EXERCISE SHEET 6: ALGEBRAIC NUMBER THEORY SUMMER SCHOOL AT AMSS 2019

Exercise 1. The aim of this exercise is to give a proof of the finiteness of the ideal class group of a number field K following Dedekind.

As explained in class, we have to show that there exists a constant C_K , which depends only on K, such that for all ideal $I \subseteq \mathcal{O}_K$, there exists $\alpha \in I \setminus \{0\}$ such that $|\mathcal{N}_{K/\mathbb{Q}}(\alpha)| \leq C_K \mathcal{N}(I)$. Let $n = [K : \mathbb{Q}]$. We choose an integral basis $(\alpha_1, \dots, \alpha_n)$ for \mathcal{O}_K .

- (1) Prove that there exist integers $x_i \in [-\sqrt[n]{N(I)}, \sqrt[n]{N(I)}]$ with $1 \leq i \leq n$ such that not all x_i are zero and $\alpha := \sum_i x_i \alpha_i \in I$.
- (2) Prove that there exists a constant $C_K > 0$ such that $|N_{K/\mathbb{Q}}(\alpha)| \leq C_K N(I)$.

Exercise 2. Let $K = \mathbb{Q}(\zeta_p)$ be the *p*-th cyclotomic field, where *p* is an *odd* prime, and $K^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$. Denote respectively by U_K and U_{K^+} the group of units in *K* and K^+ .

- (1) Let u be a unit of K. Show that u/\bar{u} is a root of unity.
- (2) Let u be as in (1), write $u/\bar{u} = \pm \zeta_p^k$ for some $k \in \mathbb{Z}$. Show that it is impossible to have sign.
- (3) Show that $U_K = U_{K^+} \times \langle \zeta_p \rangle$, i.e. every unit u in K writes uniquely as $u = \varepsilon \cdot \zeta_p^k$ with $\varepsilon \in U_{K^+}$. (Hint: Consider the map $\phi : U_K \to U_{K^+}$ given by $u \mapsto u/\bar{u}$.)

Exercise 3. Let K be a number field. We say an element $\alpha \in K$ is totally positive if $\sigma(\alpha) > 0$ for every real embedding $\sigma : K \hookrightarrow \mathbb{R}$. Denote by \mathcal{I}_K the group of fractional ideals of K, and by \mathcal{P}_K^+ the subgroup of principal ideals generated by a totally positive element. Define the strict ideal class group of K as

$$\mathcal{C}l_K^+ = \mathcal{I}_K / \mathcal{P}_K^+.$$

- (1) Show that the kernel of the natural surjection $f : \mathcal{C}l_K^+ \to \mathcal{C}l_K$ has at most 2^{r_1-1} elements, where r_1 denotes the number of real embeddings of K. Conclude that $\mathcal{C}l_K^+$ is a finite abelian group.
- (2) Assume that K is real quadratic. Let u denote the fundamental unit of K. Prove that $\operatorname{Ker}(f)$ has order 2 if $\operatorname{N}_{K/\mathbb{Q}}(u) = 1$, and $\operatorname{Ker}(f) = \{1\}$ if $\operatorname{N}_{K/\mathbb{Q}}(u) = -1$.

Exercise 4. Let K be a real quadratic field with discriminant d_K . Then fundamental unit of K is defined to be the unique unit ε of K such that $\varepsilon > 1$ and $U_K = \{\pm 1\} \times \varepsilon^{\mathbb{Z}}$.

- (1) Let u > 1 be a unit of K. Show that $u \ge (\sqrt{d_K} + \sqrt{d_K 4})/2$ if $N_{K/\mathbb{Q}}(u) = -1$, and $u \ge (\sqrt{d_K} + \sqrt{d_K + 4})/2$ if $N_{K/\mathbb{Q}}(u) = 1$. (Hint: consider $\text{Disc}_{K/\mathbb{Q}}(1, u)$ and use the equality that $\text{Disc}_{K/\mathbb{Q}}(1, u) \ge d_K$.)
- (2) Show that if d_K is divisible by a prime number p with $p \equiv 3 \mod 4$, then K does not contain any units u with $N_{K/\mathbb{Q}}(u) = -1$.
- (3) Find the fundamental unit of $K = \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5}).$