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In the later half of this course, we will mainly study quadratic fields and cyclotomic fields. For
quadratic fields, we will introduce Gauss’ reduction theory of quadratic forms to study ideal class groups
and unit group; and use Eisenstein series to give meromorphic continuation of Dedekind zeta functions
and residue formula; and complex multiplication gives the explicit construction of class fields of imaginary
quadratic fields. For cyclotomic field, we introduce Stickelberger’ s theorem and Thaine’s theorem, and
the proof of Catalan’s conjecture as an application.

For a quadratic field K of fundamental discriminant D, let χD =
(
D
·
)

: (Z/DZ)× −→ {±1} be the
associated quadratic character of conductor |D|. Sometime we also write ClD, hD, εD for the ideal class
group ClK , ideal class number hK , and fundamental units εK (when D > 0).
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1. Lecture I: The equation y2 + 14 = x3

We review what we have studied in the last two weeks via the following Diophantine equation

y2 + 14 = x3, with x, y ∈ Z.

Let K = Q(
√
−14) and O = Z[

√
−14] its ring of integers. The equation factors as an equality of ideals

of O
(y +

√
−14)(y −

√
−14) = (x)3.

We claim that the principal ideals of O
(y +

√
−14), (y −

√
−14)

must be co-prime. Otherwise, let p be a common prime divisor. Then y ±
√
−14 ∈ p and therefore

2
√
−14 ∈ p, p|2 or 7. On the other hand, p|(y +

√
−14) implies that Np|y2 + 14 so that p is coprime to

2, 7 since 2, 7 - y. It is now a contradiction. It follows that

(y +
√
−14) = a3

for some ideal a of O. But the ideal class number of K is 4, then a itself is a principal. Moreover
O× = {±1}, so the element y +

√
−14 is a cubic of an element in O, say

y +
√
−14 = (a+

√
−14b)3, for some a, b ∈ Z.

It follows that 1 = 3a2b− 14b3 = b(3a2 − 14b2), and then b = ±1 and 3a2 = 15, 13. It is impossible.

Summary. For any number field K, the following exact sequence is fundamental

1 −→ O×K −→ K× −→ IK −→ Cl(K) −→ 0,
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where IK is the group of non-zero fractional ideals of K, which is free abelian group with bases all
non-zero prime ideals; the unit group O×K is a finitely generated abelian group of rank r1 + r2 − 1; and
the ideal class group Cl(K) is a finite abelian group. (These invariants are useful for some Diophantine
equations; The relation of ideal class number and L-values is given by the class number formula, which
is useful for many questions:

Res
s=1

ζK(s) =
2r1(2π)r2hKRK

wK
√
|dK |

.

when K/Q is Galois sometime we even need to know the Gal(K/Q)-module structure of Cl(K) and O×K .
A typical example is the proof of Catalan’s conjecture. Let’s recall the proof of finiteness of ideal class
number and discuss ideal class number of imaginary quadratic field.

Let K be a number field. Note that for any M ≥ 1, there exist only finite many integral ideals of OK
with norm bounded by M . Thus enough to show exists a constant MK only depends on K such that
for any fractional ideal a, exists α ∈ a such that |N(α)| ≤ MKN(a), i.e. N(αa−1) < MK . Consider the
embedding

K −→ Rr1 × Cr2 ∼= Rn, n = [K : Q]

Here the last isomorphism is given by maps z = x + yi ∈ C to (x, y) ∈ R2. A fractional ideal a can be
viewed as a lattice in Rn. Consider the following centrally symmetric convex connected region

St =
{

(x, z) ∈ Rr1 × Cr2
∣∣∣ r1∑
i=1

|xi|+
r2∑
j=1

2|zj | ≤ t
}
.

If Vol(St) = 2nVol(Rn/a) (or equivalently tnVol(S1) = 2nVol(Rn/OK)N(a)), then St contains a non-zero
α ∈ a (one may think to choose other symmetric domain) so that

|N(α)| ≤
(
t

n

)n
=

2nVol(Rn/OK)

nnVol(S1)
·Na.

Thus we obtain a desired constant

MK =
2nVol(Rn/OK)

nnVol(S1)
.

For K imaginary quadratic field with discriminant dK (so that OK has a Z-basis 1, (dK +
√
dK)/2 in C

and thus (1, 0), (dK/2,
√
|dK |/2) in R2), we have

Vol(S1) =
π

4
, Vol(R2/OK) =

√
|dK |/2, MK =

2

π

√
|dK |.

Thus for an imaginary quadratic field K, ClK consists of ideal classes of integral ideals a ⊂ OK with
N(a) ≤ 2

π

√
|dK |. Example, for K = Q(

√
−14), we have MK < 5 and therefore one can find that the

ideal class of p = (3, 1 +
√
−14) is of order 4 and generates ClK . In general, one can show that

MK = =
n!(4/π)r2

nn
·
√
|dK |.

Proposition 1.1. Let D < 0 be a fundamental discriminant of an imaginary quadratic field K. Then

ax2 + bxy + cy2 ! τ =
−b+

√
D

2a
!

(
a, (b+

√
D)/2

)
induces a bijection among

(1) SL2(Z)-equivalence classes of primitive positive definite quadratic forms of discriminant D;
(2) imaginary quadratic points in fundamental domain of H by SL2(Z) with minimal integral poly-

nomial with discriminant D.
(3) the ideal class group of K;

Moreover, in (1) any integral primitive definite positive binary quadratic form of discriminant D is
SL2(Z)-equivalent (or properly equivalent) to a unique reduced form ax2 + bxy + cy2 in the sense

|b| ≤ a ≤ c, and b ≥ 0 if either a = |b| or a = c.

In (2), any quadratic number τ in the upper plane H with discriminant D is SL2(Z)-equivalent to a
unique point in the domain F :

Re(τ) ∈ (−1/2, 1/2], |τ | ≥ 1, if |τ | = 1 then Re(τ) ≥ 0.

The above correspondence maps reduced forms to quadratic points in the fundamental domain F .
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Remark. Note that b2 + |D| = 4ac ≥ 4b2. Thus 3b2 ≤ |D|. This shows that the number of reduced
forms and therefore ideal class number is finite. It gives rise to another proof of finiteness of ideal class
number for imaginary quadratic fields.

Example. Let D = −56, then the corresponding (reduced) quadratic forms are

x2 + 14y2; 2x2 + 7y2; 3x2 ± 2xy + 5y2.

The corresponding quadratic points in F are
√
−14,

√
−14/2, (±1 +

√
−14)/3 and corresponding ideals

are

OK , (2,
√
−14), (3,±1 +

√
−14).

Let H denote the upper half plane. Prove that the Eisenstein series defined by

E(z, s) = π−sΓ(s) · 1

2

∑
(m,n)6=(0,0)

ys

|mz + n|2s
, z = x+ iy ∈ H

is absolutely convergent if Re(s) > 1, has meromorphic continuation to the whole s-plane; it is analytic
except at s = 0, 1 where it has simple poles. The residue Ress=1E(z, s) = 1

2 independent of z. The
Eisenstein series satisfies the functional equation

E(z, s) = E(z, 1− s).

Moreover, E(x+ iy, s) = O(yσ) as y →∞ where σ = max(Re(s), 1− Re(s)). The function E(z, s) in z
is automorphic i.e.

E(γz, s) = E(z, s), ∀γ ∈ SL2(Z).

Let D < 0 be a fundamental discriminant of an imaginary quadratic field K and wK the number of roots
of unity in K. Then we have(√

|D|
2π

)s
Γ(s)ζK(s) =

2

wK
·

∑
b2−4ac=D,

−a<b≤a≤c or 0<b≤a=c

E

(
−b+

√
D

2a
, s

)
.

Compare residues at s = 1 on both sides, we have

Theorem 1.2 (Dirichlet). Let K be an imaginary quadratic field. Then we have that

Res
s=1

ζK(s) =
2π

wK
√
|dK |

· hK .

Exercise. 1. Daniel Bump, Automorphic Forms and Representations, Chapter 1, §6 Ex 1.6.1-1.6.2. and
prove the equality above between sum of evaluations of E(z, s) at quadratic points and ζK(s).

2. Let χK be the quadratic character modulo |dK | such that χK(p) = 1 (resp −1) iff p is split (resp.
inert) over K. Recall that

ζ(s) =

∞∑
n=1

n−s, ζK(s) =
∑

06=a⊂OK

Na−s, L(χK , s) =

∞∑
n=1

χK(n)n−s.

Then ζK(s) = ζ(s)L(χK , s) and Ress=1 ζK(s) = L(χK , 1). Deduce that for imaginary quadratic field K
of discriminant D and ideal class number hK (or denoted as hD). We have

hK =
wK

2(2− χ(2))
·

∑
1≤a<|D|/2

χ(a).

Using this formula compute the ideal class number of Q(
√
−14). Let p ≡ 3 mod 4 be a prime. Prove

that there are more quadratic residue more than non-residue in the interval (0, p/2).
3. Let K = Q(

√
−17). Compute the ideal class number using (i) Minkowski constant MK ; (ii) Gauss’

reduced forms; (iii) Dirichlet’s class number formula above. Moreover, find the Hilbert class field of K.

Based on Dirichlet formula, we have

Theorem 1.3 (Siegel). For any ε > 0, hD � |D|1/2−ε.

In particular, for any given h ∈ Z≥1, there are only finitely many imaginary quadratic fields with ideal
class number h. A problem is that the constant in the above estimation is not effective, how can one
determines those field? D. Goldfeld solved this problem.
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2. Lecture II-III: Primes of form p = x2 + ny2 and Class Field Theory

Now we consider the second question. It is clear that 2, 7 is not form x2 + 14y2. Let p - 14 be a prime
of form p = x2 + 14y2. Then p - xy, and therefore −14 is a quadratic residue modulo p; equivalently, p
is complete split in K = Q(

√
−14). Furthermore,

p = x2 + 14y2 = (x+
√
−14y)(x−

√
−14y)

implies the two (distinct) prime ideals of K above p are principal, generated by x ±
√
−14y. How to

describe principal ideal of K? there is a way through class field theory (Important things should be
repeated three times (30 times)).

Remark. We make a remark on Galois Group of Number Field Extension. Let L/K be a finite Galois
extension of number fields. How to describe the elements in its Galois group Gal(L/K)? There are two
ways.

• Explicit way: The L must be a splitting field of a polynomial f over K. Thus the Galois group
Gal(L/K) can be realized as a subgroup of the permutation group of the roots of f ;

• For each primes P|p of L/K unramified, FrobL/K(P) ∈ Gal(L/K) is the unique element fixing
P and induces the Frobenius morphism in the Galois of residue field extension k(P)/k(p). For
any σ ∈ Gal(L/K), we have

σ · FrobL/K(P) · σ−1 = FrobL/K(σP).

Thus, the prime p of K defines a conjugacy class of Gal(L/K), denoted by FrobL/K(p). For a
given conjugacy class C of G = Gal(L/K), the density of prime ideals p of K with FrobL/K(p) =
C is |C|/|G|. When L/K is abelian, then FrobL/K(P) only dependents on p, and is also denoted
by FrobL/K(p).

Recall that we say a finite Galois extension L/K is unramified at a prime ideal p of K (resp. a real
embedding σ, also called a real place) if the ramification index of any prime P of L above p is one (resp.
any extension of σ to L is still real). If L/K is unramified at all prime ideals of K and all real embeddings,

then we call L/K is an unramified extension or unramified everywhere. Example, Q(
√
−3, i)/Q(

√
3) is

ramified at the real places.

Theorem 2.1. Let K be a number field. There is a finite Galois extension H of K such that

• H is an unramified (including ∞) abelian extension of K;
• any unramified abelian extension of K lies in H.

The field H (called the Hilbert class field of K) is the maximal unramified abelian extension of K and is
clearly unique. Moreover, the group homomorphism

IK −→ Gal(H/K), p 7→ FrobH/K(p)

is surjective with kernel PK . Thus it induces an isomorphism, called Artin map,

Art : ClK
∼−→ Gal(H/K).

In particular, a prime p of K is principal iff p is completely split over H.

For the number field K = Q(
√
−14), we have seen that Cl(K) ∼= Z/4Z. The genus field of K is

L := K(
√
−7) = K(

√
2) (i.e. the one contained in H and abelian over Q), and therefore H = L(α);

one may choose α =
√
u and u ∈ L ∩ R = Q(

√
2) and then one can show that u = 2

√
2− 1 is a desired

one. The minimal polynomial of α over K (and also over Q) is X4 + 2X2 − 7 = 0, which discriminant
disc(α) = −NH/Kf

′(α) = −7 · 214 only has prime factors 2 and 7; thus for any prime p - 14 of K, p is
complete split over HK iff

X4 + 2X2 − 7 ≡ 0 mod p

has a solution (and then all solutions) over OK . If pO = pp is split in K/Q, then OK/p ∼= Z/pZ and it
is equivalent to require

X4 + 2X2 − 7 ≡ 0 mod p

has a solution in Z. Now we conclude that

• A prime p has form p = x2 + 14y2 iff p completely splits over HK with K = Q(
√
−14); By

density theorem (which we will state later), we also know that primes of form x2 + 14y2 has
density 1/8 = 1/|Gal(HK/K)|.
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• A prime p has form p = x2 + 14y2 iff
(
−14
p

)
= 1 and X4 + 2x2 − 7 ≡ 0 mod p has an integral

solution a ∈ Z. (For a given prime p, how to determine whether this condition holds? It relates
to the question: determine the solvability of x2 ≡ a modp and actually find a solution in Fp).

Remark. Starting with the CFT isomorphism, A. Smith showed that for any finite abelian group A of
cardinality power of 2, imaginary quadratic fields K with ClK [2∞] ∼= A has positive density according
to discriminants.

Exercise. Can you find infinitely many abelian extensions L over K with Gal(L/K) ∼= Z/4Z?

Exercise. Let L be s splitting field over Q of the polynomial x5−x+ 1. Show that L contains a unique
real quadratic field F = Q(

√
19 · 151) and L/F is Galois extension of Galois group A5 and unramified

everywhere.

How about replacing 14 by general positive integer n and consider primes of form x2 + ny2? The
decomposition

p = (x+
√
−ny)(x−

√
−ny)

show that p splits in K = Q(
√
−n) and the primes p of K above p is principal with generator of form

α = x+
√
−ny ∈ OK ; If write −4n = dKf

2, then

α ≡ a mod fOK
with some a ∈ Z. Thus p completely split over HK is just a necessary condition. We are looking for a
larger class field related to the above condition.

Let L/K be a Galois extension of number fields with Galois group G. Let p be a non-zero prime
of K. Then G acts transitively on the finite set Σ = {P1, · · · ,Pg} of primes of L above p, i.e. with
Pi ∩ OK = p. Let P = Pi ∈ Σ.

• DP = {σ ∈ G| σ(P) = P} is a subgroup of G, called the decomposition group of P; There is a
natural group homomorphism

DP −→ Gal

(
k(P)

k(p)

)
is surjective; denote by IP its kernel. Then P/p is unramified iff IP = 1, and iff p - discL/K .
In this case, the homomorphism is an isomorphism. For any prime p unramified over L, let
FrobL/K(P) ∈ DP denote the element mapping to the Frobenius in the Galois group of residue
field extension under this isomorphism. If FrobL/K(P) = 1, then p is completely split over L,
i.e. pOL = P1 · · ·Pg with g = [L : K].

• For any σ ∈ G, DσP = σDPσ
−1 and moreover, FrobL/K(σP) = σFrobL/KPσ−1. Let FrL/K(p)

denote its conjugacy class. Let S denote the finite set of primes ramified over L (equivalently,
p|discL/K) and P(S) the set of non-zero prime ideals not in S. Thus we have a map

P(S) −→ Gal(L/K)/ ∼, p 7→ FrobL/K(p)

Here ∼ means conjugacy equivalence.

Theorem 2.2. Let C be a conjugacy class of G, then the subset of P(S) of prime ideals p with
FrobL/K(p) = C has density |C|/|G|.

Corollary 2.3. Suppose Li ⊂ K, i = 1, 2 are two finite Galois extension of number field K and
let Σi be the set of primes of K completely split in Li. If there exists a finite set S of primes of
K such that Σ1 \ S = Σ2 \ S, then L1 = L2.

When L/K is finite abelian. Let IK(S) be the group of fractional ideals generated by primes
coprime to S. Then the above map induces a group homomorphism (called Artin map)

Art : IK(S) −→ Gal(L/K),
∏
i

pnii 7→
∏
i

FrobHm/K(pi)
ni .

• Let mf be an integral ideal of K, m∞ a set of some real embeddings of K, and write m = mfm∞.
Let Im denote the group of fraction ideals whose support disjoint from mf and let Pm ⊂ Im the
subgroup of principal ideals (α) with generator α ≡ 1 mod mf (i..e for any p|mf , vp(α − 1) ≥
vp(mf ) and σ(α) > 0 for any σ ∈ m∞. We call ClK,m := Im/Pm the generalized ideal class group
modulo m. When m = 1, ClK,m is the ideal class group ClK of K. The generalized ideal class
group is finite abelian group.
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Denote K×mf the subgroup of K× which is units at mf and K×m,1 the subgroup of Km that

congruent to 1 modulo m (so that under σ ∈ m∞ is positive). Then we have the following exact
sequence

0→ O×K/O
×
K ∩K

×
m,1 → K×mf /K

×
m,1 → ClK,m → Cl(K)→ 1.

In particular, #ClK,m is finite. We also have a canonical isomorphism

K×m/K
×
m,1 ' {±1}#m∞ × (OK/mf )×.

• The maximal abelian extension HK over K is finite over K, and moreover, the Artin map induces
an isomorphism ClK

∼−→ Gal(HK/K). Together with Galois theory, it gives a bijection between
subgroup of IK containing PK and the subfields of HK (i.e. all unramified abelian extensions
over K). In general, we have

Theorem 2.4 (Class Field Theory). For a given m = mfm∞, there exists a unique finite abelian
extension Hm (unramified outside m) such that the Artin map, which is surjective,

Art : Im −→ Gal(Hm/K),
∏
i

pnii 7→
∏
i

FrobHm/K(pi)
ni

has kernel exactly Pm. The induced isomorphism Im/Pm
∼= Gal(Hm/K) and Galois theory gives

rise to a bijection between subgroups Q: Pm ⊂ Q ⊂ Im and subfields L: K ⊂ L ⊂ Hm so
that Q = PmNL/K(Im(L)) and Im/PmNL/KIm(L) ∼= Gal(L/K) under Artin map. If m|m′, then
Hm ⊂ Hm′ .

Any finite abelian extension L over K is contained in some Hm. The maximal such m is called
the conductor of L, denoted by fL/K . We have that p|fL/K iff p is ramified over L. (Note that
not all m can be conductor).

A congruence subgroup Q (over K) modulo m is a subgroup of Im containing Pm. Call
congruence subgroups Qi modulo mi are equivalent if there exists m divisible by mi, i = 1, 2 such
that Im ∩Q1 = Im ∩Q2 (so that if we call the intersection Q then Im1

/Q1
∼= Im/Q ∼= Im2

/Q2).
Denote by [Q] the equivalence class of Q. There are one-to-one correspondence between finite
abelian extensions L over K and congruence subgroup classes [Q] over K.

It will be very convenient if use adéliclanguage. Note that let Um ⊂ A×K be the modulo m

congruence subgroup, then there is a canonical isomorphism A×K/K×Um onto Im/Pm. There is a
one-to-one correspondence between finite abelian extensions over K and idéle class groups over
K.

• Let L ⊂ Hm be an abelian extension over K corresponding to group Q : Pm ⊂ Q ⊂ Im so that
the Artin morphism

Im/Q
∼−→ Gal(L/K).

Then for any σ ∈ Aut(L), we the commutative diagram

Im/Q
∼−→ Gal(L/K)

↓ ↓
σ(Im)/σ(Q)

∼−→ Gal(σ(L)/σ(K))

Exercise. 1. Taking m = 1, then Hm = HK is the Hilbert class field and the norm of any ideal of Hm to
K is principal. What is H(2) for K = Q? Recall Kronecker-Weber theorem: any finite abelian extension
over Q is contained in a cyclotomic field Q(ζN ).

2. Do you think the following statement is the essential part of CFT: For a divisor m = m0m∞ of K,
there exists a unique finite abelian extension L (denoted by Hm) over K such that for any prime ideal
p - m0, p completely splits over L iff p ∈ Pm. Moreover, the maximal abelian extension Kab over K is
union of all Hm’s.

3. If one is interested in which integers have form x2 + ny2, note that

(x1 +
√
−ny1)(x2 +

√
−ny2) = (x1x2 − ny1y2) +

√
−n(x1y2 + x2y1).

Therefore if a, b have such form, then so is ab. But the converse is false in general (What is the condition
on n such that the converse is true?)

Recall our question. For a given positive integer n, which primes p can be expressed in the form
p = x2 + ny2 with x, y integers? For primes p - 4n, if there exist x, y ∈ Z such that p = x2 + ny2. Then
p - x, y and therefore

−ny2 ≡ x2 mod p.
6



It follows that −n is a non-zero residue square modulo p, or equivalently by quadratic reciprocity law, p
is split in the field K = Q(

√
−n). Not only this, but

p = (x+
√
−ny)(x−

√
−ny),

any prime p|p of K is also a principal ideal. By the class field theory

Cl(K) −→ Gal(HK/K),

the prime p must be completely split over HK . It should not be sufficient in general. If replace n by nd2

with d non-zero integer, the field K,HK does not change, but the condition becomes more restricted.
Taking primes p - 14, there exist infinitely many prime p = 15, 127, · · · such that

p = x2 + 14 · y2; p 6= x2 + 56 · y2.

In fact, the prime ideal p|p is not only principal, but if we write −4n = c2dK with dK the fundamental
discriminant of K, then 2|dKc and

x+ y
√
−n ≡ x− y · (dKc/2) mod c, c = cOK .

Let Ic denote the group of non-zero fractional ideals of K with support disjoint from c, and let Pc,Z be
its subgroup of principal ideals (α) ∈ Ic such that α ≡ a mod cOK for some integer a ∈ Z (prime to c).
The Class field theory tell us that there exists a unique abelian extension L over K, unramified outside
c and containing the Hilbert class field HK of K, such that the Artin morphism

Ic −→ Gal(L/K),

induces an isomorphism Ic/Pc,Z(f) −→ Gal(L/K). Moreover, L is Galois over Q with generalized
dihedral Galois group. Such field is called a ring class field over K of conductor c (Its CFT conductor
may not be c := cOK). It is clear that p|p is completely split over L. It follows from the above
isomorphism, for primes p - 4n, if p completely split over L, then a prime ideal p|p of K is generated by
an element of form x+ y

√
−n, thus p = x2 + ny2.

Theorem 2.5. The ring class field L over K of conductor c (so that −4n = dKc
2) is the unique number

field L Galois over Q such that

{p | p completely split over L} = {p | p - 4n, p = x2 + ny2}.
Proof. We only need to show L is Galois over Q and the complex conjugation τ acts on Gal(L/K) via
inverse. It is easy to see that for any σ ∈ Aut(L), σ(Ic) = Ic and σ(Pc,Z) = Pc,Z. Thus σ(L) = L and
thus L is Galois over Q. Moreover,

τFrobL/K(p)τ = FrobL/K(p),

but pp ∈ Pc,Z. Thus Gal(L/Q) is a generalized dihedral group. �

Exercise: 1. Let Oc = Z + cOK . Then Oc is an order of K. Show that Pic(Oc) ∼= Ic/Pc,Z. Moreover,

h(Oc)/h(OK) =
c

[O×K : O×]
·
∏
p|c

(1− ηK(p)p−1).

2. Ray class group and ring class group: Let L be the ring class field of conductor c over K and f ⊂ OK
its class field conductor. Then we have

f =


OK , if K = Q(i) and c = 2, or K = Q(

√
−3) and c = 2, 3,

c/2 · OK , if 2‖c and 2 splits completely in K,

c · OK , otherwise.

Note that HdKc22
⊂ HdKc21

does not imply c2|c1.

We also denote the ring class field over K of conductor c by HO = HdKc2 with O = Z + cOK . Now
one can ask if there is a way to construct HO explicitly?

Theorem 2.6. Let O = Oc be the order of conductor c (and thus discriminant dKc
2). Then the field L

is generated over K by the real number j(O). Let a1, ·, fah, h = #Pic(O), be ideal class representatives.
Then

HO(X) =

h∏
i=1

(X − j(ai)) ∈ Z[X]

is the minimal polynomial of j(O). Moreover, there is an algorithm for computing the class equation
HO(X).
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Note that for p - 4n, if p|discH−4n(X), then (−4n/p) 6= 1 by During’s result on prime divisors of the
difference of two singular moduli (Gross-Zagier’s work further determines exactly which primes divide
such a difference). Thus we have

Theorem 2.7. Let n be a positive integer. There is a monic irreducible polynomial fn(X) of degree

h(−4n) such that for all primes p - 4n, p = x2 + ny2 iff
(
−n
p

)
= 1 and fn(x) = 0 mod p has an integer

solution. Furthermore, there is an algorithm for finding fn(X).

Proof. Take fn(X) = HO(X). �

3. Lecture IV: Archimedes’ Cattle Problem and Pell’s equation

One main result of this section is

Theorem 3.1. Let K be a real quadratic field of discriminant D and fundamental unit ε. Then we have

Res
s=1

ζK(s) =
2hK log ε

|
√
D|

.

Consider the equation: x2 − 14y2 = ±1 with x, y ∈ Z. It is clear that the set of solutions to this
equation has a bijection to O×K for K = Q(

√
14). We have continued fraction of 3 +

√
14 = [6, 1, 2, 1]

with minimal period 4, so that [3, 1, 2, 1] = 15/4 is fair approximates to
√

14 and gives the generator of

O×K/ ± 1, i.e. 15 + 4
√

14. In fact for any real quadratic field K, O×K ∼= {±1} × Z. Thus there exists a

unique unit ε > 1, called the fundamental unit, generates O×K/± 1 and log ε is called the regulator of K.

Theorem 3.2. Let D ≡ 0, 1 mod 4 be a positive non-square integer. For ax2−bx+c ∈ Z[x] a primitive
form with discriminant D, the following conditions (called reduced) are equivalent

• 0 <
√
D − b < 2a <

√
D + b,

• it has roots ξ > 1 and ξ′ ∈ (−1, 0),
• the continued fraction of ξ is periodic,say ξ = [u0, · · · , u`−1].

For example, ξ =
√
d+ [

√
d] if D = 4d and (1 +

√
D)/4 + [(−1 +

√
D)/4] if d ≡ 1 mod 4. Define(

p−1 p−2

q−1 q−2

)
=

(
1 0
0 1

)
,

(
pj−1 pj−2

qj−1 qj−2

)
=

(
u0 1
1 0

)(
u1 1
1 0

)
· · ·
(
uj−1 1

1 0

)
,∀j ≥ 1.

Then fundamental unit ε = x1+y1
√
D

2 is equal to

ε = ξq`−1 + q`−2.

Moreover, εε′ = (−1)`, i.e. x2
1 −Dy2

1 = (−1)`4. The field Q(
√
D) has units of norm −1 iff ` is odd.

Two reduced quadratic numbers of discriminant D are equivalent iff they are complete quotients to each
other (i.e. permutation in continued fractions). The set of all reduced quadratic numbers of discriminant
D has hD (narrow ideal class number?) equivalence classes.

Remark. Gauss did give the composition of forms, namely, we can also determine the group structure of
ideal class group using forms. To relates to ideal class group, the related equivalence relation of quadratic
forms is under the action of GL2(Z), for any γ ∈ GL2(Z),

γ ◦
(
a b/2
b/2 c

)
= det γ · γ

(
a b/2
b/2 c

)
tγ.

If one consider SL2(Z)-action, then the equivalence classes corresponds to narrow ideal classes. The
related equivalence relation among continued fractions should be given by

[u0, · · · , u`−1] ∼ [u2i, u2i+1, · · · , u`−1, u0, · · · , u2i−1].

Example. 1. There are 4 reduced form of discriminant 56:

(a, b, c) = (2, 4,−5), (5, 4,−2), (1, 6,−5), (5, 6,−1).

Computation
√

14 + 3 = [6, (
√

14 + 3)/5] = [6, 1, (
√

14 + 2)/2] = [6, 1, 2, (
√

14 + 2)/5] = [6, 1, 2, 1,
√

14 + 3].

It follows that hD = 1 and ε is the above one.
2. Let d ∈ Z≥1, then the fundamental unit of Q(

√
1 + d2) is

√
1 + d2 + d. The quadratic field

Q(
√

62501), p := 62501 = 2502 +1 is a prime ≡ 1 mod 4, has ideal class group A isomorphic to (Z/3Z)2.
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It follows that the quotient group E/C of its units E by cyclotomic units C is isomorphic to (Z/9Z).
This gives an example that for the field F := Q(ζp)

+, E/C[3∞] and A[3∞] have the same cardinality,
but not isomorphic as Z3[Gal(F/Q)]-modules; however, Mazur-Wiles and Kolyvagin’s theorem implies
that they have the same Jordan-Holder series as Z3[Gal(F/Q)]-module.

The field Q(
√

62501) has 43 reduced forms (a, b, c) and corresponding continued fractions [u0, u1, · · · , u`−1]
as follows. (Note that the inverse of class of (a, b, c) is the one of (−c, b,−a)).

1.[249, 1, 1]; (1, 249,−125), (125, 249,−1), (125, 1,−125);

2.[49, 9, 1]; (5, 241,−221), (25, 249,−5), (221, 201,−25);

3.[49, 1, 9]; (5, 249,−25), (221, 241, 5), (25, 201,−221);

4.[7, 1, 2, 18, 1]; (29, 195,−211), (155, 211,−29), (85, 99,−155), (13, 241,−85), (211, 227,−13);

5.[7, 1, 18, 2, 1]; (29, 211,−155), (211, 195,−29), (13, 227,−211), (85, 241,−13), (155, 99,−85);

6.[3, 2, 14, 3, 1]; (59, 161,−155), (107, 193,−59), (17, 235,−107), (65, 241,−17), (155, 149,−65);

7.[1, 3, 14, 2, 3]; (155, 161,−59), (65, 149,−155), (17, 241,−65), (107, 235,−17), (59, 193,−107);

8.[7, 2, 3, 2, 1, 1, 1]; (31, 211, ∗), (103, 223, ∗), (65, 189, ∗), (85, 201, ∗), (127, 139, ∗), (97, 115, ∗), (145, 79, ∗);
9.[1, 1, 1, 2, 3, 2, 7]; (145, 211, ∗), (97, 79, ∗), (127, 115, ∗), (85, 139, ∗), (65, 201, ∗), (103, 189, ∗), (31, 223, ∗)

There is a famous problem involving the unit group of real quadratic field. The Archimedes’s Cattle
problem: Compute, O friend, the number of the cattle of the sun which once grazed upon the plains of
Sicily, divided according to color into four herds, one milk-white, one black, one dappled and one yellow.
The number of bulls is greater than the number of cows, and the relations between them are as follows:
(Let W,B,D, Y (resp. w, b, d, y) be White, Black, Yellow, Dappled bulls (resp. cows), respectively,)

W =

(
1

2
+

1

3

)
B + Y, B =

(
1

4
+

1

5

)
D + Y, D =

(
1

6
+

1

7

)
W + Y,

and moreover,

w =

(
1

3
+

1

4

)
(B + b), b =

(
1

4
+

1

5

)
(D + d), d =

(
1

5
+

1

6

)
(Y + y), y =

(
1

6
+

1

7

)
(W + w).

If thou canst give, O friend, the number of each kind of bulls and cows, thou art no novice in numbers,
yet can not be regarded as of high skill. Consider, however, the following additional relations between
the bulls of the sun:

W +B = �, D + Y = 4
(where �,4 represent square number and triangle number, respectively. ) If thou hast computed these
also, O friend, and found the total number of cattle, then exult as a conqueror, for thou hast proved
thyself most skilled in numbers.

The first part of the problem is just linear algebra.The number of (homogenous) equations is one less
than variables (and in fact the equation are independent), thus the general solution (W,B,D, Y,w, b, d, y) =
t(W0, B0, D0, Y0, w0, b0, d0, y0) must be a common multiple t ∈ Z≥1 of the minimal one. The last two
conditions tell us that if denote (B0 +W0)0 by its square-free part,

t = (B0 +W0)0y2, 1 + 8(D0 + Y0)t = x2.

Thus we obtain a Pell equation

x2 − 8(B0 +W0)0(D0 + Y0)y2 = 1.

It turns out that
(W0, B0, D0, Y0) = 4657 · (2226, 1602, 1580, 891).

and then (B0 +W0)0 = 3 · 11 · 29 · 4657 and D0 + Y0 = 7 · 353 · 4657. Thus reduced to solve the equation{
x2 − dy2 = 1, where d = 609 · 7766 ≡ 2 mod 4,

x, y ∈ Z, 2 · 4657|y.

Let ε > 1 be the generator of the related unit group. We choose minimal n such that εn gives a solution
(xn, yn) with 2·4657|yn. It turns out n = (4657+1)/2 = 2329. Nevertheless, the core part of the problem
is to calculate ε. Amthor found the period length of continued fraction for d is 92, and the generator is

109931986732829734979866232821433543901088049+50549485234315033074477819735540408986340
√
d.

The regulator is R ∼ 102.101583.
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Remark. Even though it is not easy to write down the fundamental units ε of a real quadratic field
K = Q(

√
D) with discriminant D > 0. But one can easily show that K ⊂ Q(ζD) and write the following

unit in K, called cyclotomic unit

η :=
∑

(a∈Z/DZ)×

(1− ζD)−χD(a), ζD = e2πi/D,

Theorem 3.3. Let K be a real quadratic field with fundamental discriminant D > 0. Let ε be its
fundamental unit and η the cyclotomic unit. Then

η = ε2h,

where h is the class number of K.

The proof of this theorem involves L-functions.

Theorem 3.4. Let K be a real quadratic field with fundamental discriminant D > 0. Let ε be its
fundamental unit and η the cyclotomic unit. Then we have

• Res
s=1

ζK(s) =
2√
D
· log ε · h;

• Res
s=1

ζK(s) =
1√
D
· log η.

Let

η0 =
∏

0<b<D/2,χ(b)=−1

sin
πb

D

/ ∏
0<a<D/2,χ(a)=1

sin
πa

D
∈ O×K ∩ R≥1.

Then η0 = εh.

We will show the above result in the next section.

Exercise. Let D ≡ 1 mod 4 be a positive square-free integer. Then the quadratic residues modulo D
cluster at the beginning of the interval (0, D/2), and the non-residues at the end.

At the end of this section, we include here Dirichlet’s theorem on units of general number fields.

Theorem 3.5 (Dirichlet). Let K be a number field with r1 real embeddings and r2 pairs of complex
embeddings. Then O×K is finitely generated abelian group of rank r := r1 + r2 − 1.

Proof. Note that the group homomorphism

` : O×K −→ Rr1+r2 , x 7→ (log |σi(x)|ei)
(where ei = 1, 2 according to σi is real or complex) has discrete image in the hyperplane H :

∑
i xi = 0

of Rr1+r2 . We now prove that `(O×K) is actually a full lattice in H, i.e. of rank r1 + r2 − 1.
Consider the embedding

σ : K −→ Rr1 × C×.
Let C > 0 be a constant such that for any ti > 0, 1 ≤ i ≤ r1 + r2 such that

∏r1
i=1 ti

∏r2
j=1 t

2
r1+i = C, then

OK ∩
{

(xi) ∈ Rr1 × Cr2
∣∣∣ |xi| ≤ ti} 6= {0}.

(Since the volume of the above symmetric domain is 2r1πr2C). Fix i0 : 1 ≤ i0 ≤ r1 + r2, take 0 6= αn
belong to the above intersection with ti = 1/n, i 6= i0. Then it has a subsequence αnk , k = 1, · · · , such
that

• |σi(αnk)| is decreasing for all i 6= i0;
• (αnk) are the same principal ideal of OK .

Then εi0 := αn2
/αn1

∈ O×K such that log |σi(εi0)| < 0 for all i 6= i0. Thus log |σi(εj)| for a matrix of rank

r = r1 + r2 − 1 and then ε1, · · · , εr are linear independent in O×K . �

Exercise. Let θ(t) = 1
2

∑
n∈Z e

−πtn2

= t−1/2θ(t−1). Study Riemann zeta function

ζ(s) =
∑
n=1

n−s =
∏
p

(1− p−s)−1, Re(s) > 1.

Show that it is absolutely convergent on Re(s) > 1, and satisfies

π−s/2Γ(s/2)ζ(s) =

∫ ∞
0

(θ(t)− 1)ts/2
dt

t
,
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from which, deduce the meromorphic continuation, functional equation, and residue formula at s = 1.
How to generalize to Dirichlet’s L-series?

Exercise. Read Bump’s book, the first section and exercises 1.1.1-1.1.2.

Appendix. If an, bn, n ≥ 1 are two sequences of complex numbers, An, Bn their partial sums. Then

N∑
n=1

anbn = ANbN +

N−1∑
n=1

An(bn − bn+1).

If the Dirichlet series
∑
ann

−s converges for some s = s0, then it converges for any s with Re(s) >
Re(s0), uniformly on any compact subset of this region.

Proof. Write Pn(s0) =
∑n
k=1 akk

−s0 , then

n∑
k=m+1

akk
−s0 ·k−(s−s0) = Pn(s0)n−(s−s0)+

n−1∑
k=m+1

Pk(s0)(k−(s−s0)−(k+1)−(s−s0))−Pm(s0)(m+1)−(s−s0)

But
1

ks−s0
− 1

(k + 1)s−s0
= (s− s0)

∫ k+1

k

x−(s−s0+1dx

whose absolute value is easily estimated. �

2. if there exists C, σ > 0 such that

|An| ≤ Cnσ, ∀n.
Then the abscissa of convergence of

∑
ann

−s is ≤ σ.

Proof.

Pn(s)− Pm(s) = Ann
−s +

n−1∑
k+m+1

Ak(k−s − (k + 1)−s = Ann
−s +

n−1∑
k+m+1

∫ k+1

k

x−(s+1)dx.

It follows that for Re(s) ≥ σ + δ with δ > 0,

|Pn(s)− Pm(s)| ≤ Cn−δ + C|s|δ−1(m+ 1)−s. �

Example. We obtain the analytic continuation of ζ(s) to Re(s) > 0.

(1− 2−(s−1))ζ(s) =
∑
n

(−1)n+1n−s.

4. Lecture V: Eisenstein series and Class Number Formula of Quadratic Fields

In this subsection, we show class number formula for quadratic fields.

Lemma 4.1 (Possion formula). Let f ∈ S(Rn), then we have∑
ξ∈Zn

f(ξ) =
∑
ξ∈Zn

f̂(ξ),

where f̂ is the Fourier transformation of f defined by

f̂(x) =

∫
Rn
f(y)e2πi〈x,y〉dy, 〈x, y〉 =

∑
i

xiyi.

Proof. Let φ(x) =
∑
ξ f(x + ξ), which is periodic w.r.t Zn, and therefore admits a Fourier expansion

φ(x) =
∑
η∈Zn aηe

2πi〈η,x〉, with

aη =

∫
Rn/Zn

φ(x)e−2πi〈η,x〉dx =

∫
Rn
f(x)e−2πi〈η,x〉dx = f̂(η).

Thus we have the equality ∑
ξ∈Zn

f(x+ ξ) =
∑
η∈Zn

f̂(η)e2πi〈η,x〉.

Evaluating at x = 0 gives the Poisson summation formula. �
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Example. Let Q be a positive definite quadratic form on Rn. Then f(x) := e−πQ(x) ∈ S(Rn). Let
Q(x) = xtAx with A positive definite symmetric and Q′(x) = xtA−1x. Then

f̂(x) =
√

detA
1/2
e−2πQ′(x).

Proof. Let A = tBB, then the Fourier transformation of f(x) = e−πQ(x) is (let ψ(t) = e2πit, and note

that the Fourier transformation of e−πx
2

is itself):

f̂(x) =

∫
Rn
e−π

tyAyψ(txy)dx =

∫
Rn
e−π(t(By)(By))ψ(t(tB−1x)(By))dy =

∫
Rn
e−π

tyyψ(t(tB−1x)y)dy

= |detB|−1e−π
t(tB−1x)(tB−1x) = det(A)−1/2e−π

txx. �

In particular, the quadratic form of 2 variables

Qτ (x, y) :=
|xτ + y|2

Im(τ)
, τ ∈ H

has discriminant −4 so that the Fourier transformation of e−πQτ (x,y) is e−πQτ (−y,x). It follows that

Θτ (t) :=
∑

(m,n)∈Z2

e−πtQτ (m,n) = t−1
∑

(m,n)∈Z2

e−πt
−1Qτ (m,n) = t−1Θτ (t−1).

Remark. Let (V, q) be an Euclidean space over R and Λ ⊂ V a lattice. Let Λ∨ its dual. Let dx be the
Haar measure such that the lattice spanned by an orthorm=normal basis has measure one. Define the
Fourier transformation by: for any f ∈ S(V ),

f̂(y) =

∫
V

f(x)e−2πi〈x,y〉dx.

Then ∑
λ∈Λ

f(λ) =
1

Vol(L)

∑
λ′∈Λ∨

f̂(λ′).

Proof. By choosing an orthonormal basis of V , we may identify V with the standard Euclidean space,
and dx with the Lebesgue measure. Let A ∈ GLn(R) be such that Λ = AZn. Then

Vol(Λ) = |detA|, Λ∨ = tA−1Zn.
The desired equality is equivalent to the Poisson formula for the function g(x) := f(Ax) and ĝ(x) =

1
Vol(Λ f̂(tA−1x). �

Theorem 4.2. The Eisenstein series

E(z, s) = π−sΓ(s) · 1

2

∑
(m,n)6=(0,0)

Im(z)s

|mz + n|2s
, z ∈ H

is absolutely convergent if Re(s) > 1, has meromorphic continuation to the whole s-plane; it is analytic
except at s = 0, 1 where it has simple poles. The residue Ress=1E(z, s) = 1

2 independent of z. The
Eisenstein series satisfies the functional equation

E(z, s) = E(z, 1− s).
Moreover, E(x+ iy, s) = O(yσ) as y →∞ where σ = max(Re(s), 1− Re(s)). The function E(z, s) in z
is automorphic i.e.

E(γz, s) = E(z, s), ∀γ ∈ SL2(Z).

Proof. For z ∈ H and t > 0, let

Θz(t) =
∑

(m,n)∈Z2

e−π
|mz+n|2

Im(z)
·t.

It follows from the Poisson summation formula Θ(1/t) = tΘ(t). Thus we have

E(z, s) =
1

2

∫ ∞
0

(Θ(t)− 1)ts
dt

t

=
1

2

∫ ∞
1

(Θ(t)− 1)ts
dt

t
+

1

2

∫ 1

0

(t−1Θ(t−1)− 1)ts
dt

t

=
1

2

∫ ∞
1

(Θ(t)− 1)ts
dt

t
+

1

2

∫ ∞
1

(Θ(t)− 1)t1−s
dt

t
+

1

2

(
1

s− 1
− 1

s

)
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This gives the analytic continuation, functional equation, and residue formula of E(z, s). For the infor-
mation about the behavior of E(z, s) in the neighborhood of the cusp, see Bump’s book: automorphism
forms and representations, proof of Theorem 1.6.1. �

4.1. CNF of Imaginary Quadratic Fields. . Let Q(m,n) = ax2 + bxy+ cy2, a, b, c ∈ R be a positive

definite forms of discriminant D < 0. Let zQ = −b+
√
D

2a ∈ H, then

π−sΓ(s) · 1

2

∑
(m,n)6=(0,0)

Q(m,n)−s = (
√
|D|/2)−sE(zQ, s).

Note that for any z ∈ H, then Qz(m,n) := |mz+n|2
Im z has discriminant −4.

We associate to a positive definite form Q(x, y) = ax2 + bxy+ cy2 of discriminant D the integral ideal

[a,
b+
√
D

2
] = Za+ Z

b+
√
D

2
,

whose norm is a and its ideal class is denoted as A. Thus b := [a, (−b+
√
D)/2] ∈ A− has also norm a.

ζ(A, s) : =
∑

a∈A,a⊂OK

Na−s =
∑

λ∈b/O×K

(Nλb−1)−s

=
1

wK
as

∑
06=λ∈Za+Z(−b+

√
D)/2

|λ|−2s

=
1

wK

∑
(m,n)6=(0,0)

Q(m,n)−s.

Thus (√
|D|

2π

)−s
Γ(s) · ζK(s) =

2

wK

∑
Qi

E(zQi , s). Re(s) > 0.

The meromorphic continuation and function equation of E(z, s) implies the meromorphic continuation
of ζK and functional equation

ξK(s) :=
√
|D|

s/2
2(2π)−sΓ(s)ζK(s) = ξK(1− s).

Moreover, Taking residue at s = 1, we have that

Res
s=1

ζK(s) =
2π

wK
√
|D|
· hK .

4.2. CNF for Real Quadratic Fields. Let K be a real quadratic field of discriminant D > 0 and ε
the fundamental unit. Let A be an ideal class of K and b ∈ A−. Let

c(s) :=

∫ ∞
0

dv

(ev + e−v)s
=

Γ(s/2)2

2Γ(s)
.

(We do not need the last equality). For any real a, b such that ab 6= 0,

1

|ab|s
· c(s) =

∫ ∞
−∞

dv

(a2ev + b2e−v)s
.

Let A be an ideal class of K and b ∈ A−. We have

ζ(s,A) =
∑

λ∈b/O×K

1

(N(λb−1))s
=

1

2

∑
λ∈b/εZ

(Nb)s

|Nλ|s

and if let ∆ = Nb
√
D = disc b and write λ′ for the conjugation of |lambda ∈ K, then

2s+1Ds/2c(s)ζ(s,A) =
∑

λ∈b/εZ
c(s)

1

|λλ′|s
(2∆)s

=
∑

λ∈b/εZ

∫ ∞
−∞

(2∆)s

(λ2ev + λ′2e−v)s
dv

=
∑
λ∈b

∫ log ε

− log ε

(2∆)s

(λ2ev + λ′2e−v)s
dv
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Choose b = Z + Zw with w > w′, then let Qv be the quadratic form

Qv =
1

2∆
(mw + n)2ev + (mw′ + n)e−v

then the discriminant of Qv is −1 and thus we have

2s+1Ds/2c(s)π−sΓ(s)
1

2
ζ(s,A) =

∫ log ε

− log ε

π−sΓ(s)
1

2

∑
(m,n)6=(0,0)

Qv(m,n)−sdv

=

∫ log ε

− log ε

2sE(zQv , s)dv

Thus we have that

π−sDs/2Γ(s/2)2ζK(s) = 2
∑
Q

∫ log ε

− log ε

E(zQv , s)dv.

Taking residue

Res
s=1

ζK(s) =
2h log ε√

D
.

5. Catalan’s Conjecture

For general number fields K, Tate’s thesis gives a proof, via Harmonic analysis, of meromorphic
continuation and functional equation of L-series of any Hecke character over K, together with formula

Res
s=1

ζK(s) =
2r1(2π)r2hKRK

wK ·
√
|DK |

.

We will see how the Galois structure of ideal class groups and unit groups, together with the refinement
of the CNF, play an essential role in the proof of the Catalan’s conjecture.

Theorem 5.1 (Catalan’s Conjecture). The equation{
xp − yq = 1

p, q ∈ Z≥2, x, y ∈ Z6=0

has no solutions (x, y) in positive integers other that the ones given by (±3)3 − 23 = 1.

The cases of q = 2 and p = 2 are proved by Lebesgue and Chao Ko, respectively. Then to prove the
conjecture, it reduces to the following

Theorem 5.2 (Mihailescu). Let p, q > 2 be two distinct primes. Then the equation

(∗)

{
xp − yq = 1,

x, y ∈ Z \ {0}

has no solutions. (We call the above Diophantine equation (∗) the Catalan’s equation.)

From now on, we assume that x, y is a solution to the Catalan’s equation and derive a contradiction.

5.1. Cassels’ result: elementary number theory. We start with the following result of Cassels
(whose proof will be given later) according the v-adic properties of x, y for v = p, q and ∞.

Proposition 5.3 (Cassels). Assume that (x, y) is a solution to the Catalan equation. Then we have

(1) q|x and p|y;
(2) x ≡ 1

(
mod pq−1

)
and y ≡ −1

(
mod qp−1

)
;

(3) |x| ≥ max(pq−1(q − 1)q − 1, qp−1 + q) and |y| ≥ max(qp−1(p− 1)p − 1, pq−1 + p).

Proof. If p - y, then
(
x− 1, x

p−1
x−1

)
= 1 and therefore x− 1 = aq for some a 6= 0,−1. Thus

(aq + 1)p − yq = 1,

or

y = ((aq + 1)p − 1)1/q = apF (a−q), with F (t) = ((1 + t)p − tp)1/q.
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If q > p, the decreasing function f(y) = (aq + 1)p− yq has f(ap) > 1 and f(ap + 1) < 0, a contradiction.
(Thus we have p|y if q > p, and similarly, q|x if p > q). Now assume p > q, let Fk be deg ≤ k-partial
sum of the Taylor expansion of F around t = 0, and consider rational numbers:

β := βk := aq
k

(F (t)− Fk(t))
∣∣∣
t=a−q

, k ≥ 0.

It is clear aq
k

F (a−q) ∈ Z. But if k < p, then Fk is the same as the deg ≤ k-partial sum of the Taylor

expansion of (1 + t)p/q, i.e.
∑k
i=0

(
p/q
i

)
ti. Thus for p/q < k < p, β ∈ Z[q−1] is a q-integer. Its q-adic

valuation is ordq
(
p/q
k

)
= −k − ordq k!. Thus we obtained a lower bound of β:

|β| ≥ q−k−ordq(k!).

On the other hand, since q|x, consider the decomposition

(y + 1) · y
q + 1

y + 1
= xp.

It follows that

y + 1 = qp−1up,
yq + 1

y + 1
= qvp, x = quv.

Thus

qp−1
∣∣ y + 1

∣∣∣ yq + 1

y + 1
− q = q(vp − 1),

and vp ≡ 1 mod qp−2. Since (Z/qp−2Z)× ∼= F×q × Z/qp−3Z, together with (p, q − 1) = 1 since p > q, we

have v ≡ 1 mod qp−2. Thus |x| ≥ qp−1 + q. For k = [p/q] + 1, we have

|F (t)− Fk(t)| ≤ |t|k+1

(1− |t|)2
, ∀t ∈ R, |t| ≤ 1.

The bound of x implies that

|βk| ≤
|a|q

(|a|q − 1)2
≤ 1

|a|q − 2|
≤ q1−p < q−k−ordq(k!). �

5.2. Selmer group and the element [x− ζ]. Let ζ ∈ µp be a primitive root of unity and K = Q(ζ).
Then Z[ζ] is the ring of integers in K. Decompose the equation xp − 1 = yq, one has∏

a

(x− ζa) = yq.

If a prime ideal l|(x−ζa, x−ζb), then l|(ζa−ζb). Taking a, b distinct modulo p, we have that l = p := (1−ζ)
the unique prime ideal of K above p. It shows that q| ordl(x− ζ) for all l 6= p. By Cassels’ result x ≡ 1
mod p2, we have that

ordp

(
x− ζ
1− ζ

)
= 0.

Define the q-Selmer group (of Zp(1)) over K

Sel(K,µq) := {[α] ∈ K×/K×q | (α) = aq for some ideal a of K} ⊂ H1(K,µq).

Here for α ∈ K× we denote by [α] its class modulo K×3. We have see that the class ξ of x−ζ
1−ζ modulo

K× belongs to Sel(K,µq).
Then the map [α] 7→ the ideal class of a gives rise to a well-defined surjective homomorphism

Sel(K,µq) −→ ClK [q]. Its kernel is clearly O×K/O
×q
K . Then we have the short exact sequence of

R := Fq[∆]-modules, (here ∆ = Gal(K/Q)),

1 −→ O×K/O
×q
K −→ Sel(K,µq) −→ ClK [q] −→ 1.

Some variations of Selmer groups are also useful. Define

H := {[α] ∈ K×/K×q | (α) = aqpn for some ideal a of K and n ∈ Z} ⊂ H1(K,µq).

It is clear that [x− ζ] belongs to H.

Remark. Recall for the equation y2 + 14 = x3, let K = Q(
√
−14) and consider the class ξ := y+

√
−14

mod K×3. Since (y +
√
−14), (y −

√
−14) are coprime, we know that (y +

√
−14) = a3 for some ideal a,

thus ξ ∈ Sel(K,µ3). In the short exact sequence

1 −→ O×K/O
×3
K −→ Sel(K,µ3) −→ ClK [3] −→ 0,
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we have that ClK [3] = 0 since ClK ∼= Z/4Z and O×K/O
×3
K = 1 since O×K = {±1}. Thus Sel(K,µ3) = 0.

However, look at the class of y+
√
−14 in Sel(K,µ3) ⊂ K×/K×3 must be non-trivial, since one can show

that y2 + 14 = x3 has no integral solution by showing that any elements in K×3 can not have
√
−14-

coefficient 1. In our situation, the minus part of [x− ζ] play the similar role in Catalan’s conjecture. Let
x 7→ x = ι(x) denote the complex conjugation.

Theorem 5.4. Let p, q ≥ 3 be two distinct prime and x, y non-zero integer solution to Catalan’s equation
xp − yq = 1. Then the minus part (x − ζ)− := (x − ζ)1−ι of x − ζ is non-trivial in H. Therefore,
Cl−K [q] ∼= H− 6= 0.

Proof. The proof is by p-adic argument based on the fact x ≡ 1 mod pq−1. The following lemma is
obvious.

Lemma 5.5. Let α, β ∈ OK such that α− β ∈ O×K and α/β ∈ K×q. Let α1/q, β1/q ∈ K be q-th roots of

α, β, respectively, such that α1/q/β1/q ∈ K. Then

γ := (α1/q − β1/q)q ∈ O×K
independent of the choice of these q-th roots.

Assume now that [(x − ζ)−] is trivial in H (actually [x − ζ] ∈ S− ⊂ H−). Let γ ∈ O×K be the unit
constructed in the above lemma by taking

α =
x− ζ
1− ζ

, β =
x− ζ
1− ζ

.

Thus N(γ) = 1 since K has no real embedding. Using x ≡ 1 mod pq−1, we compute the N(γ) in the
totally ramified extension Qp(ζ)/Qp such that the p-adic argument will produce a contradiction.

Let π = ζ − 1 a parameter of Qp(ζ). Let µ = (x− 1)π−1. Then

α = 1 + µ, β = −ζ(1 + µ),

with pq−1π|µ, µ. We may choose above q-th roots of α, β in Kπ as below:

w := (1+µ)1/q :=
∑
i=0

(
1/q

i

)
µi ≡ 1 mod π, w′ = (−ζ(1+µ)1/q := −ζ−1/q

∑
i=0

(
1/q

i

)
µi ≡ −1 mod π.

These choices work since the unique element δ ∈ K× with δq = x − ζ/x − ζ satisfies δ ≡ −1 mod π
(since δq ≡ −1 mod π and 1 = δδ ≡ δ2 mod π).

• Considering 1 = N(w − w′)q mod µ2, we have

N(w − w′)q ≡ 1 +
(x− 1)(1− q)

2q
mod (π(x− 1)),

which implies p|1− q and

w − w′ ≡ (1 + µ/q) + ζ−1/q(1 + µ/q) ≡ 1 + ζ mod µ2.

• Considering 1 = N(w − w′)q mod µ3, we further have

N(w − w′)q ≡ 1 +
(1− q)(x− 1)2

2q
· 1− p2

12
mod µ3,

which implies pq−1|π3(q − 1)/3, a contradiction. �

Corollary 5.6. If Catalan’s equation has solutions, then p, q ≥ 41.

Proof. Assume that p < q. We have that the minus class number h−p is equal to 1 for p ≤ 19; for

p = 23, 29, 31, 41, h−p = 3, 8, 32, 37, 112, respectively, which is not divisible by q > p. �

Example. 1. Prove that Q(ζp) has class number 1 for p = 3, 5, 7. 2. There is an example with p|h−q and

q|h−p .

h−47 = 5 · 139, h−139 = 32 · 47 · 2773 · 967 · 1188961909.

Theorem 5.7. Let p, q ≥ 7 be distinct primes and G+ = Gal(Q(µp)
+/Q). Then Fq[G+]-annihilator of

[x− ζ]+ : [(x− ζ)(x− ζ)] is trivial.

The proof is via a ∞-adic argument based on the fact that |x| ≥ qp−1 + q.
16



Proof. Since x ≡ 1 mod p, there is an element θ ∈ Z[G] such that its reduction to Fq[G] is the product
of (1 + ι) and a lift of ±ψ to Fp[G] with the following properties:

• nσ = nσι for all σ ∈ G;
• nσ ≥ 0 for each σ ∈ G;
•
∑
σ nσ = mq for some integer m satisfying 0 ≤ m ≤ (p− 1)/2;

• (x− ζ)θ = αq for some (unique) algebraic integer α ∈ Q(ζ)+.

We need to show that q|nσ for all σ. If m = 0, nothing to prove. We now assume that m > 0. Note that
any non-zero element has at most one q-th root in K×. Fix any embedding of K into C and consider
the real number (since K×q ∩K+× = K+×q),

(x− ζ)θ/q = xdeg θ/q(1− ζx−1)θ/q = xdeg θ/qG(x−1),

where G(x) = (1 − ζt)θ/q is defined to be the analytic function around t = 0, via a fixed embedding
ζ + ζ−1 ∈ R, write θ =

∑
naσa,

G(t) =
∏
a

∞∑
i=0

(
na/q

i

)
(−ζa)iti =

∞∑
k=0

 ∑
∑
ia=k

∏
a

(
na/q

ia

)
(−ζa)ia

 tk =

∞∑
k=0

ak
k! · qk

tk,

where

ak = k!qk
∑

∑
ia=k

∏
a

(
na/q

ia

)
(−ζa)ia

=
∑

∑
ia=k

k!∏
a ia!

∏
a

na(na − q) · · · (na − (ia − 1)q)(−ζa)ia

≡

(
−
∑
a

naζ
a

)k
mod q

Note that q is unramified over K, we will show that q|am for m = deg θ/q. Let

β := qm+ordqm!xm(G(x−1)−Gm(x−1) ∈ OK , β ≡ am mod q,

and we show now that β = 0. Comparing G(t) and H(t) := (1− t)−k, we have

|β| ≤ qm+ordqm!|x|m(H(|x|−1)−Hk(|x|−1)) ≤ qm+ordqm!|x|m
∣∣∣∣|x|−m+1)

(
−m
m+ 1

)
(1− |x|−1)−m−(m+1)

∣∣∣∣ < 1,

where the last inequality follows from |x| ≥ qp−1 + q and the assumption 0 < m ≤ (p − 1)/2. For any
σ ∈ G, (

(1− ζx−1)θ/q
)σ

= (1− ζx−1)σθ/q ∈ K+×.

By the same argument, we have |βσ| < 1 for all σ ∈ G. Thus β = 0 and q|am. �

5.3. Stickelberger Theorem and Minus argument. Define the Stickelberger element Θ and Stick-
elberger ideal I in Q[G] by

Θ =

p−1∑
a=1

{
a

p

}
σ−1
a , I = Z[G] ∩ Z[G]Θ.

One can show that I is generated by

θa = (a− σa)Θ =
∑
b

[
ab

p

]
σ−1
b , (a, p) = 1.

and (1− ι)I is generated by

(1− ι)(θa+1 − θa), 1 ≤ a ≤ (p− 1)/2.

It is easy to see that odd prime q - (1− ι)θ2.

Theorem 5.8 (Stickelberger). I ⊆ AnnZ[G](ClK). In particular,

(I ⊗ Fq)− ⊆ AnnFq [G]Sel(K,µq)
−.

Theorem 5.9. q2|x and p2|y. Therefore locq(x− ζ)+ ∈ K×qq .
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Proof. Let θ = (1− ι)θ2 so that q - θ. But by Stickelberger’s theorem (1− ζx)θ = bp for some b ∈ K×.
Since q|x, bq ≡ 1 mod q and therefore bq ≡ 1 mod q2. Now we have q - θ and (1 − ζx)θ ≡ 1 mod q2,
which implies q2|x. Similarly, p|y and Stickelberger’s theorem also implies p2|y. �

Theorem 5.10. q < 4p2 and p < 4q2. Therefore q - p− 1 and p - q − 1.

Proof. Consider the injective group homomorphism:{
θ ∈ (1− τ)Z[G]| (x− ζ)θ ∈ K×,q

}
−→

{
α ∈ K×

∣∣ |ϕ(α)| = 1, ∀ϕ : K → C
}

which maps θ to α = αθ with αqθ = (x− ζ)θ. We will estimate N(αθ − 1) for θ 6= 0 in terms of ‖θ‖ where
for θ =

∑
σ∈G nσσ, ‖θ‖ =

∑
σ∈G |nσ|.

(1) the norm of the denominator J of (αθ) gives a lower bound of N(αθ − 1) ≥ N(J)−1:

Write (αθ) = J′

J with J and J ′ integral coprime, then N(J ′) = N(J) and

(JJ ′)q = (
∏
σ∈G

(x− σ(ζ))|nσ|),

thus

N(αθ − 1) ≥ N(J)−1 ≥ (|x|+ 1)−
||θ||(p−1)

2q .

(2) On the other hand, since |ϕ(αθ)| = 1 for any embedding ϕ : K → C, we have

| arg(ϕ(αθ)
q)| = | log(ϕ(αθ)

q)| = | log(1− ϕ(ζ)/x)θ|(principle branch) ≤ ||θ||
|x| − 1

thus there exists a q-th root of unity ζq ∈ µq ⊂ C such that

|ϕ(α)− ζq| ≤
||θ||

q(|x| − 1)
.

Now assume that q > 4p2, by Stickelberger theorem, there exists at least q + 1 elements θ ∈ I− with
|| · || ≤ 3q

2(p−1) , where I is the Stickelberger ideal. Thus by box principle, there exists θ ∈ I− such that

(note for any ϕ, |ϕ(αθ)− 1) ≤ 2)

|N(αθ − 1)| ≤ 2p−1

(
||θ||

q(|x| − 1)

)2

, with ||θ|| ≤ 3q

p− 1
.

The above upper and lower bound for N(α− 1) is contradict to the conditions q > 4p2, together with
|x| > qp−1 and p, q ≥ 5. �

5.4. Thaine’s Theorem and Plus argument. We have the following theorem.

Theorem 5.11. Let K = Q(µp) with p odd prime, and K+ the maximal totally real subfield of K. Let
E = O×K , C its subgroup of cyclotomic units, and A+ the ideal class group of K+. Then we have

• (Kummer) [E : C] = |A+|;
• (Mazur-Wiles, Kolyvagin) Let q - p− 1 be a prime and χ : ∆+ −→ Zq

×
any character. Then we

have that the q-parts of E/C and A+ have the same Jordan-Holder series as Zq[G+]-modules,
or equivalently,

[Eχ : Cχ] = |A+
χ |.

Here for any Z[∆]-module M , let Mχ denote M⊗Z[∆],χZq[Imχ]. It follows that for R := Fq[∆+]-

modules E/CEq and A+/qA+, we have

AnnR(E/CEq) = AnnR(A+/qA+).

An element α ∈ K× is called p-unit if (α) is supported on the unique prime of K above p. There is a
version with p-units, which we will use later.

Theorem 5.12 (Thaine). Let E,C be p-unit and p-cyclotomic units of K. Then we have that E/Eq is
a free R := Fq[G+]-module of rank one and

AnnR(E/CEq) ⊆ AnnR(A+/qA+) = AnnR(A+[q]).

18



Now we give the proof of Catalan’s conjecture. Assume p > q. We already have that Fq[G+] is
semi-simple. Consider the exact sequence

0 −→ E/Eq −→ H+ −→ A+ −→ 0.

By Thaine’s theorem, rigidity of ξ+ ∈ H+, and locqξ
+ = 0 , we have that

AnnR(CqE
q/Eq)AnnR(E/CEq) = 0,

Here Cq =
{
x ∈ C | locq(x) ∈ K×qq

}
. The fact that E/Eq ∼= R implies AnnR(CEq/CqE

q) = R, i.e.
CEq = CqE

q. But this is impossible when p > q.

References

[1] Bilu, Catalan’s conjecture.

[2] John Coates, A. Raghuram, Anupam Saikia, and R. Sujatha, The Bloch-Kato conjecture for the Riemann zeta
function.

[3] , The equivariant Tamagawa number conjecture: a survey, Contemporary Mathematics.

[4] E. de Shalit, The Iwasawa theory of elliptic curves with complex muliplication.
[5] Greenberg, On p-adic L-functions and cyclotomic fields.II.

[6] Cornelius Greither, Class groups of abelian fields, and the main conjecture.
[7] Kazuya Kato, P-adic Hodge theory and values of zeta functions of modular forms.

[8] V. A. Kolyvagin, On the structure of Shafarevich-Tate groups.

[9] V. A. Kolyvagin, Euler systems, In: The Grothendieck Festschrift (Vol. II).
[10] Serge Lang, Cyclotomtic fields I and II.

[11] Metsankyl, Catalan’s conjecture: Another old Diophantine problem solved.

[12] Mihailescu, Primary cyclotomic units and a proof of Catalan’s conjecture.
[13] Karl Rubin, Euler Systems, Annals of Mathematics Studies.

[14] Rubin, The Main conjecture. (Appendix in Serge lang’s Cyclotomtic fields I and II)

[15] Karl Rubin, Kolyvagin’s system of Gauss sums.
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