当前位置:首页 > 科研人员

尚在久

时间:2015-01-16  来源:文本大小:【 |  | 】  【打印

办公室:N931

电话:010-82541592

箱:zaijiu#amss.ac.cn

研究方向:几何数值方法,哈密尔顿系统,微分算子谱理论

主要成果:

1.   发展了保体积系统的生成函数理论, 给出无源系统保体积算法的一般性构造方法(其中部分成果与冯康合作)

2.   发现计算不变环面时的步长共振现象并给出步长远离共振的Diophantine条件,证明了Diophantine时间步长集合的大测度性质,证明了辛几何算法的KAM (Kolmogorov-Arnold-Moser)定理

3.   证明了高维小扭转辛映射不变环面的存在性(Moser小扭转定理的高维推广), 给出辛映射情形KAM定理的完整证明以及有关重要估计

4.   给出奇异常微分算式J-自伴边界条件的完整解析描述(获1993年国家教委科技进步二等奖,排名第二)

表论著:

1.   Shang Zaijiu: Stability of symplectic integrators, Preprint 2008.

2.   Shang Zaijiu, Song Lina: Exponentially small splittings of homoclinic orbits of Hamiltonian systems under symplectic discretizations, Preprint 2008.

3.   Shang Zaijiu: Volume-preserving maps, source-free systems and their local structures, Journal of Physics A: Mathematical and General, 39:19 (2006), 5601-561.

4.   Shang Zaijiu: Resonant and Diophantine step sizes in computing invariant tori of Hamiltonian systems. Nonlinearity 13 (2000), 299-308.

5.   Shang Zaijiu: A note on the KAM theorem for symplectic mappings. Journal of Dynamics and Differential Equations 12 (2000), 357-383.

6.   Shang Zaijiu: KAM theorem of symplectic algorithms for Hamiltonian systems. Numerische Mathematik 83 (1999), 477-496.

7.   Feng Kang and Shang Zai-jiu: Volume-preserving algorithms for source-free dynamical systems. Numerische Mathematik 71 (1995), 451-463.

8.   Shang Zaijiu: Generating functions for volume-preserving mappings and Hamilton-Jacobi equations for source-free systems. Science in China (Series A) 37 (1994), 1172-1188.

9.   Shang Zaijiu: On the construction of the volume-preserving difference schemes for source-free systems via generating functions. Journal of Computational Mathematics 12 (1994), 265-272.

10. Shang Zaijiu: On J-selfadjoint extensions of J-symmetric ordinary differential operators. Journal of Differential Equations 73 (1988), 153-177.

附件
相关文档