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Regular polyhedron

A regular polyhedron is a convex polyhedron such that all faces are regular
polygons and all are identical = “most symmetric” polyhedrons

The following is attributed to Theaetetus (415—369 B.C)

There are exactly 5 regular polyhedron (solids) in R>.




Euclid’s Elements (Book XIII)

At each vertex at least 3 faces meet

When we add up the internal angles that meet
at a vertex, it must be less than 360 degrees

A regular n-gon has internal angle 180-360/n, which
is bigger than 120 if n>5, hence get n=3,4,5.

3 triangles meet

4 triangles meet

5 triangles meet

3 squares meet

3 pentagons meet
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Topological proof using Euler's formula

V =# of vertex, E = # of edges, F = # of faces

Assume each face is a regular n-gon, and each vertex is shared by m faces.

Euler’s Formula: V-E+F=2

Two ways to count # of edges: 2E=nF, 2 E=mV

This gives 1/m + 1/n=1/2 + 1/E, which has only 5 possibilities:

Leonhard Euler
15/04/1707 - 18/09/1783



Polyhedron ¢ Vertices ¢ Edges ¢ Faces ¢
tetrahedron 4 6 4
cube 8 12 6
octahedron 6 12 8
dodecahedron 20 30 12
icosahedron 12 30 20




Theorem. If two 3-dimensional convex polyhedra P and P’ are
combinatorially equivalent with corresponding facets being congru-
ent, then also the angles between corresponding pairs of adjacent
facets are equal (and thus P is congruent to P’).

Augustin-Louis Cauchy
(21/08/1789 — 23/05/1857)




Octahedron Dodecahedron Icosahedron






Plato’s Theory of Everything: Timaeus

B .
J 5 @
\ /

Fire Air Water Earth

RELAT, KKk&

| AL, FBHNLE,
428/427 or 424/423 - 348/347 BC LR #. HA41E
Z A

number of triangles
typel type2
tetrahedron  plasma {"fire "] 24 0
Type 1 Type 2 octahedron gas {" air"] 48 y

icos ahedron  ligquid ["Water"] 120 0
hexahedron solid ["earth"} 0 24

Chemical Action: 1 water + 1 fire = 3 air



Kepler's Mysterium Cosmographicum

the octahedron between Mercury and Venus,

the icosahedron hetween Venus and Earth,
the dodecahedron between Earth and Mars,

the tetrahedron hetween Mars and Jupiter

I

and the cube hetween Jupiter and Saturn

Johannes Kepler
(27/12/1571 — 15/11/1630)

Kepler's Platonic solid model of the Solar

system from Mysterium Cosmographicum



Symmetries

J

The proper rotations, (order-3 rotation on a vertex and face,
and order-2 on two edges) and reflection plane (through two
faces and one edge) in the symmetry group of the regular
tetrahedron




Symmetries of Platonic solids

tetrahedron Aa
cube Sa
octahedron Sa
dodecahedron As
icosahedron Asx

—~b

Aa=<a.blo*=b= @b¥=1 > 12 k-\‘

e
Sa=<a.bla@?=b=w@»*=1y | 24 ,L _
As={a.bla*=b’=w@b’=1> | 60 b




Dual solids

*The tetrahedron is self-dual.

*The cube and the octahedron form a dual pair.
*The dodecahedron and the icosahedron form
a dual pair.




Finite subgroups in SO(3, R)

Let I' C SO(3,R) be a finite subgroup.

e cvery 1 # v € I has two fixed points on S? (axe of rotation).

e T'he set P of all such fixed points is I'-invariant.
o] 1 |
I—1= §Z(|Stabr(p)| —1)
peP
L

e Note that |Stabp(p)| = ﬁ
P

o Let P=0;U0,U---O, be the [-orbits, |T| 1=

2 ’ |
2 — — = 1 — —), a; divides |T’
Z( a.i-,)'ﬂ divides |T'|

1=1

T

1
> (]~

2 4

1=1
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Stabr(p)|
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Finite subgroups in SO(3,R):

-..hﬂ
Ch=<ala"= 1> n //’25
ﬂj .
Dn=<a.bl &=b=w@b™=1> 2n /jé)
o ~— b
Aa=<a.bla®=b"= @b¥=1> 12 k\g
Sa=Ka.bla*=b=w@»*1) | 24 .J— -
RN,
As=<{a.bla*=b’=wb>°=1> | 60 Q
5 ..‘




Connecting SU(2) to SO(3,R)

b

a

SU(2) = {(_ab ) la,b e C,lal* + |b]* =1} ~ S°

Its Lie algebra su(2) ~ R® has an inner product: (U, V) = %Tr(U V)

For any A € SU(2), define ¢4 € End(su(2)) by oa(U) = AU A

e 0, preserves the mner product, hence

o : SU(2) — SO(3.R)

e This is a 2:1 map of Lic groups, with kernal = {£1}



Finite subgroups in SU(2)

Cn cclaon=1> n Cyclic
Dan Za.blo*=b = tabpy" AN dihedral

A ca.bla*=b*= caby® 24 | [ietrahedra

Sa <o.bla=b’= aby* 4 || ey ecaneda
A5 ca.bla’*=b'= aby 120 -




Finite subgroups in SL(2)

o SU(2) C SL(2) = SL(2,C) is a subgroup.

@ For any finite subgroup I C SL(2), it preserves a Hermitian

inner product on C? by averaging, hence it is isomorphic to a
subgroup of SU(2)

Christian Felix Kiein finite subgroups of SL(2) = finite subgroups of SU(2).

(25/04/1849 - 22/06/1925)



Representation of finite groups

A representation of a group [ is a complex vector space V' with a
homomorphism p: T — GL(V), i.e. T acts linearly (via p) on V.
The representation (V, p) is irreducible if A0 # W & V such that
W is I'-invariant.

il

@ Only consider dim V < oo and I finite.

@ Every representation of ' is a direct sum of irreducible
representations.

o Write Irr(I") the set of all irred. representations of I'. Then
Irr(I)| = £ conjugacy classes of .



McKay graph

o [ C SL(2) a finite subgroup
@ Vpo.---,V, theirred. rep. of I
o W := C? is the natural rep. of [

W ® V= ®; VfBa” as [ — representations.

Note that W* ~ W (as [ C SL(2)), we have
aj = dimHomr(V;, W ® V;) = dimHomr(V; ® W, V;) = aji

McKay graph:

@ vertice = irred. rep. of [, labelled with its dim.

@ two vertices V;, V; are connected by a;; edges.



Example: [ is cyclic

e Consider the case I' = C,: a cyclic group of order n.

271 - O
o let £ =e¢ “+. Take one generator o of I', then o = (g 51)
o fFor 0 <k <n-—1.let |

pp: T'=C,—= GL(1) =C*: 0 — &

e [rred. representations are V. --- . V,_1. \/n-1 Vo
o
W is decomposed as V] &V, \/
n-a Vi
\
%
\

WeVi=VieVi)@Vi=Vi_1& Vig V; \a



McKay graphes for [ = D5 and A}

® ‘
e |
2 2 2 2 [ i
l O - @ & -
I 2 3 2 I

McKay graph for I' = D;‘ McKay graph for I' = fli

T



McKay graphes for [ = 5; and A

I 3
1 2 3 4 3 : .1 | L - —@ @ @ ®
2 4 6 5 4 3 2

McKay graph for I' = 5} McKay graph for I' = A



Complex Lie algebras

A (complex) Lie algebra is a complex vector space g together with a non-associative,
alternating bilinear map g x g = g, (,y) = |,y called the Lie bracket, satisfying the
Jacobi identity. It is called simple if it has no non-trivial ideals and is not abelian.

Examples: sl(n),so(n),sp(2n)

Elie Joseph Cartan

Wilhelm Karl Joseph Killing (09/04/1869 — 06/05/1951

(10/05/1847 — 11/02/1923)




Dynkin diagrams

CnO—O —————— O—O==0 Eugene Borlsowch Dynkm
E (11/05/1924 — 14/11/2014)

McKay graphes are exactly affine Dynkin diagram of type ADE!
What's the relation of them with Lie algebras?



Simple surface singularities

For I' € SL(2) finite subgroup, the quotient C*/I" (set of I'-orbits)
is an affine algebraic variety Spec(Clu, v]'). It turns out they all can
be realized as a hypersurface in C?.

0 ¢!
Cluwv, u™, v"], hence C*/T" is the hypersurface in C* defined by 2™ = y=.

Example: 1" = (), with generator o = (5 ! ) then Clu, z.ﬂ}r =

cyclic n xX"+yz=0| A,
binary dihedral 4n—2) | x" L+ xy2+22=0| D,
binary tetrahedral 24 x*+y?4+22=0| E
binary octahedral 43 X3y +y>+22=0| E7
binary icosahedral 120 x>+ y>+2°=0| Eg




Examples: A;, A>, Az and D,




Minimal resolutions

o~

e Lvery surface S admits a unique minimal resolution 7: .5 — 5.

e When S = C?/T for a finite subgroup I' € SL(2). the exceptional locus of
7:S — S is a union of Pls, each with self-intersection —2.

v v
L LN\

C?/+1={(a,b,c)|a* + bc =0} +— T*(P!)




Examples of minimal resolutions




Central fibres and dual graph

.
1
:
F

1]
i
e
"
+

.
v ]
Il
Q
L

g = {x{yz—x2}+zz = ¢}

w_I{s] consists of four circles ki:;:r)



Dynkin diagram again!

cyclic 0 X"+y2=0 | Ans 0—0—0------ oo
binary dihedral  [4(n-2) | X" 43P+ =0] Puo—o------ o
binary tetrahedral | 24 P +2=0] Eio0d oo

binary octahedral | 48 P +2=0] B ool o oo
binary icosahedral | 120 C+P+2=0] Evood oo oo




lrr(7):
CCe V=V

McKay Graph:

Vertices = Irr(T")

[ C SL(2)
finite subgp

C?/T Kleinian sing.
Minimal resolution

Dynkin diagram
of ADE type

' Dual graph of central fiber:
Vertices = lrr. Comp. of fiber




McKay Correspondence

[ C SL(2) finite subgroup

Representation

Geometry

{non-trivial irred. rep. of '} <

{Irred. components of minimal resol. of (CQ/F}

How to realize this correspondence geometrically?




Representation and resolution

Let S=C2/I and 7 : S — S the minimal resolution.
o Let S = S\ {0}, then its fundamental group is I'.
@ A representation R of [ gives a vector bundle Fy over Sp.
o Hence we get a vector bundle 7*(Fo) on S\ E.
o This 7*(Fg) extends to a vector bundle V(R) on S.
@ R = R; is a non-trivial irreducible representation of I,

@ (; is the exceptional component corresponding to R; in the
Dynkin diagram

Theorem (Gonzalez-Sprinberg; Verdier '83)
ci(V(R;)) € H%(S.Z) is dual to the class [C;] € Ho(S.Z)




Going to higher dimension?

Finite subgroups in SL(3, C) is done by Miller, Blichfeldt and
Dickson (1916-1917), completed by Yau-Yu (1993)

e four infinite series of finite subgroups

@ eight sporadic finite subgroups

PROBLEM: The notion of minimal resolution does not exist for
higher dimension!

OBSERVATION: I' C SL(3), hence I' preserves the volume form
on C3, hence C3/F has a nonwhere vanishing volume form, i.e. its

canonical sheaf is trivial (Calabi-Yau property).



Crepant resolution

Let [ C SL(n) be a finite subgroup.

Definition

A resolution 7 : Z — C" /T is said crepant if K is trivial.

@ For CZ/F, crepant resolution = minimal resolution, hence
exists and unique!

Conjecture (Dixon, Harvey, Vafa, Witten 1985)

If Z — C3/T is a crepant resolution, then

Xtop(Z ) = t conjugacy classes of ' = |Irrd(I)|.




Existence of crepant resolution

@ For n =4 C4/ + 1 has terminal singularities, hence it has no
crepant resolution!

@ In general, the crepant resolution is not unique (if exist).

Theorem (lto, Markushevich, Reid, Roan 1994-1997)

For any T C SL(3) finite subgroup, C3 /T admits a crepant
resolution!

@ The proof is a case-by-case construction.

@ they verified physicists’ Euler number conjecture for these
resolutions (only)!



McKay correspondence a Reid

Conjecture (Reid 1992)

Let ' C SL(n) be a finite subgroup and Z — C"/I" a crepant
resolution. Then there exists “natural” bijections:

Irred. Rep. of [ — a basis of H*(Z,Z)

Conjugacy classes of [ — a basis of H.(Z,Z)




Proof of Reid’s conjecture

‘Batyrev 1999 Reid’s conjecture on Euler numbers holds, by using non-Archimedean integrals.

By using motivic integration of Kontsevich, we have

Theorem (Denef-Loeser 2002)

If m: Z — C"/T is a crepant resolution, then the following holds in
the completion of localised Grothendieck group of C-varieties.

o= Y L

v€Conj(IN)

By using C*-action, Z is homotopic to 7~ 1(0), hence
(co)homology of Z is determined by conjugacy classes of .



Derived McKay correspondence

Ito and Nakamura| introduced the I'-Hilbert scheme as a preferred partial resolution of C" /I".

Let N = I'[. then I' — Hdilh(C”') is the main component of Hilh‘m’r(C”)F.

Theorem (Bridgeland-King-Reid 2001)

Let Z = — Hilb(C?), then the natural map w: Z — C>/T is a
crepant resolution, and we have

DP(Coh(Z)) ~ D°(Coh"(C3)).

The method only works for dim. 3. No similar results in higher dimension.



Multiplicative McKay correspondence

For a crepant resolution Z — C" /T, the group structure of H*(Z)

is determined by [, but how to determine the ring structure of
H*(Z)?

o Chen-Ruan, 2004 defined orbifold cohomology H:r([C"/T]).
e J quantum cohomology Q@H;(Z), a deformation of H*(Z).

Conjecture (Ruan’s cohomological crepant resolution conjecture)

For a suitable choice of qo, we have QHy (Z) ~ Hp([C"/T])




Symplectic case

Assume [ C Sp(2n) a finite subgroup.

e the quotient C?" /I is symplectic on its smooth locus.
@ Crepant resolution = symplectic resolution.

@ Ruan conjectured there is no quantum correction.

Let 7 : Z — C2"/T be a crepant resolution, then

Kaledin 2002: Reid’s conjecture made explicit.
Ginzburg-Kaledin 2004: H*(Z) ~ HS_TRE:CQ”'/T]} as rings.

Bezrukavnikov-Kaledin 2004: D’(Coh(Z)) ~ D?(Coh' (C2™)).



More directions

o Global quotient X /I" or orbifolds or DM-stacks...
@ Motivic McKay correspondence on Chow groups/rings

@ Crepant Resolution Conjecture for Donaldson-Thomas
Invariants

@ The Crepant Resolution Conjecture of Bryan-Graber-Ruan






lrr(T): Vi

McKay graphes are exactly affine Dynkin diagram of type ADE!

What's the relation of them with Lie algebras?

McKay Graph:

[ C SL(2)
finite subgp

C? /T Kleinian sing.

Minimal resolution

“Vertices = Irr(T)

T

v

Simple Lie algebras
of ADE type

Dynkin diagram

of ADE type

Dual graph of central fiber:

" Vertices = Irr. Comp. of fiber




Nilpotent orbits

For classical types Nilpotent orbits = Conjugacy classes of nilpotent matrices

They are classified by sizes of Jordan blocks, i.e. partition of numbers



Let A € s/>(C) be as

A is nilpotent iff A2 = 0 iff a° + bc = 0. The nilpotent cone
consists of two orbits: [2],[1, 1].




Hasse diagram of As

(6] 30
[5}1] 28
[4]2] 26
— ~
[4.17] [32] 24
~ —
[3.2.1] 22
— ~
[3.17] [23] 18
~ .//
[22, 1] 16
[2]14] 10



Springer resolutions

Let NV C g be the nilpotent cone. Springer showed that the
moment of T*(G/B) gives a resolution 7: T*(G/B) = N

Let g = sl(n), then G/B s the complete flag variety
F = {(Vl cCVWVoC---CV,.1C C”)\dim V, = f}.

T*F ~ {(Ve,A) € F x sl(n)|A(V;) C Vi_1}

.

N A



Fibers over subregular orbits

o N ={A¢€sl(n)]A" =0}
Q O[n} = {A = N‘Ik(A) = n— 1}
(* ] O[n—lﬁl] = {A - N‘Ik(A) = N — 2}

e N is smooth along O[p and @[”—131] is its singular locus.
For A€ Op,_1.1), its fiber 771(A) = {V, € F|AV; C Vi_1}.

AV: C V._1 hence, A'V; =0 and A"V, C V..

Im(A"™") C V; C Ker(A")

dm=1i—1 dim=/+1




It turns out 7~ 1(A) consists of n — 1 copies of P!, given by

L := {1111(51'”'_1) CIm(A" %) .- Im(A") c V,,_ c Ker(A" %) c ... Ker(4A"2) c C"

Observation: Lj N L; is one point if [k — j| = 1 and empty otherwise.

[ts dual graph is: O—O—Q == - - OoO—O

Dynkin diagram again!



Simply-laced cases

The singular locus of N is of codimension 2, the closure of Ogupyeq.

Theorem (Brieskorn, 1970)

Suppose that g is simple of ADE type. Then

Slllg(]\f ) Osubreg)

Egbert Valentin Brieskorn is a simple surface singularity of the same type. |

(7/07/1936-11/07/2013)




Irr(M): V; McKay Graph:

C2Q V=g ja,-,- Vertices = Irr(T)
1 A
[CSL(2) * Dynkin diagram
finite subgp of ADE type
N ‘}
C2r Kleinian sing, Dual graph of central fiber:
Minimal resolution " Vertices = I Comp. of fiber

71(S) — S min. resol.

Simple Lie algebras
of ADE type

Nilpotent cone N/

Springer resolution 7 : T*(G/B) = N

S = Sillg(N? Osub,—eg)




Non simply-laced cases

Slodowy explained what happens for non simply-laced types:

B, = A;rn_l =  As,_1 with G»-action
C, = D,TH = Dpy1 with Gy-action
Fo = E6+ — Eg with G»-action
Gy = D_,f+ = Dy with G3-action
TS <
c N —— S R 2 ———
B_ Ll R SEPPRL L w—
D
|
b =
Peter Slodowy F " sy —i

(12/10/1948-19/11/2002)



Singularities of nilp.

N

[Brisekorn] | [Slodowy]

Osu breg
7]

Oa ub—subreg

//? ?\\
. ) ? s |[Kraft-Procesi| Case of all classical types
O&;l.lp—min
5' [Kraft] Case of g».
|
0

[Fu-Juteau-Levy-Sommers| All exceptional types.



Example As (Kraft-Procesi)

(6] 30
| As
(5. 1] 28
| As
4, 2] 26
— S~
[4,12] ™ A 32 24
T~ _—
A2 3,2,11™* PP,
o~
(3. 13] [23] 18
T~ rd
22,1217 16
| as
[2,1%] 10



Example: Eg (FJLS)

| as

Aq 22






Pierre de Fermat
(17/08/1601-12/01/1665)

[ have discovered a truly marvelous picture of
this, which this margin is too narrow to contain.

ow PO VIO DTV T T O TITN
PIERRE DE FERMAT 1601-1665 F
NG -
o' & . A =
) o @3@\\« N e ?‘; 74 : g}

na pas de solution pour des entiers n=2

LAVERGNE



Springer fibers

e Consider the Springer resolution 7 : T*(G/B) — N

S, 2l

o For e € NV, denote by B. = 7~ 1(e), called Springer fiber.

@ B. is connected by Zariski’'s main theorem (A is normal).
o Spaltenstein: B is of pure dim. = 3(dimN —dim G - e).

@ . can have many components with very complicated
configuration.

Tonny Albert Springer
(13/02/1926 - 7/12/2011)



Springer correspondence

G x C* acts on N, hence its stabilizer G, acts on B..

L

Let Ac = mo(Ge), a finite group, which acts on H*(B.).
Decompositién into irred. representations:
H:k(Be) — @pEIrr(Ae) Vp Y H:k(Be)P
H*(B.), is the p-isotypical component.
Write H(Be) = Hiop(Be), the subgroup generated by irreducible

components of B.. A. acts on it by permuting components via
monodromy.



Theorem (Springer 1976)
The group H(Be) is naturally a representation of the Weyl group

W, and
1) H(Be), (if non-zero) is an irred. rep. of W.

2) Any irred. rep. of W arises from this way.
3) Get an injection

Irr(W) — {(nilp. orbits, Irred. Rep. of component groups)}




Special case: sl(n)

In this case, W =&,
Ae is in general not trivial, but only trivial rep. in Irr(W) appears.

The Springer correspondence reads: H(B.) is an irreducible
representation of S,. This gives the correspondence

Conj(S,) < Partitions of n <> {H(Be)|Oe nilp. orbit} < Irr(S,)

@ [n] « trivial representation

@ [n— 1,1] < reflection representation

@ [1"] <+ sign representation



Steinberg variety

The Steinberg variety is defined by Z := T*(G/B) xx T*(G/B)
Fact: Z=U,cw Ty (G/B x G/B))
pii: T°(G/B) xn T(G/B) xn T*(G/B) = Z

Convolution algebra structure on H*(Z):
H*(Z) x H*(Z) — H*(2)
(a, B) = (p13)«(PT2cx - P23 /3)

Need Borel-Moore (co)homology



Example: sl((2)

The Steinberg variety Z = T*P! x A T*P! has two components:
Aipt, P x P, The group H(Z) is of dimension 2, generated by
[Agap], [P x P]

Convolution product: o [A7.p1] acts as identity.
o [P! x P! [P! x Pl = —2[P! x P!]

If we set T = [Pt x P] + [Agup1], then T - T = [Aqup].

This gives an isomorphism of algebras: H(Z) ~ C[S,].

Note: Although H(Z) is parametrized by W (so as C[W]), but
the algebra isomorphism if not the trivial one!



Lagrangian construction of the Weyl group

Theorem (Ginzburg)

There exists a canonical isomorphism of algebras:

H(Z) ~ C[W)]

Note that as correspondences, we have Z o B, = B = B o Z.
This shows that H*(B.) has a H(Z)-bi-module structure! This is

why W acts on H*(B.)!



[T Vi Ky Graph: . ;
C"z[a}vi:%ae mf f:m Simple Lie algebras
' \ of ADE type
\ yP
\
resu) — Dynkin diagram
fnite subgp of ADE tpe
Nilpotent cone N/
ar K\e‘lm'an.s‘mg. Dual graph o cntrl fer
Minimal resolution “Verices = I Conp.of fher
1
Springer resolution 7 : T*(G/B) = N
77H(S) = § min. resol. § = Sing(N, Osubreg)

Springer Correspondence:

[rr (W) = {(Oe, p)}

Springer fibers Be

Steinberg variety
Z=T*(G/B) xx T*(G/B)

l

m1(0e) ~ H(Be) via monodromy

A(Z) = CIW] —— J7,(0.) ~ H(Bo) ~ W

|




Mosaic on perverse sheaves

o DP(X) c DP(Sh(X)): full subcategory of constructible complexes
o Perverse sheaf F € DP(X) such that

dimsuppH'(F) < —i, dimsuppH'(F") < —i

o Perv(X) c DP(X): full subcategory of perverse sheaves

o Simple objects in Perv(X) are called Intersection complexes,
denoted by IC(Y, L).

o IC(Y,L) is an extension of the local system £ on (smooth)
Y. Deligne has a construction via push forward and

truncations.



Convolution algebra is Yoneda product

Let n : M — N be a proper map with M smooth of dimension d.
Let Cpp = Cpyld] Let Z = M xn M, then

There exists a (non-necessarily grading preserving) isomorphism of
algebras:

The LHS is the convolution algebra, and RHS is the Yoneda
products.

Problem: Compute the push-forward 1.Cp.



Decomposition theorem

Theorem (Deligne 1968,1972)

Let f : X — Y be a smooth proper morphism, then

o Rf.Qx ~ @qEORqﬁk@X[_q]
@ the sheaves Rf,Qx are semi-simple local systems.

Theorem (Beilinson-Bernstein-Deligne, Gabber)

Let i : M — N be a projective morphism and X C M a smooth
locally closed subvariety. Then in D°(N), we have

M*IC()_(: CX) — @(E,Y,X)LY;X(’.) X IC( ?7 X)[’]

@ Y: locally closed subvariety of N
@ Y. an irred. local system on Y

o Ly (i): finite dim. vector spaces




Semismall morphisms

A morphism 1 : X — Y is called semismall if there exists a
stratification Y = LY, such that

(i) p=1(Y,) — Y, is locally trivial topological fibration
(i) 2codimp=1(Y,) > codimY,,.

Relevant strata: Y,, such that 2codimu=(Y,) = codimY,.

Theorem (Borho-MacPherson 1981)

Assume i1 - X — Y is semismall with X smooth irreducible, then

Fox (CX) — @q"):(m;,xrﬁ) [—(p X IC( YC}:: X(D)

where o is such that Y,, is relevant, L, is a vector space and X Is
an irreducible local system.

o




Question: What is L7

@ View the irreducible local system Y as an irred. rep. x of
T1(Ya).

@ Let F, C X be the fiber of 1 over a point of Y,.

e m1(Y,) acts on H(F, C X) by monodromy, hence gives

H(F&-) — @Xéll‘r(ﬁl(Yﬁ))H(Fa)Xﬁ

Lc.fl’ — H(Fa)x

Corollary

Let o : X — Y be a semismall proj. morphism. Let Z = X Xy X,
then

H(Z) ~ Dy

p=(a, x4

yEnd(H(Fa)y,,).




Symplectic resolutions are semismall

A symplectic resolution is a proj. resolution i : X — Y such that
X is symplectic.

@ [hey are crepant resolutions.

@ Springer resolution is a symplectic resolution.

Theorem (Kaledin 2006)
Symplectic resolutions are semismall.




Springer correspondence again

@ The Springer resolution 7 : T*(G/B) — N is semismall.
@ [he Springer fibers are denoted by By.

@ The Steinberg variety is Z := T*(G/B) xnr T*(G/B).
@ As algebras, we have H(Z) ~ C[W/].

By previous results, we have

CIW] = &« pEnd(H(Bx),)

where x € N runs over nilpotent orbits, and p is an irred.
representation of 71(Oy).




Further developments

@ Consider the union of symplectic resolutions
I_IQ‘ler,,,ern:N T*Fg — X = {A - 5[(N)|An — 0}

This gives geometrical construction of the universal
enveloping algebra of sl(n). The fiber homology H(Fx) gives

all simple sl(n)-modules.

@ Lusztig 1988: Equivariant cohomology: on H% (B.), there
exists an action of graded affine Hecke algebra.

o Kazhdan-Lusztig 1987: On the G.-equivariant K-group of
B, there exists an action of the affine Hecke algebra.



McKay vs. Springer

Z 5 £ - central ¢
' |
fiber L
T[ |
(_\’"QPQLG_ st J
\y]/
L, M0
|
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McKay meets Springer?

o Let [ C SL(2) be a finite subgroup and S := C?/T
o Let S — S be the minimal resolution.

@ The Hilbert-Chow resolution gives a crepant (and symplectic)

resolution:

Hilbl(§) — Sym"(S) — Sym"(S) = C2" /(M1 S,)

[Fu 2007] Sym?(C?/ £ 1) is isomorphic to the transverse slice
from 0[2‘_2‘_2} to 0[432] In 5]3(6)'

Then the crepant resolution of Sym?(C?/ + 1) coincides with
the Springer resolution of Oy 5 restricting to this slice!



More examples (FJLS)

Fa(az) Ea(ar)
| A1 |
E-(as)
C3(a1 ) 2a,
m 2.A1 / \
_ / \ Es(asz)+ A1 m m D¢ (az)
A1A; N B o a
| A]_ As+A, Ds(ai)+A-
ArAq As+As

Slice isomorphic to (C* & (C3)*)/S,4 Slice isomorphic to (C* & (C*)*)/Ss






