Fully Nonlinear PDEs and Related Geometric Problems

Bo Guan

Ohio State University Xiamen University

Institute of Mathematics, AMSS Beijing

1

The three well known classical PDEs are Laplace equation, heat equation, and wave equation, representing the three types of PDEs with rather distinct properties: elliptic, parabolic and hyperbolic equations, respectively.

• Laplace equation – elliptic

$$\Delta u := \frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_n^2} = 0$$

• Heat equation – parabolic

$$u_t = \Delta u$$

• Wave equation – hyperbolic

$$u_{tt} = \Delta u$$

In general, an elliptic PDE of the second order can be written in the form

(1)
$$F(\nabla^2 u, \nabla u, u, x) = 0.$$

The **ellipticity** means

(2)
$$\{F^{ij}[u]\} \equiv \{F^{ij}(\nabla^2 u, \nabla u, u, x)\} > 0$$

where, if we write $F(A, \cdot, \cdot, \cdot)$ and $A = \{a_{ij}\} \in \mathcal{S}^{n \times n}$,

$$F^{ij} \equiv \frac{\partial F}{\partial a_{ij}}$$

 $\mathcal{S}^{n\times n}$ is the set of n by n symmetric matrices. Equivalently, the linearized operator

$$\mathcal{L}_u = F^{ij}[u]\nabla_i\nabla_j + \text{lower order terms}$$

is elliptic.

4

Equation (2) is

- linear, if F is linear in u, ∇u and $\nabla^2 u$; otherwise, **nonlinear**;
- semilinear, if F is linear in ∇u and ∇²u;
 quasilinear, if F is linear in ∇²u;
- fully nonlinear, if F is not linear in $\nabla^2 u$.

Let's first look at some examples of nonlinear equations from geometry.

• The minimal surface equation

$$\operatorname{div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0.$$

For n = 2,

$$(1+u_y^2)u_{xx} - 2u_xu_yu_{xy} + (1+u_x^2)u_{yy} = 0$$

• The minimal surface equation in hyperbolic space

$$\left(\delta_{ij} - \frac{u_i u_j}{1 + |Du|^2}\right) u_{ij} = \frac{n}{u}.$$

• The spacelike maximal surface equation in Minkowski space

$$\operatorname{div}\left(\frac{Du}{\sqrt{1-|Du|^2}}\right) = 0.$$

The spacelike condition

|Du| < 1.

• The Monge-Ampère equation

$$\det D^2 u = \psi.$$

For n = 2,

$$u_{xx}u_{yy} - u_{xy}^2 = \psi.$$

• The complex Monge-Ampère equation

$$\det \frac{\partial^2 u}{\partial z_i \partial \bar{z}_j} = \psi.$$

• The prescribed Gauss curvature equation

$$\det D^2 u = K(1 + |Du|^2)^{\frac{n+2}{2}}.$$

For spacelike hypersurfaces in Minkowski space

$$\det D^2 u = K(1 - |Du|^2)^{\frac{n+2}{2}}.$$

6

There are important fourth order equations in geometry.

- Willmore surface equation.
- Affine maximal hypersurface equation

$$u^{ij} \frac{\partial^2}{\partial x_i \partial x_j} \det D^2 u = 0.$$

1. The Isoperimetric Inequality. Let C be a simple closed curve in \mathbb{R}^2 . Then

$$4\pi A \le L^2$$

where A is the enclosed area, L donotes the length of C.

More generally, let Ω be a domain in \mathbb{R}^n . Then

$$\omega_1(n|\Omega|)^{n-1} \le |\partial\Omega|^n$$

where ω donotes the volume of the unit sphere in \mathbb{R}^n .

Proof. Consider the Neumann problem

$$\Delta u = C \text{ in } \Omega, \quad \frac{\partial u}{\partial \nu} = 1 \text{ on } \partial \Omega.$$

Let Γ^+ be the lower contact of (the graph of) u

$$\Gamma^+ = \{ x \in \Omega : u(y) \ge u(x) + Du(x) \cdot (y - x) \}.$$

8

It is easy to see that

$$B_1 \subset Du(\Gamma^+)$$

where B_1 denote the unit ball in \mathbb{R}^n centered at the origin. Consequently,

$$|B_1| \le |Du(\Gamma^+)| \le \int_{\Gamma^+} \det D^2 u \le \frac{1}{n^n} \int_{\Gamma^+} (\Delta u)^n \le \frac{1}{n^n} C^n |\Omega|.$$

By the Divergence Theorem,

$$C|\Omega| = \int_{\Omega} \Delta u = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} = |\partial \Omega|.$$

 So

$$C = \frac{|\partial \Omega|}{|\Omega|}.$$

This completes the proof.

•	-	-	-1	
L				
L				

2. Alexandrov Theorem. An embedded closed hypersurface in \mathbb{R}^{n+1} of constant mean curvature must a sphere.

The proof: Alexandrov's moving plane method, based the maximum priciple. It is also called *Alexandrov reflection principle*. The idea can be explained using curves of contant curvature in the plane.

Let C be a simple closed curve in \mathbb{R}^2 . Locally,

$$C = \text{graph of } f.$$

The curvature of C is

$$\kappa = \frac{f''}{(1+|f'|^2)^{\frac{3}{2}}}.$$

This is an ODE for f. Suppose κ is constant. Then C must a circle, following the uniqueness of solution to the initial value problem.

10

3. Minkowski Type Problems. Let Σ be a hypersurface in \mathbb{R}^{n+1} . We use $\kappa = (\kappa_1, \ldots, \kappa_n)$ to denote the principal curvatures of Σ with respect to its interior normal. The *k*th Weingarten curvature W_k of Σ is defined as

$$W_k = \sigma_k(\kappa_1, \dots, \kappa_n), \quad k = 1, \dots, n$$

where σ_k is the *k*th elementary symmetric function. For k = 1, 2 and n, W_k corresponds to the mean, scalar and Gauss curvature, respectively.

Suppose now that Σ is a strictly convex closed hypersurface. The Gauss map $\mathbf{n} : \Sigma \to \mathbb{S}^n$ is then a diffeomorphism. Let \mathbf{n}^{-1} denote its inverse which we call the inverse Gauss map. In 1950s, A. D. Alexandrov and S. S. Chern raised the following extended version of the **Minkowski problem**

Let $1 \leq k \leq n$ be a fixed integer, and $\psi > 0$ on \mathbb{S}^n . Does there exist a closed strictly convex hypersurface Σ in \mathbb{R}^{n+1} such that

(3)
$$W_k(\mathbf{n}^{-1}(x)) = \psi(x) \quad \forall \ x \in \mathbb{S}^n?$$

For k = n this is the classical Minkowski problem, which was studied by Minkowski, Alexandrov, Lewy, Nirenberg, Pogorelov, Cheng-Yau, etc.

Theorem 1. For k = n, a necessary and sufficient condition is

(4)
$$\int_{\mathbb{S}^n} \frac{x}{\psi(x)} = 0.$$

This turns out not to be the case for $1 \le k < n$.

Theorem 2 (P.-F. Guan, G. 2002). (a) For every $1 \le k < n$ and any nonzero real number m, there exists a parameter family of closed strictly convex hypersurfaces (all are small perturbations of the unit sphere) in \mathbb{R}^{n+1} satisfying

(5)
$$\int_{\mathbb{S}^n} \frac{x}{(W_k(\mathbf{n}^{-1}(x)))^m} \neq 0.$$

(b) There exists a function $f \in C^{\infty}(\mathbb{S}^n)$ and a constant $\delta > 0$ such that for all $t \in (0, \delta)$, problem (3) has no solution for $\psi := (1 + tf)^{-1}$ while (4) is satisfied.

A partial existence result.

Theorem 3. Suppose ψ is invariant under an automorphic group G of \mathbb{S}^n without fixed points, i.e., $\psi(g(x)) = \psi(x)$ for all $g \in G$ and $x \in \mathbb{S}^n$. Then there exists a closed strictly convex hypersurface Σ in \mathbb{R}^{n+1} satisfying (3).

For instance, if $\psi(-x) = \psi(x)$ for all $x \in \mathbb{S}^n$ the problem is solvable.

The PDE:

$$\frac{\sigma_n(\lambda)}{\sigma_{n-k}(\lambda)} = \frac{1}{\psi}$$

where $\lambda = \lambda(\nabla^2 u + ug) =$ eigenvalues of $\nabla^2 u + ug$ on \mathbb{S}^n . Subsequent work: Sheng-Trudinger-Wang. 4. Plateau Type Problems. Let f be a smooth symmetric function of $n \ (n \ge 2)$ variables, and

$$\Gamma = \{\Gamma_1, \ldots, \Gamma_m\}$$

a disjoint collection of closed smooth embedded submanifolds of dimension (n-1) in \mathbb{R}^{n+1} .

Question. Does there exist an immersed hypersurfaces M in \mathbb{R}^{n+1} of constant curvature

(6)
$$f(\kappa[M]) = K$$

with boundary

(7)
$$\partial M = \Gamma?$$

Here $\kappa[M] = (\kappa_1, \ldots, \kappa_n)$ denotes the principal curvatures of M and K is constant.

The Plateau problem: $f = \sigma_1$, the mean curvature of M, raised by Joseph-Louis Lagrange in 1760, named after Joseph Plateau who experimented with soap films, and solved independently by Jesse Douglas and Tibor Rado in 1930's. But there were a lot of subsequent developments and research activities, especially in geometric measure theory. For $f = \sigma_n$, the Gauss curvature, M is locally determined by $\det D^2 u = K(1 + |Du|^2)^{\frac{n+2}{2}}.$

This equation is elliptic for strictly convex solutions. We require M to be *locally strictly convex*, i.e, the second fundamental form is M is positive definite everywhere.

- The second fundamental form of each Γ_k is nondegenerate everywhere. For n = 1 this means that the curvature of Γ_k never vanishes.
- There are topological obstructions (H. Rosenberg).

- Existence results.
 - Caffarelli-Nirenberg-Spruck (1980's): The Dirichlet problem is solvable over a strictly conevx domain, provided that there is a strictly convex subsolution.
 - Spruck-G. (1993, 1998): On any smooth bound domain, as long as there is a strictly convex subsolution.
 - Spruck-G. (2002): If Γ bounds a locally strictly convex hypersurface, it bounds one with constant Gauss curvature. It was also independently proved by Trudinger-Wang (2002).
 - Spruck-G. (2004): This is true for more general function f.

18

Some of the technical issues.

- The Dirichlet problem in general domain.
- Perron's mehtod for locally convex hypersurfaces.
- Local gradient estimates.
- Area minimizing for locally convex hypersurfaces.

Some general questions to understand.

- Global bahavior/properties of solutions
 - —Liouville type theorem
 - —Bernstein theorem
 - --Symmetry
- Existence/expression of solutions.
 - —Separation of variables, eigenfunction expansions
 - -Poisson representation
 - —d'Alembert's formula
 - $-\mathbf{A}$ priori estimates

In the rest of this talk we shall mainly concerned with equations of the form

(8)
$$f(\lambda(A[u])) = \psi$$

on a Riemannian manifold (M^n, g) , where

- f: a smooth symmetric function of n variables defined in $\Gamma \subset \mathbb{R}^n$
- Γ : a symmetric open and convex cone with vertex at the origin, $\partial \Gamma \neq \emptyset$, and $\Gamma_n \subseteq \Gamma$ where

(9)
$$\Gamma_n \equiv \{\lambda \in \mathbb{R}^n : \text{each component } \lambda_i > 0\}. \subseteq \Gamma.$$

- $A[u] = \nabla^2 u + \chi$.
- $\lambda(A) = (\lambda_1, \cdots, \lambda_n)$ denotes the eigenvalues of A.

Note that $F(A) = f(\lambda(A))$ if and only if $F(PAP^T) = F(A)$ for any orthogonal matrix P.

Examples of f. This covers a very broad class of equations.

•
$$f = \sigma_k^{\frac{1}{k}}$$
 or $(\sigma_k/\sigma_l)^{\frac{1}{k-l}}$ define on
 $\Gamma_k = \{\lambda \in \mathbb{R}^n : \sigma_j(\lambda) > 0, \ 1 \le j \le k\}$

where $\sigma_k(\lambda)$ is the elementary symmetric function

$$\sigma_k(\lambda) = \sum_{i_1 < \dots < i_k} \lambda_{i_1} \dots \lambda_{i_k}, \quad k = 1, \dots, n.$$

- In particular, $\sigma_1(\lambda) = \Delta u$, $\sigma_n(\lambda) = \det \nabla^2 u$. The special Lagrange equation: $f(\lambda) = \sum \tan^{-1} \lambda_i$.
- $f = \log P_k$ where

$$P_k(\lambda) := \prod_{i_1 < \dots < i_k} (\lambda_{i_1} + \dots + \lambda_{i_k}), \quad 1 \le k \le n$$

defined in the cone

$$\mathcal{P}_k := \{\lambda \in \mathbb{R}^n : \lambda_{i_1} + \dots + \lambda_{i_k} > 0\}.$$

• The inverse sum:

(10)
$$f(\lambda) = -\sum \frac{1}{\lambda_i^{\alpha}}, \ \lambda \in \Gamma_n, \ \alpha > 0.$$

The fundamental structure conditions [CNS1985]. To study the equations under the framework of elliptic PDE theory, we need some basic assumptions.

• *ellipticity*

(11)
$$f_i = f_{\lambda_i} \equiv \frac{\partial f}{\partial \lambda_i} > 0 \text{ in } \Gamma, \ 1 \le i \le n,$$

• concavity

(12)
$$f$$
 is a concave function in Γ

• nondegeneracy:

(13)
$$\inf_{\Omega} \psi > \sup_{\partial \Gamma} f$$

where

$$\sup_{\partial \Gamma} f \equiv \sup_{\lambda_0 \in \partial \Gamma} \limsup_{\lambda \to \lambda_0} f(\lambda).$$

These conditions were introduced by Caffarelli-Nirenberg-Spruck in 1985 and have become standard in the literature.

Admissible functions. A function $u \in C^2$ is called *admissible* if $\lambda(A[u]) \in \Gamma$.

- (11): Eq (8) is elliptic for admissible solutions.
- (12): $F(A) \equiv f(\lambda[A])$ is concave for A with $\lambda[A] \in \Gamma$.
- (13): Eq (8) will not become degenerate.
- (11) & (13) & $|\nabla^2 u| \leq C$: Eq (8) becomes uniformly elliptic.
- Evans-Krylov theorem: Suppose that (1) is uniformly elliptic, F is concave w.r.t. $\nabla^2 u$ and $|u|_{C^2(\bar{\Omega})} \leq C$. Then

$$|u|_{C^{2,\alpha}(\bar{\Omega})} \leq C.$$

- Schauder theory: $C^{2,\alpha}$ estimates imply higher regularity.
- Continuity method: $|u|_{C^{2,\alpha}(\overline{\Omega})} \leq C$ implies the classical solvability of the Dirichelt problem.

From this point of view, conditions (11)-(13) are fundamental to the classical solvability of equation (8).

The ultimate goal is to solve equation (8). To prove the existence of classical solutions.

- The Dirichlet problem.
- On closed manifolds.

The key is to derive global C^2 estimates. We hope to establish this for general manifolds—without curvature restrictions, and for general domians in the case of the Dirichlet problem—without assumptions on the geometric shape of ∂M , the boundary of M.

26

Question: Are assumptions (11)-(13) necessary? Sufficient?

- For the degenerate Monge-Ampère equation, the solution may fail to belong to $C^{1,1}(\Omega)$.
- The Dirichlet problem for det $D^2 u = 1$ in $\Omega \subset \mathbb{R}^n$ with u = 0 on $\partial \Omega$ does not have a solution unless Ω is strictly convex.
- Nadirashvili *et al.*: For nonconcave F, the solution may fail to belong to $C^{1,1}$ $(n \ge 5)$.
- **CNS3**: There is an equation (n = 2) satisfying (11)-(13), with solution in $C^{\infty}(B_1) \cap C(B_1)$ but not in $C^1(\overline{B_1})$.

28

Previous Work.

Caffarelli, Nirenberg and Spruck (1985) Chou-Wang (2006) Ivochkina Ivochkina-Trudinger-Wang (degenerate case) Kryov (1980's) Y.-Y. Li (1990) Trudinger (1996) Urbas (2003) The Dirichlet problem in \mathbb{R}^n .

• Caffarelli, Nirenberg and Spruck (1985, CNS).

Theorem 4 ([**CNS3**, Acta 1985]). Let Ω be a bounded smooth domain in \mathbb{R}^n , $n \geq 2$, $\psi \in C^{k,\alpha}(\overline{\Omega})$, $\varphi \in C^{k+2,\alpha}(\partial\Omega)$, $k \geq 2$. Assume **a**) (11)-(13), and in addition **b**), **c**), **d**) below. Then the Dirichelt problem

(14)
$$\begin{cases} f(\lambda(\nabla^2 u + \chi) = \psi \ in \ \overline{\Omega} \\ u = \varphi \ on \ \partial\Omega \end{cases}$$

admits a unique admissible solution $u \in C^{k+2,\alpha}(\bar{\Omega})$ Moreover, if $\psi \in C^{\infty}(\bar{\Omega})$, $\varphi \in C^{\infty}(\partial\Omega)$ then $u \in C^{\infty}(\bar{\Omega})$.

The additional conditions:

b) for every C > 0 and $\lambda \in \Gamma$ there is a number $R = R(C, \lambda)$ such that

(15)
$$f(\lambda_1, \dots, \lambda_{n-1}, \lambda_n + R) \ge C$$

- (16) $f(R\lambda) \ge C$
 - c) A geometric condition on $\partial \Omega$:

(17)
$$(\kappa_1, \ldots, \kappa_{n-1}, R) \in \Gamma$$
 on $\partial \Omega$ for some $R > 0$

where $(\kappa_1, \ldots, \kappa_{n-1})$ are the principal curvatures of $\partial \Omega$

- **d**) $\chi = 0$.
 - For the Monge-Ampère equation $(f = \sigma_n^{1/n})$, c) means that Ω is strictly convex.

Trudinger in 1995 removed condition (15).

• Guan (2014, for general domains).

Theorem 5 (Guan 2014, arXiv:1403.2133). Assume

- **a)** (11)-(13) hold,
- e) the subsolution assumption: there exists an admissible subsolution $\underline{u} \in C^2(\overline{\Omega})$

(18)
$$\begin{cases} f(\lambda(\nabla^2 \underline{u} + \chi) \ge \psi \ in \ \overline{\Omega} \\ \underline{u} = \varphi \ on \ \partial\Omega. \end{cases}$$

The Dirichlet problem (14) then has a unique admissible solution $u \in C^{k+2,\alpha}(\overline{\Omega}).$

Moreover, if $\psi \in C^{\infty}(\bar{\Omega})$, $\varphi \in C^{\infty}(\partial\Omega)$ then $u \in C^{\infty}(\bar{\Omega})$.

The proof. To derive

$$|u|_{C^2(\bar{\Omega})} \le C.$$

Then $C^{2,\alpha}$ and higher order estimates follows from Evans-Krylov Theorem and Schauder theory; existence by the continuity method. **Theorem 6** (Guan, 2014). Let $u \in C^4(M) \cap C^2(\overline{M})$ be an admissible solution of the Dirichlet problem (14). Suppose (11)-(13) hold and that there exists an admissible subsolution $\underline{u} \in C^2(\overline{M})$:

(19)
$$\begin{cases} f(\lambda[\nabla^2 \underline{u} + \chi]) \ge \psi \text{ in } \overline{M}, \\ \underline{u} = \varphi \text{ on } \partial M. \end{cases}$$

Then

(20)
$$\max_{\bar{M}} |\nabla^2 u| \le C.$$

The proof consists of two steps:

• a maximum principle for $|\nabla^2 u|$

(21)
$$\max_{\overline{M}} |\nabla^2 u| \le C \left(1 + \max_{\overline{M}} |\nabla u|^2 + \max_{\partial M} |\nabla^2 u| \right)$$

• the boundary estimate

(22)
$$\max_{\partial M} |\nabla^2 u| \le C.$$

34

The concavity and subsoltuion. For $\sigma > \sup_{\partial \Gamma} f$, let

$$\Gamma^{\sigma} = \{\lambda \in \Gamma : f(\lambda) > \sigma\}$$

and suppose $\Gamma^{\sigma} \neq \emptyset$. By (11) and (12) the level set

$$\partial \Gamma^{\sigma} = \{ \lambda \in \Gamma : f(\lambda) = \sigma \}$$

i.e., boundary of Γ^{σ} , is a smooth convex hypersurface.

For $\lambda \in \partial \Gamma^{\sigma}$ let

$$\nu_{\lambda} = \frac{Df(\lambda)}{|Df(\lambda)|}$$

be the unit normal to $\partial \Gamma^{\sigma}$ and $T_{\lambda} \partial \Gamma^{\sigma}$ denote the tangent plane of $\partial \Gamma^{\sigma}$ at λ .

Theorem 7. Let $\mu \in \Gamma$ and $\beta > 0$. There exists uniform constant $\varepsilon > 0$ such that when $|\nu_{\mu} - \nu_{\lambda}| \ge \beta$,

(23)
$$\sum f_i(\lambda)(\mu_i - \lambda_i) \ge f(\mu) - f(\lambda) + \varepsilon \sum f_i(\lambda) + \varepsilon.$$

- Used in global estimates for $|\nabla^2 u|$ too.
- Apply Theorem 7 to $\mu = \lambda[\underline{u}], \ \lambda = \lambda[u].$

Equations on closed Riemannian manifolds. Let (M^n, g) be a Riemannian manifold without boundary.

Y.-Y. Li (1990) first studied equation (14) for $\chi = g$ on closed Riemannian manifolds with nonnegative sectional curvature. John Urbas (2002) removed the curvature assumption.

Their main extra assumptions are

$$\lim_{|\lambda| \to \infty} \sum f_i = \infty$$

and

$$\lim_{|\lambda| \to \infty} \sum f_i (1 + \lambda_i^2) = \infty$$

respectively.

• The notaion of subsolutions on closed Riemannian manifolds. When *M* is closed, the subsolution assumption does not make sense. Indeed, a subsolution must be a solution, or there is no solution. This is a consequence of the maximum principle.

The tangent cone at infinity (Guan, DJM 2014). Define

$$S^{\sigma}_{\mu} = \{\lambda \in \partial \Gamma^{\sigma} : \nu_{\lambda} \cdot (\mu - \lambda) \le 0\}$$

and

$$\mathcal{C}^+_{\sigma} = \{ \mu \in \mathbb{R}^n : S^{\sigma}_{\mu} \text{ is compact} \}.$$

which we call the *tangent cone at infinity* to Γ^{σ} .

Theorem 8 (Guan, DJM 2014). a) C^+_{σ} is open. b) Assume (11)-(13) and that there exists $\underline{u} \in C^2(\overline{M})$ with (24) $\lambda(\nabla^2 \underline{u} + \chi)(x) \in C^+_{\psi(x)}, \quad \forall x \in \overline{M}.$ Then (25) $\max_{\overline{M}} |\nabla^2 u| \leq C \left(1 + \max_{\partial M} |\nabla^2 u|\right)$ The enlarged cone $\widetilde{\mathcal{C}_{\sigma}^+}$. We now construct a larger cone from \mathcal{C}_{σ}^+ . Note that the unit normal vector of any supporting hyperplan to Γ^{σ} belongs to $\overline{\Gamma_n}$. We define $\widetilde{\mathcal{C}}_{\sigma}^+$ to be the region in \mathbb{R}^n bounded by those supporting hyperplans to \mathcal{C}_{σ}^+ with unit normal vector in $\partial \Gamma_n$; so $\widetilde{\mathcal{C}}_{\sigma}^+ = \mathbb{R}^n$ if there are no such supporting planes. Clearly, if $\widetilde{\mathcal{C}}_{\sigma}^+ \neq \mathbb{R}^n$ it is an open symmetric convex cone with vertix at $a\mathbf{1}$ for some $a \in \mathbb{R}^n$ where $\mathbf{1} = (1, \ldots, 1) \in \mathbb{R}^n$. Moreover, $\mu + \Gamma_n \subset \widetilde{\mathcal{C}}_{\sigma}^+$ for $\mu \in \widetilde{\mathcal{C}}_{\sigma}^+$ and $\widetilde{\mathcal{C}}_{\sigma}^+ \subset \widetilde{\mathcal{C}}_{\rho}^+$ if $\sigma \geq \rho$.

Theorem 9 (Guan, 2015). Let $\mu \in \tilde{\mathcal{C}}_{\sigma}^+$ and $d(\mu)$ denote the distance from μ to $\partial \tilde{\mathcal{C}}_{\sigma}^+$. Then there exist $\delta, \varepsilon > 0$ such that for any $\lambda \in \partial \Gamma^{\sigma}$, either

(26)
$$f_i(\lambda) \ge \delta \sum f_k(\lambda)$$

or

(27)
$$f_i(\lambda)(\mu_i - \lambda_i) \ge \varepsilon \sum f_i(\lambda) + \varepsilon$$

Theorem 10 (Guan, 2015). Assume (11)-(13) and that there exists $\underline{u} \in C^2(\overline{M})$ with

(28)
$$\lambda(\nabla^2 \underline{u} + \chi)(x) \in \widetilde{\mathcal{C}^+_{\psi(x)}}, \quad \forall x \in \overline{M}.$$

Then

(29)
$$\max_{\overline{M}} |\nabla^2 u| \le C \Big(1 + \max_{\partial M} |\nabla^2 u| \Big).$$

Szekelyhidi (2015) introduced the another nontion of generalized subsolutions:

(30)
$$(\lambda(\nabla^2 \underline{u} + \chi)(x) + \Gamma_n) \cap \partial \Gamma^{\psi(x)} \text{ is compact } \forall x \in \overline{M}.$$

and proved the same estimates under a little stronger assumptions. The following result clarify the ralations.

Theorem 11 (Guan, 2016). a) For Type I cone, $C_{\sigma}^+ = \tilde{C}_{\sigma}^+$. b) Assumptions (28) and s (30) are equivalent.

According to CNS, a cone Γ is Type 1 if each λ_i -axis belongs to $\partial \Gamma$. For instance, Γ_k $(k \ge 2)$ are Type 1.

• Canonical χ : $\chi = 0$ or $\chi = g$. For instance,

(31)
$$\det(\nabla^2 u + g) = K(x)(-2u - |\nabla u|^2) \det g$$

is the Darboux equation (isometric embedding).

- $\nabla^2 u + \operatorname{Ric}_g$: the Bakry-Emery Ricci tensor of the Riemannian measure space $(M^n, g, e^{-u}dg)$.
- Te Ricci soliton equation: $\nabla^2 u + \operatorname{Ric}_g = \lambda g$
- $\nabla^2 u + ug$ on \mathbb{S}^n . (In classical geometry. Minkowski problem, extensions proposed by Alexandrov, Chern; Christoffel-Minkowski problem.)
- In conformal geometry. The Schouten tensor of $(M^n, e^{2u}g)$

(32)
$$\chi = du \otimes du - \frac{1}{2} |\nabla u|^2 g + S_g$$

where S_g is the Schouten tensor of (M^n, g) ; the Ricci tensor

$$A[u] = \nabla^2 u + \gamma \Delta ug + du \otimes du - \frac{1}{2} |\nabla u|^2 g + \operatorname{Ric}_g.$$

- In optimal transportation.
- Conformal deformation of metrics on Hermitian manifolds. $A[u] := \pm \operatorname{Ric}_u = \sqrt{-1}\partial \bar{\partial} u \pm \operatorname{Ric}.$

42

More general equations. For the more general equation

$$F(D^2u + \chi) = \psi,$$

we assume the function F to be defined in an open convex cone Γ in $\mathcal{S}^{n \times n}$, the (inner product) space of $n \times n$ symmetric matrices, with vertex at 0, $\Gamma^+ \subseteq \Gamma \neq \mathcal{S}^{n \times n}$ where Γ^+ denotes the cone of positive matrices, and to satisfy the fundamental structure conditions:

(a) the *ellipticity* condition.

(**b**) the *concavity* condition.

Equations on complex manifolds.

Let (M^n, ω) be a compact Hermitian manifold of complex dimension $n \ge 2$ with smooth boundary ∂M which may be empty (M is closed) and let, for a function $u \in C^2(M), \chi[u] := \chi(\cdot, du(\cdot), u(\cdot))$ be a real (1, 1) form on M, and define

$$\chi_u := \chi[u] + \sqrt{-1}\partial\bar{\partial}u.$$

The equation:

(33) $f(\lambda(\chi_u)) = \psi(z, du, u) \text{ in } M$

where $\lambda(\chi_u) = (\lambda_1, \dots, \lambda_n)$ denote the eigenvalues of χ_u with respect to the metric ω .

This covers most of the important equations in complex geometry.

• In local coordinates:

$$\chi_u = \sqrt{-1}(u_{i\bar{j}} + \chi_{i\bar{j}})dz_i \wedge d\bar{z}_j.$$

- Guan-Nie: $\chi_u := \chi[u] + \sqrt{-1}\partial \bar{\partial} u$ where χ depends linearly on du.
- Guan-Qiu-Yuan: $A[u] = \Delta u\omega \gamma \sqrt{-1}\partial \bar{\partial} u + \chi$ where $\chi = \chi(du)$.

• The complex Monge-Ampère equation:

(34)
$$\chi_u^n = \psi^n \omega^n$$

corresponds to equation (8) for $f = \sigma_n^{1/n}$. It plays a central role in Kähler geometry.

- Calabi-Yau Theorem. Yau's proof of Calabi conjecture; Aubin indepedently for $c_1(M) < 0$.
- Extension to Hermitian case.
 - Cherrier: n = 2;
 - Tosatti-Weinkove.

• The Dirichlet problem.

– Caffarelli-Kohn-Nirenberg-Spruck: strongly pseudoconvex domain in \mathbb{R}^n ;

- Guan (1998): general domain in \mathbb{C}^n ;
- Guan adn Qun Li (2010): on Hermitian manifolds.

• Some applications.

– Chern-Levine-Nirenberg conjecture: Pengfei Guan

– Donaldson's conjecture on geodesics in the space of Kähler metrics: Mabuchi, Donaldson, Xiuxiong Chen, many others

- Pluricomplex Green functions.
- Totally real submanifolds.

There have also been increasing interests in other fully nonlinear equations from Kähler geometry.

• Donaldson:

(35)
$$\chi_u^n = \psi \chi_u^{n-1} \wedge \omega, \ \chi_u > 0,$$

proposed in the setting of moment maps, where he assumes χ is also Kähler and ψ is the Kähler class invariant

$$\psi = c_1 = \frac{\int_M \chi^n}{\int_M \chi^{n-} \wedge \omega}.$$

This corresponds to $f = \sigma_n / \sigma_{n-1}$. The equation is also closely related to the lower bound and properness of the Mobuchi energy.

• Conformal metrics on Hermitian manifolds. Let $\alpha = e^{\pm u}\omega$ be a conformal metric on M. The Chern-Ricci form is given by

$$\pm \operatorname{Ric}_{\alpha} = \pm \sqrt{-1} \partial \bar{\partial} \log \alpha^n = \sqrt{-1} \partial \bar{\partial} u \pm \operatorname{Ric}_{\omega}$$

Consequently, the problem of determining a metric in the conformal class of ω with special properties of the Chern-Ricci form leads to the following equation for $\chi = \pm \text{Ric}_{\omega}$

(36)
$$F\left(\frac{\chi_u}{e^{\pm u}\omega}\right) = \psi \text{ on } M.$$

The sign in front of $\operatorname{Ric}_{\alpha}$ is determined by requiring $\chi_u \in \Gamma$. The negative sign case will be much more difficult to study.

For $F(A) = (\det A)^{1/n}$, this equation is related to a conjecture of Yau on the holomorphic sectional curvature of a Kähler manifolds which was recently solved by Wu-Yau and Tosatti-Yang. • Balanced metrics with prescribed volume form Recall that a Hermitian metric ω is balanced if $d(\omega^{n-1}) = 0$ and Gauduchon if $\partial \bar{\partial}(\omega^{n-1}) = 0$. A well know result due to Gauduchon asserts that any conformal class of Hermitian metrics on a compact (closed) complex manifold contains a Gauduchon metric. Fu-Wang-Wu introduced an equation of prescribed volume for balanced metrics, which can be described as below following Tosatti-Weinkove.

Let ω_0 be a balanced metric on a closed Hermitian manifold (M, ω) . We seek a balanced metric η such that

$$\eta^{n-1} = \omega_0^{n-1} + \sqrt{-1}\partial\bar{\partial}(u\omega^{n-2})$$

for some $u \in C^{\infty}(M)$ and prescribed volume

(37)
$$\frac{\eta^n}{\omega^n} = \psi \text{ on } M.$$

This is a Monge-Ampère type equation of (n-1, n-1) forms. Nevertheless, by the Hodge star duality approach of Tosatti-Weinkove, equation (37) can be converted to an equation of form (38) for $F(A) = P_{n-1}(A)$ where χ depends linearly on u and the gradient of u; More precisely,

$$\chi = (\mathrm{tr}\tilde{\chi} - (n-1)\tilde{\chi})$$

where

$$\tilde{\chi} = \frac{1}{(n-1)!} \star (\omega_0^{n-1} - \sqrt{-1}\partial u\bar{\partial}(\omega^{n-2}) + \sqrt{-1}\bar{\partial}u\partial(\omega^{n-2}) + \sqrt{-1}u\partial\bar{\partial}(\omega^{n-2}))$$

and \star denotes the Hodge star-operator.

• Gauduchon conjecture.

Let complex dimension $n \geq 2$ and let Ω be a closed real (1, 1) form on M with $[\Omega] = c_1^{BC}(M)$ in the Bott-Chern cohomology group $H_{BC}^{1,1}(M,\mathbb{R})$. In 1984, Gauduchon conjectured that there exists a Gauduchon metric $\tilde{\omega}$ on M with Chern-Ricc curvature $Ric_{\tilde{\omega}} = \Omega$.

This is a natural extension of the Calabi conjecture for Kähler manifolds solved by Yau. It was discovered by Tosatti and Weinkove and independently by Popovicithat the Gauduchon conjecture reduces to solving a Monge-Ampère type equation of the form

(38)
$$\det(\Phi_u) = e^{F+b} \det(\omega^{n-1}) \text{ in } M$$

with

$$\Phi_u = \omega_0^{n-1} + \sqrt{-1}\partial\bar{\partial}u \wedge \omega^{n-2} + \Re(\sqrt{-1}\partial u \wedge \bar{\partial}\omega^{n-2}) > 0$$

and $\sup_M u = 0$, where ω_0 is any Hermitian metric (positive definite (1,1) form) and ω a Gauduchon metric. This equation is equivalent to one for $f = P_{n-1}$ with linear dependences of χ on du. Results of Guan-Xiaolan Nie.

We study equation (38) on closed Hermitain manifold with χ depending linearly on du. Our result applies to P_{n-1} giving the estimates need in proving Gaudochun's conjecture.

Theorem 12. Let $\psi \in C^2(M)$ and $u \in C^4(M)$ be an admissible solution of (8). Suppose that there exists a function $\underline{u} \in C^2(M)$ satisfying

(39)
$$\lambda(\chi_{\underline{u}}(z)) \in \tilde{\mathcal{C}}^+_{\psi(z)} \quad \forall \ z \in M,$$

and that at any fixed point on M where $g_{i\bar{j}} = \delta_{ij}$ and $\mathfrak{g}_{i\bar{j}} = \delta_{ij}\lambda_i$ with $\lambda_1 \geq \cdots \geq \lambda_n$,

(40)
$$\sum f_i(|\chi_{i\bar{1},\zeta_{\alpha}}| + \chi_{i\bar{i},\zeta_{\alpha}\bar{1}}|) \le C\lambda_1 f_{\alpha}, \quad \forall \alpha \le n - r_0$$

where $r_0 = \min \{ \operatorname{rank} of \tilde{\mathcal{C}}^+_{\psi(z)} : z \in M \}$. Then

(41)
$$\max_{M} |\Delta u| \le C_1 e^{C_2(u - \inf_M u)}$$

where C_1 depends on $|\nabla u|_{C^0(M)}$ and C_2 is a uniform constant (independent of u).

Results of Guan-Qiu-Yuan.

$$F(\Delta u\omega + \gamma \sqrt{-1}\partial \bar{\partial} u + \chi(z, u, du)) = \psi, \ \gamma < 1.$$

Thank You!