几何与表示掠影

付保华

数学所讲座 (2017.10.11)

Regular polyhedron

A *regular polyhedron* is a convex polyhedron such that all faces are regular polygons and all are identical = "most symmetric" polyhedrons

The following is attributed to Theaetetus (415—369 B.C)

Theorem

There are exactly 5 regular polyhedron (solids) in \mathbb{R}^3 .

Euclid's Elements (Book XIII)

At each vertex **at least 3 faces** meet

When we add up the internal angles that meet at a vertex, it must be less than 360 degrees

A regular n-gon has internal angle 180-360/n, which is bigger than 120 if n>5, hence get n=3,4,5.

3 triangles meet	180°	tetrahedron	
4 triangles meet	240°	octahedron	
5 triangles meet	300°	icosahedron	
3 squares meet	270°	cube	
3 pentagons meet	324°	dodecahedron	

Floruit 300 BC

Statue in Oxford

Topological proof using Euler's formula

Leonhard Euler 15/04/1707 – 18/09/1783 V =# of vertex, E = # of edges, F = # of faces

Assume each face is a regular n-gon, and each vertex is shared by m faces.

Euler's Formula: V - E + F = 2

Two ways to count # of edges: 2E = nF, 2E = mV

This gives 1/m + 1/n = 1/2 + 1/E, which has only 5 possibilities:

Polyhedro	on 🗢	Vertices \$	Edges 🗢	Faces 🗢
tetrahedron		4	6	4
cube		8	12	6
octahedron		6	12	8
dodecahedron		20	30	12
icosahedron		12	30	20

Augustin-Louis Cauchy (21/08/1789 – 23/05/1857) **Theorem.** If two 3-dimensional convex polyhedra P and P' are combinatorially equivalent with corresponding facets being congruent, then also the angles between corresponding pairs of adjacent facets are equal (and thus P is congruent to P').

Octahedron

Dodecahedron

Icosahedron

Plato's Theory of Everything: *Timaeus*

428/427 or 424/423 - 348/347 BC

Water

Earth

1

天有五行,水火金 木土,分时化育 以成万物。其神谓 之五帝

number of triangles

			type 1	type 2
tetrahedron	plasma	("fire")	24	0
octahedron	gas	(" air ")	48	0
cos ahedron	liquid	(" water ")	120	0
hexahedron	soli d	("earth")	0	24

Chemical Action: 1 water + 1 fire = 3 air

Kepler's Mysterium Cosmographicum

Johannes Kepler (27/12/1571 - 15/11/1630)

the	octahedron	be
the	icosahedron	be
the	dodecahedron	be
the	tetrahedron	be
and	the cube	be

tween tween tween tween tween Mercury and Venus, Venus and Earth, Earth and Mars, Mars and Jupiter Jupiter and Saturn

Kepler's Platonic solid model of the Solar system from *Mysterium Cosmographicum*

The proper rotations, (order-3 rotation on a vertex and face, and order-2 on two edges) and reflection plane (through two faces and one edge) in the symmetry group of the regular tetrahedron

Symmetries of Platonic solids

tetrahedron	A_4
\mathbf{cube}	S_4
octahedron	S_4
dodecahedron	A_5
icosahedron	A_5

$A_4 = \langle a.b a^2 = b^3 = (ab)^3 = 1 \rangle$	12	a china the
$S_4 = \langle a.b a^2 = b^3 = (ab)^4 = 1 \rangle$	24	
$A_5 = \langle a, b a^2 = b^3 = (ab)^5 = 1 \rangle$	60	

•The tetrahedron is self-dual.

The cube and the octahedron form a dual pair.
The dodecahedron and the icosahedron form a dual pair.

Finite subgroups in $SO(3, \mathbb{R})$

Let $\Gamma \subset SO(3, \mathbb{R})$ be a finite subgroup.

- every $1 \neq \gamma \in \Gamma$ has two fixed points on S^3 (axe of rotation).
- The set P of all such fixed points is Γ -invariant.

$$|\Gamma| - 1 = \frac{1}{2} \sum_{p \in P} (|\operatorname{Stab}_{\Gamma}(p)| - 1)$$

- Note that $|\operatorname{Stab}_{\Gamma}(p)| = \frac{|\Gamma|}{|\Gamma \cdot p|}$
- Let $P = O_1 \sqcup O_2 \sqcup \cdots O_r$ be the Γ -orbits, $|\Gamma| 1 = \frac{1}{2} \sum_{i=1}^r (|\Gamma| \frac{|\Gamma|}{|\operatorname{Stab}_{\Gamma}(p)|})$

$$2 - \frac{2}{|\Gamma|} = \sum_{i=1}^{r} (1 - \frac{1}{a_i}), a_i \text{ divides } |\Gamma|$$

Finite subgroups in SO(3, \mathbb{R}): lists

$C_n = \langle a a^n = i \rangle$	n	
$D_n = \langle a, b a^2 = b^2 = (ab)^n = 1 \rangle$	21	
$A_4 = \langle a.b a^2 = b^3 = (ab)^3 = 1 \rangle$	12	a comb
$S_4 = \langle a.b a^2 = b^3 = (ab)^4 = 1 \rangle$	24	
$A_5 = \langle a, b a^2 = b^3 = \langle a b \rangle^5 = \rangle$	60	

Connecting SU(2) to $SO(3, \mathbb{R})$

$$SU(2) = \{ \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} | a, b \in \mathbb{C}, |a|^2 + |b|^2 = 1 \} \simeq S^3$$

Its Lie algebra $\mathfrak{su}(2) \simeq \mathbb{R}^3$ has an inner product: $\langle U, V \rangle = \frac{1}{2} \operatorname{Tr}(UV^*)$

For any $A \in SU(2)$, define $\phi_A \in \operatorname{End}(\mathfrak{su}(2))$ by $\phi_A(U) = A\tilde{U}A^{-1}$

• ϕ_A preserves the inner product, hence

$$\phi: SU(2) \to SO(3, \mathbb{R})$$

• This is a 2:1 map of Lie groups, with kernal = $\{\pm 1\}$.

Cn	< a a ⁿ = 1 >	n	Cyclic
D_{2n}^{*}	$a \cdot b \cdot a^2 = b^2 = (ab)^n$	4n	dihedral
A*4	$a \cdot b \cdot a^2 = b^3 = (ab)^3$	24	Binary tetrahedral
S4	$\langle a, b a^2 = b^3 = (ab)^4$	48	Binary octahedral
A5	$a, b a^2 = b^3 = (ab)^5$	120	Binary icosahedral

Finite subgroups in SL(2)

• $SU(2) \subset SL(2) = SL(2, \mathbb{C})$ is a subgroup.

 For any finite subgroup Γ ⊂ SL(2), it preserves a Hermitian inner product on C² by averaging, hence it is isomorphic to a subgroup of SU(2)

Christian Felix Klein (25/04/1849 – 22/06/1925) finite subgroups of SL(2) = finite subgroups of SU(2).

Definition

A **representation** of a group Γ is a complex vector space V with a homomorphism $\rho : \Gamma \to \operatorname{GL}(V)$, i.e. Γ acts linearly (via ρ) on V. The representation (V, ρ) is **irreducible** if $\nexists 0 \neq W \subsetneqq V$ such that W is Γ -invariant.

- Only consider dim $V < \infty$ and Γ finite.
- Every representation of Γ is a direct sum of irreducible representations.
- Write $Irr(\Gamma)$ the set of all irred. representations of Γ . Then $|Irr(\Gamma)| = \sharp$ conjugacy classes of Γ .

McKay graph

- $\Gamma \subset SL(2)$ a finite subgroup
- V_0, \cdots, V_r the irred. rep. of Γ
- $W := \mathbb{C}^2$ is the natural rep. of Γ

$$W\otimes V_i=\oplus_j V_j^{\oplus a_{ij}}$$
 as $\Gamma-representations$

Note that $W^* \simeq W$ (as $\Gamma \subset SL(2)$), we have $a_{ij} = \dim \operatorname{Hom}_{\Gamma}(V_j, W \otimes V_i) = \dim \operatorname{Hom}_{\Gamma}(V_j \otimes W, V_i) = a_{ji}$

McKay graph:

- vertice = irred. rep. of Γ , labelled with its dim.
- two vertices V_i , V_j are connected by a_{ij} edges.

Example: Γ is cyclic

- Consider the case $\Gamma = C_n$: a cyclic group of order n.
- Let $\xi = e^{\frac{2\pi i}{n}}$. Take one generator σ of Γ , then $\sigma = \begin{pmatrix} \xi & 0 \\ 0 & \xi^{-1} \end{pmatrix}$
- For $0 \le k \le n-1$, let

$$\rho_k : \Gamma = C_n \to \operatorname{GL}(1) = \mathbb{C}^* : \sigma \mapsto \xi^k.$$

• Irred. representations are V_0, \dots, V_{n-1} .

W is decomposed as $V_1 \oplus V_{n-1}$

$$W \otimes V_i = (V_1 \oplus V_{n-1}) \otimes V_i = V_{i-1} \oplus V_{i+1}$$

McKay graphes for $\Gamma = D_{2n}^*$ and A_4^*

McKay graph for $\Gamma = D_{2n}^*$

McKay graph for $\Gamma = A_4^*$

McKay graphes for $\Gamma = S_4^*$ and A_5^*

McKay graph for $\Gamma = A_5^*$

Complex Lie algebras

A (complex) Lie algebra is a complex vector space \mathfrak{g} together with a non-associative, alternating bilinear map $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, $(x, y) \mapsto [x, y]$ called the Lie bracket, satisfying the Jacobi identity. It is called **simple** if it has no non-trivial ideals and is not abelian.

Examples: $\mathfrak{sl}(n), \mathfrak{so}(n), \mathfrak{sp}(2n)$.

Wilhelm Karl Joseph Killing (10/05/1847 – 11/02/1923)

Élie Joseph Cartan (09/04/1869 – 06/05/1951

Dynkin diagrams

McKay graphes are exactly affine Dynkin diagram of type ADE! What's the relation of them with Lie algebras?

For $\Gamma \subset SL(2)$ finite subgroup, the quotient \mathbb{C}^2/Γ (set of Γ -orbits) is an affine algebraic variety $\operatorname{Spec}(\mathbb{C}[u,v]^{\Gamma})$. It turns out they all can be realized as a hypersurface in \mathbb{C}^3 .

Example: $\Gamma = C_n$ with generator $\sigma = \begin{pmatrix} \xi & 0 \\ 0 & \xi^{-1} \end{pmatrix}$, then $\mathbb{C}[u, v]^{\Gamma} = \mathbb{C}[uv, u^n, v^n]$, hence \mathbb{C}^2/Γ is the hypersurface in \mathbb{C}^3 defined by $x^n = yz$.

cyclic	n	$x^n + yz = 0$	A_{n-1}
binary dihedral	4(n-2)	$x^{n-1} + xy^2 + z^2 = 0$	D_n
binary tetrahedral	24	$x^4 + y^3 + z^2 = 0$	E_6
binary octahedral	48	$x^3y + y^3 + z^2 = 0$	<i>E</i> ₇
binary icosahedral	120	$x^5 + y^3 + z^2 = 0$	E_8

Examples: A_1, A_2, A_3 and D_4

- Every surface S admits a unique **minimal resolution** $\pi : \tilde{S} \to S$.
- When $S = \mathbb{C}^2/\Gamma$ for a finite subgroup $\Gamma \subset SL(2)$, the exceptional locus of $\pi: \tilde{S} \to S$ is a union of \mathbb{P}^1 s, each with self-intersection -2.

Examples of minimal resolutions

Central fibres and dual graph

 $s = \{x^2 + yz = o\}$

 $s = {x(y^2 - x^2) + z^2 = 0}$

 \bigcirc

Dynkin diagram again!

McKay Correspondence

 $\Gamma \subset SL(2)$ finite subgroup

Representation

{non-trivial irred. rep. of
$$\Gamma$$
} \langle [Irred. components of minimal resol. of \mathbb{C}^2/Γ }

How to realize this correspondence geometrically?

Representation and resolution

Let $S = \mathbb{C}^2/\Gamma$ and $\pi : \tilde{S} \to S$ the minimal resolution.

- Let $S_0 = S \setminus \{0\}$, then its fundamental group is Γ .
- A representation R of Γ gives a vector bundle F_0 over S_0 .
- Hence we get a vector bundle $\pi^*(F_0)$ on $\tilde{S} \setminus E$.
- This $\pi^*(F_0)$ extends to a vector bundle V(R) on \tilde{S} .
- $R = R_i$ is a non-trivial irreducible representation of Γ ,
- *C_i* is the exceptional component corresponding to *R_i* in the Dynkin diagram

Theorem (Gonzalez-Sprinberg; Verdier '83)

 $c_1(V(R_i)) \in H^2(\widetilde{S},\mathbb{Z})$ is dual to the class $[C_i] \in H_2(\widetilde{S},\mathbb{Z})$

Finite subgroups in $SL(3, \mathbb{C})$ is done by Miller, Blichfeldt and Dickson (1916-1917), completed by Yau-Yu (1993)

- four infinite series of finite subgroups
- eight sporadic finite subgroups

PROBLEM: The notion of *minimal resolution* does not exist for higher dimension!

OBSERVATION: $\Gamma \subset SL(3)$, hence Γ preserves the volume form on \mathbb{C}^3 , hence \mathbb{C}^3/Γ has a nonwhere vanishing volume form, i.e. its canonical sheaf is trivial (Calabi-Yau property).

Crepant resolution

Let $\Gamma \subset SL(n)$ be a finite subgroup.

Definition

- A resolution $\pi: Z \to \mathbb{C}^n / \Gamma$ is said **crepant** if K_Z is trivial.
 - For \mathbb{C}^2/Γ , crepant resolution = minimal resolution, hence exists and unique!

Conjecture (Dixon, Harvey, Vafa, Witten 1985)

If $Z \to \mathbb{C}^3/\Gamma$ is a crepant resolution, then

 $\chi_{top}(Z) = \sharp \text{ conjugacy classes of } \Gamma = |\text{Irrd}(\Gamma)|.$
- For n = 4, C⁴/ ± 1 has terminal singularities, hence it has no crepant resolution!
- In general, the crepant resolution is not unique (if exist).

Theorem (Ito, Markushevich, Reid, Roan 1994-1997) For any $\Gamma \subset SL(3)$ finite subgroup, \mathbb{C}^3/Γ admits a crepant resolution!

- The proof is a case-by-case construction.
- they verified physicists' Euler number conjecture for these resolutions (only)!

Conjecture (Reid 1992)

Let $\Gamma \subset SL(n)$ be a finite subgroup and $Z \to \mathbb{C}^n/\Gamma$ a crepant resolution. Then there exists "natural" bijections:

Irred. Rep. of $\Gamma \to$ a basis of $H^*(Z,\mathbb{Z})$

Conjugacy classes of $\Gamma \to$ a basis of $H_*(Z,\mathbb{Z})$

SLOGAN: representation theory of Γ = homology theory of Z.

[Batyrev 1999] Reid's conjecture on Euler numbers holds, by using non-Archimedean integrals.

By using motivic integration of Kontsevich, we have

Theorem (Denef-Loeser 2002)

If $\pi : Z \to \mathbb{C}^n / \Gamma$ is a crepant resolution, then the following holds in the completion of localised Grothendieck group of \mathbb{C} -varieties.

$$[\pi^{-1}(0)] = \sum_{\gamma \in \operatorname{Conj}(\Gamma)} \mathbb{L}^{n - \omega \gamma}$$

By using \mathbb{C}^* -action, Z is homotopic to $\pi^{-1}(0)$, hence (co)homology of Z is determined by conjugacy classes of Γ .

[Ito and Nakamura] introduced the Γ -Hilbert scheme as a preferred partial resolution of \mathbb{C}^n/Γ . Let $N = |\Gamma|$, then $\Gamma - \operatorname{Hilb}(\mathbb{C}^n)$ is the main component of $\operatorname{Hilb}^N(\mathbb{C}^n)^{\Gamma}$.

Theorem (Bridgeland-King-Reid 2001)

Let $Z = \Gamma - \text{Hilb}(\mathbb{C}^3)$, then the natural map $\pi : Z \to \mathbb{C}^3/\Gamma$ is a crepant resolution, and we have

 $D^b(\operatorname{Coh}(Z)) \simeq D^b(\operatorname{Coh}^{\Gamma}(\mathbb{C}^3)).$

The method only works for dim. 3. No similar results in higher dimension.

Multiplicative McKay correspondence

For a crepant resolution $Z \to \mathbb{C}^n / \Gamma$, the group structure of $H^*(Z)$ is determined by Γ , but how to determine the ring structure of $H^*(Z)$?

- Chen-Ruan, 2004 defined orbifold cohomology $H^*_{CR}([\mathbb{C}^n/\Gamma])$.
- \exists quantum cohomology $QH_q^*(Z)$, a deformation of $H^*(Z)$.

Conjecture (Ruan's cohomological crepant resolution conjecture)

For a suitable choice of q_0 , we have $QH^*_{q_0}(Z) \simeq H^*_{CR}([\mathbb{C}^n/\Gamma])$

SLOGAN: string topology of \mathbb{C}^n/Γ is part of quantum theory of Z.

Symplectic case

Assume $\Gamma \subset \operatorname{Sp}(2n)$ a finite subgroup.

- the quotient \mathbb{C}^{2n}/Γ is symplectic on its smooth locus.
- Crepant resolution = symplectic resolution.
- Ruan conjectured there is no quantum correction.

Let $\pi: Z \to \mathbb{C}^{2n}/\Gamma$ be a crepant resolution, then

Kaledin 2002: Reid's conjecture made explicit.

Ginzburg-Kaledin 2004: $H^*(Z) \simeq H^*_{CR}([\mathbb{C}^{2n}/\Gamma])$ as rings.

Bezrukavnikov-Kaledin 2004: $D^b(\operatorname{Coh}(Z)) \simeq D^b(\operatorname{Coh}^{\Gamma}(\mathbb{C}^{2n})).$

- Global quotient X/Γ or orbifolds or DM-stacks...
- Motivic McKay correspondence on Chow groups/rings
- Crepant Resolution Conjecture for Donaldson-Thomas Invariants
- The Crepant Resolution Conjecture of Bryan-Graber-Ruan
- • •

For classical types Nilpotent orbits = Conjugacy classes of nilpotent matrices

$$\begin{pmatrix} \cancel{1} & 1 & & \\ \cancel{1} & \cancel{1} & & \\ & \ddots & 1 \\ & & \cancel{1} \end{pmatrix} \begin{pmatrix} \cancel{1} & 1 & & \\ \cancel{1} & \cancel{1} & & \\ & \cancel{1} & & \cancel{1} \\ & & & \cancel{1} \end{pmatrix}$$

They are classified by sizes of Jordan blocks, i.e. partition of numbers

Let $A \in sl_2(\mathbb{C})$ be as

$$\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$$

A is nilpotent iff $A^2 = 0$ iff $a^2 + bc = 0$. The nilpotent cone consists of two orbits: [2], [1, 1].

Hasse diagram of A_5

Let $\mathcal{N} \subset \mathfrak{g}$ be the nilpotent cone. Springer showed that the moment of $T^*(G/B)$ gives a resolution $\pi : T^*(G/B) \to \mathcal{N}$.

Let $\mathfrak{g} = \mathfrak{sl}(n)$, then G/B is the complete flag variety

$$F = \{ (V_1 \subset V_2 \subset \cdots \subset V_{n-1} \subset \mathbb{C}^n) | \dim V_i = i \}.$$

$$T^*F \simeq \{(V_{\bullet}, A) \in F \times \mathfrak{sl}(n) | A(V_i) \subset V_{i-1}\}$$

Fibers over subregular orbits

• \mathcal{N} is smooth along $\mathcal{O}_{[n]}$ and $\bar{\mathcal{O}}_{[n-1,1]}$ is its singular locus.

For
$$A \in \mathcal{O}_{[n-1,1]}$$
, its fiber $\pi^{-1}(A) = \{V_ullet \in F | AV_i \subset V_{i-1}\}$

$$AV_i \subset V_{i-1}$$
 hence, $A^i V_i = 0$ and $A^{n-i} V_n \subset V_i$.

$$\operatorname{Im}(A^{n-i}) \subseteq V_i \subseteq \operatorname{Ker}(A^i)$$

$$\dim = i - 1 \qquad \qquad \dim = i + 1$$

It turns out $\pi^{-1}(A)$ consists of n-1 copies of \mathbb{P}^1 , given by

 $L_k := \{ \operatorname{Im}(A^{n-1}) \subset \operatorname{Im}(A^{n-2}) \subset \cdots \operatorname{Im}(A^k) \subset V_{n-k} \subset \operatorname{Ker}(A^{n-k}) \subset \cdots \operatorname{Ker}(A^{n-2}) \subset \mathbb{C}^n \}$

Observation: $L_k \cap L_j$ is one point if |k - j| = 1 and empty otherwise.

Dynkin diagram again!

Simply-laced cases

Egbert Valentin Brieskorn (7/07/1936-11/07/2013) The singular locus of ${\cal N}$ is of codimension 2, the closure of ${\cal O}_{
m subreg}$

Theorem (Brieskorn, 1970)

Suppose that \mathfrak{g} is simple of *ADE* type. Then

 $\operatorname{Sing}(\mathcal{N},\mathcal{O}_{\operatorname{subreg}})$

is a simple surface singularity of the same type.

Non simply-laced cases

Slodowy explained what happens for non simply-laced types:

$$B_n = A_{2n-1}^+ := A_{2n-1} \text{ with } \mathfrak{S}_2\text{-action}$$

$$C_n = D_{n+1}^+ := D_{n+1} \text{ with } \mathfrak{S}_2\text{-action}$$

$$F_4 = E_6^+ := E_6 \text{ with } \mathfrak{S}_2\text{-action}$$

$$G_2 = D_4^{++} := D_4 \text{ with } \mathfrak{S}_3\text{-action}$$

Peter Slodowy (12/10/1948-19/11/2002)

Singularities of nilp. orbits

Example A₅ (Kraft-Procesi)

Example: E_6 (FJLS)

 $D_4(a_1)$ 58 $A_3 + A_1$ 56 E_6 72 m | *E*6 $\mathbf{2A_2} + \mathbf{A_1}$ 54 c_2 $E_{6}(a_{1})$ 70 $|A_5|$ **A**₃ 52 \mathbb{C}^4/μ_3 D_5 68 a_1 g2 $\mathbf{A}_2 + \mathbf{2A}_1$ $|C_3|$ 50 $E_{6}(a_{3})$ 66 A_1 a_2 **2A**₂ 48 A_2 A_5 64 $D_5(a_1)$ A_2 $A_2 + A_1$ A_2 46 A_2 $\mathbf{A_4} + \mathbf{A_1}$ 62 | 2a₂ a_2 **A**₂ 42 $|A_1|$ **A**₄ 60 D_4 a_1 3.*C*₂ G_2 40 $3A_1$ $D_4(a_1)$ 58 $| b_3$ $2A_1$ 32 a_5 22 A_1 $|e_6$

0

0

E_7 (FJLS)

Pierre de Fermat (17/08/1601-12/01/1665)

I have discovered a truly marvelous *picture* of this, which this margin is too narrow to contain.

- Consider the Springer resolution π : $T^*(G/B) \rightarrow \mathcal{N}$.
- For $e \in \mathcal{N}$, denote by $\mathcal{B}_e = \pi^{-1}(e)$, called *Springer fiber*.

- \mathcal{B}_e is connected by Zariski's main theorem (\mathcal{N} is normal).
- Spaltenstein: \mathcal{B}_e is of pure dim. $=\frac{1}{2}(\dim \mathcal{N} \dim G \cdot e)$.
- \mathcal{B}_e can have many components with very complicated configuration.

Tonny Albert Springer (13/02/1926 – 7/12/2011)

Springer correspondence

 $G \times \mathbb{C}^*$ acts on \mathcal{N} , hence its stabilizer \tilde{G}_e acts on \mathcal{B}_e . Let $A_e = \pi_0(\tilde{G}_e)$, a finite group, which acts on $H^*(\mathcal{B}_e)$.

Decomposition into irred. representations:

$$H^*(\mathcal{B}_e) = \oplus_{
ho \in \mathrm{Irr}(\mathcal{A}_e)} V_{
ho} \otimes H^*(\mathcal{B}_e)_{
ho}$$

 $H^*(\mathcal{B}_e)_{\rho}$ is the ρ -isotypical component.

Write $H(\mathcal{B}_e) = H_{top}(\mathcal{B}_e)$, the subgroup generated by irreducible components of \mathcal{B}_e . A_e acts on it by permuting components via monodromy.

Theorem (Springer 1976)

The group $H(\mathcal{B}_e)$ is naturally a representation of the Weyl group W, and 1) $H(\mathcal{B}_e)_\rho$ (if non-zero) is an irred. rep. of W. 2) Any irred. rep. of W arises from this way. 3) Get an injection

 $\operatorname{Irr}(W) \to \{(\operatorname{nilp. orbits}, \operatorname{Irred. Rep. of component groups})\}$

Special case: $\mathfrak{sl}(n)$

In this case, $W = S_n$.

 A_e is in general not trivial, but only trivial rep. in Irr(W) appears. The Springer correspondence reads: $H(\mathcal{B}_e)$ is an irreducible representation of \mathcal{S}_n . This gives the correspondence

 $\operatorname{Conj}(\mathcal{S}_n) \leftrightarrow \operatorname{Partitions} \operatorname{of} n \leftrightarrow \{H(\mathcal{B}_e) | \mathcal{O}_e \operatorname{nilp. orbit}\} \leftrightarrow \operatorname{Irr}(\mathcal{S}_n)$

- $[n] \leftrightarrow \text{trivial representation}$
- $[n-1,1] \leftrightarrow$ reflection representation
- $[1^n] \leftrightarrow \text{sign representation}$

The Steinberg variety is defined by $Z := T^*(G/B) \times_{\mathcal{N}} T^*(G/B)$

Fact:
$$Z = \sqcup_{w \in W} T^*_{Y_w}(G/B \times G/B))$$

$$p_{ij}: T^*(G/B) \times_{\mathcal{N}} T^*(G/B) \times_{\mathcal{N}} T^*(G/B) \to Z$$

Convolution algebra structure on $H^*(Z)$:

$$H^*(Z) \times H^*(Z) \to H^*(Z)$$

 $(\alpha, \beta) \mapsto (p_{13})_*(p_{12}^* \alpha \cdot p_{23}^* \beta)$

Need Borel-Moore (co)homology

Example: $\mathfrak{sl}(2)$

The Steinberg variety $Z = T^* \mathbb{P}^1 \times_N \mathcal{T}^* \mathbb{P}^1$ has two components: $\Delta_{T^* \mathbb{P}^1}, \mathbb{P}^1 \times \mathbb{P}^1$. The group H(Z) is of dimension 2, generated by $[\Delta_{T^* \mathbb{P}^1}], [\mathbb{P}^1 \times \mathbb{P}^1]$

Convolution product:

If we set $T = [\mathbb{P}^1 \times \mathbb{P}^1] + [\Delta_{T^*\mathbb{P}^1}]$, then $T \cdot T = [\Delta_{T^*\mathbb{P}^1}]$.

This gives an isomorphism of algebras: $H(Z) \simeq \mathbb{C}[S_2]$.

Note: Although H(Z) is parametrized by W (so as $\mathbb{C}[W]$), but the algebra isomorphism if not the trivial one!

Lagrangian construction of the Weyl group

Theorem (Ginzburg)

There exists a canonical isomorphism of algebras:

 $H(Z)\simeq \mathbb{C}[W]$

Note that as correspondences, we have $Z \circ \mathcal{B}_e = \mathcal{B}_e = \mathcal{B}_e \circ Z$. This shows that $H^*(\mathcal{B}_e)$ has a H(Z)-bi-module structure! This is why W acts on $H^*(\mathcal{B}_e)$!

- $D^b(X) \subset D^b(Sh(X))$: full subcategory of constructible complexes
- Perverse sheaf $\mathcal{F} \in D^b(X)$ such that

dim supp
$$H^{i}(\mathcal{F}) \leq -i$$
, dim supp $H^{i}(\mathcal{F}^{v}) \leq -i$

- $\operatorname{Perv}(X) \subset D^b(X)$: full subcategory of perverse sheaves

Convolution algebra is Yoneda product

Let $\mu : M \to N$ be a proper map with M smooth of dimension d. Let $\mathcal{C}_M = \mathbb{C}_M[d]$ Let $Z = M \times_N M$, then

Theorem

There exists a (non-necessarily grading preserving) isomorphism of algebras:

$$H_*(Z) \simeq Ext^*_{D^b(N)}(\mu_*\mathcal{C}_M, \mu_*\mathcal{C}_M).$$

The LHS is the convolution algebra, and RHS is the Yoneda products.

Problem: Compute the push-forward $\mu_* C_M$.

Decomposition theorem

Theorem (Deligne 1968,1972)

Let $f : X \rightarrow Y$ be a smooth proper morphism, then

- $Rf_*\mathbb{Q}_X \simeq \oplus_{q\geq 0} R^q f_*\mathbb{Q}_X[-q]$
- the sheaves $R^q f_* \mathbb{Q}_X$ are semi-simple local systems.

Theorem (Beilinson-Bernstein-Deligne, Gabber)

Let $\mu : M \to N$ be a projective morphism and $X \subset M$ a smooth locally closed subvariety. Then in $D^b(N)$, we have

 $\mu_* \operatorname{IC}(\bar{X}, \mathbb{C}_X) = \oplus_{(i, Y, \chi)} L_{Y, \chi}(i) \otimes \operatorname{IC}(\bar{Y}, \chi)[i].$

- Y: locally closed subvariety of N
- χ : an irred. local system on Y
- $L_{Y,\chi}(i)$: finite dim. vector spaces

Semismall morphisms

A morphism $\mu : X \to Y$ is called *semismall* if there exists a stratification $Y = \sqcup Y_{\alpha}$ such that

(i) μ⁻¹(Y_α) → Y_α is locally trivial topological fibration
 (ii) 2codimμ⁻¹(Y_α) ≥ codimY_α.

Relevant strata: Y_{α} such that $2 \operatorname{codim} \mu^{-1}(Y_{\alpha}) = \operatorname{codim} Y_{\alpha}$.

Theorem (Borho-MacPherson 1981)

Assume $\mu : X \rightarrow Y$ is semismall with X smooth irreducible, then

$$\mu_*(\mathcal{C}_X) = \oplus_{\phi = (\alpha, \chi_\phi)} L_\phi \otimes \operatorname{IC}(\bar{Y}_\alpha, \chi_\phi),$$

where α is such that Y_{α} is relevant, L_{ϕ} is a vector space and χ_{ϕ} is an irreducible local system.

Question: What is L_{α} ?

- View the irreducible local system χ_φ as an irred. rep. χ of π₁(Y_α).
- Let $F_{\alpha} \subset X$ be the fiber of μ over a point of Y_{α} .
- $\pi_1(Y_\alpha)$ acts on $H(F_\alpha \subset X)$ by monodromy, hence gives

$$H(F_{\alpha}) = \bigoplus_{\chi \in \operatorname{Irr}(\pi_1(Y_{\alpha}))} H(F_{\alpha})_{\chi_{\phi}}$$

$$L_{\phi} = H(F_{\alpha})_{\chi}$$

Corollary

Let $\mu:X\to Y$ be a semismall proj. morphism. Let $Z=X\times_Y X$, then

$$H(Z) \simeq \bigoplus_{\phi = (\alpha, \chi_{\phi})} \operatorname{End}(H(F_{\alpha})_{\chi_{\phi}}).$$
Symplectic resolutions are semismall

A symplectic resolution is a proj. resolution $\mu : X \to Y$ such that X is symplectic.

- They are crepant resolutions.
- Springer resolution is a symplectic resolution.

Theorem (Kaledin 2006)

Symplectic resolutions are semismall.

Springer correspondence again

- The Springer resolution $\pi : T^*(G/B) \to \mathcal{N}$ is semismall.
- The Springer fibers are denoted by \mathcal{B}_{χ} .
- The Steinberg variety is $Z := T^*(G/B) \times_{\mathcal{N}} T^*(G/B)$.
- As algebras, we have $H(Z) \simeq \mathbb{C}[W]$.

By previous results, we have

$$\mathbb{C}[W] \simeq \bigoplus_{(x,\rho)} \operatorname{End}(H(\mathcal{B}_x)_{\rho}),$$

where $x \in \mathcal{N}$ runs over nilpotent orbits, and ρ is an irred. representation of $\pi_1(\mathcal{O}_x)$.

Further developments

• Consider the union of symplectic resolutions

$$\sqcup_{\underline{d}|d_1+\cdots+d_n=N} T^*\mathcal{F}_{\underline{d}} \to X := \{A \in \mathfrak{sl}(N) | A^n = 0\}.$$

This gives geometrical construction of the universal enveloping algebra of $\mathfrak{sl}(n)$. The fiber homology $H(\mathcal{F}_X)$ gives all simple $\mathfrak{sl}(n)$ -modules.

- Lusztig 1988: Equivariant cohomology: on $H^*_{\tilde{G}_e}(\mathcal{B}_e)$, there exists an action of graded affine Hecke algebra.
- Kazhdan-Lusztig 1987: On the \tilde{G}_e -equivariant K-group of \mathcal{B}_e , there exists an action of the affine Hecke algebra.

McKay vs. Springer

Springer McKay $T^*(G_B)$ $Z \rightarrow Z_{o}$ central crepant fiber $\mathbb{C}/\mathbb{P} \ge 0$ (co)Homology of Z (or Zo) is determined by [

 $\supset \mathcal{B}_{x}$ Springer fibers symplectic Э x N irred. rep. of Weyl gp W are

given by (top) homologies of Bx.

McKay meets Springer?

- Let $\Gamma \subset SL(2)$ be a finite subgroup and $S := \mathbb{C}^2/\Gamma$
- Let $\tilde{S} \to S$ be the minimal resolution.
- The Hilbert-Chow resolution gives a crepant (and symplectic) resolution:

$$\operatorname{Hilb}^{[n]}(\tilde{S}) \to \operatorname{Sym}^{n}(\tilde{S}) \to \operatorname{Sym}^{n}(S) = \mathbb{C}^{2n}/(\Gamma \wr S_{n})$$

[*Fu 2007*] Sym²($\mathbb{C}^2/\pm 1$) is isomorphic to the transverse slice from $\mathcal{O}_{[2,2,2]}$ to $\mathcal{O}_{[4,2]}$ in $\mathfrak{sp}(6)$!

Then the crepant resolution of $\text{Sym}^2(\mathbb{C}^2/\pm 1)$ coincides with the Springer resolution of $\mathcal{O}_{[4,2]}$ restricting to this slice!

More examples (FJLS)

Slice isomorphic to $(\mathbb{C}^3 \oplus (\mathbb{C}^3)^*)/\mathcal{S}_4$

Slice isomorphic to $(\mathbb{C}^4\oplus (\mathbb{C}^4)^*)/\mathcal{S}_5$

