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1. Lecture 1: July 29

1.1. The language of category theory. Modern mathematics usually uses category theory extensive-
ly. Roughly speaking, a category consists of two parts: objects, and morphisms. We usually the same
name for a category and its objects, for example the objects in the category Sets are sets, and the objects
in the category VectR are R-vector spaces. Note that usually the objects in a category don’t form a set.
The morphisms in a category are relations between objects. For example, the morphisms in the category
Sets are the maps between sets, and the morphisms in the category VectR are R-linear maps between
R-vector spaces. We require that if A,B are objects in a category, then the morphisms Hom(A,B) from
A to B form a set.

Usually, the interesting part in a category is morphisms between objects, not object itself. For example,
in VectR an object (i.e. a R-vector space) is completely determined, up to isomorphism, by its dimension,
however, linear maps between two R-vector spaces are much richer.

Sometimes we can recover object from its morphisms in a category, for example, in VectR, we can
recover any R-vector space V by V = HomR(R, V ) (this depends on the special object R in the category
VectR). But in general this is not easy to do.

Exercise 1.1. Study category theory. (Give precise definition of a category, functor, and natural
transform, etc.)

1.2. Rings and modules. Rings and modules are generalizations of fields and vector spaces.
In this course, a ring R is always commutative and with a unity (1 ∈ R). For example, Z, Q, C. . .

are rings. If R is a ring, the polynomial ring R[X] is a ring.
If R is a ring, a set I ⊂ R is called an ideal of R if I is closed under addition and R · I ⊂ R. If R is a

ring and I is an ideal of R, then R/I is also a ring.
Let R be a ring. An R-module M is an abelian group endowed with multiplication-by-R map · :

R×M →M such that

r · (m+m′) = r ·m+ r ·m′, (r + r′) ·m = r ·m+ r′ ·m, (rr′) ·m = r · (r′ ·m)

for any r, r′ ∈ R and m,m′ ∈M . For example, if R = Z then R-modules are just abelian groups.
Similar to subspace and quotient space of a vector space, we can define submodule and quotient

module of an R-module.
If M1 and M2 are R-modules, then HomR(M1,M2) is the set of maps ϕ : M1 →M2 such that

ϕ(m+m′) = ϕ(m) + ϕ(m′), ϕ(rm) = rϕ(m), ∀m,m′ ∈M1,∀r ∈ R.

If ϕ ∈ HomR(M1,M2), then we can define ker(ϕ), Im(ϕ) and coker(ϕ), they are all R-modules.

1.3. Restriction of scalar and base change. Let ϕ : A → B be a ring homomorphism. Let N be a
B-module. Then N can be viewed as A-module via ϕ, denoted by NA.

Conversely, if M is an A-module, how to construct a B-module from it? There are two possible ways:

• “base change”: MB := B ⊗AM , where the tensor product B ⊗AM is defined by

B ⊗AM :=
{formal A-linear combination of b⊗m, b ∈ B,m ∈M}〈 (b+ b′)⊗m− b⊗m− b′ ⊗m,

b⊗ (m+m′)− b⊗m− b⊗m′,
ab⊗m− a · (b⊗m),
b⊗ am− a · (b⊗m)

∣∣∣∣∣∣∣∣ b, b′ ∈ B,m,m′ ∈M,a ∈ A

〉 .

• “induced module”: MB := HomA(B,M).

Hence we obtain functors

B-Mod→ A-Mod, N 7→ NA,

A-Mod→ B-Mod, M 7→MB ,

A-Mod→ B-Mod, M 7→MB .
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Exercise 1.2. Prove that for any A-module M and B-module N , there are natural isomorphisms:

HomA(M,NA) ∼= HomB(MB , N),

HomA(NA,M) ∼= HomB(N,MB),

here you should know the meaning of “natural” after working on Exercise 1.1.

Consequently, the functors ( )B and ( )B are uniquely determined (up to isomorphism) by these
properties.

The above exercise actually tells us that the functor ( )B is left adjoint to ( )A, and the functor ( )B

is right adjoint to ( )A.

Example 1.1. Let A = R and B = C. If V is a R-vector space, then VC = V ⊕ iV . Also, HomR(C, V ) =
V ⊕ iV .

The phenomenon in the above example holds as long as B is free of finite rank as A-module. In
general ( )B 6= ( )B , for example if A = R and B = R[X].

1.4. Exact sequence.

1.4.1. Let M1
α−→M2

β−→M3 be a sequence of homomorphisms of R-modules. It’s called exact at M2 if
Im(α) = ker(β).

A short exact sequence of R-modules is a sequence of R-modules of following form

0→M1
α−→M2

β−→M3 → 0

such that it’s exact at M1, M2 and M3, namely α is injective, β is surjective, and Im(α) = ker(β).

Example 1.2. The following sequence

0 // M1
// M1 ⊕M2

// M2
// 0

a � // (a, 0)

(a, b)
� // b

is a short exact sequence.

If R is a field, then all short exact sequences of R-modules are isomorphic to the above form. However
this is not true if R is a general ring.

1.4.2. Suppose a functor between categories of modules is given. A natural question is that does it
preserve short exact sequences? If it’s true, we call such functor exact.

In general the answer is no. For example, if N is an R-module, then the functor −⊗RN is only right
exact, i.e. if

0→M1 →M2 →M3 → 0

is exact, then
M1 ⊗R N →M2 ⊗R N →M3 ⊗R N → 0

is exact, but the map M1 ⊗R N → M2 ⊗R N is not necessarily injective. The functor HomR(N,−) is
only left exact, i.e.

0→ HomR(N,M1)→ HomR(N,M2)→ HomR(N,M3)

is exact, but the map HomR(N,M2) → HomR(N,M3) is not necessarily surjective. The functor
HomR(−, N) is only left exact (note: this is a contravariant functor), i.e.

0→ HomR(M3, N)→ HomR(M2, N)→ HomR(M1, N)

is exact, but the map HomR(M2, N)→ HomR(M1, N) is not necessarily surjective.

Exercise 1.3. For each above functor, find an example such that the mentioned map is not injective
(resp. surjective).

Definition 1.3. Let N be an R-module.

(i) N is called a projective R-module if the functor HomR(N,−) is exact.
(ii) N is called a injective R-module if the functor HomR(−, N) is exact.
(iii) N is called a flat R-module if the functor −⊗R N is exact.

Theorem 1.4. N is a projective R-module if and only it’s a direct summand of a free R-module, i.e. there
exists an R-module N ′ and a free R-module F such that N ⊕N ′ ∼= F .
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Sketch of proof. “⇐”: it’s easy to see that a free R-module is projective. From this it’s easy to see that
a direct summand of a free R-module is also projective. �

Exercise 1.4. Prove the “⇒” part. (Hint: for any R-module N , we can always find a free R-module F
with a surjective R-module homomorphism F � N .)

Exercise 1.5. N is an injective R-module if and only if for any ideal I of R, the natural map N =
HomR(R,N)→ HomA(I,N) is surjective. (This is called Baer’s criterion.)

Exercise 1.6. N is a flat R-module if and only if for any ideal I of R, the natural map I ⊗R N → N is
injective (equivalently, I ⊗A N = I ·N ⊂ N).

Exercise 1.7. Classify these modules when R is a PID.

1.5. Noetherian condition. Let R be a ring. An R-module M is called Noetherian R-module if for
any ascending R-submodules M1 ⊂ M2 ⊂ M3 ⊂ · · · of M , there exists an integer N such that for any
n ≥ N , Mn = MN . The ring R is called Noetherian ring if R itself is a Noetherian R-module.

Example 1.5. A field is a Noetherian ring. The polynomial ring R[X] is a Noetherian ring. More
generally, a PID is a Noetherian ring.

Theorem 1.6 (Hilbert basis theorem). If R is a Noetherian ring, then the polynomial ring R[X] is also
a Noetherian ring.

Exercise 1.8. Prove the above theorem.

Exercise 1.9. Let R be a ring. Prove that the following conditions are equivalent:

(i) R is Noetherian ring.
(ii) Every ideal of R is finitely generated as R-module.
(iii) Every R-submodule of any finitely generated R-module is finitely generated.

Exercise 1.10. Let k be a field. Prove that the rational function field k(X) is not a finitely generated
k-algebra.

Exercise 1.11. Let R be a Noetherian ring, M be a finitely generated R-module. Let ϕ : M → M be
a surjective R-module homomorphism. Prove that ϕ is an isomorphism.

Exercise 1.12. Let A ↪→ B ↪→ C be injective ring homomorphisms of Noetherian rings. Assume that C
is finitely generated A-algebra, C is finite B-algebra (i.e. C is finitely generated as a B-module). Prove
that B is finitely generated A-algebra.

1.6. Grothendieck group. Let R be a Noetherian ring. Define

K′(R) :=

{
formal Z-linear combination of isomorphism classes
[M ] of finitely generated R-modules

}
〈

[M2]− [M1]− [M3]

∣∣∣∣ 0→M1 →M2 →M3 → 0 is a short exact sequence
of finitely generated R-modules

〉
and

K(R) :=

{
formal Z-linear combination of isomorphism classes
[M ] of finitely generated projective R-modules

}
〈

[M2]− [M1]− [M3]

∣∣∣∣ 0→M1 →M2 →M3 → 0 is a short exact sequence
of finitely generated projective R-modules

〉 .
Prove that (K(R),⊕,⊗) is a ring, and (K′(R),⊕) with ⊗ : K(R)×K′(R)→ K′(R) gives a K(R)-module
structure of K′(R). Give an example that in general K′(R) is not a ring.

Question. How to describe K(R) and K′(R)?

Prove that if R = k is a field, then K(R) = K′(R) ∼= Z given by [V ] 7→ dimk V . What if R is a PID?
If A→ B is a ring homomorphism between Noetherian rings, prove that there is a well-defined natural

map K(A)→ K(B) given by [M ] 7→ [M ⊗A B]. If moreover B is a finite A-algebra, prove that there is a
well-defined natural map K′(B)→ K′(A) given by [N ] 7→ [NA].
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2. Lecture 2: July 31

2.1. From equation to algebra and from algebra to geometry. Suppose f(X) ∈ Q[X] is a poly-
nomial and we want to solve f(x) = 0 over a field L/Q. Then this is equivalent to find all ring homomor-
phism Hom(Q[X]/f(X), L). On the other hand, all the solutions of f(x) = 0 form a geometric object
(i.e. a space) and we can study the functions on it.

2.2. Ringed space. A ringed space (X,OX) consists of a topological space X and a sheaf of rings OX
on X, that is,

• for any open set U ⊂ X, a ring OX(U) is given (regarded as “space of functions on U”),
• for any open sets V ⊂ U in X, a ring homomorphism OX(U) → OX(V ) is given, denoted by
rV U or simply denoted by |V (regarded as “the restriction map from U to V ”),

such that

• (presheaf property) rUU = id and if W ⊂ V ⊂ U , then rWV ◦ rV U = rWU ,
• (sheaf property) for any open set U of X and any open cover {Ui}i∈I of U , the following sequence

is an exact sequence of abelian groups:

(2.1)

0 // OX(U) //
∏
i∈I

OX(Ui) //
∏
i,j∈I

OX(Ui ∩ Uj),

f
� // (x|Ui)i∈I ,

(fi)i∈I
� // (fi|Ui∩Uj − fj |Ui∩Uj )i,j∈I

namely, if for every i ∈ I, fi ∈ OX(Ui) is given, such that fi|Ui∩Uj = fj |Ui∩Uj holds for any
i, j ∈ I, then there exists a unique f ∈ OX(X) such that f |Ui = fi.

The presheaf property means that OX : Topop
X → Rings is a contravariant functor from TopX to

Rings, here the category TopX consists of objects all open subsets of X, and the set of morphisms from
V to U is empty if V 6⊂ U , and consists of the inclusion map from V to U if V ⊂ U .

Example 2.1. Suppose X is a manifold (resp. smooth manifold, complex manifold. . . ), then we can
consider the sheaf of continuous functions (resp. Cr-functions, smooth functions, analytic functions. . . )
on it, namely, OX(U) consists of the space of continuous functions (resp. Cr-functions, smooth functions,
analytic functions. . . ) on U . Then (X,OX) is a ringed space.

Similarly we can define sheaf of abelian groups, sheaf of modules. . . on X.
A morphism of ringed spaces f = (f, f#) : (X,OX)→ (Y,OY ) consists of a continuous map f : X → Y

and a morphism of sheaves f# : OY → f∗OX , here f∗OX is a sheaf on Y , called the direct image of OX ,
and is defined by (f∗OX)(V ) := OX(f−1(V )) for any open subset V of X.

Exercise 2.1. Study ringed space. (Definition and examples, etc.)

2.3. Spectrum of a ring. LetR be a commutative ring. We are going to defineX = Spec(R) = (X,OX)
called the spectrum of R, which is a ringed space such that OX(X) = R naturally.

2.3.1. Firstly we define X := {prime ideal p of R} as a set. Recall that p is a prime ideal of R means
that p is an ideal such that R/p is an integral domain (which means that R/p is a subring of a field).
We follow the usual convention that the zero ring 0 is not an integral domain nor a field.

Exercise 2.2. Find a set-theoretic criterion of a ring R being an integral domain.

2.3.2. We define the topology on X via giving all closed subsets of it: the closed subset of X is of form
Z(I) := {p ∈ X | p ⊃ I}. Note that this indeed satisfies the axiom of closed sets: Z(R) = ∅, Z(0) = X,
Z(I1) ∪ Z(I2) = Z(I1I2) and

⋂
λ∈Λ Z(Iλ) = Z(

∑
λ∈Λ Iλ).

Note that Z(I) =
⋂
f∈I Z(f). Hence if we define U(I) := X \ Z(I) and U(f) := X \ Z(f), then they

are open subsets of X, any open subset of X is of form U(I), and {U(f) | f ∈ R} is a topological basis
of X, since U(I) =

⋃
f∈I U(f). The open subset of form U(f) is called a principal open subset of X.

2.3.3. Let φ : A → B be a ring homomorphism. Then we can define φ∗ : Spec(B) → Spec(A) by
P 7→ φ∗(P) := φ−1(P). Note that the natural map A/φ−1(P) → B/P is injective, hence A/φ−1(P) is
also an integral domain and φ−1(P) ∈ Spec(A).

Exercise 2.3. Prove that φ∗ is continuous.
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Example 2.2. Let I be an ideal of A and consider the natural surjective ring homomorphism φ : A� A/I.
Then φ∗ : Spec(A/I) → Spec(A) is injective and Spec(A/I) ∼= {p ∈ Spec(A) | I ⊂ p} = Z(I). This
means that a closed subset in a spectrum has the structure of a spectrum.

Example 2.3. Let f ∈ A be an element and consider the localization Af := A[X]/(Xf − 1), or simply
denoted by A[ 1

f ]. Let φ : A → Af be the natural map. Then φ∗ : Spec(Af ) → Spec(A) is injective and

Spec(Af ) ∼= {p ∈ Spec(A) | f /∈ p} = U(f). This means that a principal open subset in a spectrum has
the structure of a spectrum.

In general, let S be a multiplicative subset of A, then we have the notion of localization S−1A. Let
φ : A→ S−1A be the natural map, then φ∗ : Spec(S−1A)→ Spec(A) is injective. The Spec(S−1A) may
be regarded as “

⋂
f∈S U(f)”.

Exercise 2.4. Prove that S−1A is a flat A-module. You may use Exercise 1.6.

In particular, if p ∈ Spec(A), consider the localization Ap := (A \ p)−1A. Then we have the injection
Spec(Ap)→ Spec(A), the Spec(Ap) may be regarded as “

⋂
U3p U”, called the “infinitesimal neighborhood

of p”.
We can also consider the ring homomorphisms A � A/p and A/p ↪→ k(p) := Frac(A/p), and we

obtain injective maps between spectra

Spec(k(p))→ Spec(A/p)→ Spec(A).

Note that Spec(k(p)) only consists of one point, and Spec(A/p) may be regarded as a closed subset of
Spec(A). The image of Spec(k(p)) in Spec(A) is just the point p itself.

Exercise 2.5. Prove that the closure of Spec(k(p)) in Spec(A) is equal to Spec(A/p). The point
Spec(k(p)) is usually called “the generic point of Spec(A/p)”.

This means that in general, one-point set in Spec(A) is not closed, hence Spec(A) is not Hausdorff in
general. Nevertheless, Spec(A) is T0, namely for any p 6= q in Spec(A), there exists an open subset U
which contains exactly one of p and q.

At first it looks like that point which is not closed makes things complicated, but in the following
lectures we will see that it actually makes things simpler.

We have another fact that Spec(A) is (quasi-)compact, i.e. if
⋂
λ∈Λ Z(Iλ) = ∅, then there exists a

finite subset Λ′ ⊂ Λ such that
⋂
λ∈Λ′ Z(Iλ) = ∅. In fact, the condition implies that

∑
λ∈Λ Iλ = A,

otherwise it is contained in a maximal ideal m of A and we have m ∈
⋂
λ∈Λ Z(Iλ), a contradiction.

Therefore we can choose a finite subset Λ′ ⊂ Λ such that there exists aλ ∈ Iλ for λ ∈ Λ′ such that∑
λ∈Λ′ aλ = 1 ∈ A, now it’s easy to see that

⋂
λ∈Λ′ Z(Iλ) = ∅.

2.3.4. Now we define the sheaf of rings OX of the ringed space Spec(R) = (X,OX). It is natural to
define it by the following way:

(i) on principal open subsets, OX(U(f)) := Rf ;
(ii) for general open set U , define OX(U) by the sheaf property (2.1).

The idea itself is good, but however it’s difficult to check that the (ii) is well-defined (e.g. OX(U) is a
ring, independent of the choice of covering, for general open sets – not necessarily principle open subsets
– the (2.1) also holds). Here we replace (ii) by another definition.

First we introduce the concept of the stalk. Let p ∈ Spec(R), define the stalk of OX at p to be

OX,p := lim−→
U3p

OX(U).

This may be regarded as a generalization of the space of Taylor expansions around x ∈ X if X is
a manifold and OX is the sheaf of smooth functions on X. Since the principal open subsets form a
topological bases of X, and by (i) we define OX(U(f)) := Rf , we have

OX,p = lim−→
f /∈p

Rf = Rp.

Now we replace (ii) by the following

(ii)′ for general open set U , define OX(U) by

(2.2) OX(U) :=

(gp)p ∈
∏
p∈U

Rp

∣∣∣∣∣∣
there exists a cover of U by principal open subsets
U =

⋃
i∈I U(fi) and gi ∈ Rfi for each i ∈ I, such that

the image of gi in Rp is gp for any i ∈ I and p ∈ U(fi)

 .
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It turns out that this definition is compatible with the previous definition (i) when U is already a principal
open subset, and this definition satisfies the sheaf property (2.1). For example, we have the following
result:

Theorem 2.4. We have OX(X) = R.

Sketch of proof. For any non-zero element f of R, the Ann(f) := {g ∈ R | gf = 0} is an ideal of R and
is not equal to R (since 1 /∈ Ann(f)), hence it is contained in some maximal ideal m of R and the image
of f in Rm is non-zero. Therefore the natural map R→

∏
p∈X Rp is injective. �

Exercise 2.6. Complete the above proof by proving that the image of R→
∏

p∈X Rp is equal to OX(X).

3. Lecture 3: August 1

Let φ : A→ B be a ring homomorphism, we are going to define the morphism of ringed spaces Spec(φ) :
Y → X where Y := Spec(B) and X := Spec(A). Recall that we have defined the map f := φ∗ : Y → X
of topological spaces by P 7→ φ−1(P). To define the morphism of sheaves f# : OX → f∗OY , we define
the ring homomorphism on sections of principal open subsets Af = OX(U(f))→ Bφ(f) = OY (U(φ(f)))

for every f ∈ A (note that f−1(U(f)) = U(φ(f))) to be the natural map induced by φ : Af → Bφ(f) and
glue them to general open subsets.

Therefore we constructed the following contravariant functor

Spec : Ringsop → RingedSpaces.

We introduce the notion of a locally ringed space, which is a ringed space (X,OX) such that for
every x ∈ X, the stalk OX,x is a local ring. We have already known that for a ring A, the Spec(A)
is a locally ringed space. A morphism between locally ringed spaces is a morphism of ringed spaces
(f, f#) : (X,OX) → (Y,OY ) such that for every x ∈ X, the ring homomorphism OY,f(x) → OX,x
induced by f# is a local homomorphism, i.e. the preimage of the maximal ideal is a maximal ideal.

Theorem 3.1. The functor

Spec : Ringsop → LocallyRingedSpaces

is fully faithful, i.e. for any rings A and B, there is a natural isomorphism

HomRings(A,B) ∼= HomLocallyRingedSpaces(Spec(B),Spec(A)),

with the inverse map given by (f, f#) 7→ f#(Spec(A)).

Note that if we only consider RingedSpaces then this is faithful but not full, see for example [3],
Ch. II, Example 2.3.2.

3.1. Examples of affine schemes.

Definition 3.2. An affine scheme is a locally ringed space which is isomorphic to Spec(A) for some ring
A.

Example 3.3. If k is a field, then Spec(k) consists of only one point (0), and OSpec(k)((0)) = k.

Example 3.4. The Spec(Z) consists of the point (0) and (p) for each prime p. Its closed subset are
∅, Spec(Z) and any finite subsets which does not contain (0). If S is any non-zero integer, we have
OSpec(Z)(Spec(Z) \ {(p) : p | S}) = Z[ 1

S ].

Example 3.5. Similarly, if k is a field, the Spec(k[X]) consists of the point (0) and (f(X)) for each
irreducible polynomial f(X) of k[X]. Its closed subset are ∅, Spec(k[X]) and any finite subsets which
does not contain (0). If Z is any such finite subset, let U = Spec(k[X])\Z and let f(X) be the product of a
generator of the non-zero prime ideals contained in Z, then we have OSpec(k[X])(U) = k[X,T ]/(Tf(X)−1),
or simply written as k[X, 1/f(X)].

In particular, if k is algebraically closed, then Spec(k[X]) ∼= k t {η} as a set, where an element a ∈ k
corresponds to a maximal ideal (X−a) which is a closed point, and η (called “generic point”) corresponds
to (0), whose closure is Spec(k[X]).

Example 3.6. Affine space over k of dimension n, which is Ank := Spec(k[X1, · · · , Xn]).

Theorem 3.7 (Hilbert’s Nullstellensatz). If k is an algebraically closed field, then the set of all closed
points of Ank is equal to kn: for (a1, · · · , an) ∈ kn, it gives a maximal ideal (X1 − a1, · · · , Xn − an) of
k[X1, · · · , Xn].
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Exercise 3.1. Prove the above theorem using Exercise 1.12. (Hint: if m is a maximal ideal of
k[X1, · · · , Xn], consider k ↪→ k′ ↪→ k[X1, · · · , Xn]/m where k′ is the maximal pure transcendental exten-
sion of k contained in k[X1, · · · , Xn]/m.)

3.2. Dimension and Noetherian condition. We want to define the notion of dimension such that
dimAnk = n. We note that Ank % Z(X1) % Z(X1, X2) % · · · % Z(X1, · · · , Xn) which is a descending

chain of length n, and Z(X1, · · · , Xi) ∼= An−ik .

Definition 3.8. A topological space X is called Noetherian topological space if any descending sequence
of closed subsets stabilizes.

Exercise 3.2. If A is a Noetherian ring, show that Spec(A) is a Noetherian topological spaces.

The converse is not true, for example if A = k[[X]][X1/n | n ≥ 1], then A is not Noetherian, while
Spec(A) = {(0),mA} where mA = (X1/n | n ≥ 1) is the maximal ideal of A.

Definition 3.9. A closed subset Y of a topological space X is called irreducible if there are no non-empty
subspaces Y1 $ Y and Y2 $ Y such that Y1 ∪ Y2 = Y .

Theorem 3.10. If X is a Noetherian topological space, then any non-empty closed subset is a finite
union of irreducible subsets.

Idea of proof. Consider the set S := {closed subset of X which is not a finite union of irreducible subsets}.
If S 6= ∅ then by the Noetherian property of X, there exists a minimal element of S. Deduce contradic-
tion from this. �

Definition 3.11. If X is a Noetherian topological space, X =
⋃
i∈I Xi is a finite union of irreducible

subsets, such that Xi 6⊂ Xj whenever i 6= j, then each Xi is called an irreducible component of X.

Definition 3.12. The dimension of a Noetherian topological space X is the maximal number n such
that there exists a chain of irreducible subsets Y0 % Y1 % · · · % Yn in X.

Note that the dimension of a Noetherian topological space can be infinity.

Example 3.13. dimAnk = n.

Exercise 3.3. Prove that in Spec(A), Z(I) is irreducible if and only if
√
I is a prime ideal, here√

I := {a ∈ A | an ∈ I for some n ≥ 1}.

Recall the Krull dimension dimA of a ring A is the maximal number n (can be infinity) such that
there exists a chain of prime ideals p0 $ p1 $ · · · $ pn in A.

Exercise 3.4. If A is a Noetherian ring, then A has only finitely many minimal prime ideals, and the
intersection of them is

√
0, the nilradical.

In classical algebraic geometry, the dimension of an affine variety can be described by the dimension of
the tangent space at a point, or by the transcendental degree tr deg(A/k) (roughly speaking, the number
of free variable of A over k) of the ring of regular functions A of it.

More precisely, for a k-algebra A, the transcendental degree tr deg(A/k) is the maximal number n such
that there exists an inclusion k(X1, · · · , Xn) ↪→ K, or equivalently, the maximal number of algebraic
independent elements of A over k.

Theorem 3.14. If A is a finitely generated k-algebra, then dim Spec(A) = dimA = tr deg(A/k).

Exercise 3.5. Read the proof of the above theorem.

Exercise 3.6. Let B be a Noetherian integral domain, A be a finite integral extension of B. Prove that
A is a field if and only if B is a field.

Exercise 3.7. Let A be an integral extension of finite type over Z. If 0 6= f ∈ A is not invertible, then
dim(A/fA) = dimA− 1.
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3.3. Sheaf of modules. If A is a ring, M is an A-module, we can define a sheaf M̃ of OX -module over

X = Spec(A) (i.e. a sheaf of abelian groups over X such that for each open subset U ⊂ X, M̃(U) is
a OX(U)-module and satisfies some compatibility property) similar to the definition of OX by defining

M̃p := Mp for p ∈ Spec(A) and using (2.2).

Exercise 3.8. Write down the definition explicitly and prove that on a principal open subset U(f), we

have M̃(U(f)) = Mf .

Therefore we obtain a functor ˜ : A-Mod→ OX -Mod

which is fully faithful. A natural question is to determine the image of it.

Glueing of sheaves. If X =
⋃
i∈I Xi is an open cover of a topological space, for i ∈ I a sheaf Fi on

Xi is given, and for i, j ∈ I an isomorphism of sheaves ιij : Fi|Xi∩Xj
∼−→ Fj |Xi∩Xj is given, such that

ιii = id and ιjk|Xi∩Xj∩Xk ◦ ιij |Xi∩Xj∩Xk = ιik|Xi∩Xj∩Xk . Then we can define a unique sheaf F over X

and isomorphism F |Xi
∼−→ Fi.

Definition 3.15. A sheaf F on X = Spec(A) is called quasi-coherent if there is a cover of X by principal

open subsets X =
⋃
f U(f) such that F restrict to U(f) is isomorphic to M̃f for some Af -module Mf .

Theorem 3.16. The image of the functor ˜ is equal to the category of quasi-coherent sheaves.

Exercise 3.9. Read the proof of it.

3.4. Grothendieck group of coherent sheaves. Let A be a Noetherian ring.

Definition 3.17. A sheaf F on X = Spec(A) is called coherent if F ∼= M̃ for some finitely generated
A-module M .

Exercise 3.10. If F is a quasi-coherent sheaf on X = Spec(A) then F is coherent if and only if there
is a cover of X by principal open subsets X =

⋃
f U(f) such that F restrict to U(f) is isomorphic to

M̃f for some finitely generated Af -module Mf .

We define K′(Spec(A)) to be the Grothendieck group of coherent sheaves on Spec(A), similar to the
definition in §1.6.

Here we need to define the notion of short exact sequence of sheaves over a topological space X: the
following sequence

0→ F
α−→ G

β−→H → 0

is called a short exact sequence, here α and β are morphisms of sheaves, if for any x ∈ X, the induced
sequence 0 → Fx → Gx → Hx → 0 is a short exact sequence of abelian groups. Equivalently, for any
open subset U of X, the induced sequence 0 → F (U) → G (U) → H (U) is exact, and for any open
subset U of X and any g ∈ H (U), there exists an open cover {Ui}i∈I of U and for every i ∈ I, there
exists fi ∈ G (Ui) such that g|Ui = β(Ui)(fi).

It turns out that K′(Spec(A)) = K′(A) defined in §1.6.
Similarly we define K(Spec(A)) to be the Grothendieck group of locally free coherent sheaves on

Spec(A). Here a coherent sheaf F on Spec(A) is called locally free if for any p ∈ Spec(A), Fp is a free
OX,p-module of finite rank. The locally free coherent sheaf on Spec(A) is a generalization of the vector
bundle on a manifold.

Theorem 3.18. We have K(Spec(A)) = K(A).

This is by the following

Exercise 3.11. Let A be a Noetherian ring. Prove that if M is a finitely generated A-module, then M
is a projective A-module if and only if M is locally free, which means that for any p ∈ Spec(A), Mp is a
free Ap-module.

Remark 3.19. In the general scheme theory there is no the notion of “projective”, we use “locally free”
instead.
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4. Lecture 4: August 5

Recall that last lecture we defined affine schemes as locally ringed spaces. They are building blocks
of general schemes.

Definition 4.1. A scheme is a locally ringed space which is locally isomorphic to affine schemes.

Weekly Exercise 4.1. Read the precise definition.

Today we are going to discuss projective schemes and coherent sheaves on it.

4.1. Graded rings and modules.

Definition 4.2. A graded ring A is a ring with A =
⊕∞

d=0Ad where Ad are abelian groups, such that
for any m,n ≥ 0 we have Am ·An ⊂ Am+n.

This implies that

• A0 is a subring of A;
• A is an A0-algebra;
• each Ad is an A0-module;
• for any n ≥ 0, the

⊕∞
d=nAd is an ideal of A.

Denote by A+ :=
⊕∞

d=1Ad. If a is a non-zero element in Ad for some d ≥ 0, it is called a homogeneous

element of degree d, and denote deg(a) = d. Denote by Ã :=
⋃∞
d=0Ad the set of all homogeneous

elements in A, and denote by Ã+ :=
⋃∞
d=1Ad the set of all homogeneous elements in A+.

Example 4.3. Let R be a ring, then A = R[X1, · · · , Xn] is a graded ring with Ad consists of homogeneous
polynomial of degree d.

Definition 4.4. Let A be a graded ring. A graded A-module is an A-module M with M =
⊕∞

d=N Md for
some N ∈ Z, where Md are abelian groups, such that for any m ≥ 0 and n ≥ N we have Am·Mn ⊂Mm+n.

Definition 4.5. If M is a graded A-module, for m ∈ Z, we define the graded A-module M(m) to be M
as an A-module, with the graded piece defined by M(m)d := Md+m for any d.

Consider the category of graded rings. If ϕ : A → B is a homomorphism of graded rings (i.e. ϕ is a
ring homomorphism whose image is a graded subring of B, namely Im(ϕ) =

⊕∞
d=0 Cd for some abelian

groups Cd such that Cd = Im(ϕ) ∩Bd for any d ≥ 0), then its kernel I := ker(ϕ) is a homogeneous ideal
(i.e. I =

⊕∞
d=0 Id with Id = I ∩Ad).

4.2. Projective spectrum for a graded ring. The goal in this section is to define a scheme Proj(A)
if A is a graded ring.

Firstly, as a set, Proj(A) := {homogeneous prime ideal of A not containing A+}. Its all closed sets are
given by Z(I) := {p ∈ Proj(A) | p ⊃ I} for any homogeneous ideal I. If I =

⊕∞
d=0 Id is a homogeneous

ideal, denote by Ĩ :=
⋃∞
d=0 Id and Ĩ+ :=

⋃∞
d=1 Id, then Z(I) =

⋂
f∈Ĩ Z(f) =

⋂
f∈Ĩ+ Z(f). They satisfy

the axiom of closed sets, e.g. Z(f1f2) = Z(f1)∪Z(f2), etc. The closed set of form Z(f) for some f ∈ Ã+

is called a principal closed subset of Proj(A).

For f ∈ Ã+, define D+(f) := Proj(A) \ Z(f), called a principal open subset of Proj(A). Then

{D+(f) | f ∈ Ã+} if a topological basis of Proj(A).

Proposition 4.6. D+(f) is affine.

In fact, we can consider A[ 1
f ] which is also a “graded ring” by declaring deg( 1

f ) := −deg(f) (note

that this does not satisfy our original definition of a graded ring, since there are elements with negative
degree). Consider its subring A(f) := A[ 1

f ]deg=0. Define the map D+(f)→ Spec(A(f)) by p 7→ p[ 1
f ]∩A(f).

Daily Exercise 4.2. (i) Prove that this is an isomorphism of sets.

(ii) If f, g ∈ Ã+ with deg(f) = deg(g), then the diagram

D+(gf) �
� //

∼=
��

D+(f)

∼=
��

Spec(A(gf))
(∗) // Spec(A(f))

commutes, and the image of (∗) is equal to Spec(A(f)[
g
f ]).
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Therefore this map is also a homeomorphism of topological spaces, and which allows us to define
the structure sheaf OX of X = Proj(A) by glueing the structure sheaf on Spec(A(f)). The obtained
X = Proj(A) = (X,OX) is a locally ringed space which is locally isomorphic to affine schemes, hence it
is a scheme.

4.2.1. Now we give some examples of morphisms involving projective spectrum.

Example 4.7. Let A be a graded ring. Then the natural ring homomorphism A0 → A gives the map
Proj(A)→ Spec(A0), p 7→ p ∩A0.

Daily Exercise 4.3. Prove that this gives a scheme morphism.

Example 4.8. Let A,B be two graded rings and let ϕ : A → B be a ring homomorphism such that
ϕ(Ad) ⊂ Bd for any d ≥ 0. In general this map does not induce morphisms between schemes Proj(B)→
Proj(A), since for P ∈ Proj(B), ϕ−1(P) 6⊃ A+ is not always true. Nevertheless, for f ∈ Ã+, there is a
natural isomorphism D+(ϕ(f))→ D+(f), hence we can define⋃

f∈Ã+

D+(ϕ(f))→ Proj(A)

which maps an open subset of Proj(B) to Proj(A).

4.2.2. Now we give some examples of projective spectrum.

Example 4.9. Let R be a ring, define the graded ring A = R with Ad = A if d = 0, Ad = 0 if d ≥ 1.
Then Proj(A) = ∅.

In general, Proj(A) = ∅ if and only if A+ is nilpotent.

Example 4.10. Let k be a field. Then Proj(k[T ]) = {0}.

Daily Exercise 4.4. If R is a ring, prove that Proj(R[T ]) = Spec(R).

Example 4.11. Study Proj(C[T0, · · · , Tn]). Consider CPn = (Cn+1 \{0})/C× = {lines in Cn+1}. We can
define the injective map

CPn → Proj(C[T0, · · · , Tn]),

[a0 : · · · : an] 7→ (aiTj − ajTi | 0 ≤ i, j ≤ n),

whose image is equal to the closed points of Proj(C[T0, · · · , Tn]). This also holds if we replace C by an
algebraically closed field.

This motivates us to define the concept of projective space:

Definition 4.12. If R is a ring, define PnR := Proj(R[X0, · · · , Xn]), called the projective space over R
of (relative) dimension n.

Note that if A = R[X0, · · · , Xn], then the ideal A+ is generated by X0, · · · , Xn. Hence PnR =⋃n
i=0D+(Xi). Each D+(Xi) is isomorphic to Spec(R[

Xj
Xi
| j 6= i]) ∼= AnR, which means that the project

space of dimension n can be covered by n+ 1 affine spaces of dimension n. We call [X0 : · · · : Xn] in PnR
the homogeneous coordinate, and call (

Xj
Xi
| j 6= i) the affine coordinate on D+(Xi).

Warning. Proj(A) is not (quasi)-compact in general.

4.3. Quasi-coherent sheaf on a projective spectrum.

Definition 4.13. Let X be a scheme. A quasi-coherent sheaf F on X is an OX -module on X such that
there exists an open affine cover X =

⋃
i∈I Xi of X such that for each i ∈ I the restriction of F to Xi

is isomorphic to M̃i for some OX(Xi)-module Mi.

For a graded module M over a graded ring A, we can construct a quasi-coherent sheaf M̃ on X =

Proj(A) similar to the construction of the structure sheaf OX of X, namely, we define M̃ |D+(f) := M̃(f)

for f ∈ Ã+ and glue them together, where M(f) := M [ 1
f ]deg=0 is an A(f)-module.
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4.3.1. The most important example. Let A be a graded ring, X = Proj(A). If d is an integer, we define

OX(d) := Ã(d).

Proposition 4.14. Suppose that as an A0-algebra, A is generated by elements of A1 (or we simply write
A = A0[A1]). Then

(i) For any d ∈ Z, OX(d) is an invertible sheaf (i.e. locally free of rank 1).

(ii) If M and N are graded A-modules, then M̃ ⊗N = M̃ ⊗ Ñ . In particular, M̃(d) = M̃ ⊗ OX(d)
and OX(d1)⊗ OX(d2) = OX(d1 + d2).

Proof. (i) We only need to prove that for any non-zero element f ∈ A1, OX(d)|D+(f) = Ã(d)(f) is locally

free of rank 1. In fact, we have A(d)(f) = A(d)[ 1
f ]deg=0 = A[ 1

f ]deg=d = A[ 1
f ]deg=0 · fd which is a free

A(f) = A[ 1
f ]deg=0-module of rank 1.

(ii) Similarly, for any non-zero element f ∈ A1, we have (M ⊗A N)(f) = (M ⊗A N)[ 1
f ]deg=0 =

(M [ 1
f ]⊗A[ 1

f ] N [ 1
f ])deg=0 = M(f) ⊗A(f)

N(f) since deg(f) = 1. �

4.4. Noetherian condition of graded ring.

Proposition 4.15. If A is a Noetherian graded ring, then Proj(A) is a Noetherian topological space.

Proposition 4.16. If A is a graded ring, then A is Noetherian if and only if A0 is Noetherian and A
is a finitely generated A0-algebra.

Sketch of proof. “⇐”: Hilbert basis theorem.
“⇒”: In this case we know that A0 = A/A+ is Noetherian. Also, A+ is a finitely generated ideal, let

x1, · · · , xn be a set of generators of A+. �

Daily Exercise 4.5. Complete the above proof by proving that A = A0[x1, · · · , xn] if x1, · · · , xn is a
set of generators of A+.

Weekly Exercise 4.6. Let A be a Noetherian graded ring with A0 = k be a field. Let M be a finitely
generated graded A-module. For simplicity, assume Md = 0 for d < 0. Write A = k[x1, · · · , xn] where
for each i, xi is a homogeneous element of A of degree di. Define the formal power series

QM (T ) :=

∞∑
d=0

(dimkMd) · T d ∈ Z[[T ]].

(1) Prove that

QM (T ) =
RM (T )∏n

i=1(1− T di)
for some polynomial RM (T ) ∈ Z[T ].

(2) If for any i we have di = 1, then there exists P (T ) ∈ Q[T ] such that for d � 0 we have
dimkMd = P (d).

5. Lecture 5: August 7

5.1. Quasi-coherent sheaf on a projective spectrum (continued). Recall that last talk we defined
the projective spectrum of a graded ring and quasi-coherent sheaf over a projective spectrum given by a
graded module.

Note that in general, not all (quasi-)coherent sheaves over a project spectrum come from a graded
modules. For example, if A =

⊕∞
n=0An is a graded ring, for an integer d ≥ 2, define the graded ring

A′ :=
⊕∞

n=0A
′
n with A′n := And. Then we have Proj(A) ∼= Proj(A′) as scheme, and the OProj(A)(d) over

Proj(A) is isomorphic to OProj(A′)(1) over Proj(A′). The sheaf OProj(A)(1) does not come from a graded
A′-module.

In the remaining part of this section, we assume A is a Noetherian graded ring such that A = A0[A1].
We are going to recover the graded ring A (resp. the graded A-module M) from (Proj(A),OProj(A)(1))

(resp. M̃).
Recall that for an affine scheme and a (quasi-)coherent sheaf over it, it can be recovered by its global

section. In the projective case, the question is how to recover the module and its graded piece.
12



5.1.1. Let F be a quasi-coherent sheaf on X = Proj(A). Denote O := OX . For n ∈ Z, define
F (n) := F ⊗ O(n). Consider Mn := Γ(X,F (n)) the global section of F (n), then it is an A0-module.
For simplicity, assume that Mn = 0 for n < 0. Let M :=

⊕∞
n=0Mn which is a graded A-module.

Theorem 5.1. We have the natural isomorphism M̃ ∼= F .

Example 5.2. Let R be a ring, A = R[X0, · · · , Xn], and X = Proj(A) = PnR. First we determine
Γ(X,O(d)). Note that X =

⋃n
i=0D+(Xi) is a finite cover of X by principal open subsets, and we have

D+(Xi) ∼= Spec(A(Xi)) with A(Xi) = R[
Xj
Xi
| j 6= i]. We have O(d)|D+(Xi)

∼= ˜A(Xi)X
d
i over Spec(A(Xi)),

and A(Xi)X
d
i is a free A(Xi)-module of rank 1. Therefore

Γ(D+(Xi),O(d)) = A(Xi)X
d
i = A

[
1

Xi

]
deg=0

Xd

=

{
degree d homogeneous polynomial in A

[
1

Xi

]
= R

[
X0, · · · , Xn,

1

Xi

]}
.

The Γ(X,O(d)) is the glueing of Γ(D+(Xi),O(d)), i = 0, · · · , n, hence we obtain

Γ(X,O(d)) = {degree d homogeneous polynomial in A = R[X0, · · · , Xn]} = Ad.

Therefore
⊕∞

d=0 Γ(X,O(d)) =
⊕∞

d=0Ad = A = R[X0, · · · , Xn].

Sketch of proof of Theorem 5.1. We may write X as a finite union of principal open subsets X =⋃
xD+(x) such that every x is in A1. We have M̃ |D+(x)

∼= M̃(x) on D+(x) ∼= Spec(A(x)). On the

other hand, since F is quasi-coherent, we have F |D+(x)
∼= Ñ(x) where N(x) := Γ(D+(x),F ). Now we

only need to construct the natural isomorphism M(x)
∼= Γ(D+(x),F ) as A(x)-modules.

Note that M(x) =
∑∞
n=0Mn · x−n and Γ(D+(x),F (n)) = Γ(D+(x),F ) · xn. Hence the natural

restriction map Γ(X,F (n)) → Γ(D+(x),F (n)) induces the natural map Mn · x−n → Γ(D+(x),F )
and summing up together we obtain M(x) → Γ(D+(x),F ). It remains to prove that this map is an
isomorphism by using Lemma 5.3:

Injectivity. For any n ≥ 0 and any s ∈ Γ(X,F (n)), if sx−n = 0 in Γ(D+(x),F ) then there exists
m ≥ 0 such that xms = 0 in Γ(X,F (n+m)).

Surjectivity. For any s ∈ Γ(D+(x),F ), there exists n ≥ 0 such that xns ∈ Γ(D+(x),F (n)) can be
extended to a section of Γ(X,F (n)). �

Lemma 5.3 (“Ugly lemma”). Let X be a Noetherian separated scheme. Let L be an invertible sheaf
over X and F be a quasi-coherent sheaf over X. Fix an element ` ∈ Γ(X,L ). Let X` be the non-zero
locus of `, i.e. consists of x ∈ X such that the image of `x ∈ Lx

∼= OX,x in kx := OX,x/mx is non-zero.
(1) If s ∈ Γ(X,F ) is such that s|X` = 0, then there exists n ≥ 0 such that s⊗`n = 0 in Γ(X,F⊗L n).
(2) For an element s ∈ Γ(X`,F ), there exists n ≥ 0 and t ∈ Γ(X,F⊗L n) such that t|X` = s⊗(`|X`)n.

Daily Exercise 5.1. Read the definition of a separated scheme. Prove that if X is a separated scheme
and if U and V are affine open subsets of X, then U ∩ V is also an affine open subset of X.

Proof of Lemma 5.3. Let X =
⋃
i Spec(Ai) be a finite cover of X by affine schemes such that for each

i, L |Spec(Ai) is free of rank 1, say L |Spec(Ai)
∼= Ãi · `i. For each i, there exists a unique ai ∈ Ai such

that `|Spec(Ai) = ai · `i, and we have X` ∩ Spec(Ai) = Spec(Ai[
1
ai

]), hence X` =
⋃
i Spec(Ai[

1
ai

]). Say

F |Spec(Ai)
∼= M̃i for some Ai-module Mi.

(1) In this case for each i, the image of si := s|Spec(Ai) ∈Mi in Mi[
1
ai

] is zero, hence there exists some

ni ≥ 0 such that anii si = 0. Take n = maxi(ni), then it’s easy to see that s⊗ `n = 0.
(2) For each i, the s|Spec(Ai[

1
ai

]) ∈ Mi[
1
ai

] is of form ti/a
ni
i for some ti ∈ Mi and ni ≥ 0. Take

n = maxi(ni), then tia
n−ni
i ⊗ `ni ∈ Γ(Spec(Ai),F ⊗L n) and they can be glued together to obtain an

element t ∈ Γ(X,F ⊗L n), which satisfies the desired condition. �

5.1.2. Question. If M is a graded A-module such that M̃ is a coherent sheaf over Proj(A). Is M a
finitely generated A-module?

The following is a weak answer to the above question:

Theorem 5.4. If F is a coherent sheaf over X = Proj(A), then there exists n ≥ 0 such that F (n) is
generated by global sections, i.e. for any x ∈ X, the image of the map Γ(X,F (n)) → F (n)x generates
F (n)x as an OX,x-module.
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Idea of proof. For x ∈ A1, the F (D+(x)) is generated by finitely many elements as A(x)-module. Lift
them to global sections by Lemma 5.3. �

5.1.3. Ample line bundle.

Definition 5.5. An invertible sheaf L over a scheme X is called ample if for any coherent sheaf F over
X, there exists n ≥ 0 such that F ⊗L n is generated by global sections.

There are a few important results regarding ample line bundle in algebraic geometry:

• A scheme is quasi-projective (i.e. admits an embedding to a projective space) if and only if there
exists an ample line bundle over it.

• A scheme is quasi-affine (i.e. admits an open embedding to an affine space) if and only if its
structure sheaf if ample.

• The pullback of an ample line bundle under an affine morphism (i.e. preimage of an affine open
subset is affine) is also ample.

Weekly Exercise 5.2. Read the definition of ample line bundle and its application to project embed-
dings.

5.2. Čech cohomology. Let X be a topological space and F be a sheaf of abelian groups over X. Let
U be an open cover of X. Assume that U = {Ui}i∈I with I a total order set. if i0 < · · · < ip are
elements of I, let Ui0···ip :=

⋂p
i=0 Uik .

Define Cp(U ,F ) :=
∏
i0<···<ip Γ(Ui0···ip ,F ) if p ≥ 0, and Cp(U ,F ) := 0 if p < 0. Define the map

dp : Cp(U ,F )→ Cp+1(U ,F ) by

dp :
∏

i0<···<ip

Γ(Ui0···ip ,F )→
∏

i0<···<ip+1

Γ(Ui0···ip+1
,F ),

(si0···ip)i0<···<ip 7→

(
p+1∑
k=0

(−1)ksi0···̂ik···ip+1
|Ui0···ip+1

)
i0<···<ip+1

if p ≥ 0, and dp := 0 if p < 0. Here îk means omitting the term ik.

Daily Exercise 5.3. Prove that dp+1 ◦ dp = 0 for any p ∈ Z, and ker(d0) = Γ(X,F ).

Therefore the maps d• make C•(U ,F ) a cochain complex of abelian groups. We define Hp
U (X,F ) :=

Hp(C•(U ,F )) := ker(dp)/ Im(dp−1) for any p ≥ 0. Then H0
U (X,F ) = Γ(X,F ).

Example 5.6. Let X = RP1 with an open cover U = {{x 6=∞}, {x 6= 0}}. Consider the constant sheaf
Z over X. Then we have H0

U (X,Z) = H1
U (X,Z) = Z.

If V is a refinement of U , then there is a natural morphism C•(U ,F )→ C•(V ,F ) between cochain
complexes, and we obtain natural maps Hp

U (X,F )→ Hp
V (X,F ) between cohomology groups.

Definition 5.7. The Čech cohomology of F over X of dimension p is

Ȟp(X,F ) := lim−→
U

Hp
U (X,F ).

Theorem 5.8. Let X be a Noetherian separated scheme and F be a quasi-coherent sheaf over X.
(1) Let U be a finite affine open cover of X. Then for any p, Hp

U (X,F ) is independent of the choice

of the affine open cover U . (Therefore this is equal to the Čech cohomology Ȟp(X,F ).)
(2) If X is an affine scheme then Ȟp(X,F ) = 0 for all p ≥ 1.
(3) In general Ȟp(X,F ) = 0 for p� 0 independent of F .
(4) Let U be a finite affine open cover of X. Let 0→ F1 → F2 → F3 → 0 be a short exact sequence

of quasi-coherent sheaves over X. Then it induces, for each p ≥ 0, a natural (i.e. functorial) map

Hp
U (X,F3) → Hp+1

U (X,F1), which fits into the following natural (i.e. functorial) long exact sequences
14



of cohomology groups:

0 // H0
U (X,F1) // H0

U (X,F2) // H0
U (X,F3)

// H1
U (X,F1) // H1

U (X,F2) // H1
U (X,F3)

// H2
U (X,F1) // H2

U (X,F2) // H2
U (X,F3) // · · · .

(Therefore, by taking direct limit lim−→U
, we obtain the same result for Čech cohomology groups Ȟp(X,−).)

(5) If A is a Noetherian graded ring, X = Proj(A) and F is a coherent sheaf over X, then for each
p ≥ 0, Ȟp(X,F ) is a finitely generated A0-module.

Therefore, if A is a Noetherian graded ring, then for a coherent sheaf F over Proj(A), we can define
χ(F ) :=

∑
p≥0(−1)p[Ȟp(X,F )] ∈ K′(A0), which induces a well-defined homomorphism of abelian

groups χ : K′(Proj(A))→ K′(A0).

6. Lecture 6: August 8

Recall that for a Noetherian separated scheme X, we defined functors

Ȟi(X,−) : (quasi-coherent sheaves on X)→ Ab

for i ≥ 0. In this talk we are going to prove Theorem 5.8.
We may also consider the relative version of sheaf cohomology: if f : X → Y is a morphism between

Noetherian separated schemes, then it induces a functor f∗ : OX -Mod → OY -Mod by f∗F (V ) :=
F (f−1(V )) for open subset V of Y . We want to define Rif∗ : OX -Mod → OY -Mod for each i ≥ 0,
such that

• R0f∗ = f∗;
• a short exact sequence of sheaves induce long exact sequence of Rif∗’s similar to Theorem 5.8(4);
• if f is an affine morphism (i.e. the preimage of an affine open subset of Y is an affine open subset

of X), then Rif∗ = 0 for any i ≥ 1.

Such a cohomology theory is unique if it exists.

Suppose X
f−→ Y

g−→ Z are two above morphisms. Then we have (gf)∗ = g∗f∗. But the Ri(gf)∗, R
ig∗

and Rif∗ don’t satisfy the similar relation in general. To describe the correct relation for them, we’d
better to use K-groups.

6.1. Čech complex resolution. Same as §5.2, let X be a topological space and F be a sheaf of abelian
groups over X. Let U = {Ui}i∈I be an open cover of X with I a total order set. If i0 < · · · < ip are
elements of I, denote ji0···ip : Ui0···ip ↪→ X the natural inclusion. We define a sheaf C p(U ,F ) on X by
the following way:

C p(U ,F ) :=
∏

i0<···<ip

(ji0···ip)∗(F |Ui0···ip ),

or equivalently, if U is an open subset of X,

Γ(U,C p(U ,F )) :=
∏

i0<···<ip

Γ(U ∩ Ui0···ip ,F ) = Cp(U ∩ U,F |U ).

Here U ∩U := {Ui ∩U}i∈I is an open cover of U . In particular, we have Γ(X,C p(U ,F )) = Cp(U ,F ).
Therefore, we may use the map dp : Cp(U ,F ) → Cp+1(U ,F ) defined in §5.2 to define the morphism
dp : C p(U ,F )→ C p+1(U ,F ) of sheaves on X.

Daily Exercise 6.1. Prove that dp+1 ◦ dp = 0 for any p ∈ Z, and ker(d0) = F .

Therefore the morphisms d• makes C •(U ,F ) a cochain complex of sheaves over X.

Theorem 6.1. The complex C •(U ,F ) is exact except at degree 0.

To prove this we need to introduce some concepts in homological algebra.
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6.1.1. Homotopy of morphisms of complexes. Let A be an abelian category (e.g. the category of R-
modules for a ring R, or the category of sheaves of abelian groups over a topological space X). A
cochain complex (or simply called a complex) C• = (C•, d•C) is a sequence (Cp)p∈Z of objects in A and
a sequence (dpC : Cp → Cp+1)p∈Z of morphisms in A such that dp+1 ◦ dp = 0 for any p ∈ Z. Define the

cohomology of a complex C• at p to be Hp(C•) := ker(dpC)/ Im(dp−1
C ). For simplicity, in the following,

unless stated explicitly, we only consider complexes C• such that Cp = 0 for p < 0.
A chain map f• : C• → D• is a sequence (fp : Cp → Dp)p∈Z of morphisms in A such that dpD ◦ fp =

fp+1 ◦ dpC for any p ∈ Z:

· · · // Cp
dpC //

fp

��
�

Cp+1 //

fp+1

��

· · ·

· · · // Dp

dpD

// Dp+1 // · · · .

The chain map f• induces maps of cohomology objects Hp(f•) : Hp(C•)→ Hp(D•) for any p ∈ Z. The
chain map f• it is called homotopic to zero, denoted by f• ∼ 0, if there exists a sequence (hp : Cp →
Dp−1)p∈Z of morphisms such that fp = hp+1 ◦ dpC + dp−1

D ◦ hp for any p ∈ Z:

· · · // Cp
dpC //

fp

��

hp

||

Cp+1 //

hp+1

||

· · ·

· · · // Dp−1

dp−1
D

// Dp // · · · .

Two chain maps f• and g• are called homotopic to each other, denoted by f• ∼ g•, if f• − g• ∼ 0.

Daily Exercise 6.2. If f• ∼ g•, prove that they induce the same maps of cohomology objects. (For
simplicity you can assume that A is the category of R-modules.)

6.1.2. Proof of Theorem 6.1. Define the complex D•(U ,F ) by Dp(U ,F ) := C p(U ,F ) for p ≥ 0, and
D−1(U ,F ) := F with the morphism D−1(U ,F ) → D0(U ,F ) defined to be the natural morphism
F →

∏
i∈I(ji)∗(F |Ui). Then the Theorem 6.1 is equivalent to that the complex D•(U ,F ) is exact.

This is equivalent to that the complex D•(U ,F )x is exact for any x ∈ X. We prove this by constructing
a homotopy h•x connecting id ∼ 0 : D•(U ,F )x → D•(U ,F )x. In fact, if we fix a Uj containing x for
some j ∈ I, then for p ≥ 1 we can define

hpx : Dp(U ,F )x → Dp−1(U ,F )x,

(si0···ip)i0<···<ip 7→ (sji0···ip−1)i0<···<ip−1 ,

here sji0···ip−1
:= 0 if j is equal to one of i0, · · · , ip−1, and sji0···ip−1

:= (−1)k−1si0···ik−1jik···ip−1
if ik−1 < j

and j < ik. For p = 0 we define

h0
x : D0(U ,F )x → Fx,

(si)i∈I 7→ sj .

Daily Exercise 6.3. Prove that the h•x is a homotopy connecting id ∼ 0 : D•(U ,F )x → D•(U ,F )x.

6.1.3. In the following we let X be a Noetherian separated scheme.

Proof of Theorem 5.8(2). We prove that if X is affine then for any open cover U of X, Hp
U (X,F ) = 0

for any p ≥ 1, and in particular, Ȟp(X,F ) = 0 for any p ≥ 1.
This is a corollary of Theorem 6.1, note that the functor

Γ(X,−) : (quasi-coherent sheaves on X)→ Ab

is exact (since X is affine), and Γ(X,C p(U ,F )) = Cp(U ,F ). �

Proof of Theorem 5.8(4). Let U be a finite affine open cover of X. Then it’s easy to see that for any
p ≥ 0, the functor C p(U ,−) is an exact functor (note that a sequence of quasi-coherent sheaves is exact
if and only if for an affine cover {Ui}, the sequence of their sections on Ui is exact for all i). Hence the
short exact sequence

0→ F1 → F2 → F3 → 0
16



of quasi-coherent sheaves on X induces a short exact sequence

0→ C •(U ,F1)→ C •(U ,F2)→ C •(U ,F3)→ 0

of complexes of quasi-coherent sheaves on X. On the other hand, if U is an affine open subset, then
Γ(U,−) is an exact functor, therefore it’s easy to see that by taking global section of the above short
exact sequence, we obtain a short exact sequence

0→ C•(U ,F1)→ C•(U ,F2)→ C•(U ,F3)→ 0

of complexes of abelian groups. Now the following “long snake lemma” gives the long exact sequence of
Hp

U (X,−). �

Proposition 6.2 (“Long snake lemma”). Let A be an abelian category and let 0→ X• → Y • → Z• → 0
be a short exact sequence of complexes of objects in A . Then it induces, for each p ≥ 0, a natural
(i.e. functorial) map Hp(Z•) → Hp+1(X•), which fits into the following natural (i.e. functorial) long
exact sequences of cohomology groups:

0 // H0(X•) // H0(Y •) // H0(Z•)

// H1(X•) // H1(Y •) // H1(Z•)

// H2(X•) // H2(Y •) // H2(Z•) // · · · .

Proposition 6.3 (Snake lemma). Let A be an abelian category and let

X //

f

��

Y //

g

��

Z //

h

��

0

0 // X ′ // Y ′ // Z ′

be a commutative diagram of exact sequences in A . Then it induces a natural morphism ker(h) →
coker(f) which fits into the following long exact sequence:

ker(f)→ ker(g)→ ker(h)→ coker(f)→ coker(g)→ coker(h).

Moreover, if X → Y is injective, then ker(f) → ker(g) is injective, also, if Y ′ → Z ′ is surjective, then
coker(g)→ coker(h) is surjective.

Daily Exercise 6.4. Use snake lemma to prove the “long snake lemma”. For simplicity you may assume
A is the category of R-modules.

Proof of Theorem 5.8(1). When p = 0 this holds, since it is equal to Γ(X,F ).
Let W be an auxiliary finite affine open cover of X. Then there is a natural injective map F →

C 0(W ,F ) of quasi-coherent sheaves on X. Let G := coker(F → C 0(W ,F )), so that

0→ F → C 0(W ,F )→ G → 0

is a short exact sequence of quasi-coherent sheaves on X. The Theorem 5.8(2) (as well as the definition
of C 0(W ,F )) tells us that Hp

U (X,C 0(W ,F )) = 0 for any p ≥ 1, hence by Theorem 5.8(4) we obtain
the exact sequence

0→ Γ(X,F )→ C0(W ,F )→ Γ(X,G )→ H1
U (X,F )→ 0,

as well as Hp−1
U (X,G )

∼−→ Hp
U (X,F ) for p ≥ 2. Therefore H1

U (X,F ) = coker
(
C0(W ,F ) → Γ(X,G )

)
is independent of the choice of U , and for p ≥ 2, by induction on p we obtain that Hp

U (X,F ) is

independent of the choice of U , since Hp−1
U (X,G ) is independent of the choice of U . �

Proof of Theorem 5.8(3). Let U be a finite affine open cover of X. Then C p(U ,F ) = 0 for p ≥ #U ,
in particular Cp(U ,F ) = 0 for p ≥ #U . Therefore it follows from Theorem 5.8(1). �

7. Lecture 7: August 12

7.1. Cohomology groups on project schemes.
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7.1.1. Let R be a ring, A = R[X0, · · · , Xn], X = Proj(A) = PnR. Recall that for d ∈ Z we have defined

sheaf O(d) = OX(d) on X, by O(d) := Ã(d), with O(d)|D+(Xi) = ˜A[ 1
Xi

]deg=d.

Theorem 7.1. We have

Hp(X,O(d)) =


R[X0, · · · , Xn]deg=d, if p = 0,(
X−1

0 · · ·X−1
n ·R[X−1

0 , · · · , X−1
n ]
)

deg=d
, if p = n,

0, otherwise.

Here we define that deg(X−1
i ) = −1 for 0 ≤ i ≤ n. Moreover there is a perfect duality

Hi(X,O(d))×Hn−i(X,O(−1− n− d))→ Hn(X,O(−1− n)) ∼= R.

Proof. It’s already known when p = 0. When p = n, we take U = {D+(Xi)}ni=0 to be a finite affine
open cover of X. Then we have

Hn(X,O(d)) =
Cn(U ,O(d))

Im
(
Cn−1(U ,O(d))

dn−1

−−−→ Cn(U ,O(d))
) ,

where

Cn−1(U ,O(d)) =

n⊕
i=0

Γ
(
D+(X0 · · · X̂j · · ·Xn),O(d)

)
=

n⊕
i=0

{
f ∈ R[X±1

0 , · · · , X±1
n ]deg=d

∣∣ the degree of Xi in f is ≥ 0
}
,

and

Cn(U ,O(d)) = Γ (D+(X0 · · ·Xn),O(d)) = R[X±1
0 , · · · , X±1

n ]deg=d,

and the map dn−1 is defined by (fi)
n
i=0 7→

∑n
i=0(−1)ifi. Now it’s easy to see that

Im(dn−1) =

{
f ∈ R[X±1

0 , · · · , X±1
n ]deg=d

∣∣∣∣ for any monomial in f , there exists i
such that the degree of Xi in it is ≥ 0

}
,

therefore Hn(X,O(d)) =
(
X−1

0 · · ·X−1
n ·R[X−1

0 , · · · , X−1
n ]
)

deg=d
.

Thus we have proved the duality for i = 0, n.
For 1 ≤ p ≤ n− 1 we use induction on n. Consider F :=

⊕
d∈Z O(d) which is a quasi-coherent sheaf

over X. Take Xn ∈ Γ(X,O(1)), then we can define a multiply-by-Xn map F (−1)
×Xn−−−→ F which fits

into the following short exact sequence:

0→ F (−1)
×Xn−−−→ F → F/XnF → 0.

If we let αn : Z(Xn) ↪→ PnR to be the natural closed embedding, and let Fn :=
⊕

d∈Z OZ(Xn)(d), then

we have Z(Xn) ∼= Pn−1
R and F/XnF = (αn)∗Fn, i.e.

0→ F (−1)
×Xn−−−→ F → (αn)∗Fn → 0

is exact. It induces a long exact sequence of cohomology groups:

· · · → Hp−1(X, (αn)∗Fn)→ Hp(X,F (−1))
×Xn−−−→ Hp(X,F )→ Hp(X, (αn)∗Fn)→ · · · .

Note that Hp(X, (αn)∗Fn) = Hp(Z(Xn),Fn) which is zero when 1 ≤ p ≤ n−2 by induction hypothesis,

the map Hp(X,F (−1))
×Xn−−−→ Hp(X,F ) is injective if 2 ≤ p ≤ n− 1, and is surjective if 1 ≤ p ≤ n− 2.

We claim this it is also injective if p = 1 and is surjective if p = n−1. When p = 1, we have the following
long exact sequence:

0→ A(−1)
×Xn−−−→ A→ A/XnA→ H1(X,F (−1))

×Xn−−−→ H1(X,F ),

note that A→ A/XnA is surjective, hence H1(X,F (−1))
×Xn−−−→ H1(X,F ) is injective. When p = n−1,

we have the following long exact sequence:

Hn−1(X,F (−1))
×Xn−−−→ Hn−1(X,F )→ Hn−1(Z(Xn),Fn)

δ−→ Hn(X,F (−1))
×Xn−−−→ Hn(X,F )→ 0.

We may use the duality for i = 0 for the last three terms to show that δ is in fact injective. Hence

Hn−1(X,F (−1))
×Xn−−−→ Hn−1(X,F ) is surjective.

18



In conclusion we know that when 1 ≤ p ≤ n − 1, the map Hp(X,F (−1))
×Xn−−−→ Hp(X,F ) is an

isomorphism, hence Hp(X,F ) = Hp(X,F )[ 1
Xn

] = Hp(D+(Xn),F ) = 0, since D+(Xn) is affine. �

Daily Exercise 7.1. Read and complete the unclear parts of the proof.

Remark 7.2. By Serre duality, we actually have

Hn(X,F )∨ := Hom(Hn(X,F ), R) ∼= Hom(F ,O(−d− n− 1))

for any coherent sheaf F on X.

7.1.2. Now we state an application of the above result to general graded rings. Let A be a Noetherian
graded ring satisfying A = A0[A1]. Let X = Proj(A). Let F be a coherent sheaf on X.

Theorem 7.3 (Serre). (1) For any p ≥ 0, Hp(X,F ) is a finitely generated A0-module, i.e. Theorem
5.8(5) holds.

(2) There exists some m� 0 such that Hp(X,F (m)) = 0 for any p ≥ 1.

Proof. First we may reduce it to projective space case. Note that since A is Noetherian and A = A0[A1],
if we write R = A0, then A may be realized as a quotient of R[X0, · · · , Xn] for some n by a graded ideal
I. The map R[X0, · · · , Xn] � A gives a closed embedding i : X ↪→ PnR with X ∼= Z(I). This is an affine
map which satisfies i∗OPnR(1) = OX(1). Therefore Hp(X,F (d)) = Hp(PnR, (i∗F )(d)) for any d ∈ Z and
any p ≥ 0. Hence in the following we may assume X = PnR.

(1) By Theorem 5.4 we know that there exists some d � 0 such that F (d) is generated by global
sections. We can choose finitely many of these sections, since A is Noetherian. Note that Γ(X,F (d)) =
Hom(OX ,F (d)), these sections gives a surjective morphism of sheaves ON

X � F (d), hence OX(−d)N �
F . Let G be the kernel of OX(−d)N � F , then it is also a coherent sheaf and we obtain a short exact
sequence

0→ G → OX(−d)N → F → 0

of coherent sheaves. Taking long exact sequence of cohomology groups we obtain the map Hp(X,F )→
Hp+1(X,G ), which is an isomorphism for 0 ≤ p ≤ n − 2, injective of cokernel a finitely generated R-
module for p = n−1. Also, Hn(X,F ) is a quotient of a finitely generated R-module, and Hp(X,F ) = 0
for p > n. The induction on p implies that Hp(X,F ) is a finitely generated R-module for any p.

(2) Similarly we can find m � d such that Hp(X,F (m))
∼−→ Hp+1(X,G (m)) for any p ≥ 1. Since

Hp(X,F (m)) = 0 for p > n, an induction on p implies that we can find m� d such that Hp(X,F (m)) =
0 for p ≥ 1. �

Consider Γ∗(X,F ) :=
⊕

n≥0 Γ(X,F (n)) which is a graded A-module. By the same proof we may
obtain that

Proposition 7.4. (1) The Γ∗(X,F ) is a finitely generated graded A-module.

(2) We have ˜Γ∗(X,F ) ∼= F .

(3) If M is a finite generated graded A-module, F := M̃ , then there is a natural map M → Γ∗(X,F ),
which induces Mn → Γ(X,F (n)), and which is an isomorphism when n� 0.

In the proof of (3), the following lemma may be useful:

Lemma 7.5. If M is a finitely generated graded A-module, then M̃ = 0 if and only if Mn = 0 for n� 0.

Remark 7.6. If A0 = k is a field, M is a finitely generated graded A-module, then there exists a
polynomial P (T ) ∈ Q[T ] such that for n� 0 the dimkMn = dimk Γ(X,F (n)) = P (n) holds. In fact we
may define

χ(F (n)) :=
∑
i≥0

(−1)i dimkH
i(X,F (n)),

then χ(F (n)) = P (n) holds for any n ∈ Z. This may be viewed as a consequence of Riemann-Roch
Theorem.

Weekly Exercise 7.2. Study Serre duality.
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8. Lecture 8: August 14

8.1. Scheme of dimension one. Let X be a Noetherian scheme of dimension 1 which is integral and
regular. Here we say

• a scheme X is integral if for any open subset U of X, OX(U) is an integral domain, or equivalently,
X is irreducible as a topological space, and admits a cover by affine open subsets which are
spectrums of integral domains;

• a scheme X is regular if for any x ∈ X, dimkx mx/m
2
x = dim OX,x.

Then for any affine open subset U of X, OX(U) is a Dedekind domain, i.e. a Noetherian integrally closed
domain of Krull dimension 1. The X has only one generic point η, and K := OX,η is a field, called the
function field of X; in fact K = Frac(OX(U)) for any affine open subset U of X. The other points x
of X are closed points, and OX,x is a discrete valuation ring, i.e. it is endowed with a surjective map
vx : OX,x � Z≥0 ∪ {+∞} satisfying

• vx(a) = +∞ if and only if a = 0;
• vx(ab) = vx(a) + vx(b), vx(a+ b) ≥ min{vx(a), vx(b)};
• mx = {a ∈ OX,x | vx(a) ≥ 1}.

We have K = Frac(OX,x) and the vx extends to a discrete valuation vx : K � Z ∪ {+∞} of K, which
makes K a discrete valuation field. Roughly speaking, if we view elements of OX(U) “functions on U”,
we can talk about “order of zero of a function at a closed point x ∈ U”.

Assume that X is separated, then we may define the injection

{closed points of X} ↪→ {non-trivial discrete valuations on K},
x 7→ vx,

here a discrete valuation v : K → Z ∪ {+∞} is non-trivial means that it is surjective (or equivalently,
before normalization, its image is strictly larger than {0,+∞}).

In the following we fix a field k and let X be a Noetherian separated scheme of dimension 1 which
is finite type over k, integral and regular. Then there is the structure morphism X → Spec(k) and the
corresponding k ↪→ OX(X). The OX(X) is a finitely generated integral k-algebra. We assume that k is
the maximal subfield in OX(X).

Questions. (1) How to “complete” X?
(2) How to describe the structure of K(X) and K′(X)? How to define the Euler characteristic map

χ : K′(X)→ K(k)?

First we consider the case that X = Spec(A) is affine, here A is a finite generated k-algebra which
is a Dedekind domain, such that k is the maximal subfield of A. Then there is a structure theorem of
finite generated A-modules:

Theorem 8.1. If M is a finitely generated A-module, then

M ∼= Ar ⊕ I ⊕
n⊕
i=1

A/pnii

for some r ≥ 0, I ideal of A, n ≥ 0, ni ≥ 1 and pi non-zero prime ideal of A.

Daily Exercise 8.1. Prove it. (Recall that if A is a Dedekind domain and I1, I2 ideals of A, then
I1 ⊕ I2 ∼= A⊕ I1I2.)

Corollary 8.2. We have K(A) = K′(A).

Proof. Note that 0→ pnii → A→ A/pnii → 0 is exact, [A/pnii ] ∈ K′(A) is equal to [A]− [pnii ] ∈ K(A). �

We define two invariants on K(A). Let K = Frac(A). The first one is

c0 : K(A)→ Z,
[M ] 7→ rankM := dimK(M ⊗K).

This is also called “rank”. The second one is c1 : K(A)→ Pic(A) (which is also called “det”),

Pic(A) :=

{
isomorphism classes of
invertible projective A-modules

}
=

{
isomorphism classes of
non-zero ideals of A

}
is the class group of A. For a class [M ] ∈ K(A), consider the natural map M → M ⊗ K. Denote
n := dimK(M ⊗ K). Define det(M ⊗ K) := ∧n(M ⊗ K) = K · (e1 ∧ · · · ∧ en), here e1, · · · , en is any
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K-basis of M ⊗ K. Then we define c1([M ]) to be the class of detM , here detM := {m1 ∧ · · · ∧mn |
m1, · · · ,mn ∈M} ⊂ det(M ⊗K).

Recall that K(A) is a ring with addition ⊕ and multiplication ⊗. We define the ring structure on
Z⊕Pic(A) such that the multiplication satisfies “Pic(A)2 = 0”, namely (a, [I]) ·(b, [J ]) := (ab, a[J ]+b[I]).

Theorem 8.3. The map (c0, c1) : K(A)→ Z⊕ Pic(A) is a ring isomorphism.

Daily Exercise 8.2. Prove it.

8.2. Algebraic curve.

8.2.1. In the following we assume that X is a Noetherian separated scheme of dimension 1 which is
finite type over a field k, geometric integral (i.e. integral after base change to k) and regular.

Let η be the unique generic point of X, and denote by k(X) := K = OX,η the function field of X.

Then it is a transcendental extension of k of transcendental degree 1, and K ⊗k k is still a field.

8.2.2. Conversely, if such a field K is given, can we find an algebraic curve C such that k(C) = K?

Theorem 8.4. There exists a projective curve C/k, unique up to canonical isomorphism, such that
k(C) = K. If X is an above scheme such that k(X) = K, then there exists a unique open embedding
X ↪→ C which induces k(C) = k(X) = K. We have

{closed points of C} oo 1:1 //
{

non-trivial discrete valuations on K
which is trivial on k

}
.

It’s tempting to imagine

{points of C} oo 1:1 // {all valuations on K},

define the open sets to be finite intersections of sets of form {v | v(f) ≥ 0} for some f ∈ K×, and for each
v, define the stalk Ov := {f ∈ K | v(f) ≥ 0}, and define the section O(U) :=

⋂
v∈U Ov. The question is

to how to prove that it forms a scheme.
We use the following idea instead: find an element f ∈ K which gives a finite separable morphism

C
f−→ P1

k.

Theorem 8.5. There exists an element f ∈ K which is transcendental over k and such that K/k(f) is
a finite separable extension.

Recall that an algebraic extension L/K is called separable if any one of the following equivalent
conditions hold:

• for any α ∈ L, let f be the minimal polynomial of α over K, then f ′(α) 6= 0 (or equivalently,
f ′ 6≡ 0);

• ΩL/K = 0, here for a ring A and an A-algebra B, ΩB/A is the B-module generated by formal
symbols db, b ∈ B, such that d(b+ b′) = db+ db′, d(bb′) = bdb′+ b′db, and da = 0 for any a ∈ A.

If L/K is a finite extension, then they are also equivalent to

• TrL/K(L) = K;

• L⊗K K ∼= K
[L:K]

.

For example, ifK is of characteristic zero, then L/K is always separable. On the other hand, Fp(t1/p)/Fp(t)
is not separable. In general, if K is of characteristic p and L = K(α), let f(X) be the minimal polynomial
of α over K, then L is inseparable if and only if f is a polynomial in Xp.

Sketch of proof of Theorem 8.5. Choose f ∈ K transcendental such that the inseparable degree [K :
k(f)s] is minimal, where k(f)s is the maximal separable extension of k(f) contained in K.

If it is> 1, then there exists α ∈ K such that g′(α) = 0, here g(X) ∈ k(f)[X] is the minimal polynomial
of α over k(f). After clearing denominators, we may assume that Then g(X) is a polynomial in Xp.
After clearing denominators, we may assume that g(X) = h(f,Xp) for some h ∈ k[X,Y ] irreducible. We
claim that h is not a polynomial in fp. Otherwise over k̄, h(f,Xp) = F (f,X)p. Thus in k̄ ⊗k K, we
have a nilpotent element F (f, α). Thus f is separable over k(α), and we have k(f)s ⊂ k(α)s, and

[K : k(α)s] < [K : k(f)s].

Contradiction. �
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Therefore we obtain a finite separable field extension k(t) ↪→ K, t 7→ f . Note that if K = k(t) is the
rational function field over k of one variable, then we can choose C = P1

k in Theorem 8.4 and it satisfies
all the assertions in this theorem. Note that P1

k = Spec(k[t]) ∪ Spec(k[1/t]) is an affine cover.
Now let A and B be the normalization (i.e. integral closure) of k[t] and k[1/t] in K, they are Dedekind

domains. We obtain finite separable morphisms Spec(A)→ Spec(k[t]) and Spec(B)→ Spec(k[1/t]). We

can glue Spec(A) and Spec(B) together to obtain a curve C with a finite separable morphism C
f−→ P1

k.
We may prove that it satisfies all the assertions in Theorem 8.4.

To prove that C is projective, we claim that L := f∗OP1
k
(1) is ample. In fact, for any coherent sheaf

F on C, the f∗F is also coherent, and we have Γ(C,F ⊗L n) = Γ(P1
k, (f∗F )(n)), since OP1

k
(1) is ample,

the F ⊗L n is generated by global sections for n� 0, hence L is ample.

Remark 8.6. We can also construct C by the following way: note that P1
k = Proj(k[X0, X1]), we embed

k[X0, X1] into K[X0] by X1 7→ f ·X0. Let A be the integral closure of k[X0, X1] in K[X0], which is also
a graded ring. Then we construct C := Proj(A). This also proves that C is projective.

8.2.3. Now we consider the structure of K(C) and K′(C) for a projective curve C. First we claim that
K(C) = K′(C). In fact, if F is a coherent sheaf over C, we define

Ftors := ker(F → F ⊗η K)

to be the torsion subsheaf of F . Equivalently, Ftors(U) := {s ∈ F (U) | sη = 0} for any open subset U
of C. Then we have a short exact sequence

0→ Ftors → F → F/Ftors → 0

with F/Ftors torsion-free sheaf.

Exercise 8.3. The F/Ftors is locally free.

Therefore [F/Ftors] ∈ K(C). On the other hand, the Ftors is of form∑
x∈C

closed point

(ix)∗M̃x

for some Mx finitely generated torsion OC,x-module, which must be of the form
⊕n

i=1 OC,x/mnix since
OC,x is a discrete valuation ring. This means that [Ftors] ∈ K(C). So [F ] = [Ftors]+ [F/Ftors] ∈ K(C).

8.2.4. We define the group of divisors of C

Div(C) :=
⊕
x∈C

closed point

Z · x

which consists of formal Z-linear combinations of closed points of C. For a closed point x of C, there is
a short exact sequence

0→ Ix → OC → (ix)∗Ox → 0,

here Ox is the structure sheaf of Spec(kx), Ix is a sheaf of ideals, locally generated by πx a uniformizer
of OC,x. The Ix is also denoted by OC(−x), which is an invertible sheaf. In general, if D =

∑
x nx · x

is a divisor of C, then we may define the sheaf OC(D) to be the subsheaf of the sheaf K of rational
functions on C by

OC(D)(U) := {f ∈ K (U) | vx(f) ≥ −nx for all x ∈ U} .
Similar to Ix, For an integer n ≥ 1, the OC(−nx) fits into the following short exact sequence

0→ OC(−nx)→ OC → (ix)∗(OC,x/m
n
x)→ 0,

which means that [(ix)∗(OC,x/mnx)] = [OC ]− [OC(−nx)] in K′(C).
Similar to the affine case, we define

c0 : K(C)→ Z,
[F ] 7→ dim(F ⊗η K),

and

c1 : K(C)→ Pic(C),

[F ] 7→ det(F ) := ∧dim(F⊗ηK)(F ),

here Pic(C) is the group of isomorphism classes of invertible sheaves on C.
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Theorem 8.7. The map (c0, c1) : K(C)→ Z⊕ Pic(C) is an isomorphism of rings.

Daily Exercise 8.4. Prove it.

9. Lecture 9, August 15

9.1. Riemann-Roch theorem. Still let C be the projective curve in the last talk. A divisor of C is
called a principal divisor if it is of form div(f) :=

∑
x∈C vx(f) · x for some f ∈ K×. The divisor class

group Cl(C) of C is the Div(C) modulo the principal divisors. We have the isomorphism Cl(C) ∼= Pic(C)
induced by the natural map Div(C)→ {invertible sheaves on C}, D 7→ OC(D).

If L is an invertible sheaf on C, then we have c0(L ) = 1 and c1(L ) = [L ]. Therefore the preimage
of (0, [L ]) ∈ Z⊕ Pic(C) under the map (c0, c1) is [L ]− [OC ].

We define the degree map

deg : Div(C)→ Z,∑
x

nx · x 7→
∑
x

nx · deg x,

where deg x := [kx : k]. It’s known that a principal divisor have degree zero, hence the degree map
factors through Cl(C). If [F ] ∈ K′(C), define deg([F ]) := deg(c1([F ])). If [F ] is of form [F ] =
[OC ] · rank F +

∑
x nx[OC/πxOC,x], then we have deg([F ]) =

∑
x nx · deg x.

Theorem 9.1 (Riemann-Roch). Let

χ : K′(C)→ K′(k) = Z,
[F ] 7→ dimkH

0(C,F )− dimkH
1(C,F ).

Then χ([F ]) = χ([OC ]) · rank F + deg([F ]).

Proof. This is by the above discussion and χ([OC/πxOC,x]) = deg x. �

Definition 9.2. The (arithmetic) genus of C is g(C) := dimkH
1(C,OC).

Example 9.3. If C = P1
k then g(C) = 0.

9.2. Serre duality. We define the canonical bundle Ω1
C/k on C, or called sheaf of differential forms, to

be Ω1
C/k|Spec(Ai) := Ω̃1

Ai/k
, if C =

⋃
i Spec(Ai) is an affine open cover of C.

Theorem 9.4. Ω1
C/k is locally free of rank one.

Proof. Consider C
f−→ P1

k in the last talk. It induces the short exact sequence 0→ Ω1
k(t)/k⊗K → Ω1

K/k →
Ω1
K/k(t) → 0. Note that Ω1

K/k(t) = 0, so we have Ω1
C/k ⊗K = Ω1

K/k = K · df . On the other hand, Ω1
C/k

is torsion-free, hence it is locally free of rank one. �

This means that Ω1
C/k is an invertible sheaf, and χ(Ω1

C/k) = 1− g + deg Ω1
C/k.

Example 9.5. Let C = P1
k. Then we have Z ∼= Pic(P1

k), n 7→ [O(n)]. Now it’s easy to see that
Ω1

P1
k/k
∼= O(−2) and H1(P1

k,Ω
1
P1
k/k

) ∼= k.

In the following we fix an isomorphism H1(P1
k,Ω

1
P1
k/k

) ∼= k.

Theorem 9.6 (Serre duality). On C, we have dimH1(C,Ω1
C/k) = 1. Moreover for any coherent sheaf

F on C, we have a canonical perfect pairing

Hom(F ,Ω1
C/k)×H1(C,F )→ H1(C,Ω1

C/k) ∼= k.

Sketch of proof. Step 0. Reduce to the case that F is torsion-free. In this case we have Hom(F ,Ω1
C/k) =

H0(C,F∨ ⊗ Ω1
C/k).

Step 1. We prove that it holds for C = P1
k. By induction we only need to prove it for F invertible

sheaf case. The invertible sheaf on P1
k is of form O(n), n ∈ Z, it’s easy to prove that the theorem holds

for it.

Step 2. Consider C
f−→ P1

k in the last talk. Then we have

H0(C,F∨ ⊗ Ω1
C/k) ∼= H0(P1

k, f∗(F
∨ ⊗ Ω1

C/k)), H1(C,F ) ∼= H1(P1
k, f∗F ).
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Apply Serre duality for P1
k, we are reduced to construct a perfect pairing of sheaves on P1

k:

f∗(F
∨ ⊗ Ω1

C/k)⊗ f∗F −→ Ω1
P1
k/k

.

First we define this map at the generic point of P1
k using identity Ω1

k(C)/k = k(C) ·Ω1
k(P1)/k and trace

map Trk(C)/k(P1) : k(C)→ k(P1). To show that this induces a perfect pairing as above, we only need to

work on local case: let x ∈ C with image y ∈ P1 with local rings B and A respectively. Then we may
assume that Fx = Bn. Thus we are reduce to the case where Fx = B. It remains to prove that the
trace map induces a perfect pairing of A-modules:

ΩB/k ⊗A B −→ ΩA/k.

Let t be a local parameter of P1 at y. Then ΩA/k = Adt and ΩB/k = D dt for a fractional ideal D of B
in k(C). Thus the above pairing is

D ⊗A B −→ A, (x, y) 7→ tr(xy).

To show this pairing is perfect, it suffices to show that D is equal to the dual B∨ of B under the trace
pairing. Now we use two exact sequences.

The first one is

0→ dB/A → B
d→ ΩB/A → 0,

where dB/A ⊂ B is the relative different of B/A, namely, the inverse of B∨. To see the exactness, we
check that if B = A[α] for some α ∈ B, let f be the minimal polynomial of α over A, then we have
dB/A = f ′(α) ·B.

On the other hand, we have an exact sequence

0 −→ ΩA/k ⊗A B −→ ΩB/k −→ ΩB/A −→ 0.

From these two exact sequence, we get an identity of two ideals of B:

dB/A = ΩA/k ⊗A Ω−1
B/k.

This identity is equivalent to the perfectness of the pairing

ΩB/k ⊗A B −→ ΩA/k. �

Daily Exercise 9.1. Fill in the details and complete the proof.

The Serre duality has the following consequences. Take F = Ω1
C/k we obtain H1(C,Ω1

C/k) ∼=
H0(C,OC)∨ which is of dimension 1. Take F = OC we obtain H1(C,OC) ∼= H0(C,Ω1

C/k)∨ which

is of dimension g. Therefore take F = Ω1
C/k in Riemann-Roch theorem we obtain deg Ω1

C/k = 2g − 2.

Another application is Hurwitz genus formula. Let f : X → Y be a finite separable morphism between
smooth projective curves over k. Then we have

0→ f∗Ω1
Y/k → Ω1

X/k → Ω1
X/Y → 0,

and the Ω1
X/Y is a torsion sheaf on X with c1(Ω1

X/Y ) =
∑
x∈X ordx

(
dπf(x)

dπx

)
· x. Therefore we have

deg Ω1
X/k = deg Ω1

Y/k · deg f + deg Ω1
X/Y , that is,

2g(X)− 2 = (2g(Y )− 2) · deg f +
∑
x∈X

ordx

(
dπf(x)

dπx

)
· deg x.

For x ∈ X, we define the ramification index of f at x to be ex := ordπx(πf(x)). The x is called tamely
ramified if ex is non-zero in kx (in our case it is equivalent to say that char(k) - ex). A direct calculation
shows that

ordx

(
dπf(x)

dπx

)
≥ ex − 1,

and if x is tamely ramified, then “=” holds.
The Riemann-Roch theorem allows us to do the classification of curves. For example, if C is a curve

of genus 0 with C(k) 6= ∅, fix a point p ∈ C(k) and take L = OC(p), then dimkH
0(C,L ) = 2. The

global sections of L allows us to construct an isomorphism C ∼= P1
k. In general, if C is a curve of genus

0, then we can take L = (Ω1
C/k)−1, it allows us to find a closed embedding of C into P2

k.

Remark 9.7. If C is a smooth projective curve of genus g, L is an invertible sheaf on C. If deg L ≥ 2g−1,
then H1(C,L ) = 0 and dimkH

0(C,L ) = 1− g + deg L . If deg L ≥ 2g then it is generated by global
sections. If deg L ≥ 2g+ 1 then it is “very ample”, i.e. gives an embedding of C into a projective space.
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10. Lecture 10: August 19

10.1. Review and generalizations. Recall that we have learned the following key concepts in algebraic
geometry:

10.1.1. Affine scheme. If a ring A is given, we can define a locally ringed space Spec(A). The functor

Ringsop → LocallyRingedSpaces, A 7→ Spec(A)

is fully faithful. If A is a ring, X = Spec(A), then the functor

A-Mod→ {quasi-coherent OX -modules}, M 7→ M̃

is an equivalence of category. If moreover A is a Noetherian ring, then the functor

{finitely generated A-modules} → {coherent OX -modules}, M 7→ M̃

is an equivalence of category.

10.1.2. Scheme. A scheme is a locally ringed space which is locally isomorphic to Spec(A) for some ring
A. There are some important concepts for a scheme:

• A scheme X is called separated if the diagonal map X → X ×X is a closed immersion.
• Noetherian condition.
• Quasi-coherent and coherent sheaves on a scheme.
• K-groups for a scheme: if X is a scheme, K′(X) is the Grothendieck group generated by the

isomorphism classes of coherent sheaves on X modulo short exact sequence. The K(X) is the
Grothendieck group generated by the isomorphism classes of locally free coherent sheaves on X
modulo short exact sequence.

• Pushforward and pullback: if f : X → Y is a morphism of schemes, then there is

f∗ : {abelian sheaves on X} → {abelian sheaves on Y }, F 7→ f∗F ,

with f∗F (V ) := F (f−1(V )). The f∗ maps OX -modules to OY -modules. There is also

f−1 : {abelian sheaves on Y } → {abelian sheaves on X},
which satisfies (f−1G )x = Gf(x) for x ∈ X. There is also

f∗ : OY -Mod→ OX -Mod, G 7→ f−1G ⊗f−1OY OX .

It satisfies (f∗G )x = Gf(x) ⊗OY,f(x) OX,x for x ∈ X. We have the following adjoint property: if
F and G are sheaves on X, Y , respectively, then there is a natural isomorphism

Hom(f−1G ,F ) ∼= Hom(G , f∗F ),

and if F and G are OX -module and OY -module, respectively, then there is a natural isomorphism

HomOX (f∗G ,F ) ∼= HomOY (G , f∗F ).

Question. Do they induce morphisms of K-groups?

The pullback f∗ induces K(Y )→ K(X), [F ] 7→ [f∗F ] by its behavior on stalks. However it does not
induce K′(Y ) → K′(X) unless OX is flat over f−1OY . In general the pushforward f∗ does not define
maps on K or K′. If f is an affine map, and is finite or proper, then f∗ induces maps on K and K′.

Exercise 10.1. Let U be an open subset of a scheme X, denote i : U ↪→ X the natural inclusion. Let
F be a coherent sheaf on U . Then there exists a coherent sheaf G on X such that i∗G = F .

10.1.3. Cohomology. We have two cohomology theories:

Absolute theory. Let X be a scheme. Then there is a series of functors

{quasi-coherent sheaves on X} → {H0(X,OX)-modules}, F 7→ Hi(X,F )

for i ≥ 0, which satisfies

• H0(X,F ) = Γ(X,F );
• if U is an affine scheme, f : U → X is a morphism, G is a quasi-coherent sheaf on U , then
Hi(X, f∗G ) = 0 for all i ≥ 1;

• short exact sequence of sheaves induces long exact sequence of cohomology groups (see Theorem
5.8(4)).

These properties uniquely determine these cohomology group functors.
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Relative theory. If f : X → Y is a morphism of schemes, then there is also a series of functors

{quasi-coherent sheaves on X} → {quasi-coherent sheaves on Y }, F 7→ Rif∗F ,

which can be defined by Rif∗F (U) := Hi(f−1(U),F ) for any affine open subset U of X. They satisfies

• R0f∗F = f∗F ;
• if f is an affine map, then Rif∗ = 0 for all i ≥ 1;
• short exact sequence of sheaves induces long exact sequence of cohomology objects, i.e. if 0 →

F1 → F2 → F3 → 0 is a short exact sequence of quasi-coherent sheaves over X, then for each
p ≥ 0, there is a natural (i.e. functorial) morphism Rpf∗F3 → Rp+1f∗F1 of sheaves, which fits
into the following natural (i.e. functorial) long exact sequences of cohomology objects:

0 // R0f∗F1
// R0f∗F2

// R0f∗F3

// R1f∗F1
// R1f∗F2

// R1f∗F3

// R2f∗F1
// R2f∗F2

// R2f∗F3
// · · · .

Again, these properties uniquely determine these functors.
The property of sheaf cohomology (Theorem 5.8) tells us that ifX and Y are Noetherian and separated,

then we have Rif∗ = 0 for i � 0. This means that under this situation, if for all coherent sheaf
F and all i ≥ 0, the Rif∗F is also a coherent sheaf, then we may define f∗ : K′(X) → K′(Y ) by
[F ] 7→ f∗[F ] :=

∑
i≥0(−1)i[Rif∗F ].

Remark 10.1. It’s tempted to define f∗ : K′(Y )→ K′(X) by [F ] 7→
∑
i≥0(−1)i[Torf−1OY (OX , f−1F )],

however, this is not a finite sum in general.

Note that if E is locally free, then f∗[f
∗E ⊗F ] = E ⊗ f∗[F ], hence f∗K′(X) is a K(Y )-submodule of

K′(Y ).

10.1.4. Projective scheme. Recall that if A is a graded ring, then it defines a scheme Proj(A) endowed
with a quasi-coherent sheaf O(1). If A is Noetherian, then O(1) is ample. If A and B are graded rings
such that (Proj(A),OProj(A)(1)) ∼= (Proj(B),OProj(B)(1)), then An ∼= Bn for n� 0.

Recall that we have constructed a functor

{graded A-module} → {quasi-coherent OX -module}, M 7→ M̃.

If A is Noetherian, M is a finite generated graded A-module, then M̃ = 0 if and only if Mn = 0 for
n� 0. On the other hand we have a functor

{quasi-coherent OX -module} → {graded A-module}, F 7→ Γ∗(X,F ) :=
⊕
n≥0

Γ(X,F (n)).

If F is a coherent sheaf, then Hi(X,F ) is a finitely generated H0(X,OX)-module for any i ≥ 0,
hence we may define K′(X) → K′(H0(X,OX)), [F ] 7→

∑
i≥0(−1)i[Hi(X,F )]. There exists some m

depending on X and F such that Hi(X,F (n)) = 0 for any i ≥ 1 and n ≥ m.

10.1.5. Curves. Let k be a field, K/k be a finitely generated field extension of transcendental degree 1
such that K⊗k k is still a field (or we say K is geometric integral over k). Then Ω1

K/k is a free K-module

of rank 1, and there exists t ∈ K which is transcendental over k, such that K/k(t) is a finite separated

algebraic extension. The P1
k has function field k(t), and we want to construct C

f−→ P1
k which has function

field K. It’s constructed by giving its affine cover, namely, C = Spec(A) ∪ Spec(B) where A and B are
integral closure of k[t] and k[t−1] in K, respectively. The C satisfies that

• C is smooth projective curve over k;
• the closed points of C corresponds to all k-valuations of K.

Recall that we have K(C) = K′(C)
(c0,c1)−−−−→∼= Z ⊕ Pic(C). There is a map deg : Div(C) → Z which

factors through Cl(C) ∼= Pic(C). Define the map χ : K′(C) → Z, [F ] 7→
∑
i≥0(−1)i dimkH

i(C,F ).
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Then the Riemann-Roch theorem says that the following diagram

K′(C)
(c0,c1)

∼=
//

χ
&&

Z⊕ Pic(C)

(1−g,deg)

��
Z

commutes. The kernel of the map deg : Pic(C)→ Z is denoted by Pic0(C) (and is represented by Jac(C)
the Jacobian of C). We define the genus g of C to be g = g(C) := dimkH

1(C,OC).
The Serre duality says that dimkH

1(C,Ω1
C/k) = 1 and for any coherent sheaf F on C, there is a

perfect pairing Hom(F ,Ω1
C/k) × H1(C,F ) → H1(C,Ω1

C/k). The key point of the proof is to consider

C
f−→ P1

k and construct a perfect pairing f∗OC × f∗Ω1
C/k → Ω1

P1
k/k

.

The Riemann-Roch theorem and Serre duality gives some other expressions on g.

10.2. Preliminaries to Grothendieck-Riemann-Roch theorem. This week we are going to in-
troduce Grothendieck-Riemann-Roch theorem. Reference: [2]. In the following a scheme is always
Noetherian, separated, finite type over a field k or Z.

Theorem 10.2. Let X be a Noetherian separated regular scheme. Then K(X) = K′(X).

Recall that a scheme is regular if for any x ∈ X we have dimkx mx/m
2
x = dim OX,x.

Proof. Let X =
⋃
i Ui be a cover of X by finitely many affine open subsets. We may assume that for

each i, the X \Ui is a union of codimension one integral subschemes (“effect Cartier divisor” Di). Let F
be a coherent sheaf on X. We only need to find a finite length resolution of F by locally free coherent
sheaves.

Let Ui = Spec(Ai) and let F |Ui = M̃i for some finitely generated Ai-module Mi. Let {mij}nii=1 be a set
of generators of Mi. We may write Ui = Xsi the non-zero locus of si for some si ∈ Γ(X,OX(Di)). Then

by Lemma 5.3, we may find a (common) `i � 0 such that s`ii mij extends to a section of F ⊗OX(`iDi)
for any 1 ≤ j ≤ ni. Therefore we defined a morphism OX(`iDi)

⊕ni → F which is surjective on Ui.
Hence we can define E0 :=

⊕
i OX(`iDi)

⊕ni with surjection E0 � F . Repeat this process on its kernel,
we obtain a resolution of F by locally free coherent sheaves

· · · → E2 → E1 → E0 → F → 0.

A theorem in commutative algebra tells us that ker(En−1 → En−2) is a locally free sheaf, here n = dimX.
Hence we can find a finite length resolution of F by locally free coherent sheaves. �

Let E be a locally free coherent sheaf of rank n+ 1 on X. Let Sym∗E :=
⊕

d≥0 SymdE be the sheaf

of symmetric algebra of E , which is a sheaf of graded OX -algebras on X. Define a scheme P(E ) :=
Proj(Sym∗E ) with a morphism π : P(E )→ X by the following way: if X =

⋃
i Ui is an affine open cover,

Ui = Spec(Ai), define Proj(Sym∗(E )(Ui))→ Ui (note that Sym∗(E )(Ui) is a graded ring with subring of
degree 0 equals Ai), and glue them together. For each d ∈ Z there is a sheaf OP(E )(d) on it, defined by
the glueing of O(d) on each Proj(Sym∗(E )(Ui)).

Remark 10.3. P(E ) is the moduli space of quotient line bundles of E .

Theorem 10.4. We have
(i) π∗[OP(E )(i)] = [SymiE ] for i ≥ 0,
(ii) π∗[OP(E )(i)] = 0 for −1− n < i < 0.

Daily Exercise 10.2. Prove it.

Exercise 10.3. Can you calculate π∗[OP(E )(i)] for i ≤ −1 − n? You may need to study relative Serre
duality.

11. Lecture 11, August 21

We usually write K(X) as K0(X), write K′(X) as K0(X), because “K(X) is contravariant” and “K′(X)
is covariant”.
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11.1. Preliminaries to Grothendieck-Riemann-Roch theorem (continued).

Theorem 11.1. Let X be a Noetherian scheme.
(1) Let i : Y ↪→ X be a closed subscheme, U := X \ Y , j : U ↪→ X be an open subscheme, then

K′(Y )
i∗−→ K′(X)

j∗−→ K′(U)→ 0

is exact.
(2) Let π : Y → X be an affine bundle (i.e. locally of form Spec(A[X1, · · · , Xn]) → Spec(A)), then

π∗ : K′(X)→ K′(Y ) is an isomorphism.

(3) Let P = P(E )
π−→ X be a projective bundle with rank E = n+ 1, then

n⊕
i=0

K′(X)→ K′(P ),

([Fi])
n
i=0 7→

n∑
i=0

[OP (i)] · π∗[Fi]

is an isomorphism.

Sketch of proof. (1) j∗ is surjective: note that coherent sheaf on U can be extended to coherent sheaf on
X by using Lemma 5.3. For the details, see first few pages of [2].

Im(i∗) ⊂ ker(j∗): trivial.
ker(j∗) ⊂ Im(i∗): if F is a coherent sheaf on X such that j∗[F ] = 0, i.e. [F |U ] = 0, then FU is

a finite sum of short exact sequences of sheaves on U , each of them can be extended to coherent sheaf
on X by using Lemma 5.3. More precisely, we can find coherent sheaves Ei,Fi,Gi on X with injective
morphisms Ei ↪→ Fi and surjective morphisms Fi � Gi, such that [F ] =

∑
i([Fi]− [Ei]− [Gi]) and such

that 0→ Ei|U → Fi|U → Gi|U → 0 is exact. Then we have [Fi]− [Ei]− [Gi] = [ker(Fi → Gi)/ Im(Ei →
Fi)] ∈ Im(i∗).

(2) We prove π∗ is surjective. By (1) and diagram chasing, we may assume X is affine and Y = AnX .
By induction, we may assume n = 1. By intersect all open subsets, we may assume X = Spec(A) for
A Artinian. Then A =

∏
η OX,η for η runs over generic points of X. Hence K′(Y ) =

∏
η K′(A1

kη
) =

Z[π∗OSpec(kη) | η ∈ X].
The injectivity of π∗ is easy when X = Spec(k) for a field k and Y = Ank . In the general case, it is a

consequence of (3).
(3) Surjectivity: similar to (2) we may assume X = Spec(k) for a field k and P = Pnk . Induction on

n. Note that j : Ank ↪→ Pnk is an open subscheme, with Pnk \ Ank = Pn−1
k

i
↪→ Pnk , hence by (1) we have

K′(Pn−1
k )

i∗−→ K′(Pnk )
j∗−→ K′(Ank )→ 0.

We have K′(Ank ) = K′(k) ∼= Z, and by the surjectivity of (2),

K′(Pnk ) = i∗K′(Pn−1
k ) + π∗K′(k).

By induction hypothesis,

K′(Pn−1
k ) =

n−1∑
d=0

Z · OPn−1
k

(d),

note that OPn−1
k

(d) = i∗OPnk (d), and 0 → OPnk (−1) → OPnk → i∗OPn−1
k
→ 0 with i∗OPn−1

k
= i∗i

∗OPnk , we

have

i∗K′(Pn−1
k ) =

n−1∑
d=0

Z · i∗i∗OPnk (d) =

n−1∑
d=0

Z · OPnk (d+ 1).

Injectivity: if ([Fi])
n
i=0 are not all zero such that

∑n
i=0[OP (i)] · π∗[Fi] = 0, let j be the maximal

integer such that [Fj ] 6= 0, taking π∗(− ⊗ OP (−j)) of this element, utilizing Theorem 10.4 we may
obtain a contradiction. �

11.2. Chow group. Let X be a Noetherian scheme of pure dimension n. For an integer p ≥ 0 let
Zp(X) be the free abelian group generated by all closed integral subscheme Y of X of dimension p. Let
Z∗(X) :=

⊕
p≥0 Zp(X). Note that such Y is determined by its generic point, hence Z∗(X) is also the

free abelian group generated by all the points of X.
If Y is a closed subscheme of X, with Y =

⋃
i Yi the irreducible components, let Yi,red ⊂ Yi be the

maximal reduced part of Yi, then Yi,red is a closed integral subscheme of X. Let ηi be the generic
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point of Yi, then OYi,ηi is an Artinian local ring with residue field kηi = k(Yi,red), and that the length
lengthkηi

OYi,ηi is finite. We define the class of Y in Z∗(X) to be

[Y ] :=
∑
i

lengthkηi
OYi,ηi · [Yi,red].

If Y is a closed integral subscheme of X, let η be the generic point of Y , then k(Y ) = OY,η = kη. For
a non-zero rational function f ∈ k(Y )×, define

div(f) :=
∑

Z⊂Y closed integral
subscheme of codimension 1

ordZ(f) · [Z],

where for f ∈ OY,ηZ \ {0} (note that OY,ηZ is of dimension 1), define ordZ(f) := lengthkηZ
OY,ηZ/(f).

Exercise 11.1. The definition of ordZ can be extended to non-zero elements of k(Y ) = Frac(OY,ηZ ),
and which is well-defined.

Let Z ′∗(X) ⊂ Z∗(X) be the subgroup generated by all such div(f). The elements of it are called
“rational equivalent to zero”. Define the Chow group CH∗(X) := Z∗(X)/Z ′∗(X).

If f : X → Y is a proper morphism, then we can define f∗ : CH∗(X)→ CH∗(Y ) by

f∗[Z] :=

{
0, if dim f(Z) < dimZ,

[k(Z) : k(f(Z))] · [f(Z)], if dim f(Z) = dimZ.

If f is a flat morphism, then we can define f∗ : CH∗(Y )→ CH∗(X) by f∗[Z] := [f−1(Z)]. If X is regular
then we have intersection theory on CH∗(X).

11.3. Chern class for line bundle. Let L be a line bundle on X. Then for each p, we can define the

first Chern chass to be a map c1(L ) : CHp(X) → CHp−1(X), [Z] 7→ [div(`)], where Z
i
↪→ X is a closed

integral subscheme of X and ` is any non-zero rational section of i∗LηZ .
The Chern class has the following properties:

• Projection formula: if f : X → Y is proper, L is a line bundle on Y , then f∗(c1(f∗L )(α)) =
c1(L )(f∗(α)).

• If L and L ′ are line bundles on X, then c1(L ) ◦ c1(L ′) = c1(L ′) ◦ c1(L ).

The Chow group has the properties similar to K′-group (Theorem 11.1):

Theorem 11.2. Let X be a Noetherian scheme.
(1) Let i : Y ↪→ X be a closed subscheme, U := X \ Y , j : U ↪→ X be an open subscheme, then

CH∗(Y )
i∗−→ CH∗(X)

j∗−→ CH∗(U)→ 0

is exact.
(2) Let π : Y → X be an affine bundle of relative dimension n, then for each p, π∗ : CHp(X) →

CHp+n(Y ) is an isomorphism.

(3) Let P = P(E )
π−→ X be a projective bundle with rank E = n+ 1, then

n⊕
i=0

CH∗(X)→ CH∗(P ),

(αi)
n
i=0 7→

n∑
i=0

c1(OP (1))i(π∗(αi))

is an isomorphism.

12. Lecture 12, August 22

The goal of this talk is

• Chern classes for vector bundles
• CH∗(X) as a K(X)-module
• define CH∗(X) := K(X)[X] as a ring, if X is regular then CH∗(X) is a CH∗(X)-module
• CH∗(X)⊗Q ∼= K(X)⊗Q
• Grothendieck-Riemann-Roch
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12.1. Chern classes for a vector bundle. Let E be a vector bundle on X of rank n, and P(E )
π−→ X

be the corresponding projective bundle of relative dimension n− 1, endowed with O(1) := OP(E )(1).

Recall that CH∗(P(E )) =
⊕n−1

i=0 c1(O(1))i(π∗ CH∗(X)). Hence for an element α ∈ CH∗(X), we

have c1(O(1))n(π∗(α)) =
∑n−1
i=0 (−1)ic1(O(1))n−1−i(π∗(αi+1)) for unique α1, · · · , αn ∈ CH∗(X). For

each p and 1 ≤ i ≤ n, we define the map ci(E ) : CHp(X) → CHp−i(X) by α 7→ αi, and define
c(E )[t] := tn +

∑n
i=1(−1)ici(E )tn−i ∈ End(CH∗(X))[t]. We have c(E )[c1(O(1))] = 0, namely, c(E )[t] is

the characteristic polynomial of c1(O(1)) acting on CH∗(P(E )).

Theorem 12.1. If 0 → E1 → E2 → E3 → 0 is a short exact sequence of vector bundles on X, then
c(E2)[t] = c(E1)[t] · c(E3)[t].

Corollary 12.2. If 0 = En ⊂ En−1 ⊂ · · · ⊂ E0 = E is a filtration of E such that Ei/Ei+1 is line bundle

for every i, then c(E )[t] =
∏n−1
i=0 (t− c1(Ei/Ei+1)).

Remark 12.3. In fact these two results are equivalent. Firstly, for a vector bundle E on X of rank
n, we can define the flag variety Flag(E ) which classifies the filtrations of E . It is constructed by

the following way: construct the projective bundle P(E )
π−→ X, then there is a surjective morphism of

sheaves π∗E � OP(E )(1) on P(E ) whose kernel is a vector bundle of rank n − 1; repeat this process
on its kernel, then the rank of the bundle decreases, finally we obtain Flag(E ) → X which is a flat
morphism. The pullback of E to Flag(E ) has universal filtration. Therefore we consider the flat morphism
f : Flag(E1) × Flag(E3) → X, which induces f∗ : CH∗(X) ↪→ CH∗(Flag(E1) × Flag(E3)), then the
pullback of E1 and E3 have filtrations, hence the pullback of E2 also have filtration. This technique is
called “splitting principle”.

In particular, if E =
⊕n

i=1 Li is a direct sum of line bundles, then c(E )[t] =
∏n
i=1(t− c1(Li)), hence

cd(E ) =
∑

1≤i1<···<id≤n
∏d
j=1 c1(Lij ).

12.2. Chern character. We define a ring homomorphism

ch : K(X)→ End(CH∗(X))⊗Q,
which is contravariant in X, such that if E has a filtration 0 = En ⊂ En−1 ⊂ · · · ⊂ E0 = E of line bundles,
then

ch(E ) :=

n−1∑
i=0

exp(c1(Ei/Ei+1)).

Note that the right hand side is symmetric in i, hence the ch(E ) can be expressed by cd(E ) for d ≥ 1.

Theorem 12.4. If X is regular and is of finite type over a field or Z, then there is an isomorphism

K(X)⊗Q ch−→∼= CH∗(X)⊗Q,

[F ] 7→ ch([F ])([X]).

12.3. Todd class. We define the Todd class

Td : K(X)→ End(CH∗(X))⊗Q,

[E ] 7→
n∏
i=1

c1(Li)

1− exp(−c1(Li))
, if [E ] =

n∑
i=1

[Li].

12.4. Grothendieck-Riemann-Roch theorem.

Theorem 12.5 (Grothendieck-Riemann-Roch). Let f : X → Y be a smooth projective morphism of
regular schemes. Then for any α ∈ K(X), f∗(ch(α) Td(TX/Y )) = ch(f∗(α)).

Here TX/Y is the relative tangent bundle, namely, TX/Y = (Ω1
X/Y )∨. If both of X and Y are varieties

over a field k, then 0→ TX/Y → TX → f∗TY → 0 exact.

Example 12.6. Let X be a smooth projective curve over k and let Y = Spec(k). then we have ch(E ) =
rank E + c1(E ) and Td(TX/Y ) = 1 + c1(TX/Y )/2 = 1− c1(Ω1

X/k)/2. Hence

f∗(ch(E ) Td(TX/Y )) = f∗([rank E + c1(E )] · [1− c1(Ω1
X/k)/2]) = − rank E

2
deg Ω1

X/k + deg E ,

ch(f∗E ) = dimkH
0(X,E )− dimkH

1(X,E ),

which recovers Riemann-Roch theorem on curves.
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Remark 12.7. We have Td(TX) = f∗Td(TY ) · Td(TX/Y ), therefore the Grothendieck-Riemann-Roch
theorem can be rewritten as f∗(ch(α) Td(TX)) = ch(f∗α) · Td(TY ), which is more symmetric and is
Grothendieck’s original formulation. This also means the following diagram commutes:

K(X)⊗Q ch
∼=
//

f∗

��

CH∗(X)⊗Q
Td(TX)// CH∗(X)⊗Q

f∗

��
K(Y )⊗Q ch

∼=
// CH∗(Y )⊗Q

Td(TY )// CH∗(Y )⊗Q.

Remark 12.8. When X is a smooth projective variety over k and Y = Spec(k), this is Hirzebruch-
Riemann-Roch theorem.

Idea of proof of Theorem 12.5. Note that if Grothendieck-Riemann-Roch theorem holds for f and g, then
it also holds for g ◦ f . Utilizing normal cone construction, we can reduce it to the case that X = P(E )
with E a vector bundle on Y of rank 2, hence f : X → Y is of relative dimension 1. In this case we have

K(X) = K(Y ) + K(Y )[O(−1)],

CH∗(X) = CH∗(Y ) + c1(O(−1)) CH∗(Y ).

The X is the moduli space of quotient bundles of E of rank 1, and the tangent space TX/Y classifies
the deformation of 0 → E1 → E → E /E1 → 0. We have 0 → OX → f∗E ∨(1) → TX/Y → 0, hence
TX/Y = (f∗ det E )∨(2). Now the Grothendieck-Riemann-Roch theorem can be checked in this case by
explicit computation. �
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