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GW invariants of quintic Calabi-Yau threefolds

Quintic Calabi-Yau threefolds:

X = {w5 = x5
1 + · · ·+ x5

5 = 0} ⊂ P4

For d , g ∈ Z, form the moduli of stable maps

Mg (X , d) = {[f ,C ] | f : C → X , such that ....}
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Form virtual cycle

[Mg (X , d)]virt ∈ A0Mg (X , d)

The GW invariant

Ng (d) =

∫
[Mg (X ,d)]virt

1 ∈ Q.
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The generating function

fg (q) =
∑

Ng (d)qd

Determining it is a challenge to mathematicians
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High genus invariants of quintics

Recent progress toward

an effective algorithm for all genus invariants

using Mixed-Spin-P (MSP) fields.

A joint work with Huailiang Chang, Weiping Li, and Mellisa Liu.
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This work is inspired by Witten’s vision that

GW invariants of quintics
and

Witten’s spin class invariants

are equivalent via a wall crossing.
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Witten’s vision

C∗ acts on C5 × C of weight (1, 1, 1, 1, 1,−5);

(x5
1 + · · ·+ x5

5 ) · p : C5 × C→ C is C∗ equivariant;

the quotient C5 × C/C∗ is pretty bad;
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Witten’s vision

[C6/C∗] has two GIT quotients:

(C5 − 0)× C/C∗ = KP4 ;

C5 × (C− 0)/C∗ = C5/Z5;

we call (C5 − 0)× C/C∗ and C5 × (C− 0)/C∗ related by a
simple wall crossing.

Jun Li Lectures on GW and AG

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen



Witten’s vision

[C6/C∗] has two GIT quotients:

(C5 − 0)× C/C∗ = KP4 ;

C5 × (C− 0)/C∗ = C5/Z5;

we call (C5 − 0)× C/C∗ and C5 × (C− 0)/C∗ related by a
simple wall crossing.

Jun Li Lectures on GW and AG

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen



Witten’s vision

[C6/C∗] has two GIT quotients:

(C5 − 0)× C/C∗ = KP4 ;

C5 × (C− 0)/C∗ = C5/Z5;

we call (C5 − 0)× C/C∗ and C5 × (C− 0)/C∗ related by a
simple wall crossing.

Jun Li Lectures on GW and AG

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen



Witten’s vision

Witten:

a field theory valued in KP4 is the GW of quintics;

a field theory valued in C5/Z5 is the Witten’s spin class
(FJRW invariants);

these two theories are equivalent via a wall crossing.

developed a (MSP) field theory realizing this wall crossing,

an algorithm, conjecturally determine all genus invariants.
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One side of this wall crossing: LG theory of KP4

(with HL Chang) We constructed the GW invariants of stable
maps with p-fields:

Mg (P4, d)p = {[f ,C , ρ] | [f ,C ] ∈ Mg (P4, d),
ρ ∈ H0(C , f ∗O(5)⊗ ωC )}

form its virtual cycle [Mg (P4, d)p]virtloc

define Ng (d)p =
∫

[Mg (P4,d)p ]virtloc
1 ∈ Q

Jun Li Lectures on GW and AG

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen



One side of this wall crossing: LG theory of KP4

(with HL Chang) We constructed the GW invariants of stable
maps with p-fields:

Mg (P4, d)p = {[f ,C , ρ] | [f ,C ] ∈ Mg (P4, d),
ρ ∈ H0(C , f ∗O(5)⊗ ωC )}

form its virtual cycle [Mg (P4, d)p]virtloc

define Ng (d)p =
∫

[Mg (P4,d)p ]virtloc
1 ∈ Q

Jun Li Lectures on GW and AG



One side of this wall crossing: LG theory of KP4

(with HL Chang) We constructed the GW invariants of stable
maps with p-fields:

Mg (P4, d)p = {[f ,C , ρ] | [f ,C ] ∈ Mg (P4, d),
ρ ∈ H0(C , f ∗O(5)⊗ ωC )}

form its virtual cycle [Mg (P4, d)p]virtloc

define Ng (d)p =
∫

[Mg (P4,d)p ]virtloc
1 ∈ Q

Jun Li Lectures on GW and AG



LG theory of KP4

Theorem (Chang - L)

The two sets of invariants are equivalent

Ng (d) = (−1)d+g+1Ng (d)p.

Up shot:

Ng (d) are virtual counting of maps to the quintic X ;

counting [f : C → X ⊂ P4]

Ng (d)p is a virtual counting of fields on curves:
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LG theory of KP4

Ng (d) are virtual counting of maps to the quintic X ;

counting [f : C → X ⊂ P4]

Ng (d)p is a virtual counting of fields on curves:

1 definition says: counting of

([f : C → P4], ρ ∈ H0(C, f ∗O(5)⊗ ωC));

2 [f : C → P4] is (C,L, ϕ1, · · · , ϕ5),
where ϕi ∈ H0(L) s.t. (ϕ1, · · · , ϕ5) never zero;

3 the P-field ρ ∈ H0(L−5 ⊗ ωC);
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LG theory of KP4

Ng (d)p is a virtual counting of fields because it v. counts

(C,L, ϕ1, · · · , ϕ5, ρ);

they are fields taking values in KP4 = (C5 − 0)× C/C∗ because

ϕ1 ∈ H0(L) and ρ ∈ H0(L−5 ⊗ ωC), (compare) C∗ acts on C5

and C of weights 1 and −5;

(ϕ1, · · · , ϕ5) never zero and ρ arbitrary, (compare)
(C5 − 0)× C/C∗;
the line bundle L is up to scaling, (compare) quotient by C∗.

Ng (d)p is a field theory taking values in KP4 = (C5 − 0)× C/C∗.
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The other side wall crossing: LG theory of C5/Z5

It originated by Witten’s class;

The full theory has been developed by Fan-Jarvis-Ruan, called
the FJRW invariants.

(with HL Chang and WP Li) We provided a new construction
of FJRW invariants (in narrow case).
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LG theory of C5/Z5

Mg ,γ(w5,Z5)p = {
(
(ΣC , C),L, ϕ1, · · · , ϕ5, ρ

)
| such that ....}

ϕi ∈ H0(C,L), ρ ∈ H0(C,L−5 ⊗ ωC(ΣC))

ϕi arbitrary, ρ nowhere vanishing.

(compare) C5/Z5 = C5 × (C− 0)/C∗.

Jun Li Lectures on GW and AG

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen



LG theory of C5/Z5

Mg ,γ(w5,Z5)p = {
(
(ΣC , C),L, ϕ1, · · · , ϕ5, ρ

)
| such that ....}

ϕi ∈ H0(C,L), ρ ∈ H0(C,L−5 ⊗ ωC(ΣC))

ϕi arbitrary, ρ nowhere vanishing.

(compare) C5/Z5 = C5 × (C− 0)/C∗.

Jun Li Lectures on GW and AG



LG theory of C5/Z5

Mg ,γ(w5,Z5)p = {
(
(ΣC , C),L, ϕ1, · · · , ϕ5, ρ

)
| such that ....}

ϕi ∈ H0(C,L), ρ ∈ H0(C,L−5 ⊗ ωC(ΣC))

ϕi arbitrary, ρ nowhere vanishing.

(compare) C5/Z5 = C5 × (C− 0)/C∗.

Jun Li Lectures on GW and AG



LG theory of C5/Z5

Theorem (Chang - Li - L)

The FJRW invariants can be constructed using cosection localized
virtual cycles of the moduli of spin fields:

Mg ,γ(w5,Z5)5p = {
(
ΣC , C,L, ϕ1, · · · , ϕ5, ρ

)
| ... }/ ∼

Jun Li Lectures on GW and AG
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Cosection technique

The construction of the two theories
1 the GW invariants of stable maps with p-fields
2 the FJRW invariants of (w5,Z5)

both rely on the construction of cosection localized virtual
cyels;

Theorem (Kiem - L)

A DM stack M with a perfect obstruction theory, and a cosection
σ : ObM → OM provides us a cosection localized virtual cycle
(letting D(σ) = {σ = 0})

[M]virtσ ∈ A∗D(σ)
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Cosection technique

Remark

1 The cosection localized virtual cycles allows one to construct
invariants of non-compact moduli spaces;

2 The cosections used in the GW with p-fields and FJRW are
induced by the same equivariant LG function

(x5
1 + · · ·+ x5

5 ) · p : C5 × C −→ C.
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Cosection technique

The fields: ξ = (C,L, ϕ1, · · · , ϕ5, ρ) ∈ H0(L)⊕5 ⊕ H0(L⊗−5 ⊗ ωC)

The rel-obstruction space at ξ:

(ϕ̇, ρ̇) ∈ Ob|ξ = H1(L)⊕5 ⊕ H1(L⊗−5 ⊗ ωC)

The cosection σ|ξ : Ob|ξ −→ C:

σ|ξ(ϕ̇, ρ̇) = ρ̇
∑

x5
i + ρ

∑
5ϕ4

i · ϕ̇i ∈ H1(ωC) ∼= C.

Compare with

δ
(
p · (x5

1 + · · ·+ x5
5 )
)

= ρ̇ ·
∑

x5
i + ρ

∑
5x4

i · ẋi

Jun Li Lectures on GW and AG



Mixed Spin-P fields

Next step is to geometrically realizing the
wall crossing

of these two field theories envisioned by Witten

We define

An MSP field = (ΣC , C,L,N , ϕ1, · · · , ϕ5, ρ, ν1, ν2)
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Mixed Spin-P fields

We define

An MSP field = (ΣC , C,L,N , ϕ1, · · · , ϕ5, ρ, ν1, ν2)

where

1 (ΣC , C) is a pointed twisted curve,

2 L and N are line bundles, L as before, N is new;

3 ϕi ∈ H0(C,L), ρ ∈ H0(C,L⊗−5 ⊗ ωlog
C ), as before;

4 ν1 ∈ H0(L ⊗N ), ν2 ∈ H0(N );

5 plus combined GIT like stability requirements.

Jun Li Lectures on GW and AG
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Moduli of MSP fields

Theorem

The moduli Wg ,γ,d of stable MSP-fields of

1 genus g = g(C );

2 monodromy γ = (γ1, · · · , γ`) of L along ΣC , and

3 degrees d = (d0, d∞) (of L and N )

is a separated DM stack, locally of finite type.
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Moduli of MSP fields

Theorem

The moduli Wg ,γ,d is a C∗ stack, via

(ΣC , C,L,N , ϕ, ρ, ν)t = (ΣC , C,L,N , ϕ, ρ, νt)

where νt = (tν1, ν2).

Jun Li Lectures on GW and AG



Moduli of MSP fields

Theorem

The moduli Wg ,γ,d has a C∗ equivariant perfect obstruction
theory, an equivariant cosection of its obstruction sheaf, thus an
equivariant cosection localized virtual cycle

[Wg ,γ,d ]virtloc ∈ AC∗
∗ W−g ,γ,d .

where W−g ,γ,d = (σ = 0).

A technical Lemma: (σ = 0) is compact.

Jun Li Lectures on GW and AG



Polynomial relations

How to play with this cycle

[Wg ,γ,d ]virtloc ∈ AC∗
∗ W−g ,γ,d

Taking

1 γ = ∅ (no marked points),

2 (d0, d∞) = (d , 0),

then [
Wg ,d

]virt
σ
∈ HC∗

2(d+1−g)(W−g ,d ,Q).

Jun Li Lectures on GW and AG
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Polynomial relations

[
Wg ,d

]virt
σ
∈ HC∗

2(d+1−g)(W−g ,d ,Q).

when d + 1− g > 0

(
ud+1−g ·

[
Wg ,d

]virt
σ

)
0

= 0.

Jun Li Lectures on GW and AG



Polynomial relations

Let FΓ be the connected components of
(
W−g ,d

)C∗
;

∑
Γ

[
ud+1−g ·

[FΓ]virtσΓ

e(NFΓ
)

]
0

= 0.

for cosection localized version, proved by Chang-Kiem-L.

Jun Li Lectures on GW and AG



Polynomial relations

∑
Γ

[
ud+1−g ·

[FΓ]virtσΓ

e(NFΓ
)

]
0

= 0.

is a polynomial relation among (after proving a vanishing result),

1 GW invariants of the quintic Calabi-Yau Ng (d);

2 FJRW invariants of (w5,Z5) with insertions −2
5 ;

3 Hodge integrals of Mg ′,n′ involving ψ classes (calculable).

Jun Li Lectures on GW and AG



Polynomial relations

Application I

Letting d∞ = 0, the relations provide an effective algorithm to
evaluate the GW invariants Ng (d) provided the following are
known

1 FJRW invariants of insertions −2
5 and genus g ′ ≤ g ;

2 Ng ′(d ′) for (g ′, d ′) such that g ′ < g , and d ′ ≤ d ;

3 Ng (d ′) for d ′ ≤ g .

Jun Li Lectures on GW and AG



Polynomial relations

Application II

Letting d0 = 0, the relations provide an relations indexed by
d∞ > g − 1 among FJRW invariants with insertions −2

5 .

Jun Li Lectures on GW and AG



Forward looking

Conjecture

These relations, indexed by (d0, d∞) (with d0 + d∞ + 1− g > 0),
provide an effective algorithm to determine all genus GW
invariants and FJRW invariants of insertions −2

5 .

Jun Li Lectures on GW and AG



Example III: GW technique to AG

Conjecture: Any smooth projective complex K3 surface S contains
infinitely many rational curves.

This is motivated by Lang’s conjecture:

Lang Conjecture: Let X be a general type complex manifold. Then
the union of the images of holomorphic u : C→ X lies in a finite
union of proper subvarieties of X .

Jun Li Lectures on GW and AG



Example III: GW technique to AG

Key to the existence of rational curves:
A class α 6= 0 ∈ H2(S ,Z) is Hodge (i.e. ∈ H1,1(S ,C) ∩ H2(S ,Q))
is necessary and sufficient for the existence of a union of rational
curves Ci so that

∑
[Ci ] = α.

Example: Say we can have a family St , t ∈ disk,

α ∈ H1,1(S0,C) ∩ H2(S0,Q) so that S0 has C0
∼= CP1 ⊂ S0

with [C0] = α;

in case α 6∈ H1,1(St ,C) for general t, then CP1 ∼= C0 → S0

can not be extended to holomorphic ut : CP1 → St .

Jun Li Lectures on GW and AG



Example III: GW technique to AG

We will consider polarized K3 surfaces (S ,H), c1(H) > 0;

we can group them according to H2 = 2d :

M2d = {(S ,H) | H2 = 2d}.

each M2d is smooth, of dimension 19;

each M2d is defined over Z. (defined by equation with
coefficients in Z.)

to show that (S ,H) contains infinitely many rational curves, it
suffices to show that

for any N, there is a rational curve R ⊂ S so that [R] · H ≥ N.

we define ρ(S) = dim H1,1(S ,C) ∩ H2(S ,Q), called the rank
of the Picard group of S .

Jun Li Lectures on GW and AG



Extension Problem

a family of polarized K3 surface (St ,Ht), t ∈ T (a parameter
space);

C0 ⊂ S0 a union of rational curves;

α = [C0] = m[Ht ] ∈ H2(S ,Z); (a multiple of polarization);

We like to show

exists a family of curves Ct ⊂ St , such that

Ct are union of rational curves;
C0 = C0.

Jun Li Lectures on GW and AG
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Extension Problem

Use moduli of genus 0 stable maps

represent C0 ⊂ S0 as the image of [u0] ∈ M0(S0, α).

Extension Lemma (Ran, Bogomolov-Tschinkel, –)

Suppose [u0] ∈ M0(S0, α) is isolated, then u0 extends to
ut ∈ M0(St , α) for general t ∈ T .

Jun Li Lectures on GW and AG

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen



Extension Problem

Definition: We say a map [u] ∈ M0(S , α) rigid if [u] is an isolated
point in M0(S , α).

Extension principle: In case (a genus zero stable map) u : C → S
is rigid, then u extends to nearby K3 surfaces as long as the class
u∗[C ] ∈ H2(S ,Z) remains ample.
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The existence theorem

Theorem (Bogomolov - Hassett - Tschikel, L - Liedtke)

Let (X ,H) be a polarized complex K3 surface such that ρ(X ) is
odd. Then X contains infinitely many rational curves.
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The existence theorem

Outline of proof

We only need to prove the Theorem for (X ,H) defined over a
number field K ;

say K = Q, we get a family Xp for every prime p ∈ Z, X is
the generic member of this family;

∀p, exists Dp ⊂ Xp, Dp 6∈ ZH,

we have sup Dp · H →∞;

pick Cp ⊂ Xp union of rationals, Dp + Cp ∈ |npH|
Difficulty: Dp + Cp may not be representable as the image of a
rigid genus zero stable map.
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The existence theorem

Solution: Suppose we can find a nodal rational curves R ⊂ X , of
class kH for some k, then for some large m we can represent

Cp + Dp + mR,

which is a class in (n + mk)H, by a rigid genus zero stable map.

Jun Li Lectures on GW and AG

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen

admin
Pen



The existence theorem

End of the proof: In general, X may not contain any nodal rational
curve in |kH|. However, we know a small deformation of X in
M2d contains nodal rational curves in |kH|. Using this, plus some
further algebraic geometry argument, we can complete the proof.
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Thank you!
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