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The three well known classical PDEs are Laplace equation,
heat equation, and wave equation, representing the three types
of PDEs with rather distinct properties: elliptic, parabolic and
hyperbolic equations, respectively.

• Laplace equation – elliptic

∆u :=
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

= 0

• Heat equation – parabolic

ut = ∆u

• Wave equation – hyperbolic

utt = ∆u
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In general, an elliptic PDE of the second order can be written
in the form

(1) F (∇2u,∇u, u, x) = 0.

The ellipticity means

(2) {F ij[u]} ≡ {F ij(∇2u,∇u, u, x)} > 0

where, if we write F (A, ·, ·, ·) and A = {aij} ∈ Sn×n,

F ij ≡ ∂F

∂aij

Sn×n is the set of n by n symmetric matrices. Equivalently, the
linearized operator

Lu = F ij[u]∇i∇j + lower order terms

is elliptic.
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Equation (2) is

• linear, if F is linear in u, ∇u and ∇2u;
otherwise, nonlinear;
• semilinear, if F is linear in ∇u and ∇2u;
• quasilinear, if F is linear in ∇2u;
• fully nonlinear, if F is not linear in ∇2u.
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Let’s first look at some examples of nonlinear equations from
geometry.

• The minimal surface equation

div
( Du√

1 + |Du|2
)

= 0.

For n = 2,

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0.

• The minimal surface equation in hyperbolic space(
δij −

uiuj
1 + |Du|2

)
uij =

n

u
.

• The spacelike maximal surface equation in Minkowski space

div
( Du√

1− |Du|2
)

= 0.

The spacelike condition

|Du| < 1.
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• The Monge-Ampère equation

detD2u = ψ.

For n = 2,
uxxuyy − u2

xy = ψ.

• The complex Monge-Ampère equation

det
∂2u

∂zi∂z̄j
= ψ.

• The prescribed Gauss curvature equation

detD2u = K(1 + |Du|2)
n+2
2 .

For spacelike hypersurfaces in Minkowski space

detD2u = K(1− |Du|2)
n+2
2 .
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There are important fourth order equations in geometry.

• Willmore surface equation.
• Affine maximal hypersurface equation

uij
∂2

∂xi∂xj
detD2u = 0.
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1. The Isoperimetric Inequality. Let C be a simple closed
curve in R2. Then

4πA ≤ L2

where A is the enclosed area, L donotes the length of C.
More generally, let Ω be a domain in Rn. Then

ω1(n|Ω|)n−1 ≤ |∂Ω|n

where ω donotes the volume of the unit sphere in Rn.

Proof. Consider the Neumann problem

∆u = C in Ω,
∂u

∂ν
= 1 on ∂Ω.

Let Γ+ be the lower contact of (the graph of) u

Γ+ = {x ∈ Ω : u(y) ≥ u(x) +Du(x) · (y − x)}.
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It is easy to see that

B1 ⊂ Du(Γ+)

where B1 denote the unit ball in Rn centered at the origin. Con-
sequently,

|B1| ≤ |Du(Γ+)| ≤
∫

Γ+

detD2u ≤ 1

nn

∫
Γ+

(∆u)n ≤ 1

nn
Cn|Ω|.

By the Divergence Theorem,

C|Ω| =
∫

Ω

∆u =

∫
∂Ω

∂u

∂ν
= |∂Ω|.

So

C =
|∂Ω|
|Ω|

.

This completes the proof. �
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2. Alexandrov Theorem. An embedded closed hypersurface
in Rn+1 of constant mean curvature must a sphere.

The proof: Alexandrov’s moving plane method, based the max-
imum priciple. It is also called Alexandrov reflection principle.
The idea can be explained using curves of contant curvature in
the plane.

Let C be a simple closed curve in R2. Locally,

C = graph of f.

The curvature of C is

κ =
f ′′

(1 + |f ′|2) 3
2

.

This is an ODE for f . Suppose κ is constant. Then C must
a circle, following the uniqueness of solution to the initial value
problem.
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3. Minkowski Type Problems. Let Σ be a hypersurface in
Rn+1. We use κ = (κ1, . . . , κn) to denote the principal curvatures
of Σ with respect to its interior normal. The kth Weingarten
curvature Wk of Σ is defined as

Wk = σk(κ1, . . . , κn), k = 1, . . . , n

where σk is the kth elementary symmetric function. For k = 1, 2
and n, Wk corresponds to the mean, scalar and Gauss curvature,
respectively.

Suppose now that Σ is a strictly convex closed hypersurface.
The Gauss map n : Σ → Sn is then a diffeomorphism. Let n−1

denote its inverse which we call the inverse Gauss map.
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In 1950s, A. D. Alexandrov and S. S. Chern raised the following
extended version of the Minkowski problem

Let 1 ≤ k ≤ n be a fixed integer, and ψ > 0 on Sn. Does there
exist a closed strictly convex hypersurface Σ in Rn+1 such that

(3) Wk(n
−1(x)) = ψ(x) ∀ x ∈ Sn?

For k = n this is the classical Minkowski problem, which was
studied by Minkowski, Alexandrov, Lewy, Nirenberg, Pogorelov,
Cheng-Yau, etc.

Theorem 1. For k = n, a necessary and sufficient condition is

(4)

∫
Sn

x

ψ(x)
= 0.
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This turns out not to be the case for 1 ≤ k < n.

Theorem 2 (P.-F. Guan, G. 2002). (a) For every 1 ≤ k < n
and any nonzero real number m, there exists a parameter family
of closed strictly convex hypersurfaces (all are small perturbations
of the unit sphere) in Rn+1 satisfying

(5)

∫
Sn

x

(Wk(n−1(x)))m
6= 0.

(b) There exists a function f ∈ C∞(Sn) and a constant δ > 0
such that for all t ∈ (0, δ), problem (3) has no solution for ψ :=
(1 + tf)−1 while (4) is satisfied.
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A partial existence result.

Theorem 3. Suppose ψ is invariant under an automorphic group
G of Sn without fixed points, i.e., ψ(g(x)) = ψ(x) for all g ∈ G
and x ∈ Sn. Then there exists a closed strictly convex hypersurface
Σ in Rn+1 satisfying (3).

For instance, if ψ(−x) = ψ(x) for all x ∈ Sn the problem is
solvable.

The PDE:
σn(λ)

σn−k(λ)
=

1

ψ

where λ = λ(∇2u+ ug) = eigenvalues of ∇2u+ ug on Sn.
Subsequent work: Sheng-Trudinger-Wang.
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4. Plateau Type Problems. Let f be a smooth symmetric
function of n (n ≥ 2) variables, and

Γ = {Γ1, . . . ,Γm}
a disjoint collection of closed smooth embedded submanifolds of
dimension (n− 1) in Rn+1.

Question. Does there exist an immersed hypersurfaces M in
Rn+1 of constant curvature

(6) f(κ[M ]) = K

with boundary

(7) ∂M = Γ?

Here κ[M ] = (κ1, . . . , κn) denotes the principal curvatures of M
and K is constant.
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The Plateau problem: f = σ1, the mean curvature of M , raised
by Joseph-Louis Lagrange in 1760, named after Joseph Plateau
who experimented with soap films, and solved independently by
Jesse Douglas and Tibor Rado in 1930’s. But there were a lot
of subsequent developments and research activities, especially in
geometric measure theory.
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For f = σn, the Gauss curvature, M is locally determined by

detD2u = K(1 + |Du|2)
n+2
2 .

This equation is elliptic for strictly convex solutions. We require
M to be locally strictly convex, i.e, the second fundamental form
is M is positive definite everywhere.

• The second fundamental form of each Γk is nondegenerate
everywhere. For n = 1 this means that the curvature of Γk
never vanishes.
• There are topological obstructions (H. Rosenberg).
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Existence results.

• Caffarelli-Nirenberg-Spruck (1980’s): The Dirichlet prob-
lem is solvable over a strictly conevx domain, provided that
there is a strictly convex subsolution.
• Spruck-G. (1993, 1998): On any smooth bouned domain,

as long as there is a strictly convex subsolution.
• Spruck-G. (2002): If Γ bounds a locally strictly convex

hypersurface, it bounds one with constant Gauss curvature.
It was also independently proved by Trudinger-Wang (2002).

• Spruck-G. (2004): This is true for more general function f .
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Some of the technical issues.

• The Dirichlet problem in general domain.
• Perron’s mehtod for locally convex hypersurfaces.
• Local gradient estimates.
• Area minimizing for locally convex hypersurfaces.
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Some general questions to understand.

• Global bahavior/properties of solutions
—Liouville type theorem
—Bernstein theorem
—Symmetry

• Existence/expression of solutions.
—Separation of variables, eigenfunction expansions
—Poisson representation
—d’Alembert’s formula
—A priori estimates
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In the rest of this talk we shall mainly concerned with equations
of the form

(8) f(λ(A[u])) = ψ

on a Riemannian manifold (Mn, g), where

• f : a smooth symmetric function of n variables defined in
Γ ⊂ Rn

• Γ: a symmetric open and convex cone with vertex at the
origin, ∂Γ 6= ∅, and Γn ⊆ Γ where

(9) Γn ≡ {λ ∈ Rn : each component λi > 0}. ⊆ Γ.

• A[u] = ∇2u+ χ.
• λ(A) = (λ1, · · · , λn) denotes the eigenvalues of A.

Note that F (A) = f(λ(A)) if and only if F (PAP T ) = F (A) for
any orthogonal matrix P .
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Examples of f . This covers a very broad class of equations.

• f = σ
1
k

k or (σk/σl)
1
k−l define on

Γk = {λ ∈ Rn : σj(λ) > 0, 1 ≤ j ≤ k}

where σk(λ) is the elementary symmetric function

σk(λ) =
∑

i1<...<ik

λi1 . . . λik, k = 1, . . . , n.

In particular, σ1(λ) = ∆u, σn(λ) = det∇2u.
• The special Lagrange equation: f(λ) =

∑
tan−1 λi.

• f = logPk where

Pk(λ) :=
∏

i1<···<ik

(λi1 + · · ·+ λik), 1 ≤ k ≤ n

defined in the cone

Pk := {λ ∈ Rn : λi1 + · · ·+ λik > 0}.
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• The inverse sum:

(10) f(λ) = −
∑ 1

λαi
, λ ∈ Γn, α > 0.
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The fundamental structure conditions [CNS1985]. To
study the equations under the framework of elliptic PDE theory,
we need some basic assumptions.

• ellipticity

(11) fi = fλi ≡
∂f

∂λi
> 0 in Γ, 1 ≤ i ≤ n,

• concavity

(12) f is a concave function in Γ

• nondegeneracy:

(13) inf
Ω
ψ > sup

∂Γ
f

where
sup
∂Γ

f ≡ sup
λ0∈∂Γ

lim sup
λ→λ0

f(λ).

These conditions were introduced by Caffarelli-Nirenberg-Spruck
in 1985 and have become standard in the literature.
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Admissible functions. A function u ∈ C2 is called admissible
if λ(A[u]) ∈ Γ.

• (11): Eq (8) is elliptic for admissible solutions.
• (12): F (A) ≡ f(λ[A]) is concave for A with λ[A] ∈ Γ.
• (13): Eq (8) will not become degenerate.
• (11) & (13) & |∇2u| ≤ C: Eq (8) becomes uniformly ellip-

tic.
• Evans-Krylov theorem: Suppose that (1) is uniformly

elliptic, F is concave w.r.t. ∇2u and |u|C2(Ω̄) ≤ C. Then

|u|C2,α(Ω̄) ≤ C.

• Schauder theory: C2,α estimates imply higher regularity.
• Continuity method: |u|C2,α(Ω̄) ≤ C implies the classical

solvability of the Dirichelt problem.

From this point of view, conditions (11)-(13) are fundamental to
the classical solvability of equation (8).
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The ultimate goal is to solve equation (8). To prove the exis-
tence of classical solutions.

• The Dirichlet problem.
• On closed manifolds.

The key is to derive global C2 estimates. We hope to establish
this for general manifolds—without curvature restrictions, and
for general domians in the case of the Dirichlet problem—without
assumptions on the geometric shape of ∂M , the boundary of M .
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Question: Are assumptions (11)-(13) necessary? Sufficient?

• For the degenerate Monge-Ampère equation, the solution
may fail to belong to C1,1(Ω).
• The Dirichlet problem for detD2u = 1 in Ω ⊂ Rn with
u = 0 on ∂Ω does not have a solution unless Ω is strictly
convex.
• Nadirashvili et al.: For nonconcave F , the solution may

fail to belong to C1,1 (n ≥ 5).
• CNS3: There is an equation(n = 2) satisfying (11)-(13),

with solution in C∞(B1) ∩ C(B1) but not in C1(B1).
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Previous Work.
Caffarelli, Nirenberg and Spruck (1985)
Chou-Wang (2006)
Ivochkina
Ivochkina-Trudinger-Wang (degenerate case)
Kryov (1980’s)
Y.-Y. Li (1990)
Trudinger (1996)
Urbas (2003)
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The Dirichlet problem in Rn.

• Caffarelli, Nirenberg and Spruck (1985, CNS).

Theorem 4 ([CNS3, Acta 1985]). Let Ω be a bounded smooth
domain in Rn, n ≥ 2, ψ ∈ Ck,α(Ω̄), ϕ ∈ Ck+2,α(∂Ω), k ≥ 2.
Assume a) (11)-(13), and in addition b), c), d) below. Then the
Dirichelt problem

(14)

{
f(λ(∇2u+ χ) = ψ in Ω̄

u = ϕ on ∂Ω

admits a unique admissible solution u ∈ Ck+2,α(Ω̄)
Moreover, if ψ ∈ C∞(Ω̄), ϕ ∈ C∞(∂Ω) then u ∈ C∞(Ω̄).
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The additional conditions:

b) for every C > 0 and λ ∈ Γ there is a number R = R(C, λ)
such that

(15) f(λ1, . . . , λn−1, λn +R) ≥ C

(16) f(Rλ) ≥ C

c) A geometric condition on ∂Ω:

(17) (κ1, . . . , κn−1, R) ∈ Γ on ∂Ω for some R > 0

where (κ1, . . . , κn−1) are the principal curvatures of ∂Ω
d) χ = 0.

• For the Monge-Ampère equation (f = σ
1/n
n ), c) means that

Ω is strictly convex.

Trudinger in 1995 removed condition (15).
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• Guan (2014, for general domains).

Theorem 5 (Guan 2014, arXiv:1403.2133). Assume

a) (11)-(13) hold,
e) the subsolution assumption: there exists an admissible

subsolution u ∈ C2(Ω̄)

(18)

{
f(λ(∇2u+ χ) ≥ ψ in Ω̄

u = ϕ on ∂Ω.

The Dirichlet problem (14) then has a unique admissible solution
u ∈ Ck+2,α(Ω̄).

Moreover, if ψ ∈ C∞(Ω̄), ϕ ∈ C∞(∂Ω) then u ∈ C∞(Ω̄).
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The proof. To derive

|u|C2(Ω̄) ≤ C.

Then C2,α and higher order estimates follows from Evans-Krylov
Theorem and Schauder theory; existence by the continuity method.
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Theorem 6 (Guan, 2014). Let u ∈ C4(M) ∩ C2(M̄) be an ad-
missible solution of the Dirichlet problem (14). Suppose (11)-(13)
hold and that there exists an admissible subsolution u ∈ C2(M̄):

(19)

{
f(λ[∇2u+ χ]) ≥ ψ in M̄,

u = ϕ on ∂M.

Then

(20) max
M̄
|∇2u| ≤ C.

The proof consists of two steps:

• a maximum principle for |∇2u|

(21) max
M̄
|∇2u| ≤ C

(
1 + max

M̄
|∇u|2 + max

∂M
|∇2u|

)
• the boundary estimate

(22) max
∂M
|∇2u| ≤ C.
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The concavity and subsoltuion. For σ > sup∂Γ f , let

Γσ = {λ ∈ Γ : f(λ) > σ}
and suppose Γσ 6= ∅. By (11) and (12) the level set

∂Γσ = {λ ∈ Γ : f(λ) = σ}
i.e., boundary of Γσ, is a smooth convex hypersurface.

For λ ∈ ∂Γσ let

νλ =
Df(λ)

|Df(λ)|
be the unit normal to ∂Γσ and Tλ∂Γσ denote the tangent plane
of ∂Γσ at λ.
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Theorem 7. Let µ ∈ Γ and β > 0. There exists uniform constant
ε > 0 such that when |νµ − νλ| ≥ β,

(23)
∑

fi(λ)(µi − λi) ≥ f(µ)− f(λ) + ε
∑

fi(λ) + ε.

• Used in global estimates for |∇2u| too.
• Apply Theorem 7 to µ = λ[u], λ = λ[u].
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Equations on closed Riemannian manifolds. Let (Mn, g)
be a Riemannian manifold without boundary.

Y.-Y. Li (1990) first studied equation (14) for χ = g on closed
Riemannian manifolds with nonnegative sectional curvature. John
Urbas (2002) removed the curvature assumption.

Their main extra assumptions are

lim
|λ|→∞

∑
fi =∞

and
lim
|λ|→∞

∑
fi(1 + λ2

i ) =∞

respectively.
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• The notaion of subsolutions on closed Riemannian
manifolds. When M is closed, the subsolution assumption does
not make sense. Indeed, a subsolution must be a solution, or there
is no solution. This is a consequence of the maximum principle.

The tangent cone at infinity (Guan, DJM 2014). Define

Sσµ = {λ ∈ ∂Γσ : νλ · (µ− λ) ≤ 0}
and

C+
σ = {µ ∈ Rn : Sσµ is compact}.

which we call the tangent cone at infinity to Γσ.
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Theorem 8 (Guan, DJM 2014). a) C+
σ is open.

b) Assume (11)-(13) and that there exists u ∈ C2(M̄) with

(24) λ(∇2u+ χ)(x) ∈ C+
ψ(x), ∀ x ∈ M̄.

Then

(25) max
M̄
|∇2u| ≤ C

(
1 + max

∂M
|∇2u|

)
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The enlarged cone C̃+
σ . We now construct a larger cone from

C+
σ . Note that the unit normal vector of any supporting hyperplan

to Γσ belongs to Γn. We define C̃+
σ to be the region in Rn bounded

by those supporting hyperplans to C+
σ with unit normal vector in

∂Γn; so C̃+
σ = Rn if there are no such supporting planes. Clearly, if

C̃+
σ 6= Rn it is an open symmetric convex cone with vertix at a1 for

some a ∈ Rn where 1 = (1, . . . , 1) ∈ Rn. Moreover, µ + Γn ⊂ C̃+
σ

for µ ∈ C̃+
σ and C̃+

σ ⊂ C̃+
ρ if σ ≥ ρ.

Theorem 9 (Guan, 2015). Let µ ∈ C̃+
σ and d(µ) denote the

distance from µ to ∂C̃+
σ . Then there exist δ, ε > 0 such that for

any λ ∈ ∂Γσ, either

(26) fi(λ) ≥ δ
∑

fk(λ)

or

(27) fi(λ)(µi − λi) ≥ ε
∑

fi(λ) + ε.
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Theorem 10 (Guan, 2015). Assume (11)-(13) and that there
exists u ∈ C2(M̄) with

(28) λ(∇2u+ χ)(x) ∈ C̃+
ψ(x), ∀ x ∈ M̄.

Then

(29) max
M̄
|∇2u| ≤ C

(
1 + max

∂M
|∇2u|

)
.
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Szekelyhidi (2015) introduced the another nontion of general-
ized subsolutions:

(30) (λ(∇2u+ χ)(x) + Γn) ∩ ∂Γψ(x) is compact ∀ x ∈ M̄.

and proved the same estimates under a little stronger assump-
tions. The following result clarify the ralations.

Theorem 11 (Guan, 2016). a) For Type I cone, C+
σ = C̃+

σ . b)
Assumptions (28) and s (30) are equivalent.

According to CNS, a cone Γ is Type 1 if each λi-axis belongs
to ∂Γ. For instance, Γk (k ≥ 2) are Type 1.
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• Canonical χ: χ = 0 or χ = g. For instance,

(31) det(∇2u+ g) = K(x)(−2u− |∇u|2) det g

is the Darboux equation (isometric embedding).
• ∇2u+Ricg: the Bakry-Emery Ricci tensor of the Riemann-

ian measure space (Mn, g, e−udg).
• Te Ricci soliton equation: ∇2u+ Ricg = λg
• ∇2u+ug on Sn. (In classical geometry. Minkowski problem,

extensions proposed by Alexandrov, Chern; Christoffel-Minkowski
problem.)
• In conformal geometry. The Schouten tensor of (Mn, e2ug)

(32) χ = du⊗ du− 1

2
|∇u|2g + Sg

where Sg is the Schouten tensor of (Mn, g); the Ricci tensor

A[u] = ∇2u+ γ∆ug + du⊗ du− 1

2
|∇u|2g + Ricg.

• In optimal transportation.
• Conformal deformation of metrics on Hermitian manifolds.

A[u] := ±Ricu =
√
−1∂∂̄u± Ric.
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More general equations. For the more general equation

F (D2u+ χ) = ψ,

we assume the function F to be defined in an open convex cone Γ
in Sn×n, the (inner product) space of n× n symmetric matrices,
with vertex at 0, Γ+ ⊆ Γ 6= Sn×n where Γ+ denotes the cone
of positive matrices, and to satisfy the fundamental structure
conditions:

(a) the ellipticity condition.
(b) the concavity condition.
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Equations on complex manifolds.

Let (Mn, ω) be a compact Hermitian manifold of complex di-
mension n ≥ 2 with smooth boundary ∂M which may be empty
(M is closed) and let, for a function u ∈ C2(M), χ[u] := χ(·, du(·), u(·))
be a real (1, 1) form on M , and define

χu := χ[u] +
√
−1∂∂̄u.

The equation:

(33) f(λ(χu)) = ψ(z, du, u) in M

where λ(χu) = (λ1, · · · , λn) denote the eigenvalues of χu with
respect to the metric ω.

This covers most of the important equations in complex geom-
etry.

• In local coordinates:

χu =
√
−1(uij̄ + χij̄)dzi ∧ dz̄j.
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• Guan-Nie: χu := χ[u] +
√
−1∂∂̄u where χ depends lin-

early on du.
• Guan-Qiu-Yuan: A[u] = ∆uω − γ

√
−1∂∂̄u + χ where

χ = χ(du).
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• The complex Monge-Ampère equation:

(34) χnu = ψnωn

corresponds to equation (8) for f = σ
1/n
n . It plays a central role

in Kähler geometry.

• Calabi-Yau Theorem. Yau’s proof of Calabi conjecture;
Aubin indepedently for c1(M) < 0.
• Extension to Hermitian case.

– Cherrier: n = 2;
– Tosatti-Weinkove.
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• The Dirichlet problem.
– Caffarelli-Kohn-Nirenberg-Spruck: strongly pseudocon-

vex domain in Rn;
– Guan (1998): general domain in Cn;
– Guan adn Qun Li (2010): on Hermitian manifolds.

• Some applications.
– Chern-Levine-Nirenberg conjecture: Pengfei Guan
– Donaldson’s conjecture on geodesics in the space of

Kähler metrics: Mabuchi, Donaldson, Xiuxiong Chen, many
others .....

– Pluricomplex Green functions.
– Totally real submanifolds.
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There have also been increasing interests in other fully nonlinear
equations from Kähler geometry.
• Donaldson:

(35) χnu = ψχn−1
u ∧ ω, χu > 0,

proposed in the setting of moment maps, where he assumes χ is
also Kähler and ψ is the Kähler class invariant

ψ = c1 =

∫
M χn∫

M χn− ∧ ω
.

This corresponds to f = σn/σn−1. The equation is also closely
related to the lower bound and properness of the Mobuchi energy.
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• Conformal metrics on Hermitian manifolds. Let α =
e±uω be a conformal metric on M . The Chern-Ricci form is given
by

±Ricα = ±
√
−1∂∂̄ logαn =

√
−1∂∂̄u± Ricω

Consequently, the problem of determining a metric in the con-
formal class of ω with special properties of the Chern-Ricci form
leads to the following equation for χ = ±Ricω

(36) F
( χu
e±uω

)
= ψ on M.

The sign in front of Ricα is determined by requiring χu ∈ Γ. The
negative sign case will be much more difficult to study.

For F (A) = (detA)1/n, this equation is related to a conjecture
of Yau on the holomorphic sectional curvature of a Kähler mani-
folds which was recently solved by Wu-Yau and Tosatti-Yang.
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• Balanced metrics with prescribed volume form Re-
call that a Hermitian metric ω is balanced if d(ωn−1) = 0 and
Gauduchon if ∂∂̄(ωn−1) = 0. A well know result due to Gaudu-
chon asserts that any conformal class of Hermitian metrics on a
compact (closed) complex manifold contains a Gauduchon met-
ric. Fu-Wang-Wu introduced an equation of prescribed volume
for balanced metrics, which can be described as below following
Tosatti-Weinkove.

Let ω0 be a balanced metric on a closed Hermitian manifold
(M,ω). We seek a balanced metric η such that

ηn−1 = ωn−1
0 +

√
−1∂∂̄(uωn−2)

for some u ∈ C∞(M) and prescribed volume

(37)
ηn

ωn
= ψ on M.

This is a Monge-Ampère type equation of (n− 1, n− 1) forms.
Nevertheless, by the Hodge star duality approach of Tosatti-
Weinkove, equation (37) can be converted to an equation of form
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(38) for F (A) = Pn−1(A) where χ depends linearly on u and the
gradient of u; More precisely,

χ = (trχ̃− (n− 1)χ̃

where

χ̃ =
1

(n− 1)!
?(ωn−1

0 −
√
−1∂u∂̄(ωn−2)+

√
−1∂̄u∂(ωn−2)+

√
−1u∂∂̄(ωn−2))

and ? denotes the Hodge star-operator.
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• Gauduchon conjecture.
Let complex dimension n ≥ 2 and let Ω be a closed real (1, 1)

form on M with [Ω] = cBC1 (M) in the Bott-Chern cohomology
group H1,1

BC(M, R). In 1984, Gauduchon conjectured that there
exists a Gauduchon metric ω̃ on M with Chern-Ricc curvature
Ricω̃ = Ω.

This is a natural extension of the Calabi conjecture for Kähler
manifolds solved by Yau. It was discovered by Tosatti and Weinkove
and independently by Popovicithat the Gauduchon conjecture re-
duces to solving a Monge-Ampère type equation of the form

(38) det(Φu) = eF+b det(ωn−1) in M

with

Φu = ωn−1
0 +

√
−1∂∂̄u ∧ ωn−2 + Re(

√
−1∂u ∧ ∂̄ωn−2) > 0

and supM u = 0, where ω0 is any Hermitian metric (positive def-
inite (1, 1) form) and ω a Gauduchon metric. This equation is
equivalent to one for f = Pn−1 with linear dependences of χ on
du.
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Results of Guan-Xiaolan Nie.
We study equation (38) on closed Hermitain manifold with χ

depending linearly on du. Our result applies to Pn−1 giving the
estimates need in proving Gaudochun’s conjecture.

Theorem 12. Let ψ ∈ C2(M) and u ∈ C4(M) be an admissible
solution of (8). Suppose that there exists a function u ∈ C2(M)
satisfying

(39) λ(χu(z)) ∈ C̃+
ψ(z) ∀ z ∈M,

and that at any fixed point on M where gij̄ = δij and gij̄ = δijλi
with λ1 ≥ · · · ≥ λn,

(40)
∑

fi(|χi1̄,ζα|+ χīi,ζα1̄|) ≤ Cλ1fα, ∀α ≤ n− r0

where r0 = min
{

rank of C̃+
ψ(z) : z ∈M

}
. Then

(41) max
M
|∆u| ≤ C1e

C2(u−infM u)

where C1 depends on |∇u|C0(M) and C2 is a uniform constant
(independent of u).
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Results of Guan-Qiu-Yuan.

F (∆uω + γ
√
−1∂∂̄u+ χ(z, u, du)) = ψ, γ < 1.
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Thank You!


