with Jf (ζ) = det(Df(ζ)) > 0.

The following result is well known. Its proof, included here for com-
pleteness, is elementary in linear algebra.

Lemma 2.1. If A is a n × n real matrix with determinant det(A) > 0,
then there exist P, Q ∈ SO(n) such that

P ·A ·Q = diag (λ1, λ2, · · · , λn),

where λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

Proof: Since the determinant det(A) > 0, the symmetric matrix AAT

is positive definite. Therefore there exists P ∈ SO(n) such that

P ·AAT · P T = diag (λ2
1, λ

2
2, · · · , λ2

n),
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where λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Denote

Q = AT · P T · diag (λ−1
1 , λ−1

2 , · · · , λ−1
n ).

Then QT · Q = In (the n × n identity matrix). Consequently P, Q ∈
SO(n) and

P ·A ·Q = diag (λ1, λ2, · · · , λn),

as desired. q.e.d.

With respect to any n-dimensional quasiconformal homeomorphism
f : U → V , Lemma 2.1 implies that there exist P (ζ), Q(ζ) ∈ SO(n)
such that

Df(ζ) = P (ζ) · diag
(
λ1(ζ), λ2(ζ), · · · , λn(ζ)

) ·Q(ζ), a.e. ζ ∈ U,

where λ1(ζ) ≥ λ2(ζ) ≥ · · · ≥ λn(ζ) > 0. From the definition (1), it
follows that f is K-quasiconformal if and only if

(6)
λ1(ζ)
λn(ζ)

≤ K, a.e. ζ ∈ U.

See e.g. Thm 34.6 in [24].
Hence an n-dimensional K-quasiconformal homeomorphism maps

an infinitesimal (n − 1)-sphere to an (n − 1)-ellipsoid almost every-
where, with the ratio of the lengths of longest semi-axis and shortest
semi-axis bounded from above by K.

We recall that 1-quasiconformal maps of plane domains are holo-
morphic homeomorphisms. For n (≥ 3)-dimensional 1-quasiconformal
homeomorphisms we have the following generalized Liouville Theo-
rem due to F. W. Gehring [9] and Yu. G. Reshetnyak [19]. This result
involves no priori differentiability hypotheses.

Liouville Theorem. An n (≥ 3)-dimensional quasiconformal homeo-
morphism f : U → V is 1-quasiconformal if and only if f is the re-
striction to U of a Möbius transformation, i.e. the composition of even
reflections in (n− 1)-spheres or planes.

Let π : R2 → R2\0 be a conformal covering map defined by

(7) π(τ, θ) = (eτ cos θ, eτ sin θ) , ∀ τ + i θ ∈ R2.
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Consider the diagram

R2
l
λ−−−−→ R2

π

y π

y
R2\0 s

λ−−−−→ R2\0,

where the homeomorphism l
λ

: R2 → R2 is defined by l
λ
(τ, θ) =

(τ, θ + λ τ). Then we have

Ds
λ
(z) = Dπ(l

λ
(π−1(z))) ·Dl

λ
(π−1(z)) ·Dπ−1(z), ∀ z ∈ R2\0.

Therefore, if (ρ, θ) is the polar coordinate of z ∈ R2\0 and θ′ = θ +
λ log ρ, we obtain that

Ds
λ
(z) =

(
cos θ′ − sin θ′
sin θ′ cos θ′

)
·
(

1 0
λ 1

)
·
(

cos θ sin θ
− sin θ cos θ

)

= A(λ, θ′) · diag (
√

K, 1/
√

K) ·B(λ, θ),(8)

where K =
√

4 + λ2 + λ√
4 + λ2 − λ

, as given in (3), and

A(λ, θ′) =
(

cos θ′ − sin θ′
sin θ′ cos θ′

)
·



√
2

λ2+4+λ
√

λ2+4
−

√
2

λ2+4−λ
√

λ2+4√
2

λ2+4−λ
√

λ2+4

√
2

λ2+4+λ
√

λ2+4


 ∈ SO(2),

and

B(λ, θ) =




√
2

λ2+4−λ
√

λ2+4

√
2

λ2+4+λ
√

λ2+4

−
√

2
λ2+4+λ

√
λ2+4

√
2

λ2+4−λ
√

λ2+4


·

(
cos θ sin θ
− sin θ cos θ

)
∈ SO(2).

3. PROOF OF THE THEOREM

Now we can begin the proof of the Theorem. We will prove this
theorem for n = 3 and the general case is similar.

At first we assume that (0, 0, 0) ∈ U0.
Suppose that Dr × (−l, l) ⊂ U0, where Dr = {|z| < r} (r > 0) and

l > 0. Without loss of generality we assume that

U0 = Dr × (−l, l).

Let f
3,λ

be the quasiconformal map given in (5) (where n = 3). That
is,

f
3,λ

(z, t) =
(
s

λ
(z), t/

√
K

)
.
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We assume, by contradiction, that

(9) f
3,λ
|U0 = f2 ◦ f1,

for some Ks-quasiconformal map f1 and K1−s-quasiconformal map
f2, where 0 < s < 1.

Now we have the following result. Its proof will be postponed to
Section 4.

Lemma 3.1. For almost all ζ = (z, t) ∈ U0, there exist P (ζ) ∈ SO(3)
and aζ > 0 such that

Df1(ζ) = aζ · P (ζ) ·



Ks

1
1


 ·


 B(λ, θ)2×2

1


 ,

where B(λ, θ) ∈ SO(2) is defined by (8).

Let us proceed with the proof of the Theorem.
Recall that the logarithmic spiral mapping s

λ
has Betrami differen-

tial

µλ(z) =
iλ

2 + iλ
· z

z̄
.

We set

(10) 0 < c ≡ Ks − 1
Ks + 1

·
√

4 + λ2

λ
< 1.

Then we have the following commutative diagram

R2
l
c,λ−−−−→ R2

π

y π

y

R2\0
s
c,λ−−−−→ R2\0,

where l
c,λ

: R2 → R2 is defined by

l
c,λ

(τ, θ) =

(
1 + (1−c2)λ2

4

1 + (1−c)2λ2

4

· τ, θ +
cλ

1 + (1−c)2λ2

4

· τ
)

, ∀ τ + i θ ∈ R2.

The map s
c,λ

: R2\0 → R2\0 is a quasiconformal homeomorphism

with Beltrami differential c · µλ. Therefore s
λ

=
(
s

λ
◦ s−1

c,λ

)
◦ s

c,λ
is a

“minimal” factorization. That is, s
c,λ

is Ks-quasiconformal and s
λ
◦
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s−1
c,λ

is K1−s-quasiconformal (please see Thm 4.7 in [15]). Moreover, by
using the polar coordinate of z ∈ R2\0, we have

(11) Ds
c,λ

(z) = k · ρσ ·Ac(z) ·
(

Ks

1

)
·B(λ, θ), z ∈ R2\0,

where B(λ, θ) ∈ SO(2) is defined in (8), Ac(z) ∈ SO(2) and

(12) σ =
c(1−c)λ2

2

1 + (1−c)2λ2

4

> 0, k =
1 + (1−c2)λ2

4

1 + (1−c)2λ2

4

·
√

4 + λ2 − c · λ√
4 + λ2 + c · λ.

Please refer to Lemma 3.1.

Recall that U0 = Dr × (−l, l). We set D′
r ≡ Dr\{−r < x ≤ 0} and

denote
U ′

0 ≡ D′
r × (−l, l) ⊂ R3.

Then the domain U ′
0 is simply connected. Namely, any closed curve in

U ′
0 can be contracted to a point in U ′

0.
With respect to σ > 0 defined in (12), we can always select a single-

valued branch of the analytic function ζ
1

1+σ on the simply connected
domain s

c,λ
(U ′

0). Therefore we have a map

(13) F1 ≡
(
(s

c,λ
)

1
1+σ , c0 · t

) ∣∣∣∣
U ′0

: U ′
0 → F1(U ′

0),

where

c0 =
(

1 +
(1− c)2λ2

4

)
·
(√

4 + λ2 − cλ√
4 + λ2 + cλ

)
·
(

1 +
(1− c2)λ2

4

)−1

.

It is obvious that F1 : U ′
0 → F1(U ′

0) is quasiconformal. Moreover, by
(11) it follows that
(14)

DF1(ζ) = c0 ·Bc(ζ) ·



Ks

1
1


 ·


 B(λ, θ)2×2

1


 , a.e. ζ ∈ U ′

0,

where Bc(ζ) ∈ SO(3).
From Lemma 3.1 and (14) we deduce that

D(f1|U ′0 ◦ F−1
1 )(η) = λη ·Qη, a.e. η ∈ F1(U ′

0),

where λη > 0 and Qη ∈ SO(3). Therefore Liouville Theorem implies
f1|U ′0 = γ ◦ F1 for some Möbius transformation γ.
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Choose the closed curve Cr ≡ {|z| = r/2}×{0} ⊂ U0. Then the open
curve C ′

r ≡ Cr\{z = −r/2} ⊂ U ′
0. Therefore

(15) γ−1 ◦ f1|U ′0(C
′
r) = F1(C ′

r).

The left hand of (15) is an open curve by cutting off a point from the
closed curve γ−1 ◦f1(Cr). By the definition of F1, the right hand of (15)

is an open circle arc spanning an angle
2π

1 + σ
. This is a contradiction,

which implies the quasiconformal map f
3,λ
|U0 : U0 → V0 = f

n,λ
(U0)

admits no “minimal” factorizations.

When (0, 0, 0) /∈ U0 but U0 ∩ T 6= ∅, we assume that (0, 0, t0) ∈ U0.
Let A be the conformal affine map defined by A(z, t) = (z, t− t0). By
applying the same argument to the quasiconformal map

f
3,λ
◦A−1|A(U0) : A(U0) → V0,

we deduce that f
3,λ
|U0 also admits no “minimal” factorizations.

Summing up the above cases, we conclude that the quasiconformal
homeomorphism f

3,λ
|U0 admits no “minimal” factorizations when U0∩

T 6= ∅. q.e.d.

Note that a region U1 ⊂ Rn is said to be convex if and only if ζ1, ζ2 ∈
U1 implies that

κ · ζ1 + (1− κ) · ζ2 ∈ U1, 1 ≤ κ ≤ 1.

For any convex domain U1 ⊂ Rn with U1 ∩ T = ∅, by applying the
similar argument as in (13), we obtain

Corollary. The n-dimensional K-quasiconformal map f
n,λ
|U1 admits

“minimal” factorizations. More precisely, for each 0 < s < 1, there
exist a Ks-quasiconformal map g1 and a K1−s-quasiconformal map g2

such that
f

3,λ
|U1 = g2 ◦ g1.

4. PROOF OF LEMMA 3.1

Now we begin to prove Lemma 3.1
Lemma 2.1 shows that, for almost all ζ ∈ U0 and η ∈ f1(U0), there

exist
P1(ζ), Q1(ζ), P2(η), Q2(η) ∈ SO(3)
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such that

Df1(ζ) = P1(ζ) · diag
(
µ1(ζ), µ2(ζ), µ3(ζ)

) ·Q1(ζ),

Df2(η) = P2(η) · diag
(
γ1(η), γ2(η), γ3(η)

) ·Q2(η),

with µ1(ζ) ≥ µ2(ζ) ≥ µ3(ζ) > 0 and γ1(η) ≥ γ2(η) ≥ γ3(η) > 0. By (6)
it follows that

µ1(ζ)
µ3(ζ)

≤ Ks,
γ1(η)
γ3(η)

≤ K1−s, a.e.

From Df
3,λ

(ζ) = Df2(f1(ζ)) ·Df1(ζ), we deduce that

 A(λ, θ′)2×2

1






√

K

1/
√

K

1/
√

K





 B(λ, θ)2×2

1




= P2(η) ·



γ1(η)
γ2(η)

γ3(η)


 ·Q2(η) · P1(ζ) ·




µ1(ζ)
µ2(ζ)

µ3(ζ)


 ·Q1(ζ),

where η = f1(ζ). That is, for a.e. ζ ∈ U0,


√

K

1/
√

K

1/
√

K




= T1(ζ) ·



γ1(η)
γ2(η)

γ3(η)


 · T2(ζ) ·




µ1(ζ)
µ2(ζ)

µ3(ζ)


 · T3(ζ),

(16)

where

T1(ζ) =


 A(λ, θ′)2×2

1




−1

· P2(f1(ζ)) ∈ SO(3),

T2(ζ) = Q2(f1(ζ)) · P1(ζ) ∈ SO(3) and

(17) T3(ζ) = Q1(ζ) ·


 B(λ, θ)2×2

1




−1

∈ SO(3).

Now consider the actions of the left (right) matrix of (16) on the col-
umn vector (1, 0, 0)T . By computing the Euclidean lengthes of the re-
sulting column vectors, we immediately obtain that

√
K ≤ γ1(f1(ζ)) · µ1(ζ), a.e. ζ ∈ U0.(18)
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Similarly, by considering the actions on the column vector (0, 0, 1)T , we
have

1/
√

K ≥ γ3(f1(ζ)) · µ3(ζ), a.e. ζ ∈ U0.(19)

From (18) and (19) it follows that

(20) K ≤ γ1(f1(ζ)) · µ1(ζ)
γ3(f1(ζ)) · µ3(ζ)

≤ Ks ·K1−s, a.e.

Hence all “ ≤ ” or “ ≥ ” in (18), (19) and (20) must be “ = ”. Together
with these facts, and by computing the determinants of the matrices in
(16), we deduce that

γ1(f1(ζ))/K1−s = γ2(f1(ζ)) = γ3(f1(ζ)), µ1(ζ)/Ks = µ2(ζ) = µ3(ζ). a.e.

In addition we obtain that
(21)

Tj(ζ) =




1

Rj(ζ)2×2


 , where Rj(ζ) ∈ SO(2), j = 1, 2, 3,

with R1(ζ) ·R2(ζ) ·R3(ζ) = I2 (the 2× 2 identity matrix). If setting

aζ ≡ µ2(ζ), P (ζ) ≡ P1(ζ) ·



1

R3(ζ)2×2


 ,

and using (17) and (21), we conclude that, for almost all ζ ∈ U0,

Df1(ζ) = P1(ζ) ·



Ks · µ2(ζ)
µ2(ζ)

µ2(ζ)


 ·Q1(ζ),

= aζ · P (ζ) ·



Ks

1
1


 ·


 B(λ, θ)2×2

1


 ,

as desired. q.e.d.
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