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Equivalence Relations

An equivalence relation on a set X is a binary relation
E ⊆ X × X such that

I (x , x) ∈ E ,

I if (x , y) ∈ E then (y , x) ∈ E ,

I if (x , y) ∈ E and (y , z) ∈ E then (x , z) ∈ E ,

for all x , y , z ∈ X .
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Equivalence Relations

Some well-known examples:

1. Coset equivalence: if G is a group and H ≤ G , define

g1 ∼ g2 ⇐⇒ g−11 g2 ∈ H
⇐⇒ g1H = g2H

2. Orbit equivalence: if G y X is an action of a group on a
set, then define

x1 ∼ x2 ⇐⇒ ∃g ∈ G g · x1 = x2

Su Gao Equivalence Relations, Classification Problems, and Descriptive Set Theory



Equivalence Relations

Some well-known examples:

1. Coset equivalence: if G is a group and H ≤ G , define

g1 ∼ g2 ⇐⇒ g−11 g2 ∈ H

⇐⇒ g1H = g2H

2. Orbit equivalence: if G y X is an action of a group on a
set, then define

x1 ∼ x2 ⇐⇒ ∃g ∈ G g · x1 = x2

Su Gao Equivalence Relations, Classification Problems, and Descriptive Set Theory



Equivalence Relations

Some well-known examples:

1. Coset equivalence: if G is a group and H ≤ G , define

g1 ∼ g2 ⇐⇒ g−11 g2 ∈ H
⇐⇒ g1H = g2H

2. Orbit equivalence: if G y X is an action of a group on a
set, then define

x1 ∼ x2 ⇐⇒ ∃g ∈ G g · x1 = x2

Su Gao Equivalence Relations, Classification Problems, and Descriptive Set Theory



Equivalence Relations

Some well-known examples:

1. Coset equivalence: if G is a group and H ≤ G , define

g1 ∼ g2 ⇐⇒ g−11 g2 ∈ H
⇐⇒ g1H = g2H

2. Orbit equivalence: if G y X is an action of a group on a
set, then define

x1 ∼ x2 ⇐⇒ ∃g ∈ G g · x1 = x2

Su Gao Equivalence Relations, Classification Problems, and Descriptive Set Theory



Equivalence Relations

Examples in measure theory:

3. Vitali set: Consider the cosets of Q in R. Using AC, find
a set V that meets each coset at exactly one point. V is
not Lebesgue measurable.

4. Measure equivalence: two measures are equivalent iff they
are absolutely continuous to each other.

µ� ν ⇐⇒ ∀A (ν(A) = 0⇒ µ(A) = 0)
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Equivalence Relations

Examples in topology:

5. Quotient space: If X is a topological space and ∼ an
equivalence relation on X , then define

I the quotient space: X/∼ = { [x ]∼ : x ∈ X}
I the quotient map: π : X → X/ ∼ by π(x) = [x ]∼
I the quotient topology: A ⊆ X/ ∼ is open iff
π−1(A) ⊆ X is open.
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Equivalence Relations

Examples in logic:

6. The Henkin model:

Gödel’s Completeness Theorem: Every consistent set of
first-order sentences has a model.

Henkin constructed a model using all first-order terms
and defining

t ∼ s ⇐⇒ T ` t = s

where T is a suitably constructed maximally consistent
term-complete theory in an extended language with new
constant symbols.
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Gödel’s Completeness Theorem: Every consistent set of
first-order sentences has a model.

Henkin constructed a model using all first-order terms
and defining

t ∼ s ⇐⇒ T ` t = s

where T is a suitably constructed maximally consistent
term-complete theory in an extended language with new
constant symbols.

Su Gao Equivalence Relations, Classification Problems, and Descriptive Set Theory



Equivalence Relations

Examples in logic:

6. The Henkin model:
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Classification Problems: Examples

Example Classify square matrices up to similarity: A and B are
similar iff there is a nonsingular matrix S such that

A = S−1BS

Two square matrices are similar iff they have the same Jordan
normal form.

Note: This classification problem is an equivalence relation, in
fact an orbit equivalence relation by the conjugacy action of
the general linear group.
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Classification Problems: Examples

Example Classifiy finitely generated abelian groups up to
isomorphism.

Every finitely generated abelian group is isomorphic to a direct
sum

Z/pr11 Z⊕ · · · ⊕ Z/prnn Z⊕ Zm

Note: There are only countably many finitely generated
abelian groups up to isomorphism.
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Classification Problems: Examples

Example Classify all Bernoulli shifts up to isomorphism.
A Bernoulli shift is a quadruple (X ,B, µ,T ), where

I X = {1, 2, . . . , n}Z for some n ≥ 1,

I B is the Borel σ-algebra generated by the product
topology on X ,

I µ is a product measure given by a probability distribution
(p1, . . . , pn) with

∑n
i=1 pi = 1,

I T is the shift: for x = (xn)n∈Z,

(Tx)n = xn−1
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Classification Problems: Examples

Example Classify all Bernoulli shifts up to isomorphism.
Two Bernoulli shifts (X ,B, µ,T ) and (Y , C, ν, S) are
isomorphic if there is a measure-preserving map Φ from a
µ-measure 1 subset of X onto a ν-measure 1 subset of Y such
that

Φ(Tx) = SΦ(x)

for µ-a.e. x ∈ X .

If (X ,B, µ,T ) is a Bernoulli shift, its Kolmogorov-Sinai
entropy is defined as

H(X ) = −
n∑

i=1

pi log pi

Ornstein, 1970: Two Bernoulli shifts are isomorphic iff they
have the same entropy.
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Classification Problems: Examples

A classification problem is smooth if one can assign a real
number as a complete invariant of the object under
classification.

All above examples are smooth.

Effros, 1965: The classification problem for representations of
Type I separable C ∗-algebras up to unitary equivalence is
smooth.

Gromov, 1999: The classification problem for compact metric
spaces up to isometry is smooth.
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Classification Problems: Generalizations

Questions: What about

I general bounded linear operators on an infinite
dimensional Hilbert space (up to unitary equivalence)?

I arbitrary countable groups up to isomorphism?

I general measure-preserving transformations up to
isomorphism?

I representations of general separable C ∗-algebras up to
unitary equivalence?

I general separable complete metric spaces up to isometry?

I compact metric spaces up to homeomorphism?

I . . . . . .
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Classification Problems: Generalizations

All of these questions have been studied, and partial or
complete answers have been obtained.

None of them turn out to be smooth!
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Descriptive Set Theory of Equivalence Relations

We develop a framework to study equivalence relations and
classification problems.

First Try:
Let X be a set (of mathematical objects).
Let E be an equivalence relation on X (E is a notion of
equivalence).
We say that E is smooth if there is a map I : X → R such that

(x1, x2) ∈ E ⇐⇒ I (x1) = I (x2).

Oops! E is smooth in this sense iff |X/E | ≤ |R|.
We need the map I to be somehow “computable.”
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Descriptive Set Theory of Equivalence Relations

Try Again:
Let X be a topological space.
Let E be an equivalence relation on X .
We say that E is smooth if there is a continuous map
I : X → R such that

(x1, x2) ∈ E ⇐⇒ I (x1) = I (x2).

Too restrictive! In many examples, the complete invariants are
not computed continuously. In fact, if E is smooth in this
sense, it has to be a closed subset of X × X .
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Descriptive Set Theory of Equivalence Relations

Let X be a standard Borel space (a space with a σ-algebra of
Borel sets that is isomorphic to the real line).
Let E be an equivalence relation on X .
We say that E is smooth if there is a Borel map I : X → R
such that

(x1, x2) ∈ E ⇐⇒ I (x1) = I (x2).

Note: R itself is a standard Borel space.
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Descriptive Set Theory of Equivalence Relations

Let X be a standard Borel space and E an equivalence relation
on X .
Let Y be a standard Borel space and F an equivalence relation
on Y .
We say that E is Borel reducible to F , denoted E ≤B F , if
there is a Borel map f : X → Y such that

(x1, x2) ∈ E ⇐⇒ (f (x1), f (x2)) ∈ F .

Note: This notion appeared in the 1980s and was borrowed
from computational complexity theory. The notion of Borel
reducibility gives a sense of relative complexity between
equivalence relations.
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Descriptive Set Theory of Equivalence Relations

The main activities of the DSTER are to find out the ≤B

relation between equivalence relations/classification problems.

On the theory side:

1. The equality equivalence relation on R: x = y
E is smooth iff E ≤B =.

2. The Vitali equivalence relation R/Q: x ∼ y iff x − y ∈ Q.

= ≤B R/Q
but
R/Q 6≤B = !
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Descriptive Set Theory of Equivalence Relations

Now to show E is not smooth, it suffices to show that
R/Q ≤B E .

Feldman, 195?: The isomorphism problem for
measure-preserving transformations is not smooth. Therefore,
there is no notion of generalized entropy which can serve as
the complete invariant of a measure-preserving system.

Foreman–Rudolph–Weiss, 2011: The isomorphism problem for
measure-preserving transformations is not a Borel equivalence
relation.
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The Vitali Equivalence Relation

The Glimm–Effros dichotomy

Glimm–Effros, 1960s: Let G y X be a Borel action of a
locally compact Polish group G on a standard Borel space. Let
E be the orbit equivalence relation. Then either E is smooth
or else R/Q ≤B E .

Harrington–Kechris–Louveau, 1990: Let E be any Borel
equivalence relation on a standard Borel space. Then either E
is smooth or else R/Q ≤B E .
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The Vitali Equivalence Relation

It has many incarnations in the Borel reducibility hierarchy.
We say E is (essentially) hyperfinite if E ≤B R/Q.

I E0: the eventual agreement equivalence relation on
{0, 1}N:

(x , y) ∈ E0 ⇐⇒ ∃n∀m ≥ n x(m) = y(m)

I Consider the shift action of Z on {0, 1}Z:

(g · x)(h) = x(h − g)

I The Pythagorean equivalence relation on R+:
x ∼ y ⇐⇒ x/y ∈ Q
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The Vitali Equivalence Relation

Dougherty–Jackson–Kechris, 1994: Any action of Zn gives rise
to a hyperfinite equivalence relation.

Jackson–Kechris–Louveau, 2002: Any action of a countable
group with polynomial growth (finitely generated
nilpotent-by-finite groups, by Gromov) gives rise to a
hyperfinite equivalence relation.

G.–Jackson, 2015: Any action of a countable abelian group
gives rise to a hyperfinite equivalence relation.

Weiss’ Question, 1980s: Does every action of a countable
amenable group give rise to a hyperfinite equivalence relation?

Orstein–Weiss, 1980: Any action of a countable amenable
group gives rise to a hyperfinite equivalence relation on a
conull set.
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Other Benchmark Equivalence Relations

Polish group: a topological group with a Polish topology, i.e.,
separable completely metrizable topology

Becker–Kechris, 1993: For any Polish group G there is a
universal action of G , i.e., a Borel action of G on some
standard Borel space X such that EX

G is the most complexity
among all orbit equivalence relations by G .

We denote this universal G -orbit equivalence relation by EG .

Mackey, 1963: If G is a Polish group and H ≤ G is a closed
subgroup or a topological quotient of G , then EH ≤B EG .

Uspenskij, 1986: There is a universal Polish group, i.e., a
Polish group which contains a copy of every other Polish group
as a closed subgroup.
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Other Benchmark Equivalence Relations

Among many equivalence relations of the form EG , I will
mention a selected few that were studied intensively.

S∞: the permutation group of N

R/Q ≤B ES∞

Kechris, 1992: For any locally compact Polish group G ,
EG ≤B ES∞

ES∞ is Borel bireducible to:
I (Friedman–Stanley, 1989) the isomorphism relation for all

countable groups/graphs/trees/fields;
I (Camerlo–G., 2001) the isomorphism relation for all

countable Boolean algebras;
I (Camerlo–G., 2001) the isomorphism relation for all AF

C ∗-algebras;
I . . . . . .
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Other Benchmark Equivalence Relations

Hjorth developed a theory of turbulence that completely
characterizes when an equivalence relation is ≤B ES∞

Being turbulent implies that the equivalence relation cannot
be classified by any countable structures serving as complete
invariants.

Examples of turbulent equivalence relations include the
measure equivalence, RN/`p, RN/c0, etc.
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Other Benchmark Equivalence Relations

U(H) or U∞: the unitary group of the infinite dimensional
separable complex Hilbert space

The unitary equivalence of

I compact operators

I self-adjoint operators

I unitary operators

I general bounded linear operators

are all important problems in functional analysis.
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Other Benchmark Equivalence Relations

The unitary equivalence of

I compact operators is smooth (generalized Jordan normal
form);

I self-adjoint operators and unitary operators is Borel
bireducible to measure equivalence (Spectral Theory);

I general bounded linear operators is a Borel equivalence
relation (Ding–G. 2014, Hjorth–Törnquist 2012).
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Other Benchmark Equivalence Relations

Uspenskij’s universal Polish groups

I the isometry group of the universal Urysohn space Iso(U)
1990;

I the homeomorphism group of the Hilbert cube H([0, 1]N)
1986

These give rise to universal orbit equivalence relations.

Kechris’ Question, 1980s: Is there a surjectively universal
Polish group, i.e., one that has all other Polish groups as a
quotient group?

Ding, 2012: Yes! (by a complicated construction)
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Other Benchmark Equivalence Relations

The following classification problems are universal orbit
equivalence relations:

I (G.–Kechris, 2003) the isometry of all separable
completely metrizable spaces;

I (Melleray–Weaver, 2007) the isometric isomorphism of all
separable Banach spaces;

I (Sabok, 2016?) the isomorphism of all separable nuclear
C ∗-algebras;

I (Zielinski, 2016?) the homeomorphism of all compact
metric spaces;

I (Chang–G., 2016?) the homeomorphism of all continua.
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Summary

We defined four main benchmark equivalence relations (of
increasing complexity):

=: the equality equivalence (smooth)

R/Q: the Vitali equivalence (hyperfinite)

ES∞ (usually referred to as graph isomorphism)

E∞G : the universal orbit equivalence relation
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Summary

What about

I general bounded linear operators on an infinite
dimensional Hilbert space (up to unitary equivalence)?

I arbitrary countable groups up to isomorphism?

I general measure-preserving transformations up to
isomorphism?

I representations of general separable C ∗-algebras up to
unitary equivalence?

I general separable complete metric spaces up to isometry?

I compact metric spaces up to homeomorphism?
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Summary

All have partial or complete solutions.

There is much to be done...

Challenge to the audience:

I Develop a Spectral Theory for general bounded linear
operators.

I Classify separable locally compact metric spaces up to
isometry.

I Determine the exact complexity of the isomorphism of all
measure-preserving transformations (von Neumann’s
problem)
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Invariant Descriptive Set Theory, CRC Press, 2009.

Thank you for your attention!
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