Special Lagrangian equations

Yu YUAN

In memory of my teacher, Ding Weiyue Laoshi

3 1 4 3 1

$$u, Du, D^2u \sim \begin{bmatrix} \lambda_1 & \\ & \\ & \lambda_n \end{bmatrix}$$

æ

メロト メポト メヨト メヨト

$$u, Du, D^2u \sim \begin{bmatrix} \lambda_1 & \\ & \\ & \lambda_n \end{bmatrix}$$

• Laplace
$$riangle u = \sigma_1 = \lambda_1 + \dots + \lambda_n = c$$

æ

メロト メポト メヨト メヨト

$$u, Du, D^2u \sim \begin{bmatrix} \lambda_1 & & \\ & & \\ & & \lambda_n \end{bmatrix}$$

- Laplace $riangle u = \sigma_1 = \lambda_1 + \dots + \lambda_n = c$
- Monge-Ampere ln det $D^2 u = \ln \sigma_n = \ln \lambda_1 + \dots + \ln \lambda_n = c$

글 > - + 글 >

$$u, Du, D^2u \sim \begin{bmatrix} \lambda_1 & & \\ & & \\ & & \lambda_n \end{bmatrix}$$

- Laplace $\triangle u = \sigma_1 = \lambda_1 + \dots + \lambda_n = c$
- Monge-Ampere ln det $D^2 u = \ln \sigma_n = \ln \lambda_1 + \dots + \ln \lambda_n = c$
- Special Lagrangian arctan $D^2 u$ = arctan $\lambda_1 + \cdots + \arctan \lambda_n = \Theta$

$$u, Du, D^2u \sim \begin{bmatrix} \lambda_1 & & \\ & & \\ & & \lambda_n \end{bmatrix}$$

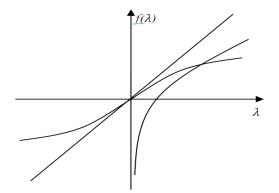
- Laplace $\triangle u = \sigma_1 = \lambda_1 + \dots + \lambda_n = c$
- Monge-Ampere ln det $D^2 u = \ln \sigma_n = \ln \lambda_1 + \dots + \ln \lambda_n = c$
- Special Lagrangian arctan $D^2 u$ = arctan $\lambda_1 + \cdots + \arctan \lambda_n = \Theta$

$$u, Du, D^2u \sim \begin{bmatrix} \lambda_1 & \\ & \\ & \lambda_n \end{bmatrix}$$

- Laplace $\triangle u = \sigma_1 = \lambda_1 + \dots + \lambda_n = c$
- Monge-Ampere ln det $D^2 u = \ln \sigma_n = \ln \lambda_1 + \dots + \ln \lambda_n = c$
- Special Lagrangian arctan $D^2 u$ = arctan $\lambda_1 + \cdots + \arctan \lambda_n = \Theta$

$$\circ \sigma_k = \lambda_1 \cdots \lambda_k + \cdots = 1$$

Part 1 Intro: Ellipticity & Convexity

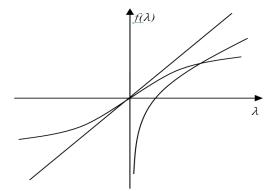


• elliptic $\Leftrightarrow f(\lambda)$ monotonic

E

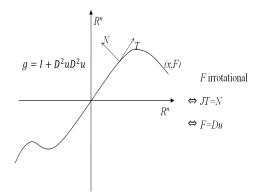
-∢∃>

Part 1 Intro: Ellipticity & Convexity



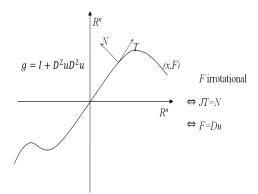
- elliptic $\Leftrightarrow f(\lambda)$ monotonic
- saddle shape adds obstacles

Part I Intro: Lagrangian, and special Lagrangian



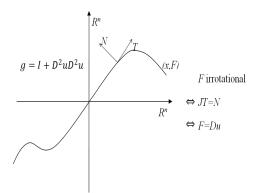
э.

Part I Intro: Lagrangian, and special Lagrangian



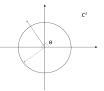
• special Lagrangian \Leftrightarrow arctan $D^2 u = \Theta$ \Uparrow Harvey-Lawson 70s

Part I Intro: Lagrangian, and special Lagrangian



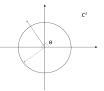
- special Lagrangian \Leftrightarrow arctan $D^2 u = \Theta$
- minimal, volume minimizing compared to surfaces with same bdry, Lag or NOT (calibration argument).

Part 1 Intro: algebraic form of equ



 $(1+i\lambda_1)\cdots(1+i\lambda_n)=\sqrt{(1+\lambda_1^2)\cdots(1+\lambda_n^2)}(\cos\Theta+i\sin\Theta)$

Part 1 Intro: algebraic form of equ



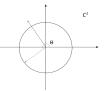
$$(1+i\lambda_1)\cdots(1+i\lambda_n)=\sqrt{(1+\lambda_1^2)\cdots(1+\lambda_n^2)}(\cos\Theta+i\sin\Theta)$$

$$\begin{aligned} \text{Vol} &= \sqrt{\det g} = \sqrt{\left(1 + \lambda_1^2\right) \cdots \left(1 + \lambda_n^2\right)} = \left| (1 + i\lambda_1) \cdots (1 + i\lambda_n) \right| \\ &= \cos \Theta \left(1 - \sigma_2 + \cdots\right) + \sin \Theta \left(\sigma_1 - \sigma_3 + \cdots\right) \\ \text{``} \mid \mid \text{''} \quad \sqrt{\quad} \text{ in divergence form} \end{aligned}$$

æ

글 > - + 글 >

Part 1 Intro: algebraic form of equ



$$(1+i\lambda_1)\cdots(1+i\lambda_n)=\sqrt{(1+\lambda_1^2)\cdots(1+\lambda_n^2)}(\cos\Theta+i\sin\Theta)$$

$$Vol = \sqrt{\det g} = \sqrt{\left(1 + \lambda_1^2\right) \cdots \left(1 + \lambda_n^2\right)} = \left|\left(1 + i\lambda_1\right) \cdots \left(1 + i\lambda_n\right)\right|$$
$$= \cos\Theta\left(1 - \sigma_2 + \cdots\right) + \sin\Theta\left(\sigma_1 - \sigma_3 + \cdots\right)$$

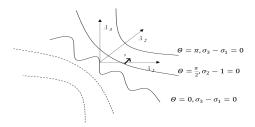
"| |"
$$\sqrt{}$$
 in divergence form

Equ $\Sigma = \cos \Theta \left(\sigma_1 - \sigma_3 + \cdots \right) - \sin \Theta \left(1 - \sigma_2 + \cdots \right) = 0$

Case
$$n = 2, 3 \Theta = \pi/2 \Rightarrow \sigma_2 = 1$$

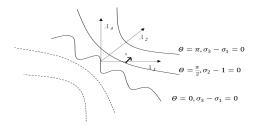
イロト イヨト イヨト イヨト

Case n=3

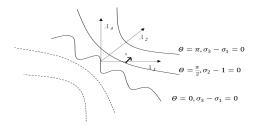


æ

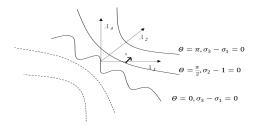
イロト イポト イヨト イヨト



elliptic \Leftrightarrow normal N $\parallel D_{\lambda}\Sigma \parallel D_{\lambda}\Theta >> 0$ componentwise



elliptic \Leftrightarrow normal N $\parallel D_{\lambda}\Sigma \parallel D_{\lambda}\Theta >> 0$ componentwise Obs.(Y 04) Θ _level set convex $\Leftrightarrow |\Theta| \ge (n-2) \pi/2$



elliptic \Leftrightarrow normal N $\parallel D_{\lambda}\Sigma \parallel D_{\lambda}\Theta >> 0$ componentwise Obs.(Y 04) Θ _level set convex $\Leftrightarrow |\Theta| \ge (n-2) \pi/2$ RMK. $(R^{2n}, dx^2 - dy^2 \text{ or } dxdy)$

vol maximizing Lagrangian \Leftrightarrow M-A equ

Part 2 What to do?

 \circ Existence

 \circ Properties: Liouville-Bernstein type results; regularity...

ALL depend on estimates

$$\left\|D^{2}u\right\|_{L^{\infty}(B_{1})} \leq C\left(\left\|Du\right\|_{L^{\infty}(B_{2})}\right) \leq C\left(\left\|u\right\|_{L^{\infty}(B_{3})}\right)$$

RMK. $\|D^2 u\|_{C^{\alpha}(B_{1/2})} \leq C\left(\|D^2 u\|_{L^{\infty}(B_1)}\right)$ can be achieved by * PDE way w/ convexity Evans-Krylov-Safonov (Non-div); Evan-Krylov-De Giorgi-Nash (div) * GMT way SLag OK, M-A?

* Geometric way M-A Calabi 50s C³ est, SLag?

• Recall Liouville, Jörgens-Calabi-Pogorelov/Cheng-Yau: global convex sol to Laplace, M-A must be quadratic

- Recall Liouville, Jörgens-Calabi-Pogorelov/Cheng-Yau: global convex sol to Laplace, M-A must be quadratic
- Y 01-04 global semi-convex D²u ≥ − tan π/6 − ε(n) sol to arctan D²u = Θ must be quadratic

- Recall Liouville, Jörgens-Calabi-Pogorelov/Cheng-Yau: global convex sol to Laplace, M-A must be quadratic
- Y 01-04 global semi-convex D²u ≥ − tan π/6 − ε(n) sol to arctan D²u = Θ must be quadratic

- Recall Liouville, Jörgens-Calabi-Pogorelov/Cheng-Yau: global convex sol to Laplace, M-A must be quadratic
- Y 01-04 global semi-convex D²u ≥ tan π/6 ε(n) sol to arctan D²u = Θ must be quadratic
 Y 04 global sol to arctan D²u = Θ with |Θ| > (n-2) π/2 must be quadratic

- Recall Liouville, Jörgens-Calabi-Pogorelov/Cheng-Yau: global convex sol to Laplace, M-A must be quadratic
- Y 01-04 global semi-convex D²u ≥ tan π/6 ε(n) sol to arctan D²u = Θ must be quadratic
 Y 04 global sol to arctan D²u = Θ with |Θ| > (n-2) π/2 must be quadratic
- Chang-Y 09 global sol to $\sigma_2(D^2u) = 1$ with $D^2u \ge \left[\delta \sqrt{2/n(n-1)}\right]I$ for any $\delta > 0$ must be quadratic

- Recall Liouville, Jörgens-Calabi-Pogorelov/Cheng-Yau: global convex sol to Laplace, M-A must be quadratic
- Y 01-04 global semi-convex D²u ≥ tan π/6 ε(n) sol to arctan D²u = Θ must be quadratic
 Y 04 global sol to arctan D²u = Θ with |Θ| > (n-2) π/2 must be quadratic
- Chang-Y 09 global sol to $\sigma_2(D^2u) = 1$ with $D^2u \ge \left[\delta \sqrt{2/n(n-1)}\right]I$ for any $\delta > 0$ must be quadratic

- Recall Liouville, Jörgens-Calabi-Pogorelov/Cheng-Yau: global convex sol to Laplace, M-A must be quadratic
- Y 01-04 global semi-convex D²u ≥ tan π/6 ε(n) sol to arctan D²u = Θ must be quadratic
 Y 04 global sol to arctan D²u = Θ with |Θ| > (n-2) π/2 must be quadratic
- Chang-Y 09 global sol to $\sigma_2(D^2u) = 1$ with $D^2u \ge \left[\delta - \sqrt{2/n(n-1)}\right]I$ for any $\delta > 0$ must be quadratic eg. $n = 2 \ u = \sin x_1 \ e^{x_2}$ sol to $\arctan \lambda_1 + \arctan \lambda_2 = 0$

- Recall Liouville, Jörgens-Calabi-Pogorelov/Cheng-Yau: global convex sol to Laplace, M-A must be quadratic
- Y 01-04 global semi-convex D²u ≥ tan π/6 ε(n) sol to arctan D²u = Θ must be quadratic
 Y 04 global sol to arctan D²u = Θ with |Θ| > (n-2) π/2 must be quadratic
- Chang-Y 09 global sol to $\sigma_2 (D^2 u) = 1$ with $D^2 u \ge \left[\delta - \sqrt{2/n(n-1)}\right] I$ for any $\delta > 0$ must be quadratic eg. $n = 2 \ u = \sin x_1 \ e^{x_2}$ sol to $\arctan \lambda_1 + \arctan \lambda_2 = 0$ eg. $n = 3 \ u = (x_1^2 + x_2^2) \ e^{x_3} - e^{x_3} + \frac{1}{4}e^{-x_3}$ sol to $\arctan D^2 u = \pi/2$ or $\sigma_2 (D^2 u) = 1$ Warren 15

RMK. \circ some lower bound on D^2u is needed

- Recall Liouville, Jörgens-Calabi-Pogorelov/Cheng-Yau: global convex sol to Laplace, M-A must be quadratic
- Y 01-04 global semi-convex D²u ≥ tan π/6 ε(n) sol to arctan D²u = Θ must be quadratic
 Y 04 global sol to arctan D²u = Θ with |Θ| > (n-2) π/2 must be quadratic
- Chang-Y 09 global sol to $\sigma_2 (D^2 u) = 1$ with $D^2 u \ge \left[\delta - \sqrt{2/n (n-1)}\right] I$ for any $\delta > 0$ must be quadratic eg. $n = 2 \ u = \sin x_1 \ e^{x_2}$ sol to $\arctan \lambda_1 + \arctan \lambda_2 = 0$ eg. $n = 3 \ u = (x_1^2 + x_2^2) \ e^{x_3} - e^{x_3} + \frac{1}{4}e^{-x_3}$ sol to $\arctan D^2 u = \pi/2$ or $\sigma_2 (D^2 u) = 1$ Warren 15

RMK. \circ some lower bound on D^2u is needed \circ phase $(n-2) \pi/2$ is critical

Yu YUAN (In memory of my teacher, Ding W

• *n* = 2 Heinz 50s

æ

(日) (周) (三) (三)

- *n* = 2 Heinz 50s
- $n \ge 3$ Pogorelov 70s

$$\left|D^{2}u\left(0\right)\right| \leq C\left(\left\|u\right\|_{L^{\infty}(B_{1})}\right)$$

provided *u* is strictly convex.

- ∢ ∃ →

- *n* = 2 Heinz 50s
- n ≥ 3 Pogorelov 70s

$$\left|D^{2}u\left(0\right)\right| \leq C\left(\left\|u\right\|_{L^{\infty}(B_{1})}\right)$$

provided u is strictly convex.

- ∢ ∃ →

- *n* = 2 Heinz 50s
- n ≥ 3 Pogorelov 70s

$$\left|D^{2}u\left(0\right)\right| \leq C\left(\left\|u\right\|_{L^{\infty}(B_{1})}\right)$$

provided *u* is strictly convex.

RMK. For σ_k equs w/ k-strict convexity on sol., Chou–X.J. Wang 90s; w/ $L^{p \text{ large}} D^2 u$,Trudinger (80s), Urbas (00s). For σ_k / σ_n equs w/ $L^{p \text{ large}} D^2 u > 0$,Bao-Chen-Guan-Ji 00s.

- *n* = 2 Heinz 50s
- n ≥ 3 Pogorelov 70s

$$\left|D^{2}u\left(0\right)\right| \leq C\left(\left\|u\right\|_{L^{\infty}(B_{1})}\right)$$

provided *u* is strictly convex.

RMK. For σ_k equs w/ k-strict convexity on sol., Chou–X.J. Wang 90s; w/ $L^{p \text{ large}}D^2u$,Trudinger (80s), Urbas (00s). For σ_k/σ_n equs w/ $L^{p \text{ large}}D^2u > 0$,Bao-Chen-Guan-Ji 00s. Counterexamples (w/o strict convexity)

• Pogorelov 70s $C^{1,1-\frac{2}{n}}$ sol to det $D^2 u = 1$

- n = 2 Heinz 50s
- n ≥ 3 Pogorelov 70s

$$\left|D^{2}u(0)\right| \leq C\left(\left\|u\right\|_{L^{\infty}(B_{1})}\right)$$

provided *u* is strictly convex.

RMK. For σ_k equs w/ k-strict convexity on sol., Chou–X.J. Wang 90s; w/ $L^{p \text{ large}}D^2u$,Trudinger (80s), Urbas (00s). For σ_k/σ_n equs w/ $L^{p \text{ large}}D^2u > 0$,Bao-Chen-Guan-Ji 00s. Counterexamples (w/o strict convexity)

- Pogorelov 70s $C^{1,1-\frac{2}{n}}$ sol to det $D^2 u = 1$
- Caffarelli 90s Lipschitz sol w/ variable right hand side

- *n* = 2 Heinz 50s
- n ≥ 3 Pogorelov 70s

$$\left|D^{2}u\left(0\right)\right| \leq C\left(\left\|u\right\|_{L^{\infty}(B_{1})}\right)$$

provided u is strictly convex.

RMK. For σ_k equs w/ k-strict convexity on sol., Chou–X.J. Wang 90s; w/ $L^{p \text{ large}} D^2 u$,Trudinger (80s), Urbas (00s). For σ_k / σ_n equs w/ $L^{p \text{ large}} D^2 u > 0$,Bao-Chen-Guan-Ji 00s. Counterexamples (w/o strict convexity)

- Pogorelov 70s $C^{1,1-\frac{2}{n}}$ sol to det $D^2 u = 1$
- Caffarelli 90s Lipschitz sol w/ variable right hand side
- Caffarelli-Yuan 09 Lipschitz and C^{1,r} w/ r ∈ (0, 1 − 2/n] sol to det D²u = 1

Theorem (Dake Wang-Y 11)

Suppose u smooth sol. to $\sum \arctan \lambda_i = \Theta$ in $B_1 \subset \mathbb{R}^n$. Then

$$\begin{aligned} \left| D^{2}u(0) \right| &\leq C(n) \exp \left[C(n) \left\| Du \right\|_{L^{\infty}(B_{1})}^{2n-2} \right] & \text{for } |\Theta| &\geq (n-2) \pi/2 \\ also &\leq C(n) \exp \left[C(n) \left\| Du \right\|_{L^{\infty}(B_{1})}^{2n-4} \right] & \text{for } |\Theta| &= (n-2) \pi/2 \end{aligned}$$

Theorem (Dake Wang-Y 11)

Suppose u smooth sol. to $\sum \arctan \lambda_i = \Theta$ in $B_1 \subset \mathbb{R}^n$. Then

$$\begin{aligned} \left| D^{2}u(0) \right| &\leq C(n) \exp \left[C(n) \left\| Du \right\|_{L^{\infty}(B_{1})}^{2n-2} \right] & \text{for } |\Theta| &\geq (n-2) \pi/2 \\ also &\leq C(n) \exp \left[C(n) \left\| Du \right\|_{L^{\infty}(B_{1})}^{2n-4} \right] & \text{for } |\Theta| &= (n-2) \pi/2 \end{aligned}$$

RMK. Warren-Y 07 $||Du||_{L^{\infty}(B_1)} \leq C(n)(osc_{B_2}u+1)$, Y 15 $||Du||_{L^{\infty}(B_1)} \leq C(n) osc_{B_2}u$ for $|\Theta| \geq (n-2)\pi/2$

Theorem (Dake Wang-Y 11)

Suppose u smooth sol. to $\sum \arctan \lambda_i = \Theta$ in $B_1 \subset \mathbb{R}^n$. Then

$$\begin{aligned} \left| D^{2}u(0) \right| &\leq C(n) \exp \left[C(n) \left\| Du \right\|_{L^{\infty}(B_{1})}^{2n-2} \right] & \text{for } |\Theta| &\geq (n-2) \pi/2 \\ also &\leq C(n) \exp \left[C(n) \left\| Du \right\|_{L^{\infty}(B_{1})}^{2n-4} \right] & \text{for } |\Theta| &= (n-2) \pi/2 \end{aligned}$$

RMK. Warren-Y 07 $\|Du\|_{L^{\infty}(B_1)} \leq C(n)(osc_{B_2}u+1)$, Y 15 $\|Du\|_{L^{\infty}(B_1)} \leq C(n)osc_{B_2}u$ for $|\Theta| \geq (n-2)\pi/2$ RMK. Warren-Y 07 3-d $|\Theta| = \pi/2$,e^{cubic}est. (now e^{quadratic}est.)

Theorem (Dake Wang-Y 11)

Suppose u smooth sol. to $\sum \arctan \lambda_i = \Theta$ in $B_1 \subset \mathbb{R}^n$. Then

$$\begin{aligned} \left| D^{2}u(0) \right| &\leq C(n) \exp\left[C(n) \left\| Du \right\|_{L^{\infty}(B_{1})}^{2n-2} \right] & \text{for } |\Theta| &\geq (n-2) \pi/2 \\ also &\leq C(n) \exp\left[C(n) \left\| Du \right\|_{L^{\infty}(B_{1})}^{2n-4} \right] & \text{for } |\Theta| &= (n-2) \pi/2 \end{aligned}$$

RMK. Warren-Y 07 $||Du||_{L^{\infty}(B_1)} \leq C(n)(osc_{B_2}u+1)$, Y 15 $||Du||_{L^{\infty}(B_1)} \leq C(n)osc_{B_2}u$ for $|\Theta| \geq (n-2)\pi/2$ RMK. Warren-Y 07 3-d $|\Theta| = \pi/2$,e^{cubic}est. (now e^{quadratic}est.) RMK. Using "rotation" and a relative isoperimetric inequality: ·Warren-Y 07 3-d $|\Theta| > \pi/2$ rougher (double exponential) est

Theorem (Dake Wang-Y 11)

Suppose u smooth sol. to $\sum \arctan \lambda_i = \Theta$ in $B_1 \subset \mathbb{R}^n$. Then

$$\begin{aligned} \left| D^{2}u(0) \right| &\leq C(n) \exp \left[C(n) \left\| Du \right\|_{L^{\infty}(B_{1})}^{2n-2} \right] & \text{for } |\Theta| &\geq (n-2) \pi/2 \\ also &\leq C(n) \exp \left[C(n) \left\| Du \right\|_{L^{\infty}(B_{1})}^{2n-4} \right] & \text{for } |\Theta| &= (n-2) \pi/2 \end{aligned}$$

RMK. Warren-Y 07 $||Du||_{L^{\infty}(B_1)} \leq C(n)(osc_{B_2}u+1)$, Y 15 $||Du||_{L^{\infty}(B_1)} \leq C(n) osc_{B_2}u$ for $|\Theta| \geq (n-2) \pi/2$ RMK. Warren-Y 07 3-d $|\Theta| = \pi/2$, e^{cubic} est. (now $e^{quadratic}$ est.) RMK. Using "rotation" and a relative isoperimetric inequality: ·Warren-Y 07 3-d $|\Theta| > \pi/2$ rougher (double exponential) est ·Chen-Warren-Y 07 convex sol.

$$\left|D^{2}u(0)\right| \leq C(n) \exp\left[C(n) \left\|Du\right\|_{L^{\infty}(B_{1})}^{3n-2}\right] \pmod{2n-2}$$

RMK. Warren-Y (07) "super" relative isoperimetric inequality \Leftrightarrow "super" Sobolev embedding for subharmonic fcns led to 2-d Hessian est.

$$\left|D^{2}u(0)\right| \leq C(2) \exp\left[\frac{C(2)}{\left|\sin\Theta\right|^{3/2}} \left\|Du\right\|_{L^{\infty}(B_{1})}\right]$$

Y 11, the linear exponential dependence on *Du* is sharp: convert Finn's minimal surface eg to 2d M-A eg via Heinz transformation.

RMK. Warren-Y (07) "super" relative isoperimetric inequality \Leftrightarrow "super" Sobolev embedding for subharmonic fcns led to 2-d Hessian est.

$$\left|D^{2}u(0)\right| \leq C(2) \exp\left[\frac{C(2)}{\left|\sin\Theta\right|^{3/2}} \left\|Du\right\|_{L^{\infty}(B_{1})}\right]$$

Y 11, the linear exponential dependence on *Du* is sharp: convert Finn's minimal surface eg to 2d M-A eg via Heinz transformation.

Q. Sharp exponent for Hessian estimates in dim $n \ge 3$?

Part 3 Results: "Quick" applications of a priori est for SLag

- C^0 viscosity sol to $\sum \arctan \lambda_i = \Theta \text{ w} / |\Theta| \ge (n-2) \pi/2$ is regular, analytic.
- Caffarelli-Nirenberg-Spruck 85 $|\Theta| = \left[\frac{n-1}{2}\right] \pi$ existence and interior regularity for C^4 smooth boundary data

Part 3 Results: "Quick" applications of a priori est for SLag

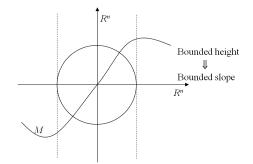
• C^0 viscosity sol to $\sum \arctan \lambda_i = \Theta \text{ w} / |\Theta| \ge (n-2) \pi/2$ is regular, analytic.

Caffarelli-Nirenberg-Spruck 85 $|\Theta| = \left[\frac{n-1}{2}\right] \pi$ existence and interior regularity for C^4 smooth boundary data

• global sol to $\sum \arctan \lambda_i = (n-2) \pi/2$ w/ quadratic growth is quadratic.

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

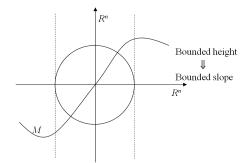
Idea of Warren-Y & Dake Wang-Y



æ

→ < ∃ →</p>

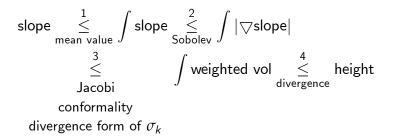
Idea of Warren-Y & Dake Wang-Y



Heuristically, the reciprocal of the 2nd derivative norm/slope is super harmonic, once it is 0 somewhere inside, then it is 0 everywhere, that is, the 2nd derivative norm/slope is infinite everywhere. But we start from a 1st derivative graph (x, Du(x)). Impossible!

The "secret" ingredient is

Technically,



$$b = \ln \sqrt{1 + \lambda_{\max}^2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

$$b = \ln \sqrt{1 + \lambda_{\sf max}^2}$$

satisfies Jacobi

$$riangle_{g} b \stackrel{*}{\geq} |\nabla_{g} b|^{2} \geq 0.$$

2

イロト イ理ト イヨト イヨト

$$b = \ln \sqrt{1 + \lambda_{\sf max}^2}$$

satisfies Jacobi

$$riangle_{g} b \stackrel{*}{\geq} | \bigtriangledown_{g} b |^{2} \geq 0.$$

* In viscosity/comparison sense. By Herve-Herve/Watson, in the needed integral sense for Lip *b*

$$\int \left| \bigtriangledown_{g} b \right|^{2} dv_{g} \leq C(n) \int \left| \bigtriangledown_{g} \varphi \right|^{2} dv_{g}.$$

イロト イポト イヨト イヨト

$$b = \ln \sqrt{1 + \lambda_{\sf max}^2}$$

satisfies Jacobi

$$riangle_{g} b \stackrel{*}{\geq} | \bigtriangledown_{g} b |^{2} \geq 0.$$

* In viscosity/comparison sense. By Herve-Herve/Watson, in the needed integral sense for Lip \boldsymbol{b}

$$\int \left| \bigtriangledown_{g} b \right|^{2} dv_{g} \leq C\left(n\right) \int \left| \bigtriangledown_{g} \varphi \right|^{2} dv_{g}.$$

* Twist multiplication to contain terms involving derivatives of cut-off fcns

Part 3. Results: ii A priori est. SLag w/ subcritical phases -

• Nadirashvili-Vladuct 09 $C^{1,1/3}$ solution to $\sum_{i=1}^{3} \arctan \lambda_i = 0$

Part 3. Results: ii A priori est. SLag w/ subcritical phases -

- Nadirashvili-Vladuct 09 $C^{1,1/3}$ solution to $\sum_{i=1}^{3} \arctan \lambda_i = 0$
- Dake Wang-Y 10 $\ C^{1,r}$ sols SLag with $|\Theta| < (n-2) \, \pi/2$ and $r \in (0,1/3]$

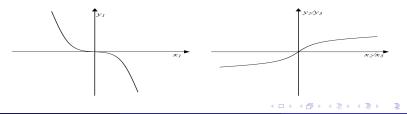
Part 3. Results: ii A priori est. SLag w/ subcritical phases -

- Nadirashvili-Vladuct 09 $C^{1,1/3}$ solution to $\sum_{i=1}^{3} \arctan \lambda_i = 0$
- Dake Wang-Y 10 $\ C^{1,r}$ sols SLag with $|\Theta| < (n-2) \, \pi/2$ and $r \in (0,1/3]$

Ideas of D. Wang-Y rotation way

* "Bounded" coordinates w/ Lag angles near $(0^-, \pi/4, \pi/4)$, via Cauchy-K solve $\sigma_2(D^2u) = 1$ or $\arctan D^2u = \pi/2$ * Switch x-y coordinates, still Lag now w/ Lag angles $(-\pi/2, \pi/4, \pi/4)$, that is $\arctan D^2\tilde{u} = 0$ * Rotate down z_2, z_3 plane, keep z_1 plane to increase the phase from

0 to $\Theta < \pi/2$, then $\arctan D^2 \tilde{\tilde{u}} = \Theta$ w/ $\Theta \in (0, \pi/2)$



Lagrangian mean curvature flow in $\mathbb{R}^n \times \mathbb{R}^n$

$$\partial_t U = g^{ij} \partial_{ij} U \quad \text{w}/ U = D u$$

Euclidean $(R^{2n}, dx^2 + dy^2)$, $g = I + D^2 u D^2 u \Leftrightarrow \partial_t u = \arctan D^2 u$ eg. 1-d $U(x, t) = u_x(x, t)$, potential equ of mean curv. flow and mean curv. flow in nondiv form are respectively

$$u_t = rctan \, u_{xx} \quad \leftrightarrow \quad U_t = rac{1}{1+U_x^2} \, U_{xx}$$

Lagrangian mean curvature flow in $\mathbb{R}^n \times \mathbb{R}^n$

$$\partial_t U = g^{ij} \partial_{ij} U \quad \text{w}/ \ U = D u$$

Euclidean $(R^{2n}, dx^2 + dy^2)$, $g = I + D^2 u D^2 u \Leftrightarrow \partial_t u = \arctan D^2 u$ eg. 1-d $U(x, t) = u_x(x, t)$, potential equ of mean curv. flow and mean curv. flow in nondiv form are respectively

$$u_t = rctan \, u_{xx} \quad \leftrightarrow \quad U_t = rac{1}{1+U_x^2} U_{xx}$$

Th'm. Chau-Chen-Y 12 Given "almost" convex initial potential u_0 satis. $-(1+\eta)I \le D^2 u_0 \le (1+\eta)I \le \eta$ (n) small dim const., the Lag heat equ has a unique longtime smooth sol u(x, t) in $\mathbb{R}^n \times (0, \infty)$ such that:

Lagrangian mean curvature flow in $\mathbb{R}^n \times \mathbb{R}^n$

$$\partial_t U = g^{ij} \partial_{ij} U \quad w/U = Du$$

Euclidean $(R^{2n}, dx^2 + dy^2)$, $g = I + D^2 u D^2 u \Leftrightarrow \partial_t u = \arctan D^2 u$ eg. 1-d $U(x, t) = u_x(x, t)$, potential equ of mean curv. flow and mean curv. flow in nondiv form are respectively

$$u_t = rctan \, u_{xx} \quad \leftrightarrow \quad U_t = rac{1}{1+U_x^2} U_{xx}$$

Th'm. Chau-Chen-Y 12 Given "almost" convex initial potential u_0 satis. $-(1 + \eta) I < D^2 u_0 < (1 + \eta) I w / \eta = \eta (n)$ small dim const., the Lag heat equ has a unique longtime smooth sol u(x, t) in $R^n \times (0, \infty)$ such that: i) $-\sqrt{3}I < D^2 u(x, t) < \sqrt{3}I$ for all t > 0

Lagrangian mean curvature flow in $\mathbb{R}^n \times \mathbb{R}^n$

$$\partial_t U = g^{ij} \partial_{ij} U \quad w/U = Du$$

Euclidean $(R^{2n}, dx^2 + dy^2)$, $g = I + D^2 u D^2 u \Leftrightarrow \partial_t u = \arctan D^2 u$ eg. 1-d $U(x, t) = u_x(x, t)$, potential equ of mean curv. flow and mean curv. flow in nondiv form are respectively

$$u_t = rctan \, u_{xx} \quad \leftrightarrow \quad U_t = rac{1}{1+U_x^2} U_{xx}$$

Th'm. Chau-Chen-Y 12 Given "almost" convex initial potential u_0 satis. $-(1+\eta) I \le D^2 u_0 \le (1+\eta) I \text{ w}/\eta = \eta(n)$ small dim const., the Lag heat equ has a unique longtime smooth sol u(x, t) in $R^n \times (0, \infty)$ such that: i) $-\sqrt{3}I \le D^2 u(x, t) \le \sqrt{3}I$ for all t > 0ii) $\|D^I u\|_{L^{\infty}(R^n)} \le C_I/t^{I-2}$ for $I \ge 3 \& t > 0$ iii) Du(x, t) is $C^{1/2}$ in time at t = 0

Lagrangian mean curvature flow in $\mathbb{R}^n \times \mathbb{R}^n$

$$\partial_t U = g^{ij} \partial_{ij} U \quad w/U = Du$$

Euclidean $(R^{2n}, dx^2 + dy^2)$, $g = I + D^2 u D^2 u \Leftrightarrow \partial_t u = \arctan D^2 u$ eg. 1-d $U(x, t) = u_x(x, t)$, potential equ of mean curv. flow and mean curv. flow in nondiv form are respectively

$$u_t = rctan \, u_{xx} \quad \leftrightarrow \quad U_t = rac{1}{1+U_x^2} U_{xx}$$

Th'm. Chau-Chen-Y 12 Given "almost" convex initial potential u_0 satis. $-(1+\eta) I \le D^2 u_0 \le (1+\eta) I \text{ w}/\eta = \eta(n)$ small dim const., the Lag heat equ has a unique longtime smooth sol u(x, t) in $R^n \times (0, \infty)$ such that: i) $-\sqrt{3}I \le D^2 u(x, t) \le \sqrt{3}I$ for all t > 0ii) $\|D^I u\|_{L^{\infty}(R^n)} \le C_I/t^{I-2}$ for $I \ge 3 \& t > 0$ iii) Du(x, t) is $C^{1/2}$ in time at t = 0 Consequence: Via U(n) rotation, the long time existence and ests for smooth sols also hold for locally $C^{1,1}$ initial potential u_0 being • convex $D^2u_0 \ge 0$ or

• w/ large supercrital phase $\arctan\left[D^2 u_0\right] \geq \left(n-1\right) \pi/2$

RMK1. Krylov theory on concave uniformly parabolic fully nonlinear equ doesn't apply.

Consequence: Via U(n) rotation, the long time existence and ests for smooth sols also hold for locally $C^{1,1}$ initial potential u_0 being • convex $D^2u_0 \ge 0$ or

• w/ large supercrital phase arctan $\left[D^2 u_0
ight] \geq \left(n-1
ight) \pi/2$

RMK1. Krylov theory on concave uniformly parabolic fully nonlinear equ doesn't apply.

RMK2. C-eg by Neves-Y 09 shows all the above conds are sharp:

Consequence: Via U(n) rotation, the long time existence and ests for smooth sols also hold for locally $C^{1,1}$ initial potential u_0 being • convex $D^2u_0 \ge 0$ or

• w/ large supercrital phase arctan $\left[D^2 u_0
ight] \geq \left(n-1
ight) \pi/2$

RMK1. Krylov theory on concave uniformly parabolic fully nonlinear equ doesn't apply.

RMK2. C-eg by Neves-Y 09 shows all the above conds are sharp: \circ almost convexity $-(1 + \eta)I \leq D^2 u_0 \leq (1 + \eta)I$ not preserved (Gauss image of (x, Du_0) not a convex set in Grassmanian LG(n, n)) \circ convex consequence. If just $D^2 u_0 \geq -\eta I$, then graphical condition is not preserved, i.e. $D^2 u = \infty$ at some point \circ large phase consequence. If just arctan $[D^2 u_0] \geq (n-1) \pi/2 - \eta$, then graphical condition is not preserved. RMK3. But by Chau-Chen-Y, in the latter convex & large phase

c-egs, the Lagrangian manifolds themselves flows smoothly & forever (didn't know in 09).

Earlier results

• Smoczyk-Wang 02: longtime existence in periodic setting w/ initial u_0 satisf. $0 \le D^2 u_0 \le C$ or equivalently $(-1+\delta) I \le D^2 u_0 \le (1-\delta) I$ (Direct application of Krylov Theory on convex fully nonlinear parabolic equs)

 \circ Chen-Pang 09: longtime existence and UNIQUENESS of C^0 viscosity sol w/ C^0 initial potential

◦ Chau-Chen-He 09: Longtime existence in $R^n \times (0, \infty)$ setting w/ initial potential $-(1-\delta)I \leq D^2 u_0 \leq (1-\delta)I$ for $\delta > 0$ (estimates blow up when δ goes to 0, no way to push to $-I \leq D^2 u_0 \leq I$) Earlier results

o Smoczyk-Wang 02: longtime existence in periodic setting w/ initial u_0 satisf. $0 \le D^2 u_0 \le C$ or equivalently $(-1+\delta) I \le D^2 u_0 \le (1-\delta) I$ (Direct application of Krylov Theory on convex fully nonlinear parabolic equs) o Chen-Pang 09: longtime existence and UNIQUENESS of C^0 viscosity sol w/ C^0 initial potential o Chau-Chen-He 09: Longtime existence in $R^n × (0, \infty)$ setting w/ initial potential $-(1-\delta)I \le D^2 u_0 \le (1-\delta)I$ for $\delta > 0$ (estimates

blow up when δ goes to 0, no way to push to $-I \leq D^2 u_0 \leq I$)

RMK.

∘ $u_t = \Delta u$ uniform parabolicity/diffusion --→ Tikhonov nonuniq. & finite time blow up eg. $h(x, t) = \frac{1}{\sqrt{1-t}} \exp\left(\frac{x^2}{4(1-t)}\right)$

- * 聞 > * ほ > * ほ > … ほ

Earlier results

Smoczyk-Wang 02: longtime existence in periodic setting w/ initial u₀ satisf. 0 ≤ D²u₀ ≤ C or equivalently
(-1+δ) I ≤ D²u₀ ≤ (1 − δ) I (Direct application of Krylov Theory on convex fully nonlinear parabolic equs)
Chen-Pang 09: longtime existence and UNIQUENESS of C⁰ viscosity sol w/ C⁰ initial potential
Chau-Chen-He 09: Longtime existence in Rⁿ × (0,∞) setting w/ initial potential - (1 − δ) I ≤ D²u₀ ≤ (1 − δ) I for δ > 0 (estimates

blow up when δ goes to 0, no way to push to $-I \leq D^2 u_0 \leq I$)

RMK.

• $u_t = \Delta u$ uniform parabolicity/diffusion --→ Tikhonov nonuniq. & finite time blow up eg. $h(x, t) = \frac{1}{\sqrt{1-t}} \exp\left(\frac{x^2}{4(1-t)}\right)$ • $u_t = \arctan D^2 u$ degenerate parabolicity/diffusion --→ uniq. & longtime C^0 sol saddle shape --→ higher derivative finite time blow up Ideas of Chau-Chen-Y: Compactness arguments powered by Chen-Pang Uniqueness and Nguyen-Y (09) parabolic Schauder $C^{2+1,1+1/2}$ est. for Lag. heat equ

$$egin{aligned} & \left[u_t
ight]_{1,1/2;Q_{1/2}} + \left[D^2u
ight]_{1,1/2;Q_{1/2}} \leq C\left(\sqrt{3}
ight), \ & ext{ provided } \left|D^2u
ight| \stackrel{\leq}{\underset{ ext{vol convex cond.}}} \sqrt{3} & ext{in } Q_1 \end{aligned}$$

Ideas of Chau-Chen-Y: Compactness arguments powered by Chen-Pang Uniqueness and Nguyen-Y (09) parabolic Schauder $C^{2+1,1+1/2}$ est. for Lag. heat equ

$$\begin{split} [u_t]_{1,1/2;Q_{1/2}} + \left[D^2 u\right]_{1,1/2;Q_{1/2}} &\leq C\left(\sqrt{3}\right),\\ \text{provided } \left|D^2 u\right| &\leq \\ \underset{\text{vol convex cond.}}{\leq} \sqrt{3} \text{ in } Q_1 \end{split}$$

RMK. Nguyen-Y relies on elliptic Bernstein result of Y. and Liouville type results of Y., Warren–Y, Tsui–Wang, even earlier one by Jost–Xin, Fischer-Colbrie, ..., Simons.

Ideas of Chau-Chen-Y: Compactness arguments powered by Chen-Pang Uniqueness and Nguyen-Y (09) parabolic Schauder $C^{2+1,1+1/2}$ est. for Lag. heat equ

$$\begin{split} [u_t]_{1,1/2;Q_{1/2}} + \left[D^2 u\right]_{1,1/2;Q_{1/2}} &\leq C\left(\sqrt{3}\right),\\ \text{provided } \left|D^2 u\right| &\leq \\ \underset{\text{vol convex cond.}}{\leq} \sqrt{3} \text{ in } Q_1 \end{split}$$

RMK. Nguyen-Y relies on elliptic Bernstein result of Y. and Liouville type results of Y., Warren–Y, Tsui–Wang, even earlier one by Jost–Xin, Fischer-Colbrie, ..., Simons.

Part 4 Parabolic side, self similar sols for curvature flows w/ potential

• Lagrangian mean curvature flow in R^{2n}

$$\partial_t U = g^{ij} \partial_{ij} U \quad \text{w}/ U = D v$$

Euclidean $(R^{2n}, dx^2 + dy^2)$, $g = I + D^2 v D^2 v \Leftrightarrow \partial_t v = \arctan D^2 v$ Pseudo-Euclidean $(R^{2n}, dxdy)$, $g = D^2 v \Leftrightarrow \partial_t v = \ln \det D^2 v$

Kahler Ricci flow

$$\left.\begin{array}{l} \left. \begin{array}{l} \partial_t g_{i\bar{k}} = -R_{i\bar{k}} \\ g_{i\bar{k}} = v_{i\bar{k}} \end{array} \right\} \quad \Leftrightarrow \quad \partial_t v = \ln \det \partial \bar{\partial} v \\ \operatorname{\mathsf{Ric}} = -\partial \bar{\partial} \ln \det \partial \bar{\partial} v \end{array}\right\} \quad \Leftrightarrow \quad \partial_t v = \ln \det \partial \bar{\partial} v$$

Consider self similar shrinking sols in $R^{2n} \times (-\infty, 0)$: $v(x, t) = -tu(x/\sqrt{-t})$

arctan
$$D^2$$
 / ln det D^2 / ln det $\partial \bar{\partial} \ u = rac{1}{2} x \cdot Du \left(x
ight) - u \left(x
ight)$.

Th'm (Chau-Chen-Y. 10)

Let u be an entire smooth sol to arctan λ₁ + · · · + arctan λ_n = ½x · Du (x) - u in Rⁿ. Then u = u (0) + ½ (D²u (0) x, x).
Let u be an entire smooth convex sol to

In det $D^2 u = \frac{1}{2} x \cdot Du(x) - u$ in \mathbb{R}^n satisfying $D^2 u(x) \ge \frac{2(n-1)}{|x|^2}$ for large |x|. Then u is quadratic.

• Let u be an entire smooth pluri-subharmic sol to $\ln \det \partial \bar{\partial} u = \frac{1}{2} x \cdot Du(x) - u$ in C^m satisfying $\partial \bar{\partial} u \ge \frac{2m-1}{2|x|^2}$ for large |x|. Then u is quadratic.

Th'm (Drugan-Lu-Y. 13) Let u be an entire smooth pluri-subharmonic sol to $\ln \det \partial \bar{\partial} u = \frac{1}{2} x \cdot Du(x) - u$ in $\Omega \subseteq C^m$ s.t. the metric $g = \partial \bar{\partial} u$ is complete. Then u(x) is quadratic.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

RMK. For arctan case: Y. 09 bounded Hessian, Chau-Chen-He 09 $|D^2u| \le 1-\delta$, R. Huang-Z. Wang 10, $|D^2u| \le 1$, rigidity was derived. For ln det D^2 case w/ similar lower bound, R. Huang-Z. Wang 10 derived the rigidity.

Y. 15 Every Euclid complete graphical shrinker (x, Du) in $\Omega \times R^n$ in the sense $|x|^2 + |Du|^2 = \infty$ on $\partial\Omega$, is a (Lagrangian) plane.

RMK. For ln det D^2 case: Q. Ding-Xin 12, rigidity of entire sol, without any lower; Drugan-Lu-Y works for real M-A case w/ complete metric

RMK. For ln det $\partial \bar{\partial}$ case: m = 1 W.L. Wang 15 every entire self similar sol on complex plane is quadratic; general dim m W.L. Wang 15 every entire self similar sol w/ real convex potential is quadratic.

(4回) (4回) (4回)

Ideas of Chau-Chen-Y & Drugan-LU-Y

*

$$g^{ij}\partial_{ij}\Theta\left(x
ight)=rac{1}{2}x\cdot D\Theta\left(x
ight)$$

The amplifying force in the right forces bounded $\Theta(x) = \arctan D^2 u(x)$ to be constant.

* Self similarity and Euler's formula show smooth potential *u* is homog. order two, then quadratic

$$\Theta\left(0\right)=\frac{1}{2}x\cdot Du\left(x\right)-u\left(x\right)$$

Part 5 Questions

Q1. Pointwise argument toward slope $(D^2 u)$ est for SLag? Recall for minimal surface equ div $\left(Df / \sqrt{1 + |Df|^2}\right) = 0$, Bombieri-De Giorgi-Miranda (60s), Trudinger (70s) integral way

$$\left| Df\left(0
ight)
ight| \leq C\left(n
ight) \exp\left[C\left(n
ight) \left\| f
ight\|_{L^{\infty}\left(B_{1}
ight)}
ight]$$

Korevaar 80s Pointwise way, slick, relying on pointwise Jacobi. Q2. Construction of nontrivial sol to $\arctan D^2 u = (n-2)\frac{\pi}{2}$ in $R^{n>3}$. \exists ? homog order 2 sol to $\arctan D^2 u = 0$ in dim $n \ge 5$? Q3. Any further regularity beyond C^0 for C^0 viscosity sol to $\arctan D^2 u = \Theta \ w/ |\Theta| < (n-2)\pi/2$? Q4. Every entire sol to $\ln \det \partial \overline{\partial} u = \frac{1}{2}x \cdot Du(x) - u$ in C^m is quadratic?

RMK. Self-similarity makes sol to the eigenvalue equ more rigid. In contrast, \exists nontrivial (non flat) entire and complete sol to equ In det $\partial \bar{\partial} u = 0$ in C^m by LeBrun, Hitchin ... 80s.

