郝成春的个人主页 | Chengchun HAO's Homepage
研究员、博士生导师,中国科学院数学与系统科学研究院 数学研究所 | Professor, Institute of Mathematics, AMSS, CAS
2010F: 219004Z* Singular Integrals and Differentiability Properties of Functions
Graduate Courses, Graduate University of Chinese Academy of Sciences, Fall 2010
Singular Integrals and Function Spaces
(奇异积分与函数空间)Chapter 1 Some Fundamental Notions of Real-Variable Theory
1.1 *The maximal function
1.2 Behavior near general points of measurable sets
1.3 Decomposition in cubes of open sets in $\Bbb{R}^n$
1.4 *Two interpolation theorems for $L^p$
Chapters 2 Singular Integrals
2.1 Review of certain aspects of harmonic analysis in $\Bbb{R}^n$
2.2 Singular integrals: the heart of the matter
2.3 Singular integral: some extensions and variants of the preceding
2.4 Singular integral operators which commute with dilations
2.5 Vector-valued analogues
Chapter 3 Riesz Transforms, Poisson Integrals, and Spherical Harmonics
3.1 The Riesz transforms
3.2 Poisson integrals and approximations to the identity
3.3 Higher Riesz transforms and spherical harmonics
Chapter 4 The Littlewood-Paley Theory and Multipliers
4.1 The Littlewood-Paley $g$-function
4.2 The function $g_\lambda^*$
4.3 *Fourier multipliers on $L^p$
4.4 Application of the partial sums operators
4.5 The Littlewood-Paley decomposition
4.6 The Marcinkiewicz multiplier theorem
4.7 *The smooth Littlewood-Paley decomposition
Chapter 5 *Smoothness and Function Spaces
5.1 Riesz potentials and fractional integrals
5.2 Bessel potentials
5.3 *Sobolev spaces
5.4 Lipschitz continuous function spaces
5.5 *Inhomogeneous Besov and Lizorkin-Triebel Spaces
References
- W. Beckner, Inequalities in Fourier analysis on $R^n$, Proc. Nat. Acad. Sci. USA 72(2), 638-641, 1975.
- J. Bergh and J. L?fstr?m, Interpolation Spaces, Springer-Verlag, 1976.
- Gradshteyn, and Ryzhik, (Eds.), Tables of Integrals, Series, and Products, Academic Press, 2007.
- L. Grafakos, Classical and Modern Fourier Analysis, Prentice-Hall, 2004.
- G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1934.
- R.A. Hunt, and G. Weiss, Shorter Notes: The Marcinkiewicz Interpolation Theorem. Proceedings of the American Mathematical Society 15 (1964) 996- 998.
- Y. Katznelson, An Introduction to Harmonic Analysis, 3rd Edt., Cambridge Univ. Press, 2004.
- R. O'Neil, Convolution operators and $L(p; q)$ spaces, Duke Math. J. 30 (1963), 129-142, p.137.
- E. M. Stein, Harmonic Analysis, Princeton University Press, 1993.
- E. M. Stein, Singular Integral and Differentiability Properties of Functions, Princeton University Press, 1970.
- E. M. Stein and R. Shakarchi, Fourier Analysis, Princeton University Press, 2003.
- E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.
- E. M. Stein and R. Shakarchi, Real Analysis, Princeton University Press, 2005.
- H. Triebel, Function Space Theory, Birkhauser-Verlag, 1983.
- B. X.Wang, Z. H. Huo, C. C. Hao and Z. H.Guo, Harmonic Analysis Method for Nonlinear Evolution Equations, I, World Scientific Pub Co Inc, 2011, xiv+283.
- K. Yosida, Functional Analysis, sixth edt., Springer-Verlag, 1980.
- M. Q. Zhou, Lectures on Harmonic Analysis (in Chinese), Peking University Press, 1999.
附件/Attachment