中科院数学与系统科学研究院
数学研究所
中科院华罗庚数学重点实验室
综合报告会
(Colloquium)
报告人:Professor Chen Hua(School of Mathematics and Statistics, Wuhan University)
题 目:Estimates of Dirichlet Eigenvalues for Degenerate Elliptic Operators
时 间:08.28 (星期五), 16:00--17:00
地 点:数学院南楼N902室
摘 要:
Let $\Omega$ be a bounded open domain in $R^n$ with smooth boundary and $X=(X_1, X_2, \cdots, X_m)$ be a system of real smooth vector fields defined on $\Omega$ with the boundary $\partial\Omega$ which is non-characteristic for $X$. If $X$ satisfies the H\"ormander's condition, then the vector fields is finite degenerate and the sum of square operator $\triangle_{X}=\sum_{j=1}^{m}X_j^2$ is a finitely degenerate elliptic operator, otherwise the operator $-\triangle_{X}$ is called infinitely degenerate. If $\lambda_j$ is the $j^{th}$ Dirichlet eigenvalue for $-\triangle_{X}$ on $\Omega$, then this paper shall study the lower bound estimates for $\lambda_j$. Firstly, by using the sub-elliptic estimate directly, we shall give a simple lower bound estimates of $\lambda_j$ for general finitely degenerate $\triangle_{X}$ which is polynomial increasing in $j$. Secondly, if $\triangle_{X}$ is so-called Grushin type degenerate elliptic operator, then we can give a precise lower bound estimates for $\lambda_j$. Finally, by using logarithmic regularity estimate, for infinitely degenerate elliptic operator $\triangle_{X}$ we prove that the lower bound estimates of $\lambda_j$ will be logarithmic increasing in $j$.
附件下载: |