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Elliptic operators and heat kernel

I E, F complex vector bundles over an oriented compact
manifold M , carrying Hermitian metrics gE , gF .

I D : Γ(E)→ Γ(F ) first order elliptic differential operator

I Volume form dvM

I D∗ : Γ(F )→ Γ(E) formal adjoint of D :∫
M
〈Dσ, σ′〉gF dvM =

∫
M
〈σ,D∗σ′〉gEdvM .
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Mckean-Singer formula

I indD = dim(kerD)− dim(kerD∗)

I 〈D∗Dσ, σ〉 = 〈Dσ,Dσ〉 = |Dσ|2 implies

kerD = kerD∗D,

kerD∗ = kerDD∗

I D∗D : Γ(E)→ Γ(E), DD∗ : Γ(F )→ Γ(F )
nonnegative elliptic operators

I exp(−tD∗D) : Γ(E)→ Γ(E)
exp(−tDD∗) : Γ(F )→ Γ(F ) compact operators of

traceclass for any t > 0
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Mckean-Singer formula.

I Mckean-Singer formula

ind (D) = Tr [exp (−tD∗D)]− Tr [exp (−tDD∗)]

I Proof. If λ ∈ Spec(D∗D) and λ 6= 0,
Then by D∗Ds = λs with s 6= 0
One gets DD∗(Ds) = λ(Ds) with Ds 6= 0.
Thus λ ∈ Spec(DD∗).

I ∑
λ∈Spec(D∗D)

exp(−tλ)−
∑

µ∈Spec(DD∗)

exp(−tµ)

= dim(kerD)− dim(kerD∗) = ind (D). Q.E.D.
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Local Gauss-Bonnet-Chern formula

II M even dimensional closed oriented manifold.
I gTM Riemannian metric on TM . ∇TM Levi-Civita

connection. RTM = (∇TM )2 the curvature
I D = d+ d∗ : Ωeven(M)→ Ωodd(M)

the de Rham-Hodge operator
I Local Gauss-Bonnet-Chern theorem (Patodi, 1970)

lim
t→0+

(Tr [exp (−tD∗D) (x, x)]− Tr [exp (−tDD∗) (x, x)]) dv(x)

=

{
Pf(−R

TM (x)

2π
)

}top

I Gauss-Bonnet-Chern theorem :

χ(M) =

∫
M

Pf(−R
TM (x)

2π
)
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The Dirac operator

I M an even dimensional compact spin manifold

I gTM a Riemannian metric on TM , ∇TM the Levi-Civita
connection, RTM = (∇TM )2 the curvature

I S(TM) = S+(TM)⊕ S−(TM)
the Hermitian bundle of spinors associated to (TM, gTM )

I ∇S(TM) = ∇S+(TM) ⊕∇S−(TM)

I For any X ∈ TM , c(X) denotes the Clifford action of X on
S(TM). It exchanges S±(TM).
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The Dirac operator

I (E, gE) a Hermitian vector bundle over M carrying a
Hermitian connection ∇E

I ∇S(TM)⊗E = ∇S(TM) ⊗ IdE + IdS(TM) ⊗∇E

I e1, · · · , edimM oriented orthonormal basis of TM

I The Dirac operator :

DE =

dimM∑
i=1

c(ei)∇S(TM)⊗E
ei : Γ(S(TM)⊗E)→ Γ(S(TM)⊗E)

DE
± := DE

∣∣
Γ(S±(TM)⊗E)

: Γ(S±(TM)⊗E)→ Γ(S∓(TM)⊗E)

I DE elliptic and self-adjoint :
(
DE

+

)∗
= DE

−
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The Atiyah-Singer index theorem for Dirac operators

I ind(DE
+) = dim(kerDE

+)− dim(kerDE
−)

I The Atiyah-Singer index theorem (1963)

ind
(
DE

+

)
=
〈
Â(TM)ch(E), [M ]

〉
=

∫
M

det1/2

(
RTM/4π

sinh(RTM/4π)

)
tr

[
exp

(√
−1

2π

(
∇E
)2)]

I If E = C trivial bundle, denote DE simply by D

I Â(M) = 〈Â(TM), [M ]〉 ∈ Z (Borel-Hirzebruch (1960))

I Spin condition essential : Â(CP 2) = −1
8
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The Lichnerowicz formula

I kg
TM

– the scalar curvature of gTM ,

vol
(
BgTM

x (r)
)

vol
(
BRn

0 (r)
) = 1− kg

TM
(x)

6(n+ 2)
r2 + o

(
r2
)

I Lichnerowicz formula (1963) : D2 = −∆ +
kg

TM

4

I The Bochner-Laplacian −∆ ≥ 0
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The Lichnerowicz theorem

I Lichnerowicz Theorem (1963) : If kg
TM

> 0 over M ,
then Â(M) = 0.

I Proof. As kg
TM

> 0, one gets D2 = −∆ +
kg

TM

4
> 0 which

implies Â(M) = ind(D+) = 0.

I Geometric condition leads to topological conclusion
through analytic arguments

I Spin condition essential : Â(CP 2) = −1
8
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Local index theorem for Dirac operators

I The following identity holds at any x ∈M ,

lim
t→0+

(Tr [exp (−tD−D+) (x, x)]− Tr [exp (−tD+D−) (x, x)]) dv(x)

=

(
det1/2

(
RTM/4π

sinh(RTM/4π)

)
tr

[
exp

(√
−1

2π

(
∇E
)2)])top

I First (indirect) proof : Atiyah-Bott-Patodi, Gilkey

I Direct proofs : Bismut, Getzler, Berline-Vergne
(all inspired by physicists)

I Independent direct proof à la Patodi : Yanlin Yu
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The Atiyah-Patodi-Singer index theorem

I Now assume M has a boundary ∂M , also assume that all
geometric data are of “product structure” near ∂M

I D+ not elliptic - need to impose boundary conditions : the
Atiyah-Patodi-Singer global condition

I Atiyah-Patodi-Singer theorem (1974).

ind
(
DE

+,APS

)
=

∫
M

(
det1/2

(
RTM/4π

sinh(RTM/4π)

)
tr

[
exp

(√
−1

2π

(
∇E
)2)])

−η
(
D
E|∂M
+

)
∈ Z
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The Atiyah-Patodi-Singer η-invariant

I D
E|∂M
+ : Γ(S+(TM)|∂M )→ Γ(S+(TM)|∂M ) induced Dirac

operator on ∂M : elliptic and formally self-adjoint

I For any Re(s) >> 0, set

η
(
D
E|∂M
+ , s

)
=

∑
λ∈Spec(D

E|∂M
+ )\{0}

sgn(λ)

|λ|s

I η(D
E|∂M
+ ) meromorphic on C, holomorphic at s = 0. Set

η(D
E|∂M
+ ) = η(D

E|∂M
+ , 0),

η
(
D
E|∂M
+

)
=

dim
(

kerD
E|∂M
+

)
+ η

(
D
E|∂M
+

)
2
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The APS index theorem and η-invariant

I η(D
E|∂M
+ ) is a spectral invariant, hard to compute.

I Has implications with many parts of mathematics,
including geometry, topology, number theory, as well as
mathematical physics (like Chern-Simons gauge theory)

I Atiyah : “In many ways the papers on spectral asymmetry
were perhaps the most satisfying ones I was involved with.”

I Indeed, when asked to cite a single most representative
result in whole life, Atiyah choosed to cite this APS index
theorem !
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The APS index theorem and η-invariant

I As a recent simple application of the computation of η
invariant, Zizhou Tang and I proved the following purely
Riemannian geometric result

I Theorem. (Zizhou Tang - Z, Adv. in Math., 2014)
Let p be any point on a fake HP 2 (called an Eells-Kuiper
quaternionic projective plane), there exists a Riemannian
metric on this fake HP 2 such that all geodesics passing
through p are simply closed and of the same length.

I This anwsers a longstanding open question in Riemannian
geometry (due to Bérard-Bergery and Besse)
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1986 : a new era

I 1986 : Bismut published his heat kernel proof of the
Atiyah-Singer families index theorem for Dirac oerators
(Inventiones Math.)
by using Quillen’s concept of superconnection

I ICM1986 invited talk : Bismut
(title : Index theorem and the heat equation)

I Opened a new era in local index theory, hope can report
later ...

I ICM1998 Plenary lecture : Bismut
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Thanks !

Weiping Zhang Chern Institute of Mathematics October 8th, 2014Introduction to local index theory


	Heat kernels and the index
	Heat kernels of elliptic operators
	Local index for Dirc operators
	The Atiyah-Patodi-Singer index theorem


