当前位置:首页 > 科研人员 > 研究员

丁彦恒

时间:2014-12-05  来源:文本大小:【 |  | 】  【打印

 

l  基本情况

 

丁彦恒 男,四川人,研究员

19891991 中科院数学所博士后

19961998 德国洪堡学者

20082013 意大利国际理论物理中心高级客座学者

办公室:数学院南楼822,电话:010-82541533,电邮:dingyh@math.ac.cn

研究方向:非线性泛函分析,变分方法,Hamilton 力学,偏微分方程 

 

l  学术交流

以下是海外学术经历 (1个月以上)

199112

19924

Scuola Normale Superiore, Pisa, Italy(Visiting Scholar)

19925

19926

Universitá degli Studi di Roma, Italy (Visiting Prof.)

199410

19951

Terza Universitá degli Studi di Roma, Italy  (Visiting Prof.)

19968

19973

Universitǎt Giessen, Giessen, Germany  (AvH fellow)

19974

 

Université Catholique de Louvain, Belgium  (Visiting Prof.)

19975

19976

Terza Universitá degli Studi di Roma, Italy (Visiting Prof.)

19977

19982

Universitǎt Giessen, Giessen, Germany(AvH fellow)

199911

20001

Universitǎt Giessen,Giessen, Germany  (AvH fellow)

200011

20014

IMECC-UNICAMP, Campinas S.P., Brazil (Visiting Prof.)

20015

20019

Universidad Nacional Autònoma de México (Visiting Prof.)

200110

200112

The Univ. of New South Wales,Australia (Visiting Prof.)

20021

 

Waseda University, Japan (Visiting Prof.)

20033

 

Giessen University, Germany  (Visiting Prof.)

200311

20044

Giessen University, Germany  (AvH fellow)

20045

 

University of Stockholm, Sweden  (Visiting Prof.)

200510

200512

Courant Institute of Mathematical Sciences, New York University, USA  (Visiting Prof.)

20063

20064

Université de Franche-Comité, Besancon, France (Visiting Prof.)

20065

 

Universitá di Milano, Italy  (Visiting Prof.)

 

20074

 

Department of Mathematics, CUHK,

Hong Kong (Visiting Prof.)

20076

20077

Pohang Univ. of Science and Technology,Korea(Visiting Prof.)

 

200711

200712

The Institute of Mathematical Science,CUHK, Hong Kong (Visiting Prof.)

20115

20116

ICTP,  Italy  (Visiting Prof.)

 

20145

20146

ICTP,  Italy  (Visiting Prof.)

 






























l  著述:

Ø  Yanheng Ding: Variational methods for strongly indefinite problems.Interdisciplinary Mathematical Sciences, 7. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.

Ø  丁彦恒,余渊洋,李冏玥:变分方法与交叉科学,科学出版社,2022

Ø  丁彦恒,刘笑颖,吴刚:数学分析讲义 (第一卷) ,科学出版社,2018

Ø  丁彦恒,刘笑颖,吴刚:数学分析讲义 (第二卷) ,科学出版社,2019

Ø  丁彦恒,刘笑颖,吴刚:数学分析讲义 (第三卷) ,科学出版社,2020

Ø  丁彦恒,吴刚,郭琪:数学分析学习指导 () ,科学出版社,2021

Ø  丁彦恒,吴刚,郭琪:数学分析学习指导 () ,科学出版社,2022

 

论文:  

Review PDF Clipboard Journal Article

Publication Year 2022

[128] Ding, Yanheng; Zhong, Xuexiu;  Normalized solution to the Schrödinger equation with potential and general nonlinear term: Mass super-critical case. J. Differential Equations 334 (2022), 194–215.

[127] Ding, Yanheng; Yu, Yuanyang; Dong, Xiaojing: Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems. Adv. Nonlinear Stud. 22 (2022), no. 1, 248–272.

[126] Nie,Jianjun; Ding,Yanheng: Existence of multi-bump solutions for a system with critical exponent in R^N  J. Math. Anal. Appl. 505 (2022), no. 2, Paper No. 125497, 37 pp.

[125] Ding, Yanheng; Guo, Qi; Ruf, Bernhard; Stationary States of Dirac–Klein–Gordon Systems with Nonlinear Interacting Terms. SIAM J. Math. Anal. 53 (2021), no. 5, 5731–5755.

[124]  Ding, Yanheng; Dong, Xiaojing; Guo, Qi Nonrelativistic limit and some properties of solutions for nonlinear Dirac equations. Calc. Var. Partial Differential Equations 60 (2021), no. 4, Paper No. 144, 23 pp.

[123]  Ding, Yanheng; Dong, Xiaojing; Guo, Qi On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension n. Discrete Contin. Dyn. Syst. 41 (2021), no. 9, 4105–4123.

[122]  Ding, Yanheng; Dong, Xiaojing Infinitely many solutions of Dirac equations with concave and convex nonlinearities. Z. Angew. Math. Phys. 72 (2021), no. 1, Paper No. 39, 17 pp.

[121]  Ding, Yanheng; Guo, Qi; Yu, Yuanyang Existence of semiclassical solutions for some critical Dirac equation. J. Math. Phys. 62 (2021), no. 1, Paper No. 011501, 22 pp.

[120] Ding, Yanheng; Gao, Fashun; Yang, Minbo: Semiclassical states for Choquard type equations with critical growth: critical frequency case, Nonlinearity 33 (2020), no. 12, 6695–6728

[119] Ding, Yanheng; Guo, Qi; Yu, Yuanyang Semiclassical states for Dirac-Klein-Gordon system with critical growth. J. Math. Anal. Appl.  488  (2020),  no. 2, 124092, 29 pp.

[118] Ding, Yanheng; Yu, Yuanyang The concentration behavior of ground state solutions for nonlinear Dirac equation. Nonlinear Anal.  195  (2020), 111738, 24 pp.

[117] Chen, Yu; Ding, Yanheng; Xu, Tian Potential well and multiplicity of solutions for nonlinear Dirac equations. Commun. Pure Appl. Anal.  19  (2020),  no. 1, 587–607.

[116] Chen, Yu; Ding, Yanheng Multiplicity and concentration for Kirchhoff type equations around topologically critical points in potential. Topol. Methods Nonlinear Anal.  53  (2019),  no. 1, 183–223. 35J60

[115] Ding, YanhengGuo, Qi:  Homoclinic solutions for an anomalous diffusion system. J. Math. Anal. Appl. 466 (2018), no. 1, 860–879.

[114] Ding, YanhengLi, Jiongyue:  A boundary value problem for the nonlinear Dirac equation on compact spin manifold. Calc. Var. Partial Differential Equations 57 (2018), no. 3, Art. 72, 16 pp. 

[113] Ding, YanhengLiu, Xiaoying:  Periodic solutions of superlinear Dirac equations with perturbations from symmetry. J. Math. Phys. 59 (2018), no. 1, 011504, 17 pp. 

[112]  Chen, YuDing, YanhengLi, Suhong:  Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Commun. Pure Appl. Anal. 16 (2017), no. 5, 1641–1671. 

[111] Ding, YanhengWei, Juncheng: Multiplicity of semiclassical solutions to nonlinear Schrödinger equations. J. Fixed Point Theory Appl. 19 (2017), no. 1, 987–1010.

[110] Ding, Yanheng; Liu, Xiaoying: Periodic solutions of an asymptotically linear Dirac equation. Annali di Matematica 196 (2017), 717-735.

 [109]  Ding, Yanheng; Li, JiongyueXu, Tian: Bifurcation on compact spin manifold. Calc. Var. Partial Differential Equations 55(2016),no. 4, Paper No. 90, 17 pp.  

[108] Ding, Yanheng; Ruf, Bernhard:  On multiplicity of semi-classical solutions to a nonlinear Maxwell-Dirac system. J. Differential Equations 260(2016),no. 7, 5565–5588.  

[107]  Ding, Yanheng; Xu, Tian:  Concentrating patterns of reaction--diffusion systems:  A variational approach.  Trans. Amer. Math. Soc., 360 (2017), no. 1, 97--138.

[106]  Ding, Yanheng; Liu, Xiaoying:  Periodic solutions of a Dirac equation with concave and convex nonlinearities.  J. Differential Equations 258 (2015), no. 10, 3567--3588.

[105] Ding, Yanheng; Xu, Tian: Localized Concentration of Semi-Classical States for Nonlinear Dirac Equations, Arch. Rational Mech. Anal.  216  (2015),  no. 2,  415--447

[104] Ding, Yanheng; Lee, Cheng; Zhao, Fukun: Semiclassical limits of ground state solutions to Schrödinger systems Calc. Var. Partial Differential Equations, 51 (2014), 725–760.

[103] Ding, Yanheng; Xu, Tian On semi-classical limits of ground states of a nonlinear Maxwell-Dirac system. Calc. Var. Partial Differential Equations 51 (2014), no. 1-2, 17–44.

[102] Ding, Yanheng; Liu, Xiaoying Periodic waves of nonlinear Dirac equations. Nonlinear Anal. 109 (2014), 252–267.

[101] Yang, Minbo; Wei, Yuanhong; Ding, Yanheng Existence of semiclassical states for a coupled Schrödinger system with potentials and nonlocal nonlinearities. Z. Angew. Math. Phys. 65 (2014), no. 1, 41–68.

[100] Ding, Yanheng; Xu, Tian On the concentration of semi-classical states for a nonlinear Dirac-Klein-Gordon system. J. Differential Equations 256 (2014), no. 3, 1264–1294.

[99] Ding, Yanheng; Wei, Juncheng; Xu, Tian Existence and concentration of semi-classical solutions for a nonlinear Maxwell-Dirac system. J. Math. Phys. 54 (2013), no. 6, 061505, 33 pp.

[98] Ding, Yanheng; Lee, Cheng; Ruf, Bernhard: On semiclassical states of a nonlinear Dirac equation. Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 4, 765–790.

[97] Yang, Minbo; Ding, Yanheng Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Commun. Pure Appl. Anal. 12 (2013), no. 2, 771–783.

[96] Yang, Minbo; Ding, Yanheng Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in R^N. Commun. Pure Appl. Anal. 12 (2013), no. 1, 429–449.

[95] Ding, Yanheng; Ruf, Bernhard Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities. SIAM J. Math. Anal. 44 (2012), no. 6, 3755–3785.

[94] Yang, Minbo; Zhao, Fukun; Ding, Yanheng On the existence of solutions for Schrödinger-Maxwell systems in R^3. Rocky Mountain J. Math. 42 (2012), no. 5, 1655–1674.

[93] Ding, Yanheng; Liu, Xiaoying On semiclassical ground states of a nonlinear Dirac equation. Rev. Math. Phys. 24 (2012), no. 10, 1250029, 25 pp.

[92] Yang, Minbo; Ding, Yanheng Stationary states for nonlinear Dirac equations with superlinear nonlinearities. Topol. Methods Nonlinear Anal. 39 (2012), no. 1, 175–188.

[91] Ding, Yanheng; Liu, Xiaoying Semi-classical limits of ground states of a nonlinear Dirac equation. J. Differential Equations 252 (2012), no. 9, 4962–4987

[90] Yang, Minbo; Ding, Yanheng Existence of semiclassical states for a quasilinear Schrödinger equation with critical exponent in R^N. Ann. Mat. Pura Appl. (4) 192 (2013),  783–804.

[89] Ding, Yanheng; Liu, Xiaoying Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities. Manuscripta Math. 140 (2013), no. 1-2, 51–82.

[88] Ding, Yanheng; Wang, Zhi-Qiang: Bound states of nonlinear Schrödinger equations with magnetic fields. Annali di Matematica Pura ed Applicata, 190 (2011), no. 3, 427-451

[87] Chen, Wenxiong; Yang, Minbo; Ding, Yanheng: Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms. SCIENCE CHINA Mathematics, 54 (2011), no. 12,2583-2596

[86] Ding, Yan Heng Variational methods for strongly indefinite problems. (Chinese) Acta Anal. Funct. Appl. 13 (2011), no. 2,209–217,

[85] Zhao, Fukun; Zhao, Leiga; Ding, Yanheng Multiple solutions for a superlinear and periodic elliptic system on . Z. Angew. Math. Phys.62 (2011), no. 3, 495–511

[84] Yang, Minbo; Shen, Zifei; Ding, Yanheng On a class of infinite-dimensional Hamiltonian systems with asymptotically periodic nonlinearities. Chin. Ann. Math. Ser. B 32 (2011), no. 1, 45–58,

[83] Zhao, Fukun; Ding, Yanheng On Hamiltonian elliptic systems with periodic or non-periodic potentials. J. Differential Equations 249 (2010), no. 12, 2964–2985.

[82] Ding, Yanheng Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation. J. Differential Equations 249 (2010), no. 5, 1015–1034,

[81] Yang, Minbo; Chen, Wenxiong; Ding, Yanheng Solutions for discrete periodic Schrödinger equations with spectrum 0. Acta Appl.Math. 110 (2010), no. 3, 1475–1488,

[80] Yang, Minbo; Zhao, Fukun; Ding, Yanheng Infinitely many stationary solutions of discrete vector nonlinear Schrödinger equation with symmetry. Appl. Math. Comput. 215 (2010), no. 12, 4230–4238,

[79] Zhao, Fukun; Zhao, Leiga; Ding, Yanheng Infinitely many solutions for asymptotically linear periodic Hamiltonian elliptic systems. ESAIM Control Optim. Calc. Var. 16 (2010), no. 1, 77–91,

[78] Yang, Minbo; Chen, Wenxiong; Ding, Yanheng Solutions for periodic Schrödinger equation with spectrum zero and general superlinear nonlinearities. J. Math. Anal. Appl. 364 (2010), no. 2, 404–413

[77] Yang, Minbo; Chen, Wenxiong; Ding, Yanheng Solutions of a class of Hamiltonian elliptic systems in R^n. J. Math. Anal. Appl. 362 (2010), no. 2, 338–349

[76] Zhao, Fukun; Zhao, Leiga; Ding, Yanheng A note on superlinear Hamiltonian elliptic systems. J. Math. Phys. 50 (2009), no. 11, 112702, 7 pp

[75] Ding, Yanheng; Lee, Cheng Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems. Nonlinear Anal. 71 (2009), no. 5-6, 1395–1413.

[74] Yang, Minbo; Shen, Zifei; Ding, Yanheng Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system. Nonlinear Anal. 71 (2009), no. 3-4, 730–739,

[73] Ding, Yanheng; Lee, Cheng Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system. J. Differential Equations 246 (2009), no. 7, 2829–2848.

[72] Zhao, Fukun; Ding, Yanheng Infinitely many solutions for a class of nonlinear Dirac equations without symmetry. Nonlinear Anal. 70 (2009), no. 2, 921–935,

[71] Zhao, Fukun; Ding, Yanheng On a diffusion system with bounded potential. Discrete Contin. Dyn. Syst. 23 (2009), no. 3,1073–1086,

[70] Zhao, Fukun; Zhao, Leiga; Ding, Yanheng Multiple solutions for asymptotically linear elliptic systems. NoDEA Nonlinear Differential Equations Appl. 15 (2008), no. 6, 673–688.

[69] Zhao, Fukun; Zhao, Leiga; Ding, Yanheng: Existence and multiplicity of solutions for a non-periodic Schrödinger equation. Nonlinear Anal. 69 (2008), no. 11, 3671–3678.

[68] Yanheng Ding; Juncheng Wei: Stationary states of nonlinear Dirac equations with general potentials, Reviews in Mathematical Physics, 20 2008),1007--1032

[67] Yanheng Ding; Bernhard Ruf: Solutions of a nonlinear Dirac equation with external fields, Arch. Rational Mech. Anal. 190 2008),57--82

[66] Fukun Zhao; Yanheng Ding: Infinitely many solutions for a class of nonlinear Dirac equations without symmetry, Nonlinear Analysis, In press, doi: 10.1016/j.na.2008.01.023

[65] Fukun Zhao; Leiga Zhao; Yanheng Ding: Existence and multiplicity of solutions for a non-periodic Schrodinger equation, Nonlinear Analysis , In press, doi: 10.1016/j.na.2007.10.024

[64] Ding, Yanheng; Wei, Juncheng: Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials. J. Funct. Anal. 251 (2007), no. 2, 546--572.

[63] Ding, Yanheng; Luan, Shixia; Willem, Michel Solutions of a system of diffusion equations. J. Fixed Point Theory Appl. 2 (2007), no. 1, 117--139.

[62] Alves, Claudianor O.; Ding, Yanheng: Existence, multiplicity and concentration of positive solutions for a class of quasilinear problems. Topol. Methods Nonlinear Anal. 29 (2007), no. 2, 265--278.

[61] Ding, Yanheng; Lin, Fanghua Solutions of perturbed Schrödinger equations with critical nonlinearity. Calc. Var. Partial Differential Equations 30 (2007), no. 2, 231—249

[60] Ding, Yanheng; Jeanjean, Louis Homoclinic orbits for a nonperiodic Hamiltonian system. J. Differential Equations 237 (2007), no. 2, 473--490.

[59] Ding, Yanheng; Szulkin, Andrzej Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differential Equations 29 (2007), no. 3, 397--419.

[58] Mao, Anmin; Luan, Shixia; Ding, Yanheng Periodic solutions for a class of first order super-quadratic Hamiltonian system. J. Math. Anal.Appl. 330 (2007), no. 1, 584--596.

[57] Ding, Yanheng Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms. Commun. Contemp. Math. 8 (2006), no. 4, 453--480.

[56] Bartsch, Thomas; Ding, Yanheng Deformation theorems on non-metrizable vector spaces and applications to critical point theory.Math. Nachr. 279 (2006), no. 12, 1267--1288.

[55] Ding, Yanheng; Lin, Fanghua Semiclassical states of Hamiltonian system of Schrödinger equations with subcritical and critical nonlinearities. J. Partial Differential Equations 19 (2006), no. 3,232--255.

[54] Bartsch, Thomas; Ding, Yanheng Solutions of nonlinear Dirac equations. J. Differential Equations 226 (2006), no. 1, 210--249.

[53] Ding, Yanheng; Lee, Cheng Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms. J. Differential Equations 222 (2006), no. 1, 137--163.

[52] Ding, Yanheng; Szulkin, Andrzej Existence and number of solutions for a class of semilinear Schrödinger equations. Contributions to nonlinear analysis, 221--231, Progr. Nonlinear Differential Equations Appl., 66, Birkhäuser, Basel, 2006

[51] Ding, Yanheng; Lee, Cheng Periodic solutions of an infinite dimensional Hamiltonian system. Rocky Mountain J. Math. 35 (2005),no. 6, 1881--1908.

[50] Li, Chong; Ding, Yanheng; Li, Shujie Multiple solutions of nonlinear elliptic equations for oscillation problems. J. Math. Anal.Appl. 303 (2005), no. 2, 477--485.

[49] Ding, Yanheng Deformation in locally convex topological linear spaces. Sci. China Ser. A 47 (2004), no. 5, 687--710.

[48] Clapp, Mónica; Ding, Yanheng; Hernández-Linares, Sergio Strongly indefinite functionals with perturbed symmetries and multiple solutions of nonsymmetric elliptic systems. Electron. J. Differential Equations 2004, No. 100, 18 pp.

[47] Clapp, Mónica; Ding, Yanheng Positive solutions of a Schrödinger equation with critical nonlinearity. Z. Angew. Math. Phys. 55 (2004), no. 4, 592--605.

[46] Ding, Yanheng; Luan, Shixia Multiple solutions for a class of nonlinear Schrödinger equations. J. Differential Equations 207 (2004), no. 2, 423--457.

[45] Mao, Anmin; Luan, Shixia; Ding, Yanheng On the existence of positive solutions for a class of singular boundary value problems. J. Math. Anal. Appl. 298 (2004), no. 1, 57--72.

[44] Ding, Yanheng Homoclinic orbits of Hamiltonian systems. Morse theory, minimax theory and their applications to nonlinear differential equations, 57--65, New Stud. Adv. Math., 1, Int. Press, Somerville, MA, 2003.

[43] Ding, Yanheng; Tanaka, Kazunaga Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscripta Math. 112 (2003), no. 1, 109--135.

[42] Clapp, Mónica; Ding, Yanheng Minimal nodal solutions of a Schrödinger equation with critical nonlinearity and symmetric potential. Differential Integral Equations 16 (2003), no. 8, 981--992.

[41] De Figueiredo, D. G.; Ding, Y. H. Strongly indefinite functional and multiple solutions of elliptic systems. Trans. Amer. Math. Soc. 355 (2003), no. 7, 2973--2989

[40] Alves, C. O.; Ding, Y. H. Multiplicity of positive solutions to a $p$-Laplacian equation involving critical nonlinearity. J. Math. Anal. Appl. 279 (2003), no. 2, 508--521.

[39] Bartsch, Thomas; Ding, Yanheng Homoclinic solutions of an infinite-dimensional Hamiltonian system. Math. Z. 240 (2002), no. 2, 289--310.

[38] deFigueiredo, D. G.; Ding, Y. H. Solutions of a nonlinear Schrödinger equation. Discrete Contin. Dyn. Syst. 8 (2002), no. 3,563--584.

[37] Ding, Yanheng Solutions to a class of Schrödinger equations. Proc. Amer. Math. Soc. 130 (2002), no. 3, 689—696

[36] Bartsch, Thomas; Ding, Yanheng Periodic solutions of superlinear beam and membrane equations with perturbations from symmetry. Nonlinear Anal. 44 (2001), no. 6, Ser. A: Theory Methods, 727--748.

[35] Ding, Yanheng; Lee, Cheng Periodic solutions of Hamiltonian systems. SIAM J. Math. Anal. 32 (2000), no. 3, 555—571

[34] Bartsch, T.; Ding, Y. H. Critical-point theory with applications to asymptotically linear wave and beam equations. Differential Integral Equations 13 (2000), no. 7-9, 973--1000.

[33] Ding, Yanheng; Willem, Michel Homoclinic orbits of a Hamiltonian system. Z. Angew. Math. Phys. 50 (1999), no. 5, 759--778.

[32] Ding, Yanheng; Girardi, Mario Infinitely many homoclinic orbits of a Hamiltonian system with symmetry. Nonlinear Anal. 38 (1999), no. 3, Ser. A: Theory Methods, 391--415.

[31] Bartsch, T.; Ding, Y. H.; Lee, C. Periodic solutions of a wave equation with concave and convex nonlinearities. J. Differential Equations 153 (1999), no. 1, 121--141.

[30] Bartsch, Thomas; Ding, Yanheng On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313 (1999), no. 1,15--37.

[29] Ding, Yanheng Infinitely many homoclinic orbits for a class of Hamiltonian systems with symmetry. A Chinese summary appears in Chinese Ann. Math. Ser. A 19 (1998), no. 2, 283. Chinese Ann. Math.Ser. B 19 (1998), no. 2, 167--178.

[28] Ding, Yanheng; Li, Shujie; Willem, Michel Periodic solutions of symmetric wave equations. J. Differential Equations 145 (1998), no. 2,217--241.

[27] Ding, Yanheng Infinitely many entire solutions of an elliptic system with symmetry. Topol. Methods Nonlinear Anal. 9 (1997), no. 2, 313--323.

[26] Ding, Yanheng; Li, Shujie Periodic solutions of a superlinear wave equation. Nonlinear Anal. 29 (1997), no. 3, 265--282.

[25] Ding, Yanheng; Girardi, M. Periodic solutions for a class of symmetric and subquadratic Hamiltonian systems. Math. Comput. Modelling 23 (1996), no. 7, 59--71.

[24] Ding, Yanheng; Li, Shujie Existence of entire solutions of an elliptic equation on $R\sp N$. Functional analysis in China, 277--299, Math. Appl., 356, Kluwer Acad. Publ., Dordrecht, 1996.

[23] Ding, Yanheng; Li, Shujie The existence of infinitely many periodic solutions to Hamiltonian systems in a symmetric potential well. Ricerche Mat. 44 (1995), no. 1, 163--172.

[22] Ding, Y. H.; Girardi, M. Periodic solutions for a second order Hamiltonian system. Dynamical systems and applications, 229--237, World Sci. Ser. Appl. Anal., 4, World Sci. Publ., River Edge, NJ, 1995.

[21] Ding, Yan Heng Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal. 25 (1995),no. 11, 1095--1113.

[20] Ding, Yan Heng; Li, Shu Jie Some existence results of solutions for the semilinear elliptic equations on $R\sp N$. J. Differential Equations 119 (1995), no. 2, 401--425.

[19] Ding, Yan Heng; Li, Shu Jie Homoclinic orbits for first order Hamiltonian systems. J. Math. Anal. Appl. 189 (1995), no. 2, 585--601.

[18] Ding, Yan Heng; Li, Shu Jie Existence of entire solutions for some elliptic systems. Bull. Austral. Math. Soc. 50 (1994), no. 3, 501--519.

[17] Ding, Yan Heng A remark on the linking theorem with applications. Nonlinear Anal. 22 (1994), no. 2, 237--250.

[16] Ding, Yan Heng Numerical quadrature and extrapolation for finite elements. (Chinese) J. Systems Sci. Math. Sci. 13 (1993), no. 2, 178--184.

[15] Ding, Yan Heng; Li, Shu Jie Periodic solutions of a class of Hamiltonian systems with singular potentials. Northeast. Math. J. 9 (1993), no. 1, 91--98.

[14] Ding, Yan Heng; Li, Shu Jie Existence of infinitely many periodic solutions to Hamiltonian systems in a potential well. (Chinese) Acta Math. Sinica 36 (1993), no. 1, 25--30.

[13] Yanheng, Ding; Girardi, Mario Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign. Dynam. Systems Appl. 2 (1993), no. 1, 131--145.

[12] Ding, Yan Heng; Li, Shu Jie Two results on periodic solutions of singular Hamiltonian systems. Lecture notes in contemporary mathematics. Vol. 2, 1991, 84--93, Science Press, Beijing, 1992.

[11] Ding, Yan Heng; Lin, Qun Quadrature and finite element error expansions on isoparametric quadrilateral meshes. (Chinese) Acta Math. Appl. Sinica 15 (1992), no. 4, 530--540.

[10] Ding, Yan Heng Some existence results on homoclinics for a class of second order conservative systems. Ann. Univ. Ferrara Sez. VII (N.S.) 38 (1992), 49--63 (1993).

[9] Ding, Yan Heng; Li, Shu Jie Periodic solutions of some singulardynamical systems in a potential well. Chinese J. Contemp. Math. 13 (1992), no. 4, 299--307 (1993).

[8] Ding, Yan Heng; Li, Shu Jie Periodic solutions to singular dynamical systems on a potential well. (Chinese) Chinese Ann. Math. Ser. A 13 (1992), no. 5, 546--554.

[7] Ding, Yan Heng; Li, Shu Jie A remark on periodic solutions of singular Hamiltonian systems with sublinear terms. Systems Sci. Math. Sci. 5 (1992), no. 2, 121--126.

[6] Ding, Yan Heng; Lin, Qun Finite element error expansions for the eigenvalue approximation to the multigroup diffusion equations. Systems Sci. Math. Sci. 4 (1991), no. 3, 225--235.

[5] Ding, Yan Heng; Lin, Qun Quadrature and extrapolation for the variable coefficient elliptic eigenvalue problem. Systems Sci. Math. Sci. 3 (1990), no. 4, 327--336.

[4] Ding, Yan Heng A note on nonlinear beam equations. (Chinese) Acta Math. Sinica 33 (1990), no. 2, 172--181.

[3] Ding, Yan Heng; Lin, Qun Finite element expansion for variable coefficient elliptic problems. Systems Sci. Math. Sci. 2 (1989), no. 1, 54--69.

[2] Ding, Yan Heng; Liu, Jia Quan Periodic solutions of asymptotically linear Hamiltonian systems. (Chinese) J. Systems Sci. Math. Sci. 9 (1989), no. 1, 30--39.

[1] Ding, Yan Heng Nonlinear vibrations in the $n$-dimensional beam equation. (Chinese) J. Systems Sci. Math. Sci. 8 (1988), no. 1, 42--45.

 

附件
相关文档