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Disclaimer:

This talk does not, by any means, attempt to give an account
for the history of Hecke algebras.

It is merely a personal attempt to understand why we should
study Hecke algebras, and how does it influenced the
development of representation theory.



What is a Hecke algebra ?
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Coxeter system
is a pair (W, S) such that

W=(seS| sts.., = tst.., ,s"=1),

ms: terms mgs terms
where mgy = mys € {2,3,...,00}.

Example
The symmetric group

S, =Perm{1,2, ..., n}
and S = {sj = (i,i+1), 1 <i<n—1} form a Coxeter system.

Other examples: Weyl groups, affine Weyl groups, reflection groups...
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Hecke algebra — Definition

The group algebra

IW = Z(s € S) .
( sts... = tst.., , §2= 1)
o [l

ms: terms mgs terms

Hecke algebra H(W, S)

def Z[vt](Hs € S)

3 & .
(HsHtHs... = HeHoHyp...,  (Hs +0)(Hs —v-1) = o)

mst terms m¢s terms



Hecke algebra is a deformation of ZW

gy def Z[v*](Hs € S)
(HsHtHs... = HHyHy..., (Ho+0)(Hs —0-1) = 0)
—_——— N —
ms: terms ms terms

> H |U:1 =7ZW



Hecke algebra is a deformation of ZW

g def Z[v*](Hs € S)
(HsHtHs... — HyHsHy.,  (Hs 4+ 0)(Hs — 1) = 0)
—_——— N —
ms: terms ms terms

> H |U:1 =7ZW

» For w € W, choose a reduced expression w = sj...s,, then
Hy = Hs,....Hs, € H

is independent of the choice of expression.

"= P zZ[v*H,

wew

is a free Z[v*!]-module of rank |W/|.
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Hecke algebra from a geometric perspective...

W - Gn
G = GL, D B = { upper triangular matrices}

Hecke algebra H(G, B)

o (bizby) = f(2),
H(G B)d {f G(F —>Q‘ VblleGB( )’ z € G(Fq) }

equipped with the convolution product:

fxg(z Zf(x

Xyz

NB: This definition applies to any Weyl group.



Isomorphism

View elements in &, as permutation matrices =
W = B(Fq)\G(F,)/B(E,).

Hence H(G,B) =@,,c\y QTw.



Isomorphism

View elements in &, as permutation matrices =
W s B(F,)\G(Fq)/B(F,).
Hence H(G,B) =@,,c\y QTw.

Theorem
There is an algebra isomorphism
H(G,B)— H(W,S) @z Q|y—q-1/2

Ty vy,
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Example SL,
Let k be a field.

w=e.={1=(5 ).s=(0 )}

G(k) = SLQ(k) 5% k2 = kV1 D kV2

* ok

B(k) = <0 *) = Stab((v1))

G(k)/B(k) = P (k)

T(k) = <; S) ~ G(k)/B(k) with 2 fixed points:

e=(v1), s={(vo)=s(v)

B(k)-orbits on G(k)/B(k) are:

B(k)e = {(v1)}, B(k)s ={(avi + v2)|a € k} ~ k.



Example SL,

We have B(k)\G(k)/B(k) = {B(k)e, B(k)sB(k)}.
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Example SL,

We have B(k)\G(k)/B(k) = {B(k)e, B(k)sB(k)}.
Convolution algebra

7-[(5L27 B) = QTe S QTsv

recall f x g(z) = ﬁ ny:z f(x)g(y)

» B(F,) is the orbit of identity
= T, is the identity for x.

» Counting fibres of the surjective map
B(Fq)sB(Fg) x B(Fq)sB(Fq) = G(Fq), (x,y)— xy,

= T+ T.=(q—-1)T.+qT..
= (Ts+1)(Ts—q)=0.



Change g — v™2, T, — v 1H;,
= (Hs+v)(Hs —v') =0.
So we have checked

H(SLa, B) — H(S2) ®2 Q|,—y-1/2

Ty vy,



Change g — v™2, T, — v 1H;,

= (Hs+v)(Hs —v') =0.
So we have checked

H(SLa, B) — H(S2) ®2 Q|,—y-1/2

Ty vy,

Answer for Question 2

Convolution on functions on B(IFq)\G(F4)/B(Fq) provides a
natural explication for the relation (Hs + v)(Hs —v~1) = 0.
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Other perspectives

Number-theoretic perspective
Hecke operators on modular forms
~> convolution product

~ spherical affine Hecke algebra

Topological perspective

W complex reflection group with reflection representation V
H is a quotient of the braid group w1 (V"€ /W)

The quadratic relation arises from monodromy of certain KZ
equations...



Categorifications of Hecke algebras



By categorification, we mean...

A monoidal category C,
equipped with an automorphims 4,
such that

Ko(C) = H (as algebras,)
[9] > v



Three categorifications of Hecke algebras

1979 Kazhdan-Lusztig Perverse sheaves on G/B

i)
1990 Soergel Special bimodules

!

2013 Elias-Williamson  Diagram categories.



1st Categorification

Kazhdan-Lusztig Theory



Kazhdan-Lusztig Theory

Grothendieck sheaf-function dictionary
X /F 4 algebraic variety, Frob n X

Tr : Sh(X) — Fun(X(Fq)), F Z Tr(Frob, Fy)
xeX(Fq)

~ Tr: DE(X) — Fun(X(Fy)).



Kazhdan-Lusztig Theory

Grothendieck sheaf-function dictionary
X /F 4 algebraic variety, Frob n X

Tr : Sh(X) — Fun(X(Fq)), F Z Tr(Frob, Fy)
xeX(Fq)

~ Tr: DE(X) — Fun(X(Fy)).
Apply to X = G/B

Tr: D3(G/B) — H(G, B)

compatible with convolution product.



Geometry of G/B
Bruhat decomposition

X=|] Xu, Xu=BwB/B=A™
wew

Schubert variety X,, = | | Xy, projective, singular in general.

y<w



Geometry of G/B

Bruhat decomposition

X=|] Xu, Xu=BwB/B=A™
wew

Schubert variety X,, = | | Xy, projective, singular in general.

y<w

Distinguish objects
For each w € W, let ji, : Xy < X, Ly = Qu[¢(w)] € DE(Xw).

AW = (jW)!LW7 /CW = (jW)!*LW7 V= (jW)*LW

are three distinguished objects in Dg(XW), whose cohomology
compute HY, IH*, H* of X,,.
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Tr: D3(G/B) — H(G, B)



The map Tr
Tr: D3(G/B) — H(G, B)
not hard to check

Tr(Aw) = Hw, Te(Vw) = H, L,

w—



The map Tr

Tr: D3(G/B) — H(G, B)

not hard to check

Tr(Aw) = Hw, Tr(Vy)=H 1,

Question

Tr(/C,))=7?



Canonical bases

Bar involution
is the ring homomorphism H — H, x — X, define by

o=v"t Hs= H;lz Hs + (v — 1171).
We have H,, = H_

w1

| =



Canonical bases

Bar involution
is the ring homomorphism H — H, x — X, define by

o=v"t Hs= H;lz Hs + (v — 1171).
We have H,, = H‘;El.
Theorem (Kazhdan-Lusztig, 1979)

For any Coxeter system (W, S), there exists unique Z[v*!]-basis
{Cw}wew such that

> Ciw e CW
> Co = Hu+ 3,2 by Hy with by, € VZ[0].



Canonical bases

Bar involution
is the ring homomorphism H — H, x — X, define by

=v"1, Hi=Hl=H,+(v—ovt).
We have H,, = H‘;El.
Theorem (Kazhdan-Lusztig, 1979)

For any Coxeter system (W, S), there exists unique Z[v*!]-basis
{Cw}wew such that
> Ciw e CW

> Co=Hy+ 3, hywH, with hy,, € vZ[v].

y=w

This basis is called canonical basis, or Kazhdan-Lusztig basis. The
coefficients hy, ,, are called Kazhdan-Lusztig polynomials.



Why deformation?

As we will see later, the canonical basis is a remarkable object.

Its characterisation is only possible in the Hecke algebra, not in the
group algebra of W. So deformation is crucial here.



Why deformation?

As we will see later, the canonical basis is a remarkable object.
Its characterisation is only possible in the Hecke algebra, not in the
group algebra of W. So deformation is crucial here.

Example

For s € S, we have
Cs = Hs +v.

Check G = H;'+ vt = Hy+ v = Gs.
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If W is a Weyl group, then

Tr(ICy) = Cy.
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Theorem (Kazhdan-Lusztig, 1980)
If W is a Weyl group, then

Tr(/C,) = Cu.

Corollary (Positivity)
If W is a Weyl group, then

hy.w € N[v].
because h, , = Tr(Frob, (/ICy),), eigenvalues of Frob are powers of v.

Kazhdan-Lusztig positivity conjecture
For any Coxeter system, we have

hy.w € N[v].
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Characters of simple modules in BGG category O
g = Lie(Gg) complex semi-simple Lie algebra
O = {highest weight g-modules}.

VA e t*, M()\) = Verma module, L(\)= simple module.

Problem: compute character of L(\).
<= compute multiplicity [M () : L(N)].



Impact on representation theory

Characters of simple modules in BGG category O
g = Lie(Gg) complex semi-simple Lie algebra
O = {highest weight g-modules}.

VA e t*, M()\) = Verma module, L(\)= simple module.

Problem: compute character of L(\).
<= compute multiplicity [M () : L(N)].
Weyl group W ~ t* by w -\ = w(A+p) — p.

Kazhdan-Lusztig conjecture, 1979
For any y,w € W,

[M(w-0): L(y-0)] = yWo,WWo|v 1

Other [M(p) : L(A\)] can be deduced from this crucial case.



Kazhdan-Lusztig conjecture, 1979
For any y,w € W,

[M(W ’ 0) : L(y : O)] = hywo,wwo|v:1

This conjecture was solved by Beilinson-Bernstein,
Brylinski-Kashiwara, around 1981, by establishing an equivalence

Perv(B)(G/B) = 0.



Kazhdan-Lusztig conjecture, 1979
For any y,w € W,

[M(W ’ 0) : L(y : O)] = hywo,wwo|v:1

This conjecture was solved by Beilinson-Bernstein,
Brylinski-Kashiwara, around 1981, by establishing an equivalence

Perv(B)(G/B) = 0.

Kazhdan-Lusztig conjecture is really remarkable...
» It tells us the structure of Hecke algebras controls representations of
Lie algebras

» This conjecture has a lot of variations, including representations of
Kac-Moody algebras, quantum groups,...



Impact on representation theory

Modular representations of reductive groups

G /k reductive group defined over k = IFTD
Repy(G) = { finite dim. algebraic G-representations}

VA dominant, W(A) = Weyl module, L(\) = simple module.

Problem: compute character of L(\).
<= compute multiplicity [W () : L(N)].



Impact on representation theory

Modular representations of reductive groups

G /k reductive group defined over k = E
Repy(G) = { finite dim. algebraic G-representations}

VA dominant, W(A) = Weyl module, L(\) = simple module.

Problem: compute character of L(\).
<= compute multiplicity [W () : L(N)].

Lusztig's conjecture, 1980

Under appropriate assumption on p, the multiplicities

[W(w) : L(N)] are given by values of Kazhdan-Lusztig polynomials
for affine Weyl group at v = 1.
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Recap

Kazhdan-Lusztig theory provides a successful categorification
of H when W is a Weyl group.

> it is given by perverse sheaves on G/B

> reveals a remarkable basis and a family of important
polynomials

» provides deep links to singularities of Schubert varieties and
representations of reductive Lie algebras and algebraic groups

> gives rise to the question:

How much of the theory holds for general Coxeter system ?



2nd Categorification

Soergel Bimodules



Soergel bimodules

Q: How to categorify H(W, S) without using G/B ?



Soergel bimodules

Q: How to categorify H(W, S) without using G/B 7

A new look on D(G/B)
R = Hg(pt) = Q] ~ W

H*: DE(G/B) - R—gmod—R,
¥ &
[1] — (1)

ICe — Hp({e}) =R
IC, +— 77.



The bimodule B,
For s € S, we have ICs = 7} o w5 (1Ce)[1], for 7s: G/B — G/ Ps.

H*(ICs) = R ®gs R(1) := Bs.
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H*(ICs) = R ®gs R(1) := Bs.
Bott-Samelson resolution
Vw € W, let w = s;...s, be a reduced expression,
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is a resolution of singularity.

T (Qg[n]) = IG5, * ... % ICs,.



The bimodule B,
For s € S, we have ICs = 7} o w5 (1Ce)[1], for 7s: G/B — G/ Ps.

H*(ICs) = R ®gs R(1) := Bs.

Bott-Samelson resolution
Vw € W, let w = s;...s, be a reduced expression,

Tw - P51 XB...XpB Ps,,/B %TB/B
is a resolution of singularity.

T (Qg[n]) = IG5, * ... % ICs,.

Decomposition Theorem

= m(@[n])zlcw@(@lcy@‘/;)

y<w



In the equality
ICy % 1Cs, = IC & (D IC, 0 V)
y<w

IC,, is the unique direct factor which does not appear in products
of ICs of smaller length.



In the equality
ICy % 1Cs, = IC & (D IC, 0 V)
y<w

IC,, is the unique direct factor which does not appear in products
of ICs of smaller length.

Bott-Samelson bimodules

BS(w) := Bs; ®R ... ®g Bs, = H*(ICs, * ... * ICs,).



In the equality

ICq, % ... % ICs, = IC,y @ (@ Iy ® v;)

y=<w

IC,, is the unique direct factor which does not appear in products
of ICs of smaller length.

Bott-Samelson bimodules

BS(w) := Bs; ®R ... ®g Bs, = H*(ICs, * ... * ICs,).

Faithfulness of H* =
B,, := H*(IC,) is the unique direct factor of BS(w) which does
not appear in BS(y) for y < w.



Soergel bimodules
Given any Coxeter system (W, S), and V a faithful real W-rep,
W ~ R =R[V].

Definition
» B; = R®ps R(1) € R—gmod—R,
» SBim = (Bs[s € S)~, (+1), ©, ®, Kar C R—gmod—R
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Soergel bimodules

Given any Coxeter system (W, S), and V a faithful real W-rep,

WA R=R[V].

Definition

» B; = R®ps R(1) € R—gmod—R,

» SBim = (Bs[s € S)~, (+1), ©, ®, Kar C R—gmod—R
The split Grothendieck group Ko(SBim) is a Z[v*!]-algebra.

Theorem (Soergel, 1990)
There is an isomorphism of Z[v*!]-algebras

H(W,S) = Ko(SBim), Cs — [Bs].



Soergel conjecture

» The inverse isomorphism is given by
Ch: Ko(SBim) = H(W,S)

[M] = > gdim (M /M-y) Ha
weW
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Soergel conjecture

» The inverse isomorphism is given by
Ch: Ko(SBim) = H(W,S)

[M] = > gdim (M /M-y) Ha
wew

» Bott-Samelson bimodules BS(w) are defined in the same way.

» Soergel proved that BS(w) contains a unique factor B,, which
does not appear in BS(y) for y < w.

Conjecture (Soergel)

Ch(B.) = Cy

= Kazhdan-Lusztig positivity conjecture.
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Impact on representation theory

» Discovery of Koszul duality for O,

» Provides new proof for Kazhdan-Lusztig conjecture,

» Such ideas lead to a proof of Lusztig Conjecture for p > 0 by
Andersen-Jantzen-Soergel.
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Recap

Soergel bimodules provides a (conjectural) categorification of
‘H for any Coxeter system

» The formulation is purely algebraic.
It uses only (W, S) and a faithful representation.

» Soergel only proved his conjecture for Weyl groups,
the proof uses geometry of G/B.

» Soergel bimodules provides combinatoric model for category
O and other representation categories.

» Applications to knot invariants.
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Elias-Williamson Diagram Category

Presentation of SBim by generators and relations
Key point: Compute P, , Homggim(BS(w), BS(y)).



Elias-Williamson Diagram Category

Presentation of SBim by generators and relations
Key point: Compute B, , Homgpim (BS(w), BS(y)).
Generators
deg 1 B, >R f®gm fg
deg 1 R— B, 1o i(w®l+1®a,)
! deg-1 B,B, - B, 19901 0,g®1
deg f R—R 1= f

!

|
\f deg-1  B.— B.B, 1911811
CF

deg0 B,B,...— B,B,...

Mt st



Diagram Category

Example of relations:

X koo

f s+ af
121321 121321

321323 321323
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» Proof of Soergel conjecture (Elias-Williamson, 2014)
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Impact

» Proof of Soergel conjecture (Elias-Williamson, 2014)

» Counter examples for Lusztig Character Formula
(Williamson, 2015)

» Discovery of p-canonical basis.

...many mysteries remain to be unravelled



Thanks for listening



