Equivalence Relations, Classification Problems, and Descriptive Set Theory

Su Gao

Department of Mathematics
University of North Texas

Institute of Mathematics, CAS
September 9, 2015
Equivalence Relations

An equivalence relation on a set X is a binary relation $E \subseteq X \times X$ such that:

1. $\left(x, x \right) \in E$, for all $x \in X$.
2. If $\left(x, y \right) \in E$, then $\left(y, x \right) \in E$.
3. If $\left(x, y \right) \in E$ and $\left(y, z \right) \in E$, then $\left(x, z \right) \in E$, for all $x, y, z \in X$.
An equivalence relation on a set X is a binary relation $E \subseteq X \times X$ such that
An equivalence relation on a set X is a binary relation $E \subseteq X \times X$ such that

- $(x, x) \in E$,
An equivalence relation on a set X is a binary relation $E \subseteq X \times X$ such that
- $(x, x) \in E$,
- if $(x, y) \in E$ then $(y, x) \in E$,
An equivalence relation on a set X is a binary relation $E \subseteq X \times X$ such that

- $(x, x) \in E$,
- if $(x, y) \in E$ then $(y, x) \in E$,
- if $(x, y) \in E$ and $(y, z) \in E$ then $(x, z) \in E$,

for all $x, y, z \in X$.

Su Gao
Equivalence Relations, Classification Problems, and Descriptive Set Theory
Some well-known examples:
Equivalence Relations

Some well-known examples:

1. **Coset equivalence**: if G is a group and $H \leq G$, define

\[
g_1 \sim g_2 \iff g_1^{-1}g_2 \in H
\]
Equivalence Relations

Some well-known examples:

1. **Coset equivalence**: if G is a group and $H \leq G$, define

 $$g_1 \sim g_2 \iff g_1^{-1}g_2 \in H \iff g_1H = g_2H$$
Some well-known examples:

1. **Coset equivalence**: if G is a group and $H \leq G$, define

 $$g_1 \sim g_2 \iff g_1^{-1}g_2 \in H \iff g_1H = g_2H$$

2. **Orbit equivalence**: if $G \curvearrowright X$ is an action of a group on a set, then define

 $$x_1 \sim x_2 \iff \exists g \in G \; g \cdot x_1 = x_2$$
Equivalence Relations

Examples in measure theory:

3. Vitali set: Consider the cosets of \(\mathbb{Q} \) in \(\mathbb{R} \). Using AC, find a set \(V \) that meets each coset at exactly one point. \(V \) is not Lebesgue measurable.

4. Measure equivalence: two measures are equivalent iff they are absolutely continuous to each other. \(\mu \ll \nu \iff \forall A (\nu(A) = 0 \Rightarrow \mu(A) = 0) \)
Examples in measure theory:

3. **Vitali set**: Consider the cosets of \mathbb{Q} in \mathbb{R}. Using AC, find a set V that meets each coset at exactly one point.

4. **Measure equivalence**: Two measures are equivalent iff they are absolutely continuous to each other.

$\mu \ll \nu \iff \forall A (\nu(A) = 0 \implies \mu(A) = 0)$
Examples in measure theory:

3. **Vitali set**: Consider the cosets of \mathbb{Q} in \mathbb{R}. Using AC, find a set V that meets each coset at exactly one point. V is not Lebesgue measurable.
Equivalence Relations

Examples in measure theory:

3. **Vitali set:** Consider the cosets of \mathbb{Q} in \mathbb{R}. Using AC, find a set V that meets each coset at exactly one point. V is not Lebesgue measurable.

4. **Measure equivalence:** two measures are equivalent iff they are absolutely continuous to each other.
Examples in measure theory:

3. **Vitali set**: Consider the cosets of \mathbb{Q} in \mathbb{R}. Using AC, find a set V that meets each coset at exactly one point. V is not Lebesgue measurable.

4. **Measure equivalence**: two measures are equivalent iff they are absolutely continuous to each other.

\[\mu \ll \nu \iff \forall A \ (\nu(A) = 0 \Rightarrow \mu(A) = 0) \]
Equivalence Relations

Examples in topology:

5. Quotient space: If X is a topological space and \sim an equivalence relation on X, then define

\[X/\sim = \{ [x] \sim : x \in X \} \]

the quotient map:

\[\pi : X \to X/\sim \text{ by } \pi(x) = [x] \sim \]

the quotient topology:

\[A \subseteq X/\sim \text{ is open iff } \pi^{-1}(A) \subseteq X \text{ is open.} \]
Examples in topology:

5. **Quotient space**: If \(X \) is a topological space and \(\sim \) an equivalence relation on \(X \), then define
 - the quotient space: \(X/\sim = \{ [x]_\sim : x \in X \} \)
Examples in topology:

5. **Quotient space**: If X is a topological space and \sim an equivalence relation on X, then define
 - the quotient space: $X/\sim = \{ [x]_\sim : x \in X \}$
 - the quotient map: $\pi : X \to X/\sim$ by $\pi(x) = [x]_\sim$
5. **Quotient space**: If X is a topological space and \sim an equivalence relation on X, then define

- **the quotient space**: $X/\sim = \{[x]_\sim : x \in X\}$
- **the quotient map**: $\pi : X \to X/\sim$ by $\pi(x) = [x]_\sim$
- **the quotient topology**: $A \subseteq X/\sim$ is open iff $\pi^{-1}(A) \subseteq X$ is open.
Equivalence Relations

Examples in logic:

Gödel's Completeness Theorem: Every consistent set of first-order sentences has a model.
Henkin constructed a model using all first-order terms and defining
\[t \sim s \iff T \vdash t = s \]
where \(T \) is a suitably constructed maximally consistent term-complete theory in an extended language with new constant symbols.
Equivalence Relations

Examples in logic:

6. The Henkin model:
Equivalence Relations

Examples in logic:

6. The Henkin model:

Gödel’s Completeness Theorem: Every consistent set of first-order sentences has a model.
6. The **Henkin model**:

Gödel’s Completeness Theorem: Every consistent set of first-order sentences has a model.

Henkin constructed a model using all first-order terms and defining

\[t \sim s \iff T \vdash t = s \]
Equivalence Relations

Examples in logic:

6. The **Henkin model**:

 Gödel’s Completeness Theorem: Every consistent set of first-order sentences has a model.

 Henkin constructed a model using all first-order terms and defining

 \[t \sim s \iff T \vdash t = s \]

 where \(T \) is a suitably constructed maximally consistent term-complete theory in an extended language with new constant symbols.
Classification Problems: Examples

Example: Classify square matrices up to similarity: A and B are similar iff there is a nonsingular matrix S such that $A = S^{-1}BS$.

Two square matrices are similar iff they have the same Jordan normal form.

Note: This classification problem is an equivalence relation, in fact an orbit equivalence relation by the conjugacy action of the general linear group.
Example Classify square matrices up to similarity: A and B are similar iff there is a nonsingular matrix S such that

$$A = S^{-1}BS$$
Example Classify square matrices up to similarity: A and B are similar iff there is a nonsingular matrix S such that

$$A = S^{-1}BS$$

Two square matrices are similar iff they have the same Jordan normal form.
Example Classify square matrices up to similarity: A and B are similar iff there is a nonsingular matrix S such that

$$A = S^{-1}BS$$

Two square matrices are similar iff they have the same Jordan normal form.

Note: This classification problem is an equivalence relation, in fact an orbit equivalence relation by the conjugacy action of the general linear group.
Example Classify finitely generated abelian groups up to isomorphism. Every finitely generated abelian group is isomorphic to a direct sum $\mathbb{Z}/p^r \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p^r \mathbb{Z} \oplus \mathbb{Z}^m$. Note: There are only countably many finitely generated abelian groups up to isomorphism.
Example Classify finitely generated abelian groups up to isomorphism.
Example Classify finitely generated abelian groups up to isomorphism.

Every finitely generated abelian group is isomorphic to a direct sum

\[\mathbb{Z}/p_1^{r_1}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p_n^{r_n}\mathbb{Z} \oplus \mathbb{Z}^m \]
Example Classify finitely generated abelian groups up to isomorphism.

Every finitely generated abelian group is isomorphic to a direct sum

$$\mathbb{Z}/p_1^{r_1}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p_n^{r_n}\mathbb{Z} \oplus \mathbb{Z}^m$$

Note: There are only countably many finitely generated abelian groups up to isomorphism.
Example: Classify all Bernoulli shifts up to isomorphism.

A Bernoulli shift is a quadruple \((X, B, \mu, T)\), where

- \(X = \{1, 2, \ldots, n\}\) for some \(n \geq 1\),
- \(B\) is the Borel \(\sigma\)-algebra generated by the product topology on \(X\),
- \(\mu\) is a product measure given by a probability distribution \((p_1, \ldots, p_n)\) with \(\sum_{i=1}^{n} p_i = 1\),
- \(T\) is the shift: for \(x = (x_n)_{n \in \mathbb{Z}} \in X\), \((Tx)_n = x_{n-1}\).
Example Classify all Bernoulli shifts up to isomorphism.
Example: Classify all Bernoulli shifts up to isomorphism.

A Bernoulli shift is a quadruple (X, \mathcal{B}, μ, T), where

- $X = \{1, 2, \ldots, n\}^\mathbb{Z}$ for some $n \geq 1$,
- \mathcal{B} is the Borel σ-algebra generated by the product topology on X,
- μ is a product measure given by a probability distribution (p_1, \ldots, p_n) with $\sum_{i=1}^n p_i = 1$,
- T is the shift: for $x = (x_n)_{n \in \mathbb{Z}}$,

$$ (Tx)_n = x_{n-1} $$
Example Classify all Bernoulli shifts up to isomorphism. Two Bernoulli shifts \((X, \mathcal{B}, \mu, T)\) and \((Y, \mathcal{C}, \nu, S)\) are isomorphic if there is a measure-preserving map \(\Phi\) from a \(\mu\)-measure 1 subset of \(X\) onto a \(\nu\)-measure 1 subset of \(Y\) such that

\[
\Phi(Tx) = S\Phi(x)
\]

for \(\mu\)-a.e. \(x \in X\).
Example Classify all Bernoulli shifts up to isomorphism. Two Bernoulli shifts \((X, \mathcal{B}, \mu, T)\) and \((Y, \mathcal{C}, \nu, S)\) are isomorphic if there is a measure-preserving map \(\Phi\) from a \(\mu\)-measure 1 subset of \(X\) onto a \(\nu\)-measure 1 subset of \(Y\) such that
\[
\Phi(Tx) = S\Phi(x)
\]
for \(\mu\)-a.e. \(x \in X\).

If \((X, \mathcal{B}, \mu, T)\) is a Bernoulli shift, its Kolmogorov-Sinai entropy is defined as
\[
H(X) = - \sum_{i=1}^{n} p_i \log p_i
\]
Example Classify all Bernoulli shifts up to isomorphism. Two Bernoulli shifts \((X, B, \mu, T)\) and \((Y, C, \nu, S)\) are isomorphic if there is a measure-preserving map \(\Phi\) from a \(\mu\)-measure 1 subset of \(X\) onto a \(\nu\)-measure 1 subset of \(Y\) such that
\[
\Phi(Tx) = S\Phi(x)
\]
for \(\mu\)-a.e. \(x \in X\).

If \((X, B, \mu, T)\) is a Bernoulli shift, its Kolmogorov-Sinai entropy is defined as
\[
H(X) = - \sum_{i=1}^{n} p_i \log p_i
\]
Example Classify all Bernoulli shifts up to isomorphism. Two Bernoulli shifts \((X, \mathcal{B}, \mu, T)\) and \((Y, \mathcal{C}, \nu, S)\) are isomorphic if there is a measure-preserving map \(\Phi\) from a \(\mu\)-measure 1 subset of \(X\) onto a \(\nu\)-measure 1 subset of \(Y\) such that
\[
\Phi(Tx) = S\Phi(x)
\]
for \(\mu\)-a.e. \(x \in X\).

If \((X, \mathcal{B}, \mu, T)\) is a Bernoulli shift, its **Kolmogorov-Sinai entropy** is defined as
\[
H(X) = -\sum_{i=1}^{n} p_i \log p_i
\]

Ornstein, 1970: Two Bernoulli shifts are isomorphic iff they have the same entropy.
A classification problem is smooth if one can assign a real number as a complete invariant of the object under classification.

All above examples are smooth.

Effros, 1965: The classification problem for representations of Type I separable \mathcal{C}^*-algebras up to unitary equivalence is smooth.

Gromov, 1999: The classification problem for compact metric spaces up to isometry is smooth.
A classification problem is smooth if one can assign a real number as a complete invariant of the object under classification.

Effros, 1965: The classification problem for representations of Type I separable \mathbb{C}^*-algebras up to unitary equivalence is smooth.

Gromov, 1999: The classification problem for compact metric spaces up to isometry is smooth.
A classification problem is smooth if one can assign a real number as a complete invariant of the object under classification.

All above examples are smooth.
A classification problem is smooth if one can assign a real number as a complete invariant of the object under classification.

All above examples are smooth.

Effros, 1965: The classification problem for representations of Type I separable C^*-algebras up to unitary equivalence is smooth.
A classification problem is **smooth** if one can assign a real number as a complete invariant of the object under classification.

All above examples are smooth.

Effros, 1965: The classification problem for representations of Type I separable C^*-algebras up to unitary equivalence is smooth.

Gromov, 1999: The classification problem for compact metric spaces up to isometry is smooth.
Classification Problems: Generalizations

Questions:
- What about general bounded linear operators on an infinite-dimensional Hilbert space (up to unitary equivalence)?
- What about arbitrary countable groups up to isomorphism?
- What about general measure-preserving transformations up to isomorphism?
- What about representations of general separable C*-algebras up to unitary equivalence?
- What about general separable complete metric spaces up to isometry?
- What about compact metric spaces up to homeomorphism?
Questions: What about

- general bounded linear operators on an infinite dimensional Hilbert space (up to unitary equivalence)?

- arbitrary countable groups up to isomorphism?

- general measure-preserving transformations up to isomorphism?

- representations of general separable C^*-algebras up to unitary equivalence?

- general separable complete metric spaces up to isometry?

- compact metric spaces up to homeomorphism?
Questions: What about

- general bounded linear operators on an infinite dimensional Hilbert space (up to unitary equivalence)?
- arbitrary countable groups up to isomorphism?
Questions: What about

- general bounded linear operators on an infinite dimensional Hilbert space (up to unitary equivalence)?
- arbitrary countable groups up to isomorphism?
- general measure-preserving transformations up to isomorphism?
Questions: What about

- general bounded linear operators on an infinite dimensional Hilbert space (up to unitary equivalence)?
- arbitrary countable groups up to isomorphism?
- general measure-preserving transformations up to isomorphism?
- representations of general separable C^*-algebras up to unitary equivalence?
- general separable complete metric spaces up to isometry?
- compact metric spaces up to homeomorphism?
Questions: What about

- general bounded linear operators on an infinite dimensional Hilbert space (up to unitary equivalence)?
- arbitrary countable groups up to isomorphism?
- general measure-preserving transformations up to isomorphism?
- representations of general separable C^*-algebras up to unitary equivalence?
- general separable complete metric spaces up to isometry?
Questions: What about

- general bounded linear operators on an infinite dimensional Hilbert space (up to unitary equivalence)?
- arbitrary countable groups up to isomorphism?
- general measure-preserving transformations up to isomorphism?
- representations of general separable C^*-algebras up to unitary equivalence?
- general separable complete metric spaces up to isometry?
- compact metric spaces up to homeomorphism?
Questions: What about

- general bounded linear operators on an infinite dimensional Hilbert space (up to unitary equivalence)?
- arbitrary countable groups up to isomorphism?
- general measure-preserving transformations up to isomorphism?
- representations of general separable C^*-algebras up to unitary equivalence?
- general separable complete metric spaces up to isometry?
- compact metric spaces up to homeomorphism?
-
All of these questions have been studied, and partial or complete answers have been obtained.
All of these questions have been studied, and partial or complete answers have been obtained.

None of them turn out to be smooth!
All of these questions have been studied, and partial or complete answers have been obtained.

None of them turn out to be smooth!
Descriptive Set Theory of Equivalence Relations

We develop a framework to study equivalence relations and classification problems.

First Try: Let X be a set (of mathematical objects). Let E be an equivalence relation on X (E is a notion of equivalence). We say that E is smooth if there is a map $I: X \to \mathbb{R}$ such that $(x_1, x_2) \in E \iff I(x_1) = I(x_2)$.

Oops! E is smooth in this sense iff $|X/E| \leq |\mathbb{R}|$. We need the map I to be somehow “computable.”
We develop a framework to study equivalence relations and classification problems.
We develop a framework to study equivalence relations and classification problems.

First Try:
Let X be a set (of mathematical objects).
We develop a framework to study equivalence relations and classification problems.

First Try:
Let X be a set (of mathematical objects).
Let E be an equivalence relation on X (E is a notion of equivalence).

Oops!
E is smooth in this sense iff $|X/E| \leq |\mathbb{R}|$.
We need the map I to be somehow “computable.”
We develop a framework to study equivalence relations and classification problems.

First Try:
Let X be a set (of mathematical objects).
Let E be an equivalence relation on X (E is a notion of equivalence).
We say that E is smooth if there is a map $I : X \rightarrow \mathbb{R}$ such that

$$(x_1, x_2) \in E \iff I(x_1) = I(x_2).$$
We develop a framework to study equivalence relations and classification problems.

First Try:
Let X be a set (of mathematical objects).
Let E be an equivalence relation on X (E is a notion of equivalence).
We say that E is smooth if there is a map $I : X \to \mathbb{R}$ such that

$$(x_1, x_2) \in E \iff I(x_1) = I(x_2).$$

Oops! E is smooth in this sense iff $|X/E| \leq |\mathbb{R}|$.
We need the map I to be somehow “computable.”
Try Again:
Let X be a topological space.
Let E be an equivalence relation on X.
We say that E is smooth if there is a continuous map $I : X \to \mathbb{R}$ such that

$$(x_1, x_2) \in E \iff I(x_1) = I(x_2).$$
Try Again:
Let X be a topological space.
Let E be an equivalence relation on X.
We say that E is smooth if there is a continuous map
$I : X \to \mathbb{R}$ such that
\[
(x_1, x_2) \in E \iff I(x_1) = I(x_2).
\]

Too restrictive! In many examples, the complete invariants are not computed continuously. In fact, if E is smooth in this sense, it has to be a closed subset of $X \times X$.
Let X be a standard Borel space (a space with a σ-algebra of Borel sets that is isomorphic to the real line). Let E be an equivalence relation on X. We say that E is smooth if there is a Borel map $I : X \to \mathbb{R}$ such that

$$(x_1, x_2) \in E \iff I(x_1) = I(x_2).$$
Let X be a standard Borel space (a space with a σ-algebra of Borel sets that is isomorphic to the real line). Let E be an equivalence relation on X. We say that E is smooth if there is a Borel map $I : X \to \mathbb{R}$ such that

$$(x_1, x_2) \in E \iff I(x_1) = I(x_2).$$

Note: \mathbb{R} itself is a standard Borel space.
Let X be a standard Borel space and E an equivalence relation on X.
Let Y be a standard Borel space and F an equivalence relation on Y.
We say that E is Borel reducible to F, denoted $E \leq_B F$, if there is a Borel map $f : X \to Y$ such that
\[
(x_1, x_2) \in E \iff (f(x_1), f(x_2)) \in F.
\]
Let X be a standard Borel space and E an equivalence relation on X. Let Y be a standard Borel space and F an equivalence relation on Y. We say that E is **Borel reducible to** F, denoted $E \leq_B F$, if there is a Borel map $f : X \to Y$ such that

$$(x_1, x_2) \in E \iff (f(x_1), f(x_2)) \in F.$$

Note: This notion appeared in the 1980s and was borrowed from computational complexity theory. The notion of Borel reducibility gives a sense of relative complexity between equivalence relations.
The main activities of the DSTER are to find out the \leq_B relation between equivalence relations/classification problems.
The main activities of the DSTER are to find out the \leq_B relation between equivalence relations/classification problems. On the theory side:

1. The equality equivalence relation on \mathbb{R}: $x = y$

 E is smooth iff $E \leq_B =$.
The main activities of the DSTER are to find out the \leq_B relation between equivalence relations/classification problems. On the theory side:

1. The equality equivalence relation on \mathbb{R}: $x = y$
 E is smooth iff $E \leq_B =.$

2. The Vitali equivalence relation \mathbb{R}/\mathbb{Q}: $x \sim y$ iff $x - y \in \mathbb{Q}$.

Su Gao
Equivalence Relations, Classification Problems, and Descriptive Set Theory
The main activities of the DSTER are to find out the \leq_B relation between equivalence relations/classification problems. On the theory side:

1. The equality equivalence relation on \mathbb{R}: $x = y$

 E is smooth iff $E \leq_B =$.

2. The Vitali equivalence relation \mathbb{R}/\mathbb{Q}: $x \sim y$ iff $x - y \in \mathbb{Q}$.

 $= \leq_B \mathbb{R}/\mathbb{Q}$
The main activities of the DSTER are to find out the \leq_B relation between equivalence relations/classification problems. On the theory side:

1. The equality equivalence relation on \mathbb{R}: $x = y$
 E is smooth iff $E \leq_B =$.
2. The Vitali equivalence relation \mathbb{R}/\mathbb{Q}: $x \sim y$ iff $x - y \in \mathbb{Q}$.

$= \leq_B \mathbb{R}/\mathbb{Q}$

but

$\mathbb{R}/\mathbb{Q} \not\leq_B = !$
Now to show E is not smooth, it suffices to show that $\mathbb{R}/\mathbb{Q} \leq_B E$.
Now to show E is not smooth, it suffices to show that $\mathbb{R}/\mathbb{Q} \leq_B E$.

Feldman, 195?: The isomorphism problem for measure-preserving transformations is not smooth.
Now to show E is not smooth, it suffices to show that $\mathbb{R}/\mathbb{Q} \leq_B E$.

Feldman, 195?: The isomorphism problem for measure-preserving transformations is not smooth. Therefore, there is no notion of generalized entropy which can serve as the complete invariant of a measure-preserving system.
Now to show \(E \) is not smooth, it suffices to show that \(\mathbb{R}/\mathbb{Q} \leq_B E \).

Feldman, 1957: The isomorphism problem for measure-preserving transformations is not smooth. Therefore, there is no notion of generalized entropy which can serve as the complete invariant of a measure-preserving system.

Foreman–Rudolph–Weiss, 2011: The isomorphism problem for measure-preserving transformations is not a Borel equivalence relation.
The Vitali Equivalence Relation

Glimm–Effros, 1960s: Let $G \curvearrowright X$ be a Borel action of a locally compact Polish group G on a standard Borel space. Let E be the orbit equivalence relation. Then either E is smooth or else $\mathbb{R}/\mathbb{Q} \leq B_E$.

Harrington–Kechris–Louveau, 1990: Let E be any Borel equivalence relation on a standard Borel space. Then either E is smooth or else $\mathbb{R}/\mathbb{Q} \leq B_E$.

Su Gao

Equivalence Relations, Classification Problems, and Descriptive Set Theory
The Glimm–Effros dichotomy
The Vitali Equivalence Relation

The Glimm–Effros dichotomy

Glimm–Effros, 1960s: Let $G \curvearrowright X$ be a Borel action of a locally compact Polish group G on a standard Borel space. Let E be the orbit equivalence relation. Then either E is smooth or else $\mathbb{R}/\mathbb{Q} \leq_B E$.
The Glimm–Effros dichotomy

Glimm–Effros, 1960s: Let $G \curvearrowright X$ be a Borel action of a locally compact Polish group G on a standard Borel space. Let E be the orbit equivalence relation. Then either E is smooth or else $\mathbb{R}/\mathbb{Q} \leq_B E$.

Harrington–Kechris–Louveau, 1990: Let E be any Borel equivalence relation on a standard Borel space. Then either E is smooth or else $\mathbb{R}/\mathbb{Q} \leq_B E$.​
The Vitali Equivalence Relation

It has many incarnations in the Borel reducibility hierarchy. We say E is (essentially) hyperfinite if $E \leq_B \mathbb{R}/\mathbb{Q}$.
The Vitali Equivalence Relation

It has many incarnations in the Borel reducibility hierarchy. We say E is (essentially) **hyperfinite** if $E \leq_B \mathbb{R}/\mathbb{Q}$.

- E_0: the eventual agreement equivalence relation on $\{0, 1\}^\mathbb{N}$:

 $$(x, y) \in E_0 \iff \exists n \forall m \geq n \ x(m) = y(m)$$

- Consider the shift action of \mathbb{Z} on $\{0, 1\}^\mathbb{Z}$:

 $$(g \cdot x)(h) = x(h - g)$$

- The **Pythagorean equivalence relation** on \mathbb{R}_+:

 $x \sim y \iff x/y \in \mathbb{Q}$
The Vitali Equivalence Relation

G.–Jackson, 2015: Any action of a countable abelian group gives rise to a hyperfinite equivalence relation.

Weiss' Question, 1980s: Does every action of a countable amenable group give rise to a hyperfinite equivalence relation?

The Vitali Equivalence Relation

Weiss’ Question, 1980s: Does every action of a countable amenable group give rise to a hyperfinite equivalence relation?

G.–Jackson, 2015: Any action of a countable abelian group gives rise to a hyperfinite equivalence relation.
The Vitali Equivalence Relation

G.–Jackson, 2015: Any action of a countable abelian group gives rise to a hyperfinite equivalence relation.

Weiss’ Question, 1980s: Does every action of a countable amenable group give rise to a hyperfinite equivalence relation?

Other Benchmark Equivalence Relations

Polish group: a topological group with a Polish topology, i.e., separable completely metrizable topology

Becker–Kechris, 1993: For any Polish group G there is a universal action of G, i.e., a Borel action of G on some standard Borel space X such that E_X^G is the most complexity among all orbit equivalence relations by G.

We denote this universal G-orbit equivalence relation by E^G.

Mackey, 1963: If G is a Polish group and $H \leq G$ is a closed subgroup or a topological quotient of G, then $E_H^G \leq B_{E_X^G}$.

Uspenskij, 1986: There is a universal Polish group, i.e., a Polish group which contains a copy of every other Polish group as a closed subgroup.
Other Benchmark Equivalence Relations

Polish group: a topological group with a Polish topology, i.e., separable completely metrizable topology
Other Benchmark Equivalence Relations

Polish group: a topological group with a Polish topology, i.e., separable completely metrizable topology

Becker–Kechris, 1993: For any Polish group G there is a universal action of G, i.e., a Borel action of G on some standard Borel space X such that E^X_G is the most complexity among all orbit equivalence relations by G.

Mackey, 1963: If G is a Polish group and $H \leq G$ is a closed subgroup or a topological quotient of G, then $E^X_H \leq B E^X_G$.

Uspenskij, 1986: There is a universal Polish group, i.e., a Polish group which contains a copy of every other Polish group as a closed subgroup.
Other Benchmark Equivalence Relations

Polish group: a topological group with a Polish topology, i.e., separable completely metrizable topology

Becker–Kechris, 1993: For any Polish group G there is a universal action of G, i.e., a Borel action of G on some standard Borel space X such that E^X_G is the most complexity among all orbit equivalence relations by G.

We denote this universal G-orbit equivalence relation by E_G.

Polish group: a topological group with a Polish topology, i.e., separable completely metrizable topology

Becker–Kechris, 1993: For any Polish group G there is a universal action of G, i.e., a Borel action of G on some standard Borel space X such that E^X_G is the most complexity among all orbit equivalence relations by G.

We denote this universal G-orbit equivalence relation by E_G.

Mackey, 1963: If G is a Polish group and $H \leq G$ is a closed subgroup or a topological quotient of G, then $E_H \leq_B E_G$.
Other Benchmark Equivalence Relations

Polish group: a topological group with a Polish topology, i.e., separable completely metrizable topology

Becker–Kechris, 1993: For any Polish group G there is a universal action of G, i.e., a Borel action of G on some standard Borel space X such that E^X_G is the most complexity among all orbit equivalence relations by G.

We denote this universal G-orbit equivalence relation by E_G.

Mackey, 1963: If G is a Polish group and $H \leq G$ is a closed subgroup or a topological quotient of G, then $E_H \leq_B E_G$.

Uspenskij, 1986: There is a universal Polish group, i.e., a Polish group which contains a copy of every other Polish group as a closed subgroup.
Among many equivalence relations of the form E_G, I will mention a selected few that were studied intensively.

- S^∞: the permutation group of \mathbb{N} over \mathbb{Q}.
- \mathbb{B}: the Borel bireducible to:
 - (Friedman–Stanley, 1989) the isomorphism relation for all countable groups/graphs/trees/fields;
 - (Camerlo–G., 2001) the isomorphism relation for all countable Boolean algebras;
 - (Camerlo–G., 2001) the isomorphism relation for all AF C^*-algebras;
Other Benchmark Equivalence Relations

Among many equivalence relations of the form E_G, I will mention a selected few that were studied intensively.

S_∞: the permutation group of \mathbb{N}

$\mathbb{R}/\mathbb{Q} \leq_B E_{S_\infty}$.
Other Benchmark Equivalence Relations

Among many equivalence relations of the form E_G, I will mention a selected few that were studied intensively.

S_∞: the permutation group of \mathbb{N}

$\mathbb{R}/\mathbb{Q} \leq_B E_{S_\infty}$

Kechris, 1992: For any locally compact Polish group G,

$E_G \leq_B E_{S_\infty}$
Other Benchmark Equivalence Relations

Among many equivalence relations of the form E_G, I will mention a selected few that were studied intensively.

S_∞: the permutation group of \mathbb{N}

$\mathbb{R}/\mathbb{Q} \leq_B E_{S_\infty}$

Kechris, 1992: For any locally compact Polish group G, $E_G \leq_B E_{S_\infty}$

E_{S_∞} is Borel bireducible to:

- *(Friedman–Stanley, 1989)* the isomorphism relation for all countable groups/graphs/trees/fields;
- *(Camerlo–G., 2001)* the isomorphism relation for all countable Boolean algebras;
- *(Camerlo–G., 2001)* the isomorphism relation for all AF C^*-algebras;
Other Benchmark Equivalence Relations

Among many equivalence relations of the form E_G, I will mention a selected few that were studied intensively.

S_∞: the permutation group of \mathbb{N}

$\mathbb{R}/\mathbb{Q} \leq_B E_{S_\infty}$

Kechris, 1992: For any locally compact Polish group G, $E_G \leq_B E_{S_\infty}$

E_{S_∞} is Borel bireducible to:

- (Friedman–Stanley, 1989) the isomorphism relation for all countable groups/graphs/trees/fields;
- (Camerlo–G., 2001) the isomorphism relation for all countable Boolean algebras;
Among many equivalence relations of the form E_G, I will mention a selected few that were studied intensively.

S_{∞}: the permutation group of \mathbb{N}

$\mathbb{R}/\mathbb{Q} \leq_B E_{S_{\infty}}$

Kechris, 1992: For any locally compact Polish group G, $E_G \leq_B E_{S_{\infty}}$

$E_{S_{\infty}}$ is Borel bireducible to:

- (Friedman–Stanley, 1989) the isomorphism relation for all countable groups/graphs/trees/fields;
- (Camerlo–G., 2001) the isomorphism relation for all countable Boolean algebras;
- (Camerlo–G., 2001) the isomorphism relation for all AF C^*-algebras;
-
Hjorth developed a theory of turbulence that completely characterizes when an equivalence relation is $\leq_B E_{S\infty}$.
Hjorth developed a theory of turbulence that completely characterizes when an equivalence relation is $\leq_B E_{S_\infty}$.

Being turbulent implies that the equivalence relation cannot be classified by any countable structures serving as complete invariants.
Hjorth developed a theory of turbulence that completely characterizes when an equivalence relation is $\leq_B E_{S\infty}$.

Being turbulent implies that the equivalence relation cannot be classified by any countable structures serving as complete invariants.

Examples of turbulent equivalence relations include the measure equivalence, \mathbb{R}^N/ℓ^p, \mathbb{R}^N/c_0, etc.
Other Benchmark Equivalence Relations

\(U(H) \) or \(U_\infty \): the unitary group of the infinite dimensional separable complex Hilbert space
Other Benchmark Equivalence Relations

\[U(H) \text{ or } U_\infty: \text{ the unitary group of the infinite dimensional separable complex Hilbert space} \]

The unitary equivalence of
- compact operators
- self-adjoint operators
- unitary operators
- general bounded linear operators

are all important problems in functional analysis.
Other Benchmark Equivalence Relations

The unitary equivalence of

▶ compact operators is smooth (generalized Jordan normal form);
Other Benchmark Equivalence Relations

The unitary equivalence of

- compact operators is smooth (generalized Jordan normal form);
- self-adjoint operators and unitary operators is Borel bireducible to measure equivalence (Spectral Theory);
Other Benchmark Equivalence Relations

The unitary equivalence of

- compact operators is smooth (generalized Jordan normal form);
- self-adjoint operators and unitary operators is Borel bireducible to measure equivalence (Spectral Theory);
- general bounded linear operators is a Borel equivalence relation (Ding–G. 2014, Hjorth–Törnquist 2012).
Other Benchmark Equivalence Relations

Uspenskij’s universal Polish groups

- the isometry group of the universal Urysohn space $\text{Iso}(\mathbb{U})$
 1990;

- the homeomorphism group of the Hilbert cube $H([0, 1]^\mathbb{N})$
 1986

These give rise to universal orbit equivalence relations.

Kechris’ Question, 1980s: Is there a surjectively universal Polish group, i.e., one that has all other Polish groups as a quotient group?

Ding, 2012: Yes! (by a complicated construction)
Uspenskij’s universal Polish groups

- the isometry group of the universal Urysohn space $\text{Iso}(\mathbb{U})$ 1990;
- the homeomorphism group of the Hilbert cube $H([0,1]^\mathbb{N})$ 1986

These give rise to universal orbit equivalence relations.
Other Benchmark Equivalence Relations

Uspenskij’s universal Polish groups

- the isometry group of the universal Urysohn space $\text{Iso}(\mathbb{U})$ \(1990\);
- the homeomorphism group of the Hilbert cube $H([0, 1]^\mathbb{N})$ \(1986\)

These give rise to universal orbit equivalence relations.

Kechriss’ Question, 1980s: Is there a surjectively universal Polish group, i.e., one that has all other Polish groups as a quotient group?
Other Benchmark Equivalence Relations

Uspenskij’s universal Polish groups

- the isometry group of the universal Urysohn space \(\text{Iso}(\mathcal{U}) \) 1990;
- the homeomorphism group of the Hilbert cube \(H([0, 1]^\mathbb{N}) \) 1986

These give rise to universal orbit equivalence relations.

Kechrис’ Question, 1980s: Is there a surjectively universal Polish group, i.e., one that has all other Polish groups as a quotient group?

Ding, 2012: Yes!
Other Benchmark Equivalence Relations

Uspenskij’s universal Polish groups

- the isometry group of the universal Urysohn space $\text{Iso}(\mathbb{U})$ 1990;
- the homeomorphism group of the Hilbert cube $H([0, 1]^\mathbb{N})$ 1986

These give rise to universal orbit equivalence relations.

Kechris’ Question, 1980s: Is there a surjectively universal Polish group, i.e., one that has all other Polish groups as a quotient group?

Ding, 2012: Yes! (by a complicated construction)
Other Benchmark Equivalence Relations

The following classification problems are universal orbit equivalence relations:

- (G.–Kechris, 2003) the isometry of all separable completely metrizable spaces;
- (Melleray–Weaver, 2007) the isometric isomorphism of all separable Banach spaces;
- (Sabok, 2016) the isomorphism of all separable nuclear C∗-algebras;
- (Zielinski, 2016) the homeomorphism of all compact metric spaces;
- (Chang–G., 2016) the homeomorphism of all continua.
Other Benchmark Equivalence Relations

The following classification problems are universal orbit equivalence relations:

- (G.–Kechris, 2003) the isometry of all separable completely metrizable spaces;
- (Melleray–Weaver, 2007) the isometric isomorphism of all separable Banach spaces;
- (Sabok, 2016?) the isomorphism of all separable nuclear C\(^\ast\)-algebras;
- (Zielinski, 2016?) the homeomorphism of all compact metric spaces;
- (Chang–G., 2016?) the homeomorphism of all continua.
The following classification problems are universal orbit equivalence relations:

- (G.–Kechris, 2003) the isometry of all separable completely metrizable spaces;
- (Melleray–Weaver, 2007) the isometric isomorphism of all separable Banach spaces;
- (Sabok, 2016?) the isomorphism of all separable nuclear C∗-algebras;
- (Zielinski, 2016?) the homeomorphism of all compact metric spaces;
- (Chang–G., 2016?) the homeomorphism of all continua.
Other Benchmark Equivalence Relations

The following classification problems are universal orbit equivalence relations:

- (G.–Kechris, 2003) the isometry of all separable completely metrizable spaces;
- (Melleray–Weaver, 2007) the isometric isomorphism of all separable Banach spaces;
- (Sabok, 2016?) the isomorphism of all separable nuclear C*-algebras;
- (Zielinski, 2016?) the homeomorphism of all compact metric spaces;
- (Chang–G., 2016?) the homeomorphism of all continua.
The following classification problems are universal orbit equivalence relations:

- (G.–Kechris, 2003) the isometry of all separable completely metrizable spaces;
- (Melleray–Weaver, 2007) the isometric isomorphism of all separable Banach spaces;
- (Sabok, 2016?) the isomorphism of all separable nuclear C^*-algebras;
- (Zielinski, 2016?) the homeomorphism of all compact metric spaces;
The following classification problems are universal orbit equivalence relations:

- \((G.-Kechris, 2003)\) the isometry of all separable completely metrizable spaces;
- \((Melleray–Weaver, 2007)\) the isometric isomorphism of all separable Banach spaces;
- \((Sabok, 2016?)\) the isomorphism of all separable nuclear C*-algebras;
- \((Zielinski, 2016?)\) the homeomorphism of all compact metric spaces;
- \((Chang–G., 2016?)\) the homeomorphism of all continua.
We defined four main benchmark equivalence relations (of increasing complexity):

\[= \]: the equality equivalence (smooth)

\(\mathbb{R}/\mathbb{Q} \): the Vitali equivalence (hyperfinite)

\(E_{S_\infty} \) (usually referred to as graph isomorphism)

\(E_{G^\infty} \): the universal orbit equivalence relation
What about

- general bounded linear operators on an infinite dimensional Hilbert space (up to unitary equivalence)?
- arbitrary countable groups up to isomorphism?
- general measure-preserving transformations up to isomorphism?
- representations of general separable C*-algebras up to unitary equivalence?
- general separable complete metric spaces up to isometry?
- compact metric spaces up to homeomorphism?
All have partial or complete solutions.
Summary

All have partial or complete solutions.

There is much to be done...
All have partial or complete solutions.

There is much to be done...

Challenge to the audience:

- Develop a Spectral Theory for general bounded linear operators.
Summary

All have partial or complete solutions.

There is much to be done...

Challenge to the audience:

▶ Develop a Spectral Theory for general bounded linear operators.

▶ Classify separable locally compact metric spaces up to isometry.
All have partial or complete solutions.

There is much to be done...

Challenge to the audience:

▶ Develop a Spectral Theory for general bounded linear operators.
▶ Classify separable locally compact metric spaces up to isometry.
▶ Determine the exact complexity of the isomorphism of all measure-preserving transformations (von Neumann’s problem)

Thank you for your attention!