黄祥娣
办公室:思源楼922
电话:010-82541307
Email: xdhuang@amss.ac.cn
研究方向:非线性偏微分方程
研究课题:流体力学方程, 特别是可压缩“Naver-Stokes”方程及其相关模型
荣誉及奖励:
1.2022年第九届世界华人数学家大会ICCM一小时报告。
2.最佳论文银奖,2020年第四届世界华人数学家联盟年会。
3.最佳论文银奖,2017年首届世界华人数学家联盟年会。
简介:黄祥娣主要从事流体力学方程,特别是高维可压缩Navier-Stokes方程的研究。他的成果揭示了等熵与非等熵可压缩流体在允许真空初值条件下光滑解的有限时间爆破机制,从而完全解决并推广了诺贝尔奖得主J. Nash于1958年提出的关于可压缩流体光滑解爆破问题的著名猜想。基于这一突破,他首次对等熵与非等熵流体建立了允许真空初值的整体光滑解及弱解理论,进而部分解决了菲尔兹奖得主P. L. Lions提出的关于理想多方气体整体弱解存在性的猜想,其研究成果多篇发表在CPAM、CMP、ARMA、Math. Annal、SIAM.JMA,J.Math. Pures. Appl、JDE、Nonlinearity等国际权威期刊上,并荣获2017年首届及2020年第四届世界华人数学家联盟年会“最佳论文奖”。
主要成果:
1.对三维等熵可压缩Navier-Stokes 方程,首次证明小能量(允许真空态和大震荡初值)光滑解的整体存在性。
2.彻底解决并推广了诺贝尔奖得主J.Nash在1958年提出的关于可压缩粘性热传导流体光滑解爆破机制的猜测。对等熵可压缩、完全可压缩、可压缩热传导磁流体建立了统一的Serrin型爆破准则。
3.首次证明了三维完全可压缩Navier-Stokes方程允许真空初值和大震荡的光滑解和弱解的整体存在性,部分解决了法国科学院院士、菲尔兹奖得主P.L.Lions关于理想多方气体整体弱解存在性的猜想。
4.改进并推广了Kazhikhov-Vaigant 在1995年证明的关于二维可压缩Navier-Stokes方程任意大初值整体光滑解的结果,这也是迄今为止关于大初值整体光滑解存在性的最优结果。
5.首次证明单相流体Navier-Stokes 方程大震荡初值的弱解会在特定的结构条件下弱收敛到一类多相流体的局部光滑解。同时首次证明了一维非守恒型双相流体整体弱解的存在性。
代表作:
1.Huang, Xiangdi; Xin, Zhouping; Yan, Wei, Finite time blowup of strong solutions to the two dimensional MHD equations. Math. Ann. 392 (2025), no. 2, 2365~2394.
2.Huang, Xiangdi; Li, Jing, Global well-posedness of classical solutions to the Cauchy problem of two-dimensional barotropic compressible Navier-Stokes system with vacuum and large initial data. SIAM J. Math. Anal., 54 (2022), no. 3, 3192~3214.
3.Huang, Xiangdi; Li, Jing, Global well-posedness of classical solutions to the three-dimensional full compressible Navier-Stokes system with vacuum. Arch. Ration. Mech. Anal., 227(2018), No. 3: 995~1059.
4.Huang, Xiangdi; Li, Jing, Existence and blowup behavior of global strong solutions to the two-dimensional barotropic compressible Navier-Stokes system with vacuum and large initial data. J. Math. Pures Appl., 106(2016), No.1: 123~154.
5.Huang, Xiangdi; Wang, Yun, Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system.SIAM. J. Math. Anal., 46(2014), No. 3: 1771~1788.
6.Huang, Xiangdi; Li, Jing, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magneto-hydrodynamic flows. Comm. Math. Phys., 324(2013), No. 1: 147~171.
7.Huang, Xiangdi; Li, Jing;Wang, Yong, Serrin-type blowup criterion for full compressible Navier-Stokes system. Arch. Ration. Mech. Anal., 207(2013), No.1: 303~316.
8.Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations.Comm. Pure Appl. Math., 65(2012), No. 4: 549~585.
9.Didier, Bresch; Huang, Xiangdi; Li, Jing, Global weak solutions to one-dimensional non conservative viscous compressible two-phase system.Comm. Math. Phys., 309(2012), No. 3: 737~755.
10.Didier, Bresch; Huang, Xiangdi, A multi-fluid compressible system as the limit of weak solutions of the isentropic compressible Navier-Stokes equations.Arch. Ration. Mech. Anal., 201(2011), No. 2: 647~680.
11.Huang, Xiangdi; Li, Jing; Xin, Zhouping, Blowup criterion for viscous baratropic flows with vacuum states. Comm. Math. Phys., 301(2011), No. 1: 23~35.
12.Huang, Xiangdi; Li, Jing; Xin, Zhouping, Serrin-type criterion for the three-dimensional viscous compressible flows. SIAM. J. Math. Anal., 43(2011), No. 4: 1872~1886.