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Disclaimer:

This talk does not, by any means, attempt to give an account
for the history of Hecke algebras.

It is merely a personal attempt to understand why we should
study Hecke algebras, and how does it influenced the
development of representation theory.



What is a Hecke algebra ?



Coxeter system

is a pair (W , S) such that

W = 〈s ∈ S | sts...︸︷︷︸
mst terms

= tst...︸︷︷︸
mts terms

, s2 = 1〉,

where mst = mts ∈ {2, 3, ...,∞}.

Example

The symmetric group

Sn = Perm{1, 2, ..., n}

and S = {si = (i , i + 1), 1 6 i 6 n − 1} form a Coxeter system.

Other examples: Weyl groups, affine Weyl groups, reflection groups...
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Hecke algebra – Definition

The group algebra

ZW =
Z〈s ∈ S〉(

sts...︸︷︷︸
mst terms

= tst...︸︷︷︸
mts terms

, s2 = 1
) .

Hecke algebra H(W , S)

H def
=

Z[υ±1]〈Hs ∈ S〉(
HsHtHs ...︸ ︷︷ ︸
mst terms

= HtHsHt ...︸ ︷︷ ︸
mts terms

, (Hs + υ)(Hs − υ−1) = 0
) .
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Hecke algebra is a deformation of ZW

H def
=

Z[υ±1]〈Hs ∈ S〉(
HsHtHs ...︸ ︷︷ ︸
mst terms

= HtHsHt ...︸ ︷︷ ︸
mts terms

, (Hs + υ)(Hs − υ−1) = 0
) .

I H |υ=1 = ZW

I For w ∈W , choose a reduced expression w = s1...sn, then

Hw = Hs1 ....Hsn ∈ H

is independent of the choice of expression.

H =
⊕
w∈W

Z[υ±1]Hw

is a free Z[υ±1]-module of rank |W |.
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Hecke algebra from a geometric perspective...

W = Sn

G = GLn ⊃ B = { upper triangular matrices}

Hecke algebra H(G ,B)

H(G ,B)
def
=

{
f : G (Fq)→ Q

∣∣∣∣ f (b1zb2) = f (z),
∀b1, b2 ∈ B(Fq), z ∈ G (Fq)

}
equipped with the convolution product:

f ∗ g(z) =
1

B(Fq)

∑
xy=z

f (x)g(y)

NB: This definition applies to any Weyl group.
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Isomorphism

View elements in Sn as permutation matrices ⇒

W
∼−→ B(Fq)\G (Fq)/B(Fq).

Hence H(G ,B) =
⊕

w∈W QTw .

Theorem
There is an algebra isomorphism

H(G ,B)
∼−→ H(W ,S)⊗Z Q |υ=q−1/2

Tw 7→ υ−`(w)Hw .
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Example SL2

Let k be a field.

W = S2 =

{
1 =

(
1 0
0 1

)
, s =

(
0 −1
1 0

)}
G (k) = SL2(k) y k2 = kv1 ⊕ kv2

B(k) =

(
∗ ∗
0 ∗

)
= Stab(〈v1〉)

G (k)/B(k) = P1(k)

T (k) =

(
∗ 0
0 ∗

)
y G (k)/B(k) with 2 fixed points:

e = 〈v1〉, s = 〈v2〉 = s〈v1〉

B(k)-orbits on G (k)/B(k) are:

B(k)e = {〈v1〉}, B(k)s = {〈av1 + v2〉 | a ∈ k} ' k.
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Example SL2

We have B(k)\G (k)/B(k) = {B(k)e, B(k)sB(k)}.

Convolution algebra

H(SL2,B) = QTe ⊕QTs ,
recall f ∗ g(z) = 1

B(Fq)

∑
xy=z f (x)g(y)

I B(Fq) is the orbit of identity
⇒ Te is the identity for ∗ .

I Counting fibres of the surjective map

B(Fq)sB(Fq)× B(Fq)sB(Fq)→ G (Fq), (x , y) 7→ xy ,

⇒ Ts ∗ Ts = (q − 1)Ts + qTe .
⇒ (Ts + 1)(Ts − q) = 0.
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Change q 7→ υ−2, Ts 7→ υ−1Hs ,

⇒ (Hs + υ)(Hs − υ−1) = 0.

So we have checked

H(SL2,B)
∼−→ H(S2)⊗Z Q |υ=q−1/2

Tw 7→ υ−`(w)Hw .

Answer for Question 2
Convolution on functions on B(Fq)\G (Fq)/B(Fq) provides a
natural explication for the relation (Hs + υ)(Hs − υ−1) = 0.
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Other perspectives

Number-theoretic perspective

Hecke operators on modular forms
 convolution product
 spherical affine Hecke algebra

Topological perspective

W complex reflection group with reflection representation V
H is a quotient of the braid group π1(V reg/W )
The quadratic relation arises from monodromy of certain KZ
equations...
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Categorifications of Hecke algebras



By categorification, we mean...

A monoidal category C,
equipped with an automorphims ϑ,
such that

K0(C) ∼= H (as algebras,)

[ϑ]↔ υ



Three categorifications of Hecke algebras

1979 Kazhdan-Lusztig Perverse sheaves on G/B
↓

1990 Soergel Special bimodules
↓

2013 Elias-Williamson Diagram categories.



1st Categorification

Kazhdan-Lusztig Theory



Kazhdan-Lusztig Theory

Grothendieck sheaf-function dictionary

X/Fq algebraic variety, Frob y X

Tr : Sh(X )→ Fun
(
X (Fq)

)
, F 7→

∑
x∈X (Fq)

Tr(Frob,Fx)

 Tr : Db
c (X )→ Fun

(
X (Fq)

)
.

Apply to X = G/B

Tr : Db
B(G/B)→ H(G ,B)

compatible with convolution product.
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Geometry of G/B

Bruhat decomposition

X =
⊔

w∈W
Xw , Xw = BwB/B ∼= A`(w)

Schubert variety Xw =
⊔

y4w Xy , projective, singular in general.

Distinguish objects

For each w ∈W , let jw : Xw ↪→ X , Lw = Q`[`(w)] ∈ Db
B(Xw ).

∆w = (jw )!Lw , ICw = (jw )!∗Lw , ∇w = (jw )∗Lw

are three distinguished objects in Db
B(Xw ), whose cohomology

compute H∗c , IH∗, H∗ of Xw .
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The map Tr

Tr : Db
B(G/B)→ H(G ,B)

not hard to check

Tr(∆w ) = Hw , Tr(∇w ) = H−1
w−1 ,

Question

Tr(ICw)=??
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Canonical bases

Bar involution
is the ring homomorphism H → H, x 7→ x̄ , define by

ῡ = υ−1, Hs = H−1s = Hs + (υ − υ−1).

We have Hw = H−1
w−1 .

Theorem (Kazhdan-Lusztig, 1979)

For any Coxeter system (W ,S), there exists unique Z[υ±1]-basis
{Cw}w∈W such that

I Cw = Cw

I Cw = Hw +
∑

y≺w hy ,wHy with hy ,w ∈ υZ[υ].

This basis is called canonical basis, or Kazhdan-Lusztig basis. The
coefficients hy ,w are called Kazhdan-Lusztig polynomials.
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Why deformation?

As we will see later, the canonical basis is a remarkable object.
Its characterisation is only possible in the Hecke algebra, not in the
group algebra of W . So deformation is crucial here.

Example

For s ∈ S , we have
Cs = Hs + υ.

Check Cs = H−1
s + υ−1 = Hs + υ = Cs .
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Theorem (Kazhdan-Lusztig, 1980)

If W is a Weyl group, then

Tr(ICw ) = Cw .

Corollary (Positivity)

If W is a Weyl group, then

hy ,w ∈ N[υ].

because hy ,w = Tr(Frob, (ICw )y ), eigenvalues of Frob are powers of υ.

Kazhdan-Lusztig positivity conjecture

For any Coxeter system, we have

hy ,w ∈ N[υ].
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Impact on representation theory

Characters of simple modules in BGG category O
g = Lie(GC) complex semi-simple Lie algebra
O = {highest weight g-modules}.

∀λ ∈ t∗, M(λ) = Verma module, L(λ) = simple module.

Problem: compute character of L(λ).
⇐⇒ compute multiplicity [M(µ) : L(λ)].

Weyl group W y t∗ by w · λ = w(λ+ ρ)− ρ.

Kazhdan-Lusztig conjecture, 1979

For any y ,w ∈W ,

[M(w · 0) : L(y · 0)] = hyw0,ww0 |v=1

Other [M(µ) : L(λ)] can be deduced from this crucial case.
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Kazhdan-Lusztig conjecture, 1979

For any y ,w ∈W ,

[M(w · 0) : L(y · 0)] = hyw0,ww0 |v=1

This conjecture was solved by Beilinson-Bernstein,
Brylinski-Kashiwara, around 1981, by establishing an equivalence

Perv(B)(G/B) ∼= O0.

Kazhdan-Lusztig conjecture is really remarkable...

I It tells us the structure of Hecke algebras controls representations of
Lie algebras

I This conjecture has a lot of variations, including representations of
Kac-Moody algebras, quantum groups,...
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Impact on representation theory

Modular representations of reductive groups

G/k reductive group defined over k = Fp

Repk(G ) = { finite dim. algebraic G -representations}

∀λ dominant, W (λ) = Weyl module, L(λ) = simple module.

Problem: compute character of L(λ).
⇐⇒ compute multiplicity [W (µ) : L(λ)].

Lusztig’s conjecture, 1980

Under appropriate assumption on p, the multiplicities
[W (µ) : L(λ)] are given by values of Kazhdan-Lusztig polynomials
for affine Weyl group at υ = 1.
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Recap

Kazhdan-Lusztig theory provides a successful categorification
of H when W is a Weyl group.

I it is given by perverse sheaves on G/B

I reveals a remarkable basis and a family of important
polynomials

I provides deep links to singularities of Schubert varieties and
representations of reductive Lie algebras and algebraic groups

I gives rise to the question:

How much of the theory holds for general Coxeter system ?
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Soergel bimodules

Q: How to categorify H(W , S) without using G/B ?

A new look on Db
B(G/B)

R = H∗B(pt) = Q`[t] x W

H∗ : Db
B(G/B)→ R−gmod−R,

∗ 7→ ⊗
[1] 7→ 〈1〉
ICe 7→ H∗B({e}) = R

ICw 7→ ??.



Soergel bimodules

Q: How to categorify H(W , S) without using G/B ?

A new look on Db
B(G/B)

R = H∗B(pt) = Q`[t] x W

H∗ : Db
B(G/B)→ R−gmod−R,

∗ 7→ ⊗
[1] 7→ 〈1〉
ICe 7→ H∗B({e}) = R

ICw 7→ ??.



The bimodule Bs

For s ∈ S , we have ICs = π∗s ◦ πs∗(ICe)[1], for πs : G/B → G/Ps .

H∗(ICs) = R ⊗Rs R〈1〉 := Bs .

Bott-Samelson resolution
∀w ∈W , let w = s1...sn be a reduced expression,

πw : Ps1 ×B ...×B Psn/B → BwB/B

is a resolution of singularity.

πw !(Q`[n]) = ICs1 ∗ ... ∗ ICsn .

Decomposition Theorem

⇒ π!(Q`[n]) = ICw ⊕
(⊕

y≺w
ICy ⊗ V •y
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ICy ⊗ V •y

)
ICw is the unique direct factor which does not appear in products
of ICs of smaller length.
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Soergel bimodules

Given any Coxeter system (W ,S), and V a faithful real W -rep,

W y R = R[V ].

Definition

I Bs = R ⊗Rs R〈1〉 ∈ R−gmod−R,

I SBim = 〈Bs | s ∈ S〉', 〈±1〉, ⊕, ⊗, Kar ⊂ R−gmod−R

The split Grothendieck group K0(SBim) is a Z[υ±1]-algebra.

Theorem (Soergel, 1990)

There is an isomorphism of Z[υ±1]-algebras

H(W ,S)
∼→ K0(SBim), Cs 7→ [Bs ].
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Soergel conjecture

I The inverse isomorphism is given by

Ch : K0(SBim)
∼→ H(W ,S)

[M] 7→
∑
w∈W

gdim
(
M4w/M≺w

)
Hw

I Bott-Samelson bimodules BS(w) are defined in the same way.

I Soergel proved that BS(w) contains a unique factor Bw which
does not appear in BS(y) for y ≺ w .

Conjecture (Soergel)

Ch(Bw ) = Cw

⇒ Kazhdan-Lusztig positivity conjecture.
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Impact on representation theory

I Discovery of Koszul duality for O,

I Provides new proof for Kazhdan-Lusztig conjecture,

I Such ideas lead to a proof of Lusztig Conjecture for p � 0 by
Andersen-Jantzen-Soergel.
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Recap

Soergel bimodules provides a (conjectural) categorification of
H for any Coxeter system

I The formulation is purely algebraic.
It uses only (W ,S) and a faithful representation.

I Soergel only proved his conjecture for Weyl groups,
the proof uses geometry of G/B.

I Soergel bimodules provides combinatoric model for category
O and other representation categories.

I Applications to knot invariants.
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Diagram Category
Example of relations:
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I Proof of Soergel conjecture (Elias-Williamson, 2014)

I Counter examples for Lusztig Character Formula
(Williamson, 2015)

I Discovery of p-canonical basis.

...many mysteries remain to be unravelled
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