Special Lagrangian equations

Yu YUAN
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Part 1 Intro: Equs
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Part 1 Intro: Equs

u, Du, D%y ~
An

@ Laplace Au=o01 =A1+---+A,=c
@ Monge-Ampere In det D2u=Ino,=InA1+---+InA, =

@ Special Lagrangian
arctan D?u = arctan A; + - - - + arctan A, = ©

oo’k:/\l.../\k+...:1
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Part 1 Intro: Ellipticity & Convexity

LA

~ oy

e elliptic & f (A) monotonic
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Part 1 Intro: Ellipticity & Convexity

LA

~ oy

e elliptic & f (A) monotonic

@ saddle shape adds obstacles
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Part | Intro: Lagrangian, and special Lagrangian

R”
v
g=1+DuD% (.F)
F irrotational
> & JI=N
Rﬂ
S F=Du
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Part | Intro: Lagrangian, and special Lagrangian

R”
v
g=1+DuD% (.F)
F irrotational

> & JI=N
Rﬂ
S F=Du

e special Lagrangian < arctan D’u = ©
0 Harvey-Lawson 70s

@ minimal, volume minimizing compared to surfaces with same
bdry, Lag or NOT (calibration argument).
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Part 1 Intro: algebraic form of equ

D
_

o

(14+ir) -+ (14+iM,) = \/(1+/\§)~~-(1+A%) (cos© + isin®)
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Part 1 Intro: algebraic form of equ

<
\#/

o

(1 idg) - (14 iAg) = /(14 A3) -+ (14 A3) (cos@® + i5in @)

Vol = \/detg = \/(1+A2) - (14 A2) = [(1+ idy) -~ (1+ i)
=cosO(l—oa+---)+sin® (o —o3+---)
"/ in divergence form

Yu YUAN (In memory of my teacher, Ding W\ Special Lagrangian equations



Part 1 Intro: algebraic form of equ

A
\#/

o

(1 idg) - (14 iAg) = /(14 A3) -+ (14 A3) (cos@® + i5in @)

Vol = \/detg = \/(1+A2) - (14 A2) = [(1+ idy) -~ (1+ i)
=cos®@(1—oo+---)+sin® (o —o3+---)

"/ indivergence form

Equ Y=cos®@(o1 —03+---)—sin®@(1l—0cx+---)=0
Casen=230=m1/2 = o0r=1
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Part 1 Intro: level set

Case n=3
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Part 1 Intro: level set

Case n=3

elliptic & normal N || D\X || D\® >> 0 componentwise
Obs.(Y 04) © level set convex < |®| > (n—2) /2

RMK. (R?", dx? — dy? or dxdy)

vol maximizing Lagrangian < M-A equ
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Part 2 What to do?

o Existence
o Properties: Liouville-Bernstein type results; regularity...
ALL depend on estimates

1076l < € (11 Dtllis(sy) < € (I1ellingey))

RMK. [|D2u]] ca(g, ) < € (||D?ul] (g, ) can be achieved by

* PDE way w/ convexity Evans-Krylov-Safonov (Non-div);
Evan-Krylov-De Giorgi-Nash (div)

* GMT way SLag OK, M-A?

* Geometric way M-A Calabi 50s C3 est, SLag?
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Part 3 Results: i Global rigidity

@ Recall Liouville, Jérgens-Calabi-Pogorelov/Cheng-Yau: global
convex sol to Laplace, M-A must be quadratic
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Part 3 Results: i Global rigidity

@ Recall Liouville, Jérgens-Calabi-Pogorelov/Cheng-Yau: global
convex sol to Laplace, M-A must be quadratic

@ Y 01-04 global semi-convex D?u > —tan7t/6 — & (n) sol to
arctan D?u = ® must be quadratic
Y 04 global sol to arctan D?u = @ with |®| > (n—2) /2
must be quadratic

o Chang-Y 09 global sol to o5 (D?u) = 1 with

D?u > [(5 —+v/2/n(n— 1)] | for any & > 0 must be quadratic
eg. n =2 u=sinx; €2 sol to arctan Ay + arctan A, =0
eg. n=3u=(x+x3) e — % +1e 7 sol to
arctan D?u = 71/2 or o (Dzu) =1 Warren 15

RMK. o some lower bound on D?u is needed
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Part 3 Results: i Global rigidity

@ Recall Liouville, Jérgens-Calabi-Pogorelov/Cheng-Yau: global
convex sol to Laplace, M-A must be quadratic

@ Y 01-04 global semi-convex D?u > —tan7t/6 — & (n) sol to
arctan D?u = ® must be quadratic
Y 04 global sol to arctan D?u = @ with |®| > (n—2) /2
must be quadratic

o Chang-Y 09 global sol to o5 (D?u) = 1 with

D?u > [(5 —+v/2/n(n— 1)] | for any & > 0 must be quadratic
eg. n =2 u=sinx; €2 sol to arctan Ay + arctan A, =0
eg. n=3u=(x+x3) e — % +1e 7 sol to
arctan D?u = 71/2 or o (Dzu) =1 Warren 15

RMK. o some lower bound on D?u is needed
o phase (n—2) 7t/2 is critical
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Part 3 Results: ii A priori est. for Monge-Ampere + /-

@ n = 2 Heinz 50s
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@ n = 2 Heinz 50s
@ n > 3 Pogorelov 70s

0% (0)] < € (Jlullyey))

provided u is strictly convex.
RMK. For okequs w/ k-strict convexity on sol., Chou—X.J. Wang 90s; w/
LP 'arge D2; Trudinger (80s), Urbas (00s). For 0%/ 0nequs w/
LP 1ar&¢ D2 > 0,Bao-Chen-Guan-Ji 00s.
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provided u is strictly convex.

RMK. For okequs w/ k-strict convexity on sol., Chou—X.J. Wang 90s; w/
LP 'arge D2; Trudinger (80s), Urbas (00s). For 0%/ 0nequs w/

LP 1ar&¢ D2 > 0,Bao-Chen-Guan-Ji 00s.

Counterexamples (w/o strict convexity)

@ Pogorelov 70s C11-7 sol to det D2y = 1
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Part 3 Results: ii A priori est. for Monge-Ampere + /-

@ n = 2 Heinz 50s
@ n > 3 Pogorelov 70s

0% (0)] < € (Jlullyey))

provided u is strictly convex.
RMK. For okequs w/ k-strict convexity on sol., Chou—X.J. Wang 90s; w/
LP 'arge D2; Trudinger (80s), Urbas (00s). For 0%/ 0nequs w/
LP 1ar&¢ D2 > 0,Bao-Chen-Guan-Ji 00s.
Counterexamples (w/o strict convexity)

@ Pogorelov 70s CL1=7 sol to det D?u = 1
o Caffarelli 90s Lipschitz sol w/ variable right hand side

e Caffarelli-Yuan 09 Lipschitz and C*'" w/ r € (0,1 —2/n] sol to
det D*u =1
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Part 3 Results: ii A priori est. for SLag +

Theorem (Dake Wang-Y 11)
Suppose u smooth sol. to ) arctanA; = ©® in By C R". Then

[D2u (0)] < C (n) exp [C(n) |1Dull 322 } for |©] > (n—
also < C(n)exp [C(n) |1 Dull A } for |©] = (n—

2) /2
2) /2
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RMK. Warren-Y 07 || Dul[;e0(g,) < C(n) (0scg,u+1), Y 15
| Dul| jeo g,y < € (n) oscp,u for |O] = (n—2) 7/2
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Part 3 Results: ii A priori est. for SLag +

Theorem (Dake Wang-Y 11)
Suppose u smooth sol. to ) arctanA; = ©® in By C R". Then

D% (0)] < C(n)exp [C(n) |1Dull 322 } for |©] > (n—2) /2

also < C(n) exp [C( ) || Dul|2 A } for |©| = (n—2) 7/2

RMK. Warren-Y 07 || Dul[;e0(g,) < C(n) (0scg,u+1), Y 15
| Dul[ oo,y < € (n) oscp,u for |O] > (n—2) /2

RMK. Warren-Y 07 3-d |@®| = 71/2,e"Cest. (now edUadraticest )
RMK. Using “rotation” and a relative isoperimetric inequality:
-Warren-Y 07 3-d |®| > 71/2rougher (double exponential) est
-Chen-Warren-Y 07 convex sol.

|D?u (0)] < C(n)exp[ (n )||Du||3" 2 } (now 2n — 2)
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RMK. Warren-Y (07) “super” relative isoperimetric inequality <
“super” Sobolev embedding for subharmonic fcns led to 2-d Hessian
est.

C(2)

W | Dul| (o (g,

|D?u (0)| < C(2)exp
|sin

Y 11, the linear exponential dependence on Du is sharp: convert
Finn's minimal surface eg to 2d M-A eg via Heinz transformation.
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RMK. Warren-Y (07) “super” relative isoperimetric inequality <
“super” Sobolev embedding for subharmonic fcns led to 2-d Hessian
est.

C(2)

W | Dul| (o (g,

|D?u (0)| < C(2)exp

Y 11, the linear exponential dependence on Du is sharp: convert
Finn's minimal surface eg to 2d M-A eg via Heinz transformation.

Q. Sharp exponent for Hessian estimates in dim n > 37
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Part 3 Results: "Quick” applications of a priori est for SLag

o (0 viscosity sol to Y arctanA; = @ w/ |®] > (n—2) /2 is
regular, analytic.

Caffarelli-Nirenberg-Spruck 85 |@] = [25
regularity for C* smooth boundary data

} 7T existence and interior
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Part 3 Results: "Quick” applications of a priori est for SLag

o (0 viscosity sol to Y arctanA; = @ w/ |®] > (n—2) /2 is
regular, analytic.

Caffarelli-Nirenberg-Spruck 85 |@] = [25
regularity for C* smooth boundary data

} 7T existence and interior

@ global sol to }_arctanA; = (n — 2) 7t/2 w/ quadratic growth is
quadratic.
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Idea of Warren-Y & Dake Wang-Y

—
Bounded height

U

Bounded slope
Rn
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Idea of Warren-Y & Dake Wang-Y

—
Bounded height
U
Bounded slope
/ Rn

N

Heuristically, the reciprocal of the 2nd derivative norm/slope is super
harmonic, once it is 0 somewhere inside, then it is O everywhere, that
is, the 2nd derivative norm/slope is infinite everywhere. But we start
from a 1st derivative graph (x, Du (x)) . Impossible!
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The “secret” ingredient is

1
Ng——r <0& ANglogy/1+ A2 2‘ logy/1+ A2
g\/m g g max Vg g max

2

Technically,
1 2
slope < /slope < /|Vslope|
mean value Sobolev
3 - 4 -
< /welghted vol < height
Jacobi divergence

conformality
divergence form of oy
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Step 1/2/3. * Strongly subharmonic slope

b=1Iny/1+ A2,
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Step 1/2/3. * Strongly subharmonic slope
b=1Iny/1+ A2,

*
Dgb > |vgbl? = 0.

satisfies Jacobi
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Step 1/2/3. * Strongly subharmonic slope
b=1Iny/1+ A2,

*
Dgb > |vgbl? = 0.

satisfies Jacobi

* In viscosity/comparison sense. By Herve-Herve/Watson, in the
needed integral sense for Lip b

196t dve < € (n) [ 19591 dvs
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Step 1/2/3. * Strongly subharmonic slope
b=1Iny/1+ A2,

*
Dgb > |vgbl? = 0.

satisfies Jacobi

* In viscosity/comparison sense. By Herve-Herve/Watson, in the
needed integral sense for Lip b

196t dve < € (n) [ 19591 dvs

* Twist multiplication to contain terms involving derivatives of
cut-off fcns
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Part 3. Results: ii A priori est. SLag w/ subcritical phases -
e Nadirashvili-Vladuct 09 C1/3 solution to Y3, arctanA; = 0
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Part 3. Results: ii A priori est. SLag w/ subcritical phases -

e Nadirashvili-Vladuct 09 C1/3 solution to Y3, arctanA; = 0
e Dake Wang-Y 10 C!" sols SLag with |®| < (n—2) 7t/2 and
re (0,1/3
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Part 3. Results: ii A priori est. SLag w/ subcritical phases -

e Nadirashvili-Vladuct 09 C1/3 solution to Y3, arctanA; = 0

e Dake Wang-Y 10 C!" sols SLag with |®| < (n—2) 7t/2 and
re (0,1/3

Ideas of D. Wang-Y rotation way

* "Bounded" coordinates w/ Lag angles near (0~, 7t/4, 7t/4), via
Cauchy-K solve 0, (D?u) =1 or arctan D*u = 71/2

* Switch x-y coordinates, still Lag now w/ Lag angles
(—7m/2,7t/4,7/4), that is arctan D%ti=0

* Rotate down 2z, z3 plane, keep z; plane to increase the phase from
0to ©® < 71/2, then arctan D’li = ©@ w/ © € (0, 7/2)

NI B
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Part 3 Parabolic side, longtime existence & estimates

Lagrangian mean curvature flow in R" x R"
0:U=g"9;U w/ U= Du

Euclidean (RZ”, dx? + dy2) , g =1+ D?uD?u < 9;u = arctan D?u
eg. 1-d U (x, t) = ux (x, t), potential equ of mean curv. flow and
mean curv. flow in nondiv form are respectively

1

——F7U
1+U)% XX

up = arctanu,, <« U=
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Part 3 Parabolic side, longtime existence & estimates

Lagrangian mean curvature flow in R" x R"
0:U=g"9;U w/ U= Du
Euclidean (RZ”, dx? + dyz) , g =1+ D?uD?u < 9;u = arctan D?u
eg. 1-d U (x, t) = ux (x, t), potential equ of mean curv. flow and
mean curv. flow in nondiv form are respectively
1

——F7U
1+U)% XX

up = arctanu,, <« U=

Th’m. Chau-Chen-Y 12 Given “almost” convex initial potential u
satis. — (1+7)1 < D?uy < (1+7) 1w/ 5 =1 (n) small dim
const., the Lag heat equ has a unique longtime smooth sol u (x, t) in
R" x (0, 0) such that:
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Part 3 Parabolic side, longtime existence & estimates

Lagrangian mean curvature flow in R" x R"
0:U=g"9;U w/ U= Du

Euclidean (RZ”, dx? + dyz) , g =1+ D?uD?u < 9;u = arctan D?u
eg. 1-d U (x, t) = ux (x, t), potential equ of mean curv. flow and
mean curv. flow in nondiv form are respectively

1

——F7U
1+U)% XX

up = arctanu,, <« U=

Th’m. Chau-Chen-Y 12 Given “almost” convex initial potential u
satis. — (L+7) 1 < D?up < (1+n)1w/ 1 =1(n) small dim
const., the Lag heat equ has a unique longtime smooth sol u (x, t) in
R" x (0, 00) such that:

i) =31 < D%u(x,t) < /3l forallt >0
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Part 3 Parabolic side, longtime existence & estimates

Lagrangian mean curvature flow in R" x R"
0:U=g"9;U w/ U= Du

Euclidean (RZ”, dx? + dyz) , g =1+ D?uD?u < 9;u = arctan D?u
eg. 1-d U (x, t) = ux (x, t), potential equ of mean curv. flow and
mean curv. flow in nondiv form are respectively

1

——F7U
1+U)% XX

up = arctanu,, <« U=

Th’m. Chau-Chen-Y 12 Given “almost” convex initial potential u
satis. — (L+7) 1 < D?up < (1+n)1w/ 1 =1(n) small dim
const., the Lag heat equ has a unique longtime smooth sol u (x, t) in
R" x (0, 00) such that:

i) =31 < D%u(x,t) < /3l forallt >0

i) || D'l oo pny < G/t"72 for1>23& >0

i) Du(x, t)is CY/? intimeat t =0
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Consequence: Via U (n) rotation, the long time existence and ests
for smooth sols also hold for locally C1'! initial potential uy being
e convex D?ug > 0 or

e w/ large supercrital phase arctan [D?ug| > (n— 1) 71/2

RMK1. Krylov theory on concave uniformly parabolic fully nonlinear
equ doesn't apply.
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Consequence: Via U (n) rotation, the long time existence and ests
for smooth sols also hold for locally C1'! initial potential uy being
e convex D?ug > 0 or

e w/ large supercrital phase arctan [D?ug| > (n— 1) 71/2

RMK1. Krylov theory on concave uniformly parabolic fully nonlinear
equ doesn't apply.
RMK2. C-eg by Neves-Y 09 shows all the above conds are sharp:
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Consequence: Via U (n) rotation, the long time existence and ests
for smooth sols also hold for locally C1'! initial potential uy being
e convex D?ug > 0 or

e w/ large supercrital phase arctan [D?ug| > (n— 1) 71/2

RMK1. Krylov theory on concave uniformly parabolic fully nonlinear
equ doesn't apply.

RMK2. C-eg by Neves-Y 09 shows all the above conds are sharp:

o almost convexity — (14 1#)/ < D?uy < (1+ 1) I not preserved
(Gauss image of (x, Dug) not a convex set in Grassmanian LG (n, n))
o convex consequence. If just D?ug > —#/, then graphical condition
is not preserved, i.e. D?u = co at some point

o large phase consequence. If just arctan [D?up] > (n—1) /2 — 7,
then graphical condition is not preserved.

RMK3. But by Chau-Chen-Y, in the latter convex & large phase
c-egs, the Lagrangian manifolds themselves flows smoothly & forever
(didn't know in 09).
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Earlier results

o Smoczyk-Wang 02: longtime existence in periodic setting w/ initial
ug satisf. 0 < D?ug < C or equivalently

(=1+6)1 < D?uy < (1—0) 1 (Direct application of Krylov Theory
on convex fully nonlinear parabolic equs)

o Chen-Pang 09: longtime existence and UNIQUENESS of C°
viscosity sol w/ CO initial potential

o Chau-Chen-He 09: Longtime existence in R" X (0, %) setting w/
initial potential — (1 — &)/ < D?ug < (1 — )/ for 6 > 0 (estimates
blow up when & goes to 0, no way to push to —/ < D?ug < /')
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o Smoczyk-Wang 02: longtime existence in periodic setting w/ initial
ug satisf. 0 < D?ug < C or equivalently

(=1+6)1 < D?uy < (1—0) 1 (Direct application of Krylov Theory
on convex fully nonlinear parabolic equs)

o Chen-Pang 09: longtime existence and UNIQUENESS of C°
viscosity sol w/ CO initial potential

o Chau-Chen-He 09: Longtime existence in R" X (0, %) setting w/
initial potential — (1 — &)/ < D?ug < (1 — )/ for 6 > 0 (estimates
blow up when & goes to 0, no way to push to —/ < D?ug < /')

RMK.
o uy = Au uniform parabolicity/diffusion --+ Tikhonov nonuniq. &

finite time blow up eg. h(x,t) = \/21th exp (4(?1))
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Earlier results

o Smoczyk-Wang 02: longtime existence in periodic setting w/ initial
ug satisf. 0 < D?ug < C or equivalently

(=1+6)1 < D?uy < (1—0) 1 (Direct application of Krylov Theory
on convex fully nonlinear parabolic equs)

o Chen-Pang 09: longtime existence and UNIQUENESS of C°
viscosity sol w/ CO initial potential

o Chau-Chen-He 09: Longtime existence in R" X (0, %) setting w/
initial potential — (1 — &)/ < D?ug < (1 — )/ for 6 > 0 (estimates
blow up when & goes to 0, no way to push to —/ < D?ug < /')

RMK.

o uy = Au uniform parabolicity/diffusion --+ Tikhonov nonuniq. &
L _ 1 2

finite time blow up eg. h(x,t) = A P (4(f—t)>

o up = arctan D’y degenerate parabolicity/diffusion --+ uniq. &

longtime C? sol
saddle shape --+ higher derivative finite time blow up
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Ideas of Chau-Chen-Y: Compactness arguments powered by
Chen-Pang Uniqueness and Nguyen-Y (09) parabolic Schauder
C2H1LI+1/2 st for Lag. heat equ

2
[ut]1,1/2;Ql/2 + |:D Uj| 1,1/2,Q1/2 S C (\/g) !
provided ’Dzu‘ < V3 in )]

vol convex cond.
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Ideas of Chau-Chen-Y: Compactness arguments powered by
Chen-Pang Uniqueness and Nguyen-Y (09) parabolic Schauder
C2H1LI+1/2 st for Lag. heat equ

2
[ut]1,1/2;Ql/2 + |:D Uj| 1,1/2,Q1/2 S C (\/§> !
provided ’Dzu‘ < V3 in )]

vol convex cond.
RMK. Nguyen-Y relies on elliptic Bernstein result of Y. and Liouville
type results of Y., Warren=Y, Tsui-Wang, even earlier one by
Jost—Xin, Fischer-Colbrie, ..., Simons.
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Part 4 Parabolic side, self similar sols for curvature flows w/ potential

e Lagrangian mean curvature flow in R?"
;U = gUaUU w/ U= Dv

Euclidean (R*", dx*> + dy?) , g = | + D*vD?v < 9;v = arctan D?v
Pseudo-Euclidean (Rz”, dxdy) , &= D?v & 9;v = Indet D?v
e Kahler Ricci flow
digix = —Rik _
8ir = Vix & 0rv = Indetddv
Ric = —99 Indet dov

Consider self similar shrinking sols in R?" x (—c0,0) :

v(x,t) = —tu (X/\/—_t)

= 1
arctan D?/ Indet D?/ Indet9d u = 5X Du(x) — u(x).
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Th’m (Chau-Chen-Y. 10)

e Let u be an entire smooth sol to

arctan Ay + - - - 4 arctan A, = %x- Du(x) — uin R". Then
u=u(0)+3(D*u(0)x,x).

e Let u be an entire smooth convex sol to

Indet D?u = 3x - Du(x) — u in R" satisfying D?u (x) > @ for
large |x|. Then u is quadratic.

e Let u be an entire smooth pluri-subharmic sol to

Indet ddu = %x' Du (x) — u in C™ satisfying ddu > 227’;'21 for large

|x| . Then u is quadratic.

Th’m (Drugan-Lu-Y. 13)

Let u be an entire smooth pluri-subharmonic sol to

Indet ddu = 2x - Du(x) — uin Q C C™ s.t. the metric g = dou is
complete. Then u (x) is quadratic.
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RMK. For arctan case: Y. 09 bounded Hessian, Chau-Chen-He 09
{Dzu‘ <1-4, R. Huang-Z. Wang 10, ‘Dzu} < 1, rigidity was
derived. For Indet D? case w/ similar lower bound, R. Huang-Z.
Wang 10 derived the rigidity.

Y. 15 Every Euclid complete graphical shrinker (x, Du) in Q3 x R" in
the sense |x|* + | Du|? = o0 on 9, is a (Lagrangian) plane.

RMK. For Indet D? case: Q. Ding-Xin 12, rigidity of entire sol,
without any lower; Drugan-Lu-Y works for real M-A case w/
complete metric

RMK. For Indetdd case: m =1 W.L. Wang 15 every entire self
similar sol on complex plane is quadratic; general dim m W.L. Wang
15 every entire self similar sol w/ real convex potential is quadratic.

Yu YUAN (In memory of my teacher, Ding W\ Special Lagrangian equations



Ideas of Chau-Chen-Y & Drugan-LU-Y
*
y 1
g"0;i0 (x) = 5X D® (x)

The amplifying force in the right forces bounded
O (x) = arctan D?u (x) to be constant.

* Self similarity and Euler's formula show smooth potential v is
homog. order two, then quadratic

@(O)Z%X-DU(X)—U(X)
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Part 5 Questions

Q1. Pointwise argument toward slope (D?u) est for SLag?

Recall for minimal surface equ div (Df/\/ 1+ |Df\2) =0,

Bombieri-De Giorgi-Miranda (60s), Trudinger (70s) integral way
IDF (0)] < C () exp [ C (n) [1F]l ()|

Korevaar 80s Pointwise way, slick, relying on pointwise Jacobi.

Q2. Construction of nontrivial sol to arctan D?u = (n—2) Z in
R">3. 3?2 homog order 2 sol to arctan D?u = 0 in dim n > 5?

Q3. Any further regularity beyond C° for C° viscosity sol to
arctanD?u =0 w/ |®] < (n—2)7/2?

Q4. Every entire sol to Indet ddu = %x' Du(x) —uin C™is
quadratic?

RMK. Self-similarity makes sol to the eigenvalue equ more rigid. In
contrast, 3 nontrivial (non flat) entire and complete sol to equ
Indetddu = 0 in C™ by LeBrun, Hitchin ... 80s.
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