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Time-discrete dynamics

Let M be a compact manifold (phase space) and consider a
(smooth) map f : M → M. For each n ≥ 0, let

f n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

.

For each x ∈ M, the orbit is

orb(x) = {f n(x)}∞n=0.

The theory of time-discrete dynamical systems studies the
orbit structure of maps.

A dynamical system is stable if nearby dynamical systems
have roughly the same orbit structure.



A point x is called periodic if f k(x) = x for some k ≥ 1 and
the minimal positive integer k with this property is called its
period.

It happens that orb(x) is dense in the phase space.

Problem.

Describe the dynamical property of ‘most’ dynamical systems.

Are these properties ‘stable’ in suitable sense?

Difficulty. Sensitive dependence on initial values:

d(x , y)� 1 6⇒ ∞
sup
n=0

d(f n(x), f n(y))� 1.



Structural stability

Definition

Two maps f : M → M and g : N → N are called topologically
conjugate if there is a homeomorphism h : M → N such that
g ◦ h = h ◦ f .

Definition

A C r map f : M → M is called C r -structurally stable if there is a
neighborhood U of f in the space C r (M,M) such that all the
maps in U are topologically conjugate to each other.

Problems.

Characterize structurally stable maps.

Are “most” maps structurally stable?



In 1960s, Smale posed the notion “Axiom A” and conjectured
that it is essentially equivalent to structural stability. In
general dimension, this was so far verified in the C 1 topology
for diffeomorphsim.(Mãné, Hayashi, Wen)

Smale also hoped that Axiom A maps are dense, but it was
soon realized that this is not true when dim(M) ≥ 2.

We shall see that in the case dim(M) = 1, Axiom A is
essentially equivalent to structural stability and these maps
are dense in the C k topology for any k ≥ 1.
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Even in the one-dimensional case, Jakobson (1981) showed
that there is a large set of dynamical systems in the
measure-theoretical sense which are not Axiom A, but are still
well understood from stochastic point of view.



Physical measures

A Borel probability measure µ is called f -invariant if for any Borel
set A ⊂ M, we have

µ(f −1(A)) = µ(A).

The invariant measure µ is called ergodic if for each Borel set
A ⊂ M,

A = f −1(A)⇒ µ(A) = 0 or 1.

The basin of µ is defined as

B(µ) =

{
x ∈ M :

1
n

∑n−1
i=0 δf i (x) → µ as n→∞

in the weak star topology

}
.

If Leb(B(µ)) > 0 then we say that µ is a physical measure.



Examples.

A periodic point x is called hyperbolic attracting if all
eigenvalues of Df k(x) lie inside the unit circle, where k is the
period. In this case, µ := 1

k

∑k
i=1 δf i (x) is a physical measure

since B(µ) contains a neighborhood of x .

If µ is an ergodic invariant probability measure and µ� Leb
(an acip), then µ is a physical measure. Indeed, by Birkhroff’s
ergodic theorem, µ(B(µ)) = 1, hence Leb(B(µ)) > 0.



Palis Conjecture (Simplified version)

Given a compact manifold M, in measure-theoretical sense, ‘most’
maps f : M → M are stochastic, that is, there exists finitely many
physical measures µ1, . . . , µm such that

the topological support of µi ’s are pairwise disjoint;

Leb (M \ (
⋃m

i=1 B(µi ))) = 0.

Moreover, the statistical property of f is stable under random
perturbation.

Example.

f : T→ T, x 7→ 2x mod 1. For this map the Haar measure
on T is the unique physical measure and its basin has full
measure in T.



1D Dynamics

Real 1D dynamics: iteration of interval/circle maps

Complex 1D dynamics: iteration of holomorphic maps on
Riemann surfaces

Interplay:

A map defined by a real polynomial can be viewed as both a
real and a complex 1D dynamical system.
A real analytic interval map, via generalized renormalization,
can be reduced to a real polynomial (Sullivan, Levin-van
Strien, Graczyk-Swiatek, Lyubich-Yampolsky, Levin, Hu, Shen,
Smania, Clark-Treje-van Strien)



The logistic family

Jakobson’s Theorem (1981)

Consider the logistic family Qa(x) = x2 + a, −2 ≤ a ≤ 1/4. Then
there is a subset J of parameters of positive Lebesgue measure
such that for a ∈ J , Qa has a unique physical measure which is
ergodic and absolutely continuous.

Purely real analytic method.

Lyubich’s Dichotomy Theorem (2002)

For almost every a ∈ [−2, 1/4], either Qa satisfies Axiom A or it
has a unique physical measure which is ergodic and absolutely
continuous.

Mainly complex analytic method. Solved Palis’ conjecture for the
logistic family. Continued by Avila-Lyubich-de Melo, Avila-Moreira,
Avila-Shen-Lyubich, Avila-Lyubich



Kozlovski-Shen-van Strien’s Theorem (2007)

For any d = 2, 3 . . ., Axiom A maps form an open and dense
subset of the space of real polynomials of degree d.

Here, a map f : R→ R is called Axiom A if for each of its critical
points c , f n(c) converges to an attracting periodic orbit or to
infinity. For d = 2, the theorem is due to Lyubich (1997),
Graczyk-Swiatek (1997). Mainly complex analytic method.



Corollary (Structural stability conjecture holds in 1D)

Let M = [0, 1] or S1.

For any k ≥ 1, if a C k map f : M → M is C k structurally
stable then f satisfies Axiom A.

C k -structurally stable maps are open and dense in the C k

topology.

This solves the second part of Smale’s 11-th problem for the 21st
century.



Complex analytic methods played important roles in the following
problems:

Milnor-Thurston’s monotonicity problem (1980s)

Conceptual proof of Feigenbaum renormalization (1988-)

Milnor’s attractor problem (1991)

Density of hyperbolicity (1997-)

Palis conjecture for unimodal maps



Complex analytic methods have NOT played essential roles in the
following problems:

Non-existence of wandering intervals

Statistical property of interval maps: existence of acip,
stochastic stability

Existence of wild attractor

Problems on interval maps with non-integral critical order



qc map

Definition

A homeomorphic ϕ : U → V between two open sets in C is called
K -qc if

ϕ has locally integrable partial derivatives in the sense of
distribution; ∣∣∣∣∂ϕ∂ϕ

∣∣∣∣ ≤ K − 1

K + 1
, a.e..

A qc map is differentiable a.e., and the classical partial
derivatives coincide with the distributional ways.

The space of all K -qc map of C normalized at two distinct
points is compact.



A unimodal map is a continuous map from an interval I into itself
for which there is a unique point c ∈ I o such that f is strictly
increasing on the left of c and strictly decreasing on the right of c
(or vice versa). E.g.

fc(x) = x2 + c .

fc(x) = |x |` + c , ` > 1.

fc(x) = be−1/|x |
`

+ c , b > 0, ` > 1.



Feigenbaum renormalization

Let f : I → I be a unimodal map with a maximum at the critical
point 0. f is called Feigenbaum-renormalizable, if there exists a
closed interval J which contains 0 in its interior such that

f 2(J) ⊂ J, f 2(∂J) ⊂ ∂J and f 2 : J → J is unimodal;

the intervals J and f (J), have pairwise disjoint closure.

In fact,

f is Feigenbaum renormalizable ⇔ f 2(0) < 0 < f 4(0) ≤ f 3(0) < f (0).

Let RF f : I → I denote the unimodal map which is affine
conjugate to f 2 : J → J and which has a maximum at 0.



It could happen that RF f is again Feigenbaum renormalizable
and then we obtain a second renormalization R2

F . If the
procedure can be continued indefinitely then we obtain a
sequence of unimodal maps Rn

F f and say that f is infinitely
renormalizable in the sense of Feigenbaum.

By numerical experiments, Feigenbaum found that the
sequence Rn

F f converges and moreover, the limit is
independent of the map f where we start with.
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More generally, given a permutation σ : {0, 1, . . . , s − 1} 	 of
order s ≥ 2, we say that f is σ-renormalizable if there exists a
closed interval J containing 0 in its interior such that

f (f j(J)) ⊂ f σ(j)(J), ∀0 ≤ j < s

and the intervals J, f (J), . . . , f s−1(J) have pairwise disjoint
interior. Let Rσf denote the unimodal map affine conjugate
to f s : J → J with maximal at 0.

The Feigenbaum renormalization corresponds to the case
s = 2 and σ = (10).



We say that a unimodal map f is infinitely renormalizable
with combinatorics (σn)∞n=0 if fn = Rσn−1fn−1 are well defined
for all n ≥ 1, where f0 = f .

It is called infinitely renormalizable of bounded type if
{σn : n ≥ 0} is finite.



Feigenbaum’s Conjecture

Consider a suitable space B of unimodal maps f : [−1, 1] 	 and let
B0 be the subspace of all renormalizable maps. Then the
renormalization map RF : B0 → B has a unique fixed point f∗.
The fixed point is hyperbolic and has codimensional one stable
manifold consisting of all infinitely renormalizable maps in the
sense of Feigenbaum.

Lanford gave computer-assisted proof for suitable B.



Sullivan’s conceptual proof

Theorem (Sullivan’s Beau Bounds Theorem)

Let f be an infinitely renormalizable C 3 unimodal map, of bounded
type, with maximum at 0 and such that f ′′(0) 6= 0. Then the
sequence {Rnf } is precompact in C 1 and any possible limit map is
real analytic which has a quadratic-like extension with a universal
bounds.

A quadratic-like map is a proper holomorphic map F : U → V
of degree 2, where U,V are topological disks.

Sullivan’s universal bounds refers to a lower bound on µ =
mod (V \ U).

By Douday-Hubbard’s straightening theorem, F is K (µ)-qc
conjugate to a quadratic polynomial.



Theorem (Levin-van Strien, Lyubich-Yampolsky, Graczyk-Swaitek,
Shen, Clark-Treje-van Strien...)

Let f be an arbitrary real analytic interval map and let c be a
non-periodic recurrent critical point. Then there is an arbitrarily
small neighborhood J of c such that the first return map to J has
(generalized) polynomial-like extension with universal bounds.



Theorem (Sullivan’s Rigidity Theorem)

Let f , g be quadratic-like infinitely renormalizable unimodal maps
of the same bounded type. Then f and g are qc conjugate.

Sullivan also proved that Rnf converges to a unique fixed point f∗
of R and Rnf → f∗ for any infinitely renormalizable f . This proof
of this part was simplified and strengthened by McMullen:

Theorem (McMullen 1994)

Let f , g be quadratic-like infinitely renormalizable unimodal maps
of the same bounded type. Then ‖Rnf −Rng‖C0 converges to
zero exponentially fast.

Avila-Lyubich generalized the result to unbounded type.



Theorem (Kozlovski-Shen-van Strien 2007)

Let f , g be real polynomials of the same degree d with all critical
points real and non-degenerate and without neutral periodic
points. If f , g are topologically conjugate in R, then they are
quasiconformally conjugate in C.

Remark:

The case d = 2 is due to Lyubich (1997), Graczyk-Swiatek
(1997), which uses special geometric property of quadratic
polynomials.



Rigidity Problem.

1 Any two combinatorially equivalent rational maps f , g are qc
conjugate.

2 A qc conjugacy is conformal a.e. on the Julia set unless f is a
Lattés example.

Remark:

If f , g are C 1 conjugate, then all the corresponding periodic
points have the same multiplier which would imply that f , g
are conformally conjugate.

A Lattés example is a rational map which is doubly convered
by an integral torus endomorphism.



Lyubich’s contribution

Theorem (Lyubich 2002)

The Feigenbaum conjecture holds if we take B be
quadratic-like unimodal maps.

Extension of Feigenbaum conjecture to all (real)
combinatorics.

In particular, Lyubich gave a simple proof of McMullen’s result:

Let V be a small neighborhood of [−1, 1] and let B denote the
Banach space of all bounded holomorphic maps from V to C.

The subspace of B consisting of all infinitely renormalizable
maps is a complex submanifold, denoted by Bs .

By Sullivan’s Beau bounds Theorem, Theorem, there exists N
such that RN maps Bs(f∗, 2ε) into Bs(f∗, ε). Thus
RN |Bs(f∗, ε) is contracting due to the Schwarz Lemma.



Another important contribution of Lyubich is existence of
unstable direction of f∗.

He deduced it from a Rigidity Theorem via a small orbits
argument: If there were no unstable direction, then there
would be f such that Rnf converges to f∗ slowly. But f is
hybrid equivalent to f∗ and this is impossible.

Using his result on renormalization, Lyubich proved that in
the quadratic family, almost every map is NOT infinitely
renormalizable.



Smania’s approach in the multimodal case

Theorem (Smania, to appear)

Extension of the Feigenbaum conjecture to multimodal case with
bounded combinatorics.

Smania’s approach is based on solving the following cohomologous
equation:

α(f (z))− Df (z)α(z) = v(z).

Corollary (Smania)

In the real cubic family fa,b(x) = x3 − 3a2x + b, the set of
parameters corresponding to infinitely renormalizable maps of
bounded type has Lebesgue measure zero.



Martens’ result

The Feigenbaum conjecture is expected to hold for unimodal
maps with critical order ` > 1: maps with

f (x)− f (c) = φ(|x − c |`).

But the methods discussed above only applies to the cases
where ` is an even integer.

For general `, Martens (1996) proved existence of a
renormalization fixed point.

He also claimed that the fixed point has a stable manifold of
codimension ≤ 1.



More on Lyubich’s Dichotomy Theorem

To obtain the Dichotomy Theorem, Lyubich also proved that
among all non-infinitely renormalizable, non-hyperbolic maps,
almost every map has enough expansion, so that acip exists.

The one-dimensional feature of the parameter space of the
quadratic family (x 7→ x2 + c) is essentially used in the proof:

the fine structure of the one-dimensional parameter space
(para-puzzle), developed by Douady-Hubbard
quasiconformality of a transition map from phase space to
parameter space.

It is hard to extend the argument to the multimodal case, e.g.
fa,b(x) = x3 − 3a2x + b.

Maybe some generalization of Smania’s work applies here.



Kneading sequence

Associate to a unimodal map f there is a sequence
i = {in}∞n=1 ∈ {L, c ,R}Z

+
with

in =


L if f n(c) < c ;
c if f n(c) = c ;
R if f n(c) > c .

This sequence determines the relative order the post-critical orbit
{f n(c)}∞n=0 and thus the folding pattern of iterates of f .



Topological entropy

Let `n(f ) denote the number of maximal intervals of
monotonicity of f n. Define the entropy of f to be

htop(f ) = lim
n→∞

1

n
log `n(f ),

which measures the topological complexity of the dynamical
system f .

htop(f ) is determined by the kneading sequence i(f ).



Monotonicity of entropy

Let Qc(x) = x2 + c . Milnor-Thurston (1977) asked whether
Φ(c) := htop(Qc) is a monotone decreasing function.

Theorem (Milnor-Thurston, Sullivan, . . . )

The function Φ is monotone decreasing.

Φ is a continuous function from R onto [0, log 2].

Φ(c) = log 2 when c ≤ −2 and Φ(c) = 0 when c ≥ 0.

We say that Qc is hyperbolic if Qc has an attracting cycle.
Near a hyperbolic parameter c0, Q is constant.

Guckenheimer (1980): Φ is Hölder continuous.

Dobbs-Mihalache(2016 preprint) Φ′(c) = 0 holds for a.e. c .
⇒ Φ is not Lipschitz.



Several proofs of the theorem exist, all using complex
techniques. Important: Qc is a holomorphic map from C to C.

quasiconformal mappings, Teichmüller theory



Approach 1: rigidity

Theorem (Sullivan)

Suppose Qc and Qĉ are two quadratic maps with the same
kneading sequence and with Qq

c (0) = Qq
ĉ (0) = 0. Then c = ĉ .

⇒ monotonicity of entropy (Milnor-Thurston’s kneading theory)



Outline of proof of Sullivan’s theorem.

By the classical Böttcher’s theorem, Qa1 and Qa2 are
conformally conjugate near ∞ and also near their critical
orbits;

Via lifting and taking convergent subsequence, we obtain a qc
conjugacy which is conformal in the basin of ∞ and the orbit
of 0, i.e. outside the Julia set.

Prove that the Julia set has Lebesgue measure zero, so that
the qc conjugacy is indeed conformal (Weil’s Lemma).



Approach 2: Teichmüller Theory

Given a finite set P ⊂ C, we say that two qc maps

ϕi : (C,P)→ (C, ϕi (P))

are Teichmuller equivalent if ϕ2 ◦ ϕ−11 is homotopic rel ϕ1(P)
to the affine map sending ϕ1(P) to ϕ2(P). The Teichmüller
space TP is the set of all qc map mod the Teichmuller
equivalence relation.

The space TP is a complex-analytic manifold of dimension
#P − 2.

It is also endowed with a Teichmüller metric such that any
holomorphic endomorphism does not increase the metric.

The cotangent space of TP at [ϕ] is naturally identified with
the space of all integrable meromorphic quadratic differential
in Ĉ with (simple) poles in ϕ(P) ∪ {∞}, endowed with L1

norm.



Thurston’s algorithm

Suppose Q(x) = Qc(x) = x2 + c satisfies Qq
c (0) = 0 and let

P = {Q j
c(0) : j ≥ 0}.

Given any qc map ϕ : (C,P)→ (C, ϕ(P)) there exists a
quadratic map Q̃ and qc map ψ : (C,P)→ (C, ψ(P)) such
that

Q̃ ◦ ψ = ϕ ◦ Q.

The map ϕ 7→ ψ descends to a holomorphic map

σ : TP → TP

which fixes the [id ]. It is non-decreasing with respect to the
Teichmüller metric.

Sullivan’s rigidity theorem follows once we prove that σ has
no non-trivial fixed point. In particular, once we prove that σ
is strictly contracting.



Extremal mapping

Outline of Milnor-Thurston’s proof.

Assume that σf has a non-trivial fixed point [ϕ] and assume ϕ
is an extremal mapping in the equivalence class, i.e. a K -qc
map in the homotopy class with minimal K .

By a theorem of Teichmüller asserts that there is an integrable
meromorphic quadratic v(z)dz2 with poles in P ∪ {∞} such
that

∂ϕ

∂ϕ
= k

v(z)

|v(z)|
.

However, [σf (ϕ)] = [ϕ] ⇒ Q∗(v(z)dz2) = v(z)dz2 ⇒ v(z)
has infinitely many poles, a contradiction!



A problem on extremal mappings

Let α : 0 = a1 < a2 < · · · < aq and β : 0 < b1 < b2 < · · · < bq.
For θ ∈ (0, 2π), let

Sθ = {re it : 0 < t < θ}.

Let K (θ) = Kα,β(θ) denote the minimal number K for which there
exists a K -qc map h : Sθ → Sθ such that

h(aj) = bj , h(aje
iθ) = bje

iθ.

Problem. Is K (θ) monotone decreasing?

An affirmative answer to this question will implies
monotonicity of entropy for the family c 7→ |x |` + c for each
` ≥ 2.

K (θ/n) ≤ K (θ) for each integer n ≥ 1.

Yes if q = 2. (Cui)



Approach 3: Transversality

Theorem (Tsujii 1998)

Suppose 0 is of period q for Qa. Then

dQq
t (0)
dt

∣∣∣
t=a

DQq−1
a (a)

=

q−1∑
n=0

1

DQn
a (a)

> 0.

⇒ a 7→ `n(Qa)↗⇒ Φ(a)↗.

Transversality appears in other problems of complex dynamics.
Epstein and Levin, among others, worked in this problem.

Tsujii’s proof still uses global analytic structure of the maps



Outline of proof of Tsujii’s theorem.

Write f = Qa and P = {f j(0)}. Let Ω denote the space of
integrable meromorphic quadratic differentials with poles in
P ∪ {∞}.
The co-derivative of σ : TP → TP at [id ] is given by the
pushforward operator

f∗(v(z)dz2) =

 ∑
w∈Q−1(z)

v(w)

f ′(w)2

 dz2.

∫
V
|f ∗(v(z)dz2)| ≤

∫
f −1V

|v(z)dz2|.



det(Id − f∗) =

q−1∑
n=0

1

Df n(f (0))
.

Let V0 = B(0,R) with R >> 1 and let Vn = f −n(V0). Then

area(Vn \ Vn+1)→ 0.

For each v ∈ Ω,∫
V0\V1

|f n
∗ (v)| ≤

∫
Vn\Vn+1

|v | → 0.

⇒ the spectrum radius of f∗ is strictly less than 1.



Approach 4: algebraic

Theorem (Gleason Lemma)

Assume that 0 is a periodic point of Qc(x) = x2 + c of periodic q.
Then

dQq
t (0)

dt

∣∣∣∣
t=c

6= 0.

The proof works also for Qc(x) = |x |` + c with ` > 1 an odd
integer and c ∈ R. But, it does not give the sign.



Outline of proof. Let A be the set of algebraic integers. Then
c ∈ A. Note that

A ∩Q = Z.

Let

∆k =
dQk

t (0)

dt

∣∣∣∣
t=c

.

Then ∆1 = 1 and ∆k+1 = 2Qk
c (0)∆k + 1. If Qq

c (0) = 0 for some
q ≥ 1, then c ∈ A. By induction,

∆k ≡ 1 mod 2A,∀k .

Thus ∆k 6= 0.



New results (joint with Levin and van Strien)

We develop method/language to deal with maps which allows
partial complex analytic extension. Roughly speaking, our method
shows

a lifting property ⇒ positive transversality.

Theorem (Levin-Shen-van Strien)

Let g : I → I be a unimodal map with critical point 0 with
g(0) = 0. Assume that g |I\{0} has extension to a holomorphic
map g : U → V where

U,V are bounded open sets in C;

g : U \ {0} → V \ {0} is an unbranched covering.

If the separation property

V ⊃ B(0; diam(U)) ⊃ U (1)

holds, then the entropy of gt(x) = g(x) + t is monotone in t.



Application of the theorem

A new proof for the family gt(x) = t + x2d , d ∈ Z+: Take V
to be large disk centered at zero.

Families
gt(x) = be−1/|x |

`
+ t, t ∈ [0, β],

where ` ≥ 1, b > 2(e`)1/` and 2β = e1/β
`
. of unimodal maps.

(with flat critical points)



Main steps of proof

Consider f := gt0 satisfying f q(0) = 0, f j(0) ∈ U \ {0},
1 ≤ j < q. It suffices to show

d
dt gq

t (0)
∣∣
t=t0

Df q−1(f (0))
> 0.

Let P = {f j(0) : 0 ≤ j < q}. A holomorphic motion of P over
Dr is a family of injections hλ : P → C, λ ∈ Dr , such that
hλ(0) ≡ 0, h0 = idP , and λ 7→ hλ(p) is holomorphic for each
p ∈ P.

A holomorphic motion of P is called admissible if hλ(p) ∈ U
for all p ∈ P \ {0}. Note that any holomorphic motion, when
restricted to a small disk, is admissible.



(The lifting property) If hλ is an admissible holomorphic
motion of P over Dr , then it has a lift ĥλ, which is again a
holomorphic motion of P over Dr ,

g(ĥλ(p)) = hλ(f (p))− hλ(f (0)) ∈ V \ {0}

holds for all p ∈ P \ {0} and λ ∈ Dr .

An admissible holomorphic motion is called asymptotic
invariant of order m, if

ĥλ(p)− hλ(p) = O(λm+1) as λ→ 0.

∃ a non-trivial holomorphic motion asymptotically invariant of
oder m ⇔ gq

t (0) = O(|t − t0|m+1) as t → t0.



(Averaging process improving asymptotical invariance order) If
there is an admissible holomorphic motion hλ asymptotically
invariant of order m, then there is another one which is
asymptotically invariant of order m + 1.
Indeed, letting hn

λ be the successive lifts of h0
λ = hλ, it suffices

to choose a convergent subsequence

Hλ := lim
nk→∞

1

nk

nk∑
j=1

hj
λ.

As gq
t (0) is a holomorphic function not-identically zero, we

obtain a contradiction if transversality fails.

A deformation argument shows the sign in the inequality.



The lift process is a variation of Thurston’s pull back
algorithm, modified for maps which are locally defined. The
lift property means that the σn is well-defined in a
neighborhood of [id ] in the Teichmüller space TP .

Adam Epstein seems to have a different approach, using some
variation of the Thurston’s pull-back algorithm, to obtain
transversality. It is not clear how to apply his method to
locally defined maps.



The hyperbolic case

Recently, we are able to extend the argument to the hyperbolic and
parabolic case (with infinite a post-critical orbit), extending a
classical result of Douady-Hubbard-Sullivan.

Theorem (Levin-Shen-van Strien)

Let g be as in the theorem above. Assume that for some t0,
f = gt0 has an attracting cycle attracting the critical point 0. Let
λ(t) denote the multiplier of the attracting periodic orbits of gt for
t close to t0. Then λ′(t0) 6= 0.



The main challenge in the post-critically infinite case is the
Averaging Process. While Hλ exists, it is not clear whether it
is a holomorphic motion (for |λ| small).

The solution is as follows: If transversalilty fails, then the
coholomogous equation

α(f (z))− f ′(z)α(z) = v(z)

has a solution holomorphic near the attracting periodic orbit.

So we can construct a holomorphic motion hλ(z), which is
also holomorphic in z near the attracting periodic orbit. The
corresponding Hλ(z) will be a holomorphic motion by the
Koebe distortion principle.



Unfortunately, for the interesting family x 7→ t + |x |`, we only have

Theorem

For each positive integer q, there exists `0(q) > 1 such that if
` > `0(q) and if 0 is of period q under the map fa,`(x) = a− |x |`,
then

q−1∑
n=0

1

Df n
a (a)

> 0.

Corollary

There exists ε(`) > 0 such that ε(`)→ 0 as `→∞ such that

sup
a>b

htop(fb,`)− htop(fa,`) > −ε(`).



Thank you for your attention!
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