EXERCISE SHEET 3: ALGEBRAIC NUMBER THEORY SUMMER SCHOOL AT AMSS 2019

Exercise 1. Let $f(x) \in \mathbb{C}[x]$ be a nonconstant polynomial not of the form $g(x)^2$ for any $g(x) \in \mathbb{C}[x]$. Let $A = k[x, y]/(y^2 - f(x))$.

- (1) Prove that A is a domain.
- (2) Prove that A is a Dedekind domain if f(x) has only simple roots. (*Hint: mimic the case of* $\mathbb{Q}(\sqrt{d})$ to prove that A is integrally closed)
- (3) If we allow the roots of f(x) to have multiplicities, what is the integral closure of A in its fraction field?

Exercise 2. Let $K = \mathbb{Q}(\alpha)$ with $\alpha^3 = \alpha + 1$.

- (1) Show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.
- (2) Find the explicit decomposition of primes p = 3, 5, 23 in \mathcal{O}_K .
- (3) Prove that $\sqrt{\alpha}, \sqrt[3]{\alpha} \notin K$. (Hint: try to find prime p such that there exists a surjective map $\mathcal{O}_K \twoheadrightarrow \mathbb{F}_p$ such that the image of α can not has square or cubic root.)

Exercise 3. Let $K = \mathbb{Q}(\alpha)$ with $\alpha^5 = 2$.

- (1) Determine all the primes p that are ramified in K.
- (2) Prove that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.
- (3) Prove that if p is a prime unramified in K and $5 \nmid (p^2 1)$, then p decomposes in \mathcal{O}_K as $(p) = \mathfrak{p}\mathfrak{p}'$ with $f(\mathfrak{p}|p) = 1$ and $f(\mathfrak{p}'|p) = 4$.

Exercise 4. Let A be a Dedekind domain. Let $I \subset A$ be a nonzero ideal with prime decomposition $I = \prod_{i=1}^{r} \mathfrak{p}_{i}^{e_{i}}$. Prove that $I^{-1} = \prod_{i=1}^{r} (\mathfrak{p}_{i}^{-1})^{e_{i}}$ and $I^{-1}I = A$ (*Remark: This is one of intermediate steps to deduce the UFL for fractional ideals from*

(Remark: This is one of intermediate steps to deduce the UFL for fractional ideals from UFL for ideals. So you can only use UFL for ideals and the fact that $\mathfrak{p}^{-1}\mathfrak{p} = A$ for any nonzero prime \mathfrak{p})